Chapter 2. Normed Rings

Norms $\|\cdot\|$ of associative rings are generalizations of absolute values $|\cdot|$ of integral domains, where the inequality $\|x y\| \leq\|x\| \cdot\|y\|$ replaces the standard multiplication rule $|x y|=|x| \cdot|y|$. Starting from a complete normed commutative ring A, we study the ring $A\{x\}$ of all formal power series with coefficients in A converging to zero. This is again a complete normed ring (Lemma 2.2.1). We prove an analog of the Weierstrass division theorem (Lemma 2.2.4) and the Weierstrass preparation theorem for $A\{x\}$ (Corollary 2.2.5). If A is a field K and the norm is an absolute value, then $K\{x\}$ is a principal ideal domain, hence a factorial ring (Proposition 2.3.1). Moreover, Quot ($K\{x\}$) is a Hilbertian field (Theorem 2.3.3). It follows that Quot $(K\{x\})$ is not a Henselian field (Corollary 2.3.4). In particular, Quot $(K\{x\})$ is not separably closed in $K((x))$. In contrast, the field $K((x))_{0}$ of all formal power series over K that converge at some element of K is algebraically closed in $K((x))$ (Proposition 2.4.5).

2.1 Normed Rings

In Section 4.4 we construct patching data over fields $K(x)$, where K is a complete ultrametric valued field. The 'analytic' fields P_{i} will be the quotient fields of certain rings of convergent power series in several variables over K. At a certain point in a proof by induction we consider a ring of convergent power series in one variable over a complete ultrametric valued ring. So, we start by recalling the definition and properties of the latter rings.

Let A be a commutative ring with 1 . An ultrametric absolute value of A is a function $|\mid: A \rightarrow \mathbb{R}$ satisfying the following conditions:
(1a) $|a| \geq 0$, and $|a|=0$ if and only if $a=0$.
(1b) There exists $a \in A$ such that $0<|a|<1$.
(1c) $|a b|=|a| \cdot|b|$.
(1d) $|a+b| \leq \max (|a|,|b|)$.
By (1a) and (1c), A is an integral domain. By (1c), the absolute value of A extends to an absolute value on the quotient field of $A\left(\right.$ by $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$). It follows also that $|1|=1,|-a|=|a|$, and
$\left(1 \mathrm{~d}^{\prime}\right)$ if $|a|<|b|$, then $|a+b|=|b|$.
Denote the ordered additive group of the real numbers by \mathbb{R}^{+}. The function $v: \operatorname{Quot}(A) \rightarrow \mathbb{R}^{+} \cup\{\infty\}$ defined by $v(a)=-\log |a|$ satisfies the following conditions:
(2a) $v(a)=\infty$ if and only if $a=0$.
(2b) There exists $a \in \operatorname{Quot}(A)$ such that $0<v(a)<\infty$.
(2c) $v(a b)=v(a)+v(b)$.
(2d) $v(a+b) \geq \min \{v(a), v(b)\}$ (and $v(a+b)=v(b)$ if $v(b)<v(a)$).
In other words, v is a real valuation of $\operatorname{Quot}(A)$. Conversely, every real valuation $v: \operatorname{Quot}(A) \rightarrow \mathbb{R}^{+} \cup\{\infty\}$ gives rise to a nontrivial ultrametric absolute value $|\cdot|$ of $\operatorname{Quot}(A): \quad|a|=\varepsilon^{v(a)}$, where ε is a fixed real number between 0 and 1 .

An attempt to extend an absolute value from A to a larger ring A^{\prime} may result in relaxing Condition (1c), replacing the equality by an inequality. This leads to the more general notion of a 'norm'.

Definition 2.1.1: Normed rings. Let R be an associative ring with 1. A norm on R is a function $\|\|: R \rightarrow \mathbb{R}$ that satisfies the following conditions for all $a, b \in R$:
(3a) $\|a\| \geq 0$, and $\|a\|=0$ if and only if $a=0$; further $\|1\|=\|-1\|=1$.
(3b) There is an $x \in R$ with $0<\|x\|<1$.
(3c) $\|a b\| \leq\|a\| \cdot\|b\|$.
(3d) $\|a+b\| \leq \max (\|a\|,\|b\|)$.
The norm || \| naturally defines a topology on R whose basis is the collection of all sets $U\left(a_{0}, r\right)=\left\{a \in R \mid\left\|a-a_{0}\right\|<r\right\}$ with $a_{0} \in R$ and $r>0$. Both addition and multiplication are continuous under that topology. Thus, R is a topological ring.

Definition 2.1.2: Complete rings. Let R be a normed ring. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ of elements of R is Cauchy if for each $\varepsilon>0$ there exists m_{0} such that $\left\|a_{n}-a_{m}\right\|<\varepsilon$ for all $m, n \geq m_{0}$. We say that R is complete if every Cauchy sequence converges.

Lemma 2.1.3: Let R be a normed ring and let $a, b \in R$. Then:
(a) $\|-a\|=\|a\|$.
(b) If $\|a\|<\|b\|$, then $\|a+b\|=\|b\|$.
(c) A sequence $a_{1}, a_{2}, a_{3}, \ldots$ of elements of R is Cauchy if for each $\varepsilon>0$ there exists m_{0} such that $\left\|a_{m+1}-a_{m}\right\|<\varepsilon$ for all $m \geq m_{0}$.
(d) The map $x \rightarrow\|x\|$ from R to \mathbb{R} is continuous.
(e) If R is complete, then a series $\sum_{n=0}^{\infty} a_{n}$ of elements of R converges if and only if $a_{n} \rightarrow 0$.
(f) If R is complete and $\|a\|<1$, then $1-a \in R^{\times}$. Moreover, $(1-a)^{-1}=1+b$ with $\|b\|<1$.

Proof of (a): Observe that $\|-a\| \leq\|-1\| \cdot\|a\| \leq\|a\|$. Replacing a by $-a$, we get $\|a\| \leq\|-a\|$, hence the claimed equality.

Proof of (b): Assume $\|a+b\|<\|b\|$. Then, by (a), $\|b\|=\|(-a)+(a+b)\| \leq$ $\max (\|-a\|,\|a+b\|)<\|b\|$, which is a contradiction.
Proof of (c): With m_{0} as above let $n>m \geq m_{0}$. Then

$$
\left\|a_{n}-a_{m}\right\| \leq \max \left(\left\|a_{n}-a_{n-1}\right\|, \ldots,\left\|a_{m+1}-a_{m}\right\|\right)<\varepsilon .
$$

Proof of (d): By (3d), $\|x\|=\|(x-y)+y\| \leq \max (\|x-y\|,\|y\|) \leq\|x-y\|+$ $\|y\|$. Hence, $\|x\|-\|y\| \leq\|x-y\|$. Symmetrically, $\|y\|-\|x\| \leq\|y-x\|=$
$\|x-y\|$. Therefore, $|\|x\|-\|y\|| \leq\|x-y\|$. Consequently, the map $x \mapsto\|x\|$ is continuous.

Proof of (e): Let $s_{n}=\sum_{i=0}^{n} a_{i}$. Then $s_{n+1}-s_{n}=a_{n+1}$. Thus, by (c), $s_{1}, s_{2}, s_{3}, \ldots$ is a Cauchy sequence if and only if $a_{n} \rightarrow 0$. Hence, the series $\sum_{n=0}^{\infty} a_{n}$ converges if and only if $a_{n} \rightarrow 0$.

Proof of (f): The sequence a^{n} tends to 0 . Hence, by (e), $\sum_{n=0}^{\infty} a^{n}$ converges. The identities $(1-a) \sum_{i=0}^{n} a^{i}=1-a^{n+1}$ and $\sum_{i=0}^{n} a^{i}(1-a)=1-a^{n+1}$ imply that $\sum_{n=0}^{\infty} a^{n}$ is both the right and the left inverse of $1-a$. Moreover, $\sum_{n=0}^{\infty} a^{n}=1+b$ with $b=\sum_{n=1}^{\infty} a^{n}$ and $\|b\| \leq \max _{n \geq 1}\|a\|^{n}<1$.

Example 2.1.4:
(a) Every field K with an ultrametric absolute value is a normed ring. For example, for each prime number p, \mathbb{Q} has a p-adic absolute value $|\cdot|_{p}$ which is defined by $|x|_{p}=p^{-m}$ if $x=\frac{a}{b} p^{m}$ with $a, b, m \in \mathbb{Z}$ and $p \nmid a, b$.
(b) The ring \mathbb{Z}_{p} of p-adic integers and the field \mathbb{Q}_{p} of p-adic numbers are complete with respect to the p-adic absolute value.
(c) Let K_{0} be a field and let $0<\varepsilon<1$. The ring $K_{0}[[t]]$ (resp. field $\left.K_{0}((t))\right)$ of formal power series $\sum_{i=0}^{\infty} a_{i} t^{i}$ (resp. $\sum_{i=m}^{\infty} a_{i} t^{i}$ with $m \in \mathbb{Z}$) with coefficients in K_{0} is complete with respect to the absolute value $\left|\sum_{i=m}^{\infty} a_{i} t^{i}\right|=$ $\varepsilon^{\min \left(i \mid a_{i} \neq 0\right)}$.
(d) Let $\|\cdot\|$ be a norm of a commutative ring A. For each positive integer n we extend the norm to the associative (and usually not commutative) ring $M_{n}(A)$ of all $n \times n$ matrices with entries in A by

$$
\left\|\left(a_{i j}\right)_{1 \leq i, j \leq n}\right\|=\max \left(\left\|a_{i j}\right\|_{1 \leq i, j \leq n}\right)
$$

If $b=\left(b_{j k}\right)_{1 \leq j, k \leq n}$ is another matrix and $c=a b$, then $c_{i k}=\sum_{j=1}^{n} a_{i j} b_{j k}$ and $\left\|c_{i k}\right\| \leq \max \left(\left\|a_{i j}\right\| \cdot\left\|b_{j k}\right\|\right) \leq\|a\| \cdot\|b\|$. Hence, $\|c\| \leq\|a\|\|b\|$. This verifies Condition (3c). The verification of (3a), (3b), and (3d) is straightforward. Note that when $n \geq 2$, even if the initial norm of A is an absolute value, the extended norm satisfies only the weak condition (3c) and not the stronger condition (1c), so it is not an absolute value.

If A is complete, then so is $M_{n}(A)$. Indeed, let $a_{i}=\left(a_{i, r s}\right)_{1 \leq r, s \leq n}$ be a Cauchy sequence in $M_{n}(A)$. Since $\left\|a_{i, r s}-a_{j, r s}\right\| \leq\left\|a_{i}-a_{j}\right\|$, each of the sequences $a_{1, r s}, a_{2, r s}, a_{3, r s}, \ldots$ is Cauchy, hence converges to an element $b_{r s}$ of A. Set $b=\left(b_{r s}\right)_{1 \leq r, s \leq n}$. Then $a_{i} \rightarrow b$. Consequently, $M_{n}(A)$ is complete.
(e) Let \mathfrak{a} be a proper ideal of a Noetherian domain A. By a theorem of Krull, $\bigcap_{n=0}^{\infty} \mathfrak{a}^{n}=0$ [AtM69, p. 110, Cor. 10.18]. We define an \mathfrak{a}-adic norm on A by choosing an ε between 0 and 1 and setting $\|a\|=\varepsilon^{\max \left(n \mid a \in \mathfrak{a}^{n}\right)}$. If $\|a\|=\varepsilon^{m}$ and $\|b\|=\varepsilon^{n}$, and say $m \leq n$, then $\mathfrak{a}^{n} \subseteq \mathfrak{a}^{m}$, so $a+b \in \mathfrak{a}^{m}$, hence $\|a+b\| \leq \varepsilon^{m}=\max (\|a\|,\|b\|)$. Also, $a b \in \mathfrak{a}^{m+n}$, so $\|a b\| \leq\|a\| \cdot\|b\|$.

Like absolute valued rings, every normed ring has a completion:

Lemma 2.1.5: Every normed ring $(R,\| \|)$ can be embedded into a complete normed ring $(\hat{R},\| \|)$ such that R is dense in \hat{R} and the following universal condition holds:
(4) Each continuous homomorphism f of R into a complete ring S uniquely extends to a continuous homomorphism $\hat{f}: \hat{R} \rightarrow S$.
The normed ring $(\hat{R},\| \|)$ is called the completion of $(R,\| \|)$.
Proof: We consider the set A of all Cauchy sequences $\mathbf{a}=\left(a_{n}\right)_{n=1}^{\infty}$ with $a_{n} \in R$. For each $\mathbf{a} \in A$, the values $\left\|a_{n}\right\|$ of its components are bounded. Hence, A is closed under componentwise addition and multiplication and contains all constant sequences. Thus, A is a ring. Let \mathfrak{n} be the ideal of all sequences that converge to 0 . We set $\hat{R}=A / \mathfrak{n}$ and identify each $x \in R$ with the coset $(x)_{n=1}^{\infty}+\mathfrak{n}$.

If $\mathbf{a} \in A \backslash \mathfrak{n}$, then $\left\|a_{n}\right\|$ eventually becomes constant. Indeed, there exists $\beta>0$ such that $\left\|a_{n}\right\| \geq \beta$ for all sufficiently large n. Choose n_{0} such that $\left\|a_{n}-a_{m}\right\|<\beta$ for all $n, m \geq n_{0}$. Then, $\left\|a_{n}-a_{n_{0}}\right\|<\beta \leq\left\|a_{n_{0}}\right\|$, so $\left\|a_{n}\right\|=\left\|\left(a_{n}-a_{n_{0}}\right)+a_{n_{0}}\right\|=\left\|a_{n_{0}}\right\|$. We define $\|\mathbf{a}\|$ to be the eventual absolute value of a_{n} and note that $\|\mathbf{a}\| \neq 0$. If $\mathbf{b} \in \mathfrak{n}$, we set $\|\mathbf{b}\|=0$ and observe that $\|\mathbf{a}+\mathbf{b}\|=\|\mathbf{a}\|$. It follows that $\|\mathbf{a}+\mathfrak{n}\|=\|\mathbf{a}\|$ is a well defined function on \hat{R} which extends the norm of R.

One checks that $\|\|$ is a norm on \hat{R} and that R is dense in \hat{R}. Indeed, if $\mathbf{a}=\left(a_{n}\right)_{n=1}^{\infty} \in A$, then $a_{n}+\mathfrak{n} \rightarrow \mathbf{a}+\mathfrak{n}$. To prove that \hat{R} is complete under $\left\|\|\right.$ we consider a Cauchy sequence $\left(a_{k}\right)_{k=1}^{\infty}$ of elements of \hat{R}. For each k we choose an element $b_{k} \in R$ such that $\left\|b_{k}-a_{k}\right\|<\frac{1}{k}$. Then $\left(b_{k}\right)_{k=1}^{\infty}$ is a Cauchy sequence of R and the sequence $\left(\mathbf{a}_{k}\right)_{k=1}^{\infty}$ converges to the element $\left(b_{k}\right)_{k=1}^{\infty}+\mathfrak{n}$ of \hat{R}.

Finally, let S be a complete normed ring and $f: R \rightarrow S$ a continuous homomorphism. Then, for each $\mathbf{a}=\left(a_{n}\right)_{n=1}^{\infty} \in A$, the sequence $\left(f\left(a_{n}\right)\right)_{n=1}^{\infty}$ of S is Cauchy, hence it converges to an element s. Define $\hat{f}(\mathbf{a}+\mathfrak{n})=s$ and check that \hat{f} has the desired properties.

Example 2.1.6: Let A be a commutative ring. We consider the ring $R=$ $A\left[x_{1}, \ldots, x_{n}\right]$ of polynomials over A in the variables x_{1}, \ldots, x_{n} and the ideal \mathfrak{a} of R generated by x_{1}, \ldots, x_{n}. The completion of R with respect to \mathfrak{a} is the ring $\hat{R}=A\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ of all formal power series $f\left(x_{1}, \ldots, x_{n}\right)=$ $\sum_{i=0}^{\infty} f_{i}\left(x_{1}, \ldots, x_{n}\right)$, where $f_{i} \in A\left[x_{1}, \ldots, x_{n}\right]$ is a homogeneous polynomial of degree i. Moreover, $\hat{R}=A\left[\left[x_{1}, \ldots, x_{n-1}\right]\right]\left[\left[x_{n}\right]\right]$ and \hat{R} is complete with respect to the ideal $\hat{\mathfrak{a}}$ generated by x_{1}, \ldots, x_{n} [Lan93, Chap. IV, Sec. 9]. If R is a Noetherian integral domain, then so is \hat{R} [Lan93, p. 210, Cor. 9.6]. If $A=K$ is a field, then \hat{R} is a unique factorization domain [Mat94, Thm. 20.3].

If A is an integral domain, then the function $v: \hat{R} \rightarrow \mathbb{Z} \cup\{\infty\}$ defined for f as in the preceding paragraph by $v(f)=\min _{i \geq 0}\left(f_{i} \neq 0\right)$ satisfies Condition (2), so it extends to a discrete valuation of $\hat{\hat{K}}=\operatorname{Quot}(\hat{R})$. However, by Weissauer, \hat{K} is Hilbertian if $n \geq 2$. [FrJ08, Example 15.5.2]. Hence, \hat{K}
is Henselian with respect to no valuation [FrJ08, Lemma 15.5.4]. Since v is discrete, \hat{K} is not complete with respect to v.

2.2 Rings of Convergent Power Series

Let A be a complete normed commutative ring and x a variable. Consider the following subset of $A[[x]]$:

$$
A\{x\}=\left\{\sum_{n=0}^{\infty} a_{n} x^{n} \mid a_{n} \in A, \lim _{n \rightarrow \infty}\left\|a_{n}\right\|=0\right\}
$$

For each $f=\sum_{n=0}^{\infty} a_{n} x^{n} \in A\{x\}$ we define $\|f\|=\max \left(\left\|a_{n}\right\|\right)_{n=0,1,2, \ldots}$. This definition makes sense because $a_{n} \rightarrow 0$, hence $\left\|a_{n}\right\|$ is bounded.

We prove the Weierstrass division and the Weierstrass preparation theorems for $A\{x\}$ in analogy to the corresponding theorems for the ring of formal power series in one variable over a local ring.

Lemma 2.2.1:
(a) $A\{x\}$ is a subring of $A[[x]]$ containing A.
(b) The function $\|\|: A\{x\} \rightarrow \mathbb{R}$ is a norm.
(c) The ring $A\{x\}$ is complete under that norm.
(d) Let B be a complete normed ring extension of A. Then each $b \in B$ with $\|b\| \leq 1$ defines an evaluation homomorphism $A\{x\} \rightarrow B$ given by

$$
f=\sum_{n=0}^{\infty} a_{n} x^{n} \mapsto f(b)=\sum_{n=0}^{\infty} a_{n} b^{n}
$$

Proof of (a): We prove only that $A\{x\}$ is closed under multiplication. To that end let $f=\sum_{i=0}^{\infty} a_{i} x^{i}$ and $g=\sum_{j=0}^{\infty} b_{j} x^{j}$ be elements of $A\{x\}$. Consider $\varepsilon>0$ and let n_{0} be a positive number such that $\left\|a_{i}\right\|<\varepsilon$ if $i \geq \frac{n_{0}}{2}$ and $\left\|b_{j}\right\|<\varepsilon$ if $j \geq \frac{n_{0}}{2}$. Now let $n \geq n_{0}$ and $i+j=n$. Then $i \geq \frac{n_{0}}{2}$ or $j \geq \frac{n_{0}}{2}$. It follows that $\left\|\sum_{i+j=n} a_{i} b_{j}\right\| \leq \max \left(\left\|a_{i}\right\| \cdot\left\|b_{j}\right\|\right)_{i+j=n} \leq \varepsilon \cdot \max (\|f\|,\|g\|)$. Thus, $f g=\sum_{n=0}^{\infty} \sum_{i+j=n} a_{i} b_{j} x^{n}$ belongs to $A\{x\}$, as claimed.
Proof of (b): Standard checking.
Proof of (c): Let $f_{i}=\sum_{n=0}^{\infty} a_{i n} x^{n}, i=1,2,3, \ldots$, be a Cauchy sequence in $A\{x\}$. For each $\varepsilon>0$ there exists i_{0} such that $\left\|a_{i n}-a_{j n}\right\| \leq\left\|f_{i}-f_{j}\right\|<\varepsilon$ for all $i, j \geq i_{0}$ and for all n. Thus, for each n, the sequence $a_{1 n}, a_{2 n}, a_{3 n}, \ldots$ is Cauchy, hence converges to an element $a_{n} \in A$. If we let j tend to infinity in the latter inequality, we get that $\left\|a_{i n}-a_{n}\right\|<\varepsilon$ for all $i \geq i_{0}$ and all n. Set $f=\sum_{i=0}^{\infty} a_{n} x^{n}$. Then $a_{n} \rightarrow 0$ and $\left\|f_{i}-f\right\|=\max \left(\left\|a_{i n}-a_{n}\right\|\right)_{n=0,1,2, \ldots}<\varepsilon$ if $i \geq i_{0}$. Consequently, the f_{i} 's converge in $A\{x\}$.
Proof of (d): Note that $\left\|a_{n} b^{n}\right\| \leq\left\|a_{n}\right\| \rightarrow 0$, so $\sum_{n=0}^{\infty} a_{n} b^{n}$ is an element of B.

Definition 2.2.2: Let $f=\sum_{n=0}^{\infty} a_{n} x^{n}$ be a nonzero element of $A\{x\}$. We define the pseudo degree of f to be the integer $d=\max \left\{n \geq 0 \mid\left\|a_{n}\right\|=\right.$ $\|f\|\}$ and set pseudo. $\operatorname{deg}(f)=d$. The element a_{d} is the pseudo leading coefficient of f. Thus, $\left\|a_{d}\right\|=\|f\|$ and $\left\|a_{n}\right\|<\|f\|$ for each $n>d$. If $f \in A[x]$ is a polynomial, then pseudo. $\operatorname{deg}(f) \leq \operatorname{deg}(f)$. If a_{d} is invertible in A and satisfies $\left\|c a_{d}\right\|=\|c\| \cdot\left\|a_{d}\right\|$ for all $c \in A$, we call f regular. In particular, if A is a field and $\|\|$ is an ultrametric absolute value, then each $0 \neq f \in A\{x\}$ is regular. The next lemma implies that in this case $\|\|$ is an absolute value of $A\{x\}$.

Lemma 2.2.3 (Gauss' Lemma): Let $f, g \in A\{x\}$. Suppose f is regular of pseudo degree d and $f, g \neq 0$. Then $\|f g\|=\|f\| \cdot\|g\|$ and pseudo.deg $(f g)=$ pseudo.deg $(f)+\operatorname{pseudo} \cdot \operatorname{deg}(g)$.

Proof: Let $f=\sum_{i=0}^{\infty} a_{i} x^{i}$ and $g=\sum_{j=0}^{\infty} b_{j} x^{j}$. Let a_{d} (resp. b_{e}) be the pseudo leading coefficient of f (resp. g). Then $f g=\sum_{n=0}^{\infty} c_{n} x^{n}$ with $c_{n}=$ $\sum_{i+j=n} a_{i} b_{j}$.

If $i+j=d+e$ and $(i, j) \neq(d, e)$, then either $i>d$ or $j>e$. In each case, $\left\|a_{i} b_{j}\right\| \leq\left\|a_{i}\right\|\left\|b_{j}\right\|<\|f\| \cdot\|g\|$. By our assumption on a_{d}, we have $\left\|a_{d} b_{e}\right\|=\left\|a_{d}\right\| \cdot\left\|b_{e}\right\|=\|f\| \cdot\|g\|$. By Lemma 2.1.3(b), this implies $\left\|c_{d+e}\right\|=\|f\| \cdot\|g\|$.

If $i+j>d+e$, then either $i>d$ and $\left\|a_{i}\right\|<\|f\|$ or $j>e$ and $\left\|b_{j}\right\|<\|g\|$. In each case $\left\|a_{i} b_{j}\right\| \leq\left\|a_{i}\right\| \cdot\left\|b_{j}\right\|<\|f\| \cdot\|g\|$. Hence, $\left\|c_{n}\right\|<\left\|c_{d+e}\right\|$ for each $n>d+e$. Therefore, c_{d+e} is the pseudo leading coefficient of $f g$, and the lemma is proved.

Proposition 2.2.4 (Weierstrass division theorem): Let $f \in A\{x\}$ and let $g \in A\{x\}$ be regular of pseudo degree d. Then there are unique $q \in A\{x\}$ and $r \in A[x]$ such that $f=q g+r$ and $\operatorname{deg}(r)<d$. Moreover,

$$
\begin{equation*}
\|q g\|=\|q\| \cdot\|g\| \leq\|f\| \quad \text { and } \quad\|r\| \leq\|f\| \tag{1}
\end{equation*}
$$

Proof: We break the proof into several parts.
Part A: Proof of (1). First we assume that there exist $q \in A\{x\}$ and $r \in A[x]$ such that $f=q g+r$ with $\operatorname{deg}(r)<d$. If $q=0$, then (1) is clear. Otherwise, $q \neq 0$ and we let $e=\operatorname{pseudo} \cdot \operatorname{deg}(q)$. By Lemma 2.2.3, $\|q g\|=\|q\| \cdot\|g\|$ and pseudo. $\operatorname{deg}(q g)=e+d>\operatorname{deg}(r)$. Hence, the coefficient c_{d+e} of x^{d+e} in $q g$ is also the coefficient of x^{d+e} in f. It follows that $\|q g\|=$ $\left\|c_{d+e}\right\| \leq\|f\|$. Consequently, $\|r\|=\|f-q g\| \leq\|f\|$.
Part B: Uniqueness. Suppose $f=q g+r=q^{\prime} g+r^{\prime}$, where $q, q^{\prime} \in A\{x\}$ and $r, r^{\prime} \in A[x]$ are of degrees less than d. Then $0=\left(q-q^{\prime}\right) g+\left(r-r^{\prime}\right)$. By Part A, applied to 0 rather than to $f,\left\|q-q^{\prime}\right\| \cdot\|g\|=\left\|r-r^{\prime}\right\|=0$. Hence, $q=q^{\prime}$ and $r=r^{\prime}$.
Part C: Existence if g is a polynomial of degree d. Write $f=\sum_{n=0}^{\infty} b_{n} x^{n}$ with $b_{n} \in A$ converging to 0 . For each $m \geq 0$ let $f_{m}=\sum_{n=0}^{m} b_{n} x^{n} \in$
$A[x]$. Then the $f_{1}, f_{2}, f_{3}, \ldots$ converge to f, in particular they form a Cauchy sequence. Since g is regular of pseudo degree d, its leading coefficient is invertible. Euclid's algorithm for polynomials over A produces $q_{m}, r_{m} \in A[x]$ with $f_{m}=q_{m} g+r_{m}$ and $\operatorname{deg}\left(r_{m}\right)<\operatorname{deg}(g)$. Thus, for all k, m we have $f_{m}-f_{k}=\left(q_{m}-q_{k}\right) g+\left(r_{m}-r_{k}\right)$. By Part A, $\left\|q_{m}-q_{k}\right\| \cdot\|g\|,\left\|r_{m}-r_{k}\right\| \leq$ $\left\|f_{m}-f_{k}\right\|$. Thus, $\left\{q_{m}\right\}_{m=0}^{\infty}$ and $\left\{r_{m}\right\}_{m=0}^{\infty}$ are Cauchy sequences in $A\{x\}$. Since $A\{x\}$ is complete (Lemma 2.2.1), the q_{m} 's converge to some $q \in A\{x\}$. Since A is complete, the r_{m} 's converge to an $r \in A[x]$ of degree less than d. It follows that $f=q g+r$
Part D: Existence for arbitrary g. Let $g=\sum_{n=0}^{\infty} a_{n} x^{n}$ and set $g_{0}=$ $\sum_{n=0}^{d} a_{n} x^{n} \in A[x]$. Then $\left\|g-g_{0}\right\|<\|g\|$. By Part C, there are $q_{0} \in A\{x\}$ and $r_{0} \in A[x]$ such that $f=q_{0} g_{0}+r_{0}$ and $\operatorname{deg}\left(r_{0}\right)<d$. By Part A, $\left\|q_{0}\right\| \leq \frac{\|f\|}{\|g\|}$ and $\left\|r_{0}\right\| \leq\|f\|$. Thus, $f=q_{0} g+r_{0}+f_{1}$, where $f_{1}=-q_{0}\left(g-g_{0}\right)$, and $\left\|f_{1}\right\| \leq \frac{\left\|g-g_{0}\right\|}{\|g\|} \cdot\|f\|$.

Set $f_{0}=f$. By induction we get, for each $k \geq 0$, elements $f_{k}, q_{k} \in A\{x\}$ and $r_{k} \in A[x]$ such that $\operatorname{deg}\left(r_{k}\right)<d$ and

$$
\begin{array}{cl}
f_{k}=q_{k} g+r_{k}+f_{k+1}, \quad\left\|q_{k}\right\| \leq \frac{\left\|f_{k}\right\|}{\|g\|}, \quad\left\|r_{k}\right\| \leq\left\|f_{k}\right\|, \quad \text { and } \\
\left\|f_{k+1}\right\| \leq \frac{\left\|g-g_{0}\right\|}{\|g\|}\left\|f_{k}\right\| .
\end{array}
$$

It follows that $\left\|f_{k}\right\| \leq\left(\frac{\left\|g-g_{0}\right\|}{\|g\|}\right)^{k}\|f\|$, so $\left\|f_{k}\right\| \rightarrow 0$. Hence, also $\left\|q_{k}\right\|,\left\|r_{k}\right\| \rightarrow$ 0 . Therefore, $q=\sum_{k=0}^{\infty} q_{k} \in A\{x\}$ and $r=\sum_{k=0}^{\infty} r_{k} \in A[x]$. By construction, $f=\sum_{n=0}^{k} q_{n} g+\sum_{n=0}^{k} r_{n}+f_{k+1}$ for each k. Taking k to infinity, we get $f=q g+r$ and $\operatorname{deg}(r)<d$.
Corollary 2.2.5 (Weierstrass preparation theorem): Let $f \in A\{x\}$ be regular of pseudo degree d. Then $f=q g$, where q is a unit of $A\{x\}$ and $g \in A[x]$ is a monic polynomial of degree d with $\|g\|=1$. Moreover, q and g are uniquely determined by these conditions.
Proof: By Proposition 2.2 .4 there are $q^{\prime} \in A\{x\}$ and $r^{\prime} \in A[x]$ of degree $<d$ such that $x^{d}=q^{\prime} f+r^{\prime}$ and $\left\|r^{\prime}\right\| \leq\left\|x^{d}\right\|=1$. Set $g=x^{d}-r^{\prime}$. Then g is monic of degree $d, g=q^{\prime} f$, and $\|g\|=1$. It remains to show that $q^{\prime} \in A\{x\}^{\times}$.

Note that g is regular of pseudo degree d. By Proposition 2.2.4, there are $q \in A\{x\}$ and $r \in A[x]$ such that $f=q g+r$ and $\operatorname{deg}(r)<d$. Thus, $f=q q^{\prime} f+r$. Since $f=1 \cdot f+0$, the uniqueness part of Proposition 2.2.4 implies that $q q^{\prime}=1$. Hence, $q^{\prime} \in A\{x\}^{\times}$.

Finally suppose $f=q_{1} g_{1}$, where $q \in A\{x\}^{\times}$and $g_{1} \in A[x]$ is monic of degree d with $\left\|g_{1}\right\|=1$. Then $g_{1}=\left(q_{1}^{-1} q_{2}\right) g$ and $g_{1}=1 \cdot g+\left(g_{1}-g\right)$, where $g_{1}=g$ is a polynomial of degree at most $d-1$. By the uniqueness part of Proposition 2.2.4, $q_{1}^{-1} q_{2}=1$, so $q_{1}=q_{2}$ and $g_{1}=g$.

Corollary 2.2.6: Let $f=\sum_{n=0}^{\infty} a_{n} x^{n}$ be a regular element of $A\{x\}$ such that $\left\|a_{0} b\right\|=\left\|a_{0}\right\| \cdot\|b\|$ for each $b \in A$. Then $f \in A\{x\}^{\times}$if and only if pseudo. $\operatorname{deg}(f)=0$ and $a_{0} \in A^{\times}$.
Proof: If there exists $g \in \sum_{n=0}^{\infty} b_{n} x^{n}$ in $A\{x\}$ such that $f g=1$, then pseudo. $\operatorname{deg}(f)+\operatorname{pseudo} \cdot \operatorname{deg}(g)=0$ (Lemma 2.2.3 applied to 1 rather than to f), so pseudo.deg $(f)=0$. In addition, $a_{0} b_{0}=1$, so $a_{0} \in A^{\times}$.

Conversely, suppose pseudo. $\operatorname{deg}(f)=0$ and $a_{0} \in A^{\times}$. Then f is regular. Hence, by Corollary 2.2.5, $f=q \cdot 1$ where $q \in A\{x\}^{\times}$.

Alternatively, $a_{0}^{-1} f=1-h$, where $h=-\sum_{n=1}^{\infty} a_{0}^{-1} a_{n} x^{n}$. By our assumption on a_{0}, we have $\left\|a_{0}^{-1}\right\| \cdot\left\|a_{0}\right\|=\left\|a_{0}^{-1} a_{0}\right\|=1$, so $\left\|a_{0}^{-1}\right\|=\left\|a_{0}\right\|^{-1}$. Since pseudo. $\operatorname{deg}(f)=0$, we have $\left\|a_{0}\right\|<\left\|a_{n}\right\|$, so $\left\|a_{0}^{-1} a_{n}\right\| \leq\left\|a_{0}\right\|^{-1}\left\|a_{n}\right\|<$ 1 for each $n \geq 1$. It follows that $\|h\|=\max \left(\left\|a_{0}^{-1} a_{n}\right\|\right)_{n=1,2,3, \ldots}<1$. By Lemma 2.1.3(f), $a_{0}^{-1} f \in A\{x\}^{\times}$, so $f \in A\{x\}^{\times}$.

2.3 Properties of the Ring $K\{x\}$

We turn our attention in this section to the case where the ring A of the previous sections is a complete field K under an ultrametric absolute value $|\mid$ and $O=\{a \in K| | a \mid \leq 1\}$ its valuation ring. We fix K and O for the whole section and prove that $K\{x\}$ is a principal ideal domain and that $F=\operatorname{Quot}(K\{x\})$ is a Hilbertian field.

Note that in our case $|a b|=|a| \cdot|b|$ for all $a, b \in K$ and each nonzero element of K is invertible. Hence, each nonzero $f \in K\{x\}$ is regular. It follows from Lemma 2.2.3 that the norm of $K\{x\}$ is multiplicative, hence it is an absolute value which we denote by || rather than by || \|.

Proposition 2.3.1:
(a) $K\{x\}$ is a principal ideal domain. Moreover, each ideal in $K\{x\}$ is generated by an element of $O[x]$.
(b) $K\{x\}$ a unique factorization domain.
(c) A nonzero element $f \in K\{x\}$ is invertible if and only if $\operatorname{pseudo} \cdot \operatorname{deg}(f)=$ 0.
(d) $\operatorname{pseudo} \cdot \operatorname{deg}(f g)=\operatorname{pseudo} \cdot \operatorname{deg}(f)+\operatorname{pseudo} \cdot \operatorname{deg}(g)$ for all $f, g \in K\{x\}$ with $f, g \neq 0$.
(e) Every prime element f of $K\{x\}$ can be written as $f=u g$, where u is invertible in $K\{x\}$ and g is an irreducible element of $K[x]$.
(f) If a $g \in K[x]$ is monic of degree d, irreducible in $K[x]$, and $|g|=1$, then g is irreducible in $K\{x\}$.
(g) There are irreducible polynomials in $K[x]$ that are not irreducible in $K\{x\}$.
(h) There are reducible polynomials in $K[x]$ that are irreducible in $K\{x\}$.

Proof of (a): By the Weierstrass preparation theorem (Corollary 2.2.5) (applied to K rather than to A) each nonzero ideal \mathfrak{a} of $K\{x\}$ is generated by the ideal $\mathfrak{a} \cap K[x]$ of $K[x]$. Since $K[x]$ is a principal ideal domain, $\mathfrak{a} \cap K[x]=f K[x]$
for some nonzero $f \in K[x]$. Consequently, $\mathfrak{a}=f K\{x\}$ is a principal ideal. Moreover, dividing f by one of its coefficients with highest absolute value, we may assume that $f \in O[x]$.

Proof of (b): Since every principal ideal domain has a unique factorization, (b) is a consequence of (a).

Proof of (c): Apply Corollary 2.2.6.
Proof of (d): Apply Lemma 2.2.3.
Proof of (e): By (a), $f=u_{1} f_{1}$ with $u_{1} \in K\{x\}^{\times}$and $f_{1} \in K[x]$. Write $f_{1}=g_{1} \cdots g_{n}$ with irreducible polynomials $g_{1}, \ldots, g_{n} \in K[x]$. Then $f=$ $u_{1} g_{1} \cdots g_{n}$. Since f is irreducible in $K\{x\}$, one of the g_{i} 's, say g_{n} is irreducible in $K\{x\}$ and all the others, that is g_{1}, \ldots, g_{n-1}, are invertible in $K\{x\}$. Set $u=u_{1} g_{1} \cdots g_{n-1}$ and $g=g_{n}$. Then $f=u g$ is the desired presentation.

Proof of (f) : The irreducibility of g in $K[x]$ implies that $d>0$. Our assumptions imply that pseudo. $\operatorname{deg}(g)=d$. Hence, by Corollary 2.2.6, $g K\{x\}^{\times}$.

Now assume $g=g_{1} g_{2}$, where $g_{1}, g_{2} \in K\{x\}$ are nonunits. By Corollary 2.2.5, we may assume that $g_{1} \in K[x]$ is monic, say of degree d_{1}, and $\left|g_{1}\right|=1$. Thus pseudo.deg $\left(g_{1}\right)=d_{1}$. By Euclid's algorithm, there are $q, r \in K[x]$ such that $g=q g_{1}+r$ and $\operatorname{deg}(r)<d_{1}$. Applying the additional presentation $g=g_{2} g_{1}+0$ and the uniqueness part of Proposition 2.2.4, we get that $g_{2}=$ $q \in K[x]$. Thus, either $g_{1} \in K[x]^{\times} \subseteq K\{x\}^{\times}$or $g_{1} \in K[x]^{\times} \subseteq K\{x\}^{\times}$. In both cases we get a contradiction.

Proof of (g): Let a be an element of K with $|a|<1$. Then $a x-1$ is irreducible in $K[x]$. On the other hand, pseudo. $\operatorname{deg}(a x-1)=0$, so, by (c), $a x-1 \in K\{x\}^{\times}$. In particular, $a x-1$ is not irreducible in $K\{x\}$.

Proof of (h): We choose a as in the proof of (f) and consider the reducible polynomial $f(x)=(a x-1)(x-1)$. By the proof of (f), $a x-1 \in K\{x\}^{\times}$. Next we note that pseudo. $\operatorname{deg}(x-1)=1$, so by (d) and (c), $x-1$ is irreducible in $K\{x\}$. Consequently, $f(x)$ is irreducible in $K\{x\}$.

Let $E=K(x)$ be the field of rational functions over K in the variable x. Then $K[x] \subseteq K\{x\}$ and the restriction of || to $K[x]$ is an absolute value. By the multiplicativity of $|\mid$, it extends to an absolute value of E. Let \hat{E} be the completion of E with respect to $|\mid[\mathrm{CaF} 67$, p. 47]. For each $\sum_{n=0}^{\infty} a_{n} x^{n} \in K\{x\}$ we have, by definition, $a_{n} \rightarrow 0$, hence $\sum_{n=0}^{\infty} a_{n} x^{n}=$ $\lim _{n \rightarrow \infty} \sum_{i=0}^{n} a_{i} x^{i}$. Thus, $K[x]$ is dense in $K\{x\}$. Since $K\{x\}$ is complete (Lemma 2.2.1(c)), this implies that $K\{x\}$ is the closure of $K[x]$ in \hat{E}.

Remark 2.3.2:
(a) $|x|=1$.
(b) Let $\bar{K} \subseteq \bar{E}$ be the residue fields of $K \subseteq E$ with respect to ||. Denote the image in \bar{E} of an element $u \in K(x)$ with $|u| \leq 1$ by \bar{u}. Then \bar{x} is transcendental over \bar{K}. Indeed, let h be a monic polynomial over \bar{K}. Choose
a monic polynomial p with coefficients in the valuation ring of K such that $\bar{p}=h$. Since $|p(x)|=1$, we have $h(\bar{x})=\bar{p}(\bar{x}) \neq 0$. It follows that $\bar{K}(\bar{x})$ is the field of rational functions over \bar{K} in the variable \bar{x} and $\bar{K}(\bar{x}) \subseteq \bar{E}$. Moreover, $\bar{K}(\bar{x})=\bar{E}$. Indeed, let $u=\frac{f(x)}{g(x)}$ with $f=\sum_{i=0}^{m} a_{i} x^{i}, g=\sum_{j=0}^{n} b_{j} x^{j} \neq 0$, and $a_{i}, b_{j} \in K$ such that $|u| \leq 1$. Then $\max _{i}\left|a_{i}\right| \leq \max _{j}\left|b_{j}\right|$. Choose $c \in K$ with $|c|=\max _{j}\left|b_{j}\right|$. Then replace a_{i} with $c^{-1} a_{i}$ and b_{j} with $c^{-1} b_{j}$, if necessary, to assume that $\left|a_{i}\right|,\left|b_{j}\right| \leq 1$ for all i, j and there exists k with $\left|b_{k}\right|=1$. Under these assumptions, $\bar{u}=\frac{\bar{f}(\bar{x})}{\bar{g}(\bar{x})} \in \bar{K}(\bar{x})$, as claimed.
(c) If $|\cdot|^{\prime}$ is an absolute value of E which coincides with $|\mid$ on K and the residue x^{\prime} of x with respect to $\|\left.\right|^{\prime}$ is transcendental over \bar{K}, then $\|\left.\right|^{\prime}$ coincides with ||.

Indeed, let $p(x)=\sum_{i=0}^{n} a_{i} x^{i}$ be a nonzero polynomial in $K[x]$. Choose a $c \in K^{\times}$with $|c|=\max _{i}\left|a_{i}\right|$. Then $\left(c^{-1} p(x)\right)^{\prime}=\sum_{i=0}^{n}\left(c^{-1} a_{i}\right)^{\prime}\left(x^{\prime}\right)^{i} \neq 0$ (the prime indicates the residue with respect to $\left.\left|\left.\right|^{\prime}\right.$), hence $| c^{-1} p(x)\right|^{\prime}=1$, so $|p(x)|^{\prime}=|c|=|p(x)|$.
(d) It follows from (c) that if γ is an automorphism of E that leaves K invariant, preserves the absolute value of K, and $\overline{x^{\gamma}}$ is transcendental over \bar{K}, then γ preserves the absolute value of E.

In particular, γ is $\left|\mid\right.$-continuous. Moreover, if $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ is a $| \mid-$ Cauchy sequence in E, then so is $\left(x_{1}^{\gamma}, x_{2}^{\gamma}, x_{3}^{\gamma}, \ldots\right)$. Hence γ extends uniquely to a continuous automorphism of the | |-completion \hat{E} of E.
(e) Now suppose K is a finite Galois extension of a complete field K_{0} with respect to $\left|\mid\right.$ and set $E_{0}=K_{0}(x)$. Let $\gamma \in \operatorname{Gal}\left(K / K_{0}\right)$ and extend γ in the unique possible way to an element $\gamma \in \operatorname{Gal}\left(E / E_{0}\right)$. Then γ preserves || on K. Indeed, $|z|^{\prime}=\left|z^{\gamma}\right|$ is an absolute valued of K. Since K_{0} is complete with respect to $\left.\left|\mid, K_{0}\right.$ is Henselian, so $|\right|^{\prime}$ is equivalent to $|\mid$. Thus, there exists $\varepsilon>0$ with $\left|z^{\gamma}\right|=|z|^{\varepsilon}$ for each $z \in K$. In particular, $|z|=|z|^{\varepsilon}$ for each $z \in K_{0}$, so $\varepsilon=1$, as claimed. In addition $x^{\gamma}=x$. By (d), γ preserves $|\mid$ also on E.
(f) Under the assumptions of (e) we let \hat{E}_{0} and \hat{E} be the | \mid-completions of E and E_{0}, respectively. Then $\hat{E}_{0} E$ is a finite separable extension of \hat{E}_{0} in \hat{E}. As such $\hat{E}_{0} E$ is complete [CaF67, p. 57 , Cor. 2] and contains E, so $\hat{E}_{0} E=\hat{E}$. Thus, \hat{E} / \hat{E}_{0} is a finite Galois extension.

By (d) and (e) each $\gamma \in \operatorname{Gal}\left(E / E_{0}\right)$ extends uniquely to a continuous automorphism γ of \hat{E}. Every $x \in \hat{E}_{0}$ is the limit of a sequence $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ of elements of E_{0}. Since $x_{i}^{\gamma}=x_{i}$ for each i, we have $x^{\gamma}=x$. It follows that res: $\operatorname{Gal}\left(\hat{E} / \hat{E}_{0}\right) \rightarrow \operatorname{Gal}\left(E / E_{0}\right)$ is an isomorphism.
(g) Finally suppose $y=\frac{a x+b}{c x+d}$ with $a, b, c, d \in K$ such that $|a|,|b|,|c|,|d| \leq$ 1 and $\bar{a} \bar{d}-\bar{b} \bar{c} \neq 0$. Then $\bar{a} \bar{x}+\bar{b}$ and $\bar{c} \bar{x}+\bar{d}$ are nonzero elements of $\bar{K}(\bar{x})$, so $\bar{y}=$ $\frac{\bar{a} \bar{x}+\bar{b}}{\bar{c} \bar{x}+\bar{d}} \in \bar{K}(\bar{x})$. Moreover, $\bar{K}(\bar{x})=\bar{K}(\bar{y})$, hence \bar{y} is transcendental over \bar{K}. We conclude from (c) that the map $x \mapsto y$ extends to a K-automorphism of $K(x)$ that preserves the absolute value. It therefore extends to an isomorphism $\sum a_{n} x^{n} \rightarrow \sum a_{n} y^{n}$ of $K\{x\}$ onto $K\{y\}$.

In the following theorem we refer to an equivalence class of a valuation of a field F as a prime of F. For each prime \mathfrak{p} we choose a valuation $v_{\mathfrak{p}}$ representing the prime and let $O_{\mathfrak{p}}$ be the corresponding valuation ring.

We say that an ultrametric absolute value $\|$ of a field K is discrete, if the group of all values $|a|$ with $a \in K^{\times}$is isomorphic to \mathbb{Z}.

Theorem 2.3.3: Let K be a complete field with respect to a nontrivial ultrametric absolute value \|. Then $F=\operatorname{Quot}(K\{x\})$ is a Hilbertian field.

Proof: Let $O=\{a \in K| | a \mid \leq 1\}$ be the valuation ring of K with respect to $|\mid$ and let $D=O\{x\}=\{f \in K\{x\}| | f \mid \leq 1\}$. Each $f \in K\{x\}$ can be written as $a f_{1}$ with $a \in K, f_{1} \in D$, and $\left|f_{1}\right|=1$. Hence, $\operatorname{Quot}(D)=F$.

We construct a set S of prime divisors of F that satisfies the following conditions:
(1a) For each $\mathfrak{p} \in S, \quad v_{\mathfrak{p}}$ is a real valuation (i.e. $v_{\mathfrak{p}}(F) \subseteq \mathbb{R}$).
(1b) The valuation ring $O_{\mathfrak{p}}$ of $v_{\mathfrak{p}}$ is the local ring of D at the prime ideal $\mathfrak{m}_{\mathfrak{p}}=\left\{f \in D \mid v_{\mathfrak{p}}(f)>0\right\}$.
(1c) $D=\bigcap_{\mathfrak{p} \in S} O_{\mathfrak{p}}$.
(1d) For each $f \in F^{\times}$the set $\left\{\mathfrak{p} \in S \mid v_{\mathfrak{p}}(f) \neq 0\right\}$ is finite.
(1e) The Krull dimension of D is at least 2 .
Then D is a generalized Krull domain of dimension exceeding 1. A theorem of Weissauer [FrJ05, Thm. 15.4.6] will then imply that F is Hilbertian.

The construction of S : The absolute value || of $K\{x\}$ extends to an absolute value of F. The latter determines a prime \mathfrak{M} of F with a real valuation $v_{\mathfrak{M}}$ (Section 2.1). Each $u \in F$ with $|u| \leq 1$ can be written as $u=a \frac{f_{1}}{g_{1}}$ with $a \in O$ and $f_{1}, g_{1} \in D,\left|f_{1}\right|=\left|g_{1}\right|=1$. Hence, $O_{\mathfrak{M}}=D_{\mathfrak{m}}$, where $\mathfrak{m}=\{f \in D| | f \mid<1\}$.

By Proposition 2.3.1, each nonzero prime ideal of $K\{x\}$ is generated by a prime element $p \in K\{x\}$. Divide p by its pseudo leading coefficient, if necessary, to assume that $|p|=1$. Then let v_{p} be the discrete valuation of F determined by p and let \mathfrak{p}_{p} be its equivalence class. We prove that p is a prime element of D. This will prove that $p D$ is a prime ideal of D and its local ring will coincide with the valuation ring of v_{p}.

Indeed, let f, g be nonzero elements of D such that p divides $f g$ in D. Write $f=a f_{1}, g=b g_{1}$ with nonzero $a, b \in O, f_{1}, g_{1} \in D, \quad\left|f_{1}\right|=\left|g_{1}\right|=$ 1. Then p divides $f_{1} g_{1}$ in $K\{x\}$ and therefore it divides, say, f_{1} in $K\{x\}$. Thus, there exists $q \in K\{x\}$ with $p q=f_{1}$. But then $|q|=1$, so $q \in D$. Consequently, p divides f in D, as desired.

Let P be the set of all prime elements p as in the paragraph before the preceding one. Then $S=\left\{\mathfrak{p}_{p} \mid p \in P\right\} \cup\{\mathfrak{M}\}$ satisfies (1a) and (1b).

By Proposition 2.3.1(b), $K\{x\}$ is a unique factorization domain, hence $K\{x\}=\bigcap_{p \in P} O_{p}$, hence $\bigcap_{\mathfrak{p} \in S} O_{\mathfrak{p}}=\{f \in K\{x\}| | f \mid \leq 1\}=D$. This settles (1c).

Next observe that for each $f \in F^{\times}$there are only finitely many $p \in P$ such that $v_{p}(f) \neq 0$, so (1d) holds.

Finally note that if $f=\sum_{n=0}^{\infty} a_{n} x^{n}$ is in D, then $\left|a_{n}\right| \leq 1$ for all n and $\left|a_{n}\right|<1$ for all large n. Hence $D / \mathfrak{m} \cong \bar{K}[\bar{x}]$, where \bar{K} and \bar{x} are as in Remark 2.3.2(b). Since \bar{x} is transcendental over \bar{K}, \mathfrak{m} is a nonzero prime ideal and $\mathfrak{m}+O x$ is a prime ideal of D that properly contains \mathfrak{m}. This proves (1e) and concludes the proof of the theorem.

Corollary 2.3.4: $\operatorname{Quot}(K\{x\})$ is not a Henselian field.
Proof: Since $K\{x\}$ is Hilbertian (Theorem 2.3.3), $K\{x\}$ can not be Henselian [FrJ08, Lemma 15.5.4].

2.4 Convergent Power Series

Let K be a complete field with respect to an ultrametric absolute value ||. We say that a formal power series $f=\sum_{n=m}^{\infty} a_{n} x^{n}$ in $K((x))$ converges at an element $c \in K$, if $f(c)=\sum_{n=m}^{\infty} a_{n} c^{n}$ converges, i.e. $a_{n} c^{n} \rightarrow 0$. In this case f converges at each $b \in K$ with $|b| \leq|c|$. For example, each $f \in K\{x\}$ converges at 1 . We say that f converges if f converges at some $c \in K^{\times}$.

We denote the set of all convergent power series in $K((x))$ by $K((x))_{0}$ and prove that $K((x))_{0}$ is a field that contains $K\{x\}$ and is algebraically closed in $K((x))$.
Lemma 2.4.1: A power series $f=\sum_{n=m}^{\infty} a_{n} x^{n}$ in $K((x))$ converges if and only if there exists a positive real number γ such that $\left|a_{n}\right| \leq \gamma^{n}$ for each $n \geq 0$.

Proof: First suppose f converges at $c \in K^{\times}$. Then $a_{n} c^{n} \rightarrow 0$, so there exists $n_{0} \geq 1$ such that $\left|a_{n} c^{n}\right| \leq 1$ for each $n \geq n_{0}$. Choose

$$
\gamma=\max \left\{|c|^{-1},\left|a_{k}\right|^{1 / k} \mid k=0, \ldots, n_{0}-1\right\} .
$$

Then $\left|a_{n}\right| \leq \gamma^{n}$ for each $n \geq 0$.
Conversely, suppose $\gamma>0$ and $\left|a_{n}\right| \leq \gamma^{n}$ for all $n \geq 0$. Increase γ, if necessary, to assume that $\gamma>1$. Then choose $c \in K^{\times}$such that $|c| \leq \gamma^{-1.5}$ and observe that $\left|a_{n} c^{n}\right| \leq \gamma^{-0.5 n}$ for each $n \geq 0$. Therefore, $a_{n} c^{n} \rightarrow 0$, hence f converges at c.
Lemma 2.4.2: $K((x))_{0}$ is a field that contains Quot $(K\{x\})$, hence also $K(x)$.
Proof: The only difficulty is to prove that if $f=1+\sum_{n=1}^{\infty} a_{n} x^{n}$ converges, then also $f^{-1}=1+\sum_{n=1}^{\infty} a_{n}^{\prime} x^{n}$ converges.

Indeed, for $n \geq 1, \quad a_{n}^{\prime}$ satisfies the recursive relation $a_{n}^{\prime}=-a_{n}-$ $\sum_{i=1}^{n-1} a_{i} a_{n-i}^{\prime}$. By Lemma 2.4.1, there exists $\gamma>1$ such that $\left|a_{i}\right| \leq \gamma^{i}$ for each $i \geq 1$. Set $a_{0}^{\prime}=1$. Suppose, by induction, that $\left|a_{j}^{\prime}\right| \leq \gamma^{j}$ for $j=1, \ldots, n-1$. Then $\left|a_{n}^{\prime}\right| \leq \max _{i}\left(\left|a_{i}\right| \cdot\left|a_{n-i}^{\prime}\right|\right) \leq \gamma^{n}$. Hence, f^{-1} converges.

Let v be the valuation of $K((x))$ defined by

$$
v\left(\sum_{n=m}^{\infty} a_{n} x^{n}\right)=m \quad \text { for } a_{m}, a_{m+1}, a_{m+2}, \ldots \in K \text { with } a_{m} \neq 0
$$

It is discrete, complete, its valuation ring is $K[[x]]$, and $v(x)=1$. The residue of an element $f=\sum_{n=0}^{\infty} a_{n} x^{n}$ of $K[[x]]$ at v is a_{0}, and we denote it by \bar{f}. We also consider the valuation ring $O=K[[x]] \cap K((x))_{0}$ of $K((x))_{0}$ and denote the restriction of v to $K((x))_{0}$ also by v. Since $K((x))_{0}$ contains $K(x)$, it is v-dense in $K((x))$. Finally, we also denote the unique extension of v to the algebraic closure of $K((x))$ by v.

Remark 2.4.3: $K((x))_{0}$ is not complete. Indeed, choose $a \in K$ such that $|a|>1$. Then there exists no $\gamma>0$ such that $\left|a^{n^{2}}\right| \leq \gamma^{n}$ for all $n \geq 1$. By Lemma 2.4.1, the power series $f=\sum_{n=0}^{\infty} a^{n^{2}} x^{n}$ does not belong to $K((x))_{0}$. Therefore, the valued field $\left(K((x))_{0}, v\right)$ is not complete.

Lemma 2.4.4: The field $K((x))_{0}$ is separably algebraically closed in $K((x))$.
Proof: Let $y=\sum_{n=m}^{\infty} a_{n} x^{n}$, with $a_{n} \in K$, be an element of $K((x))$ which is separably algebraic of degree d over $K((x))_{0}$. We have to prove that $y \in K((x))_{0}$.
Part A: A shift of y. Assume that $d>1$ and let y_{1}, \ldots, y_{d}, with $y=y_{1}$, be the (distinct) conjugates of y over $K((x))_{0}$. In particular $r=\max (v(y-$ $\left.\left.y_{i}\right) \mid i=2, \ldots, d\right)$ is an integer. Choose $s \geq r+1$ and let

$$
y_{i}^{\prime}=\frac{1}{x^{s}}\left(y_{i}-\sum_{n=m}^{s} a_{n} x^{n}\right), \quad i=1, \ldots, d
$$

Then $y_{1}^{\prime}, \ldots, y_{d}^{\prime}$ are the distinct conjugates of y_{1}^{\prime} over $K((x))_{0}$. Also, $v\left(y_{1}^{\prime}\right) \geq 1$ and $y_{i}^{\prime}=\frac{1}{x^{s}}\left(y_{i}-y\right)+y_{1}^{\prime}$, so $v\left(y_{i}^{\prime}\right) \leq-1, i=2, \ldots, d$. If y_{1}^{\prime} belongs to $K((x))_{0}$, then so does y, and conversely. Therefore, we replace y_{i} by y_{i}^{\prime}, if necessary, to assume that

$$
\begin{equation*}
v(y) \geq 1 \text { and } v\left(y_{i}\right) \leq-1, i=2, \ldots, d \tag{1}
\end{equation*}
$$

In particular $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ with $a_{0}=0$. The elements y_{1}, \ldots, y_{d} are the roots of an irreducible separable polynomial

$$
h(Y)=p_{d} Y^{d}+p_{d-1} Y^{d-1}+\cdots+p_{1} Y+p_{0}
$$

with coefficients $p_{i} \in O$. Let $e=\min \left(v\left(p_{0}\right), \ldots, v\left(p_{d}\right)\right)$. Divide the p_{i}, if necessary, by x^{e}, to assume that $v\left(p_{i}\right) \geq 0$ for each i between 0 and d and that $v\left(p_{j}\right)=0$ for at least one j between 0 and d.

Part B: We prove that $v\left(p_{0}\right), v\left(p_{d}\right)>0, v\left(p_{k}\right)>v\left(p_{1}\right)$ if $2 \leq k \leq d-1$ and $v\left(p_{1}\right)=0$. Indeed, since $v(y)>0$ and $h(y)=0$, we have $v\left(p_{0}\right)>0$. Since $v\left(y_{2}\right)<0$ and $h\left(y_{2}\right)=0$, we have $v\left(p_{d}\right)>0$. Next observe that

$$
\frac{p_{1}}{p_{d}}= \pm y_{2} \cdots y_{d} \pm \sum_{i=2}^{d} \frac{y_{1} \cdots y_{d}}{y_{i}}
$$

If $2 \leq i \leq d$, then $v\left(y_{i}\right)<v\left(y_{1}\right)$, so $v\left(y_{2} \cdots y_{d}\right)<v\left(\frac{y_{1}}{y_{i}}\right)+v\left(y_{2} \cdots y_{d}\right)=$ $v\left(\frac{y_{1} \cdots y_{d}}{y_{i}}\right)$. Hence,

$$
\begin{equation*}
v\left(\frac{p_{1}}{p_{d}}\right)=v\left(y_{2} \cdots y_{d}\right) \tag{2}
\end{equation*}
$$

For k between 1 and $d-2$ we have

$$
\begin{equation*}
\frac{p_{d-k}}{p_{d}}= \pm \sum_{\sigma} \prod_{i=1}^{k} y_{\sigma(i)} \tag{3}
\end{equation*}
$$

where σ ranges over all monotonically increasing maps from $\{1, \ldots, k\}$ to $\{1, \ldots, d\}$. If $\sigma(1) \neq 1$, then $\left\{y_{\sigma(1)}, \ldots, y_{\sigma(k)}\right\}$ is properly contained in $\left\{y_{2}, \ldots, y_{d}\right\}$. Hence, $v\left(\prod_{i=1}^{k} y_{\sigma(i)}\right)>v\left(y_{2} \cdots y_{d}\right)$. If $\sigma(1)=1$, then

$$
v\left(\prod_{i=1}^{k} y_{\sigma(i)}\right)>v\left(\prod_{i=2}^{k} y_{\sigma(i)}\right)>v\left(y_{2} \cdots y_{d}\right) .
$$

Hence, by (2) and (3), $v\left(\frac{p_{d-k}}{p_{d}}\right)>v\left(\frac{p_{1}}{p_{d}}\right)$, so $v\left(p_{d-k}\right)>v\left(p_{1}\right)$. Since $v\left(p_{j}\right)=0$ for some j between 0 and d, since $v\left(p_{i}\right) \geq 0$ for every i between 0 and d, and since $v\left(p_{0}\right), v\left(p_{d}\right)>0$, we conclude that $v\left(p_{1}\right)=0$ and $v\left(p_{i}\right)>0$ for all $i \neq 1$. Therefore,

$$
\begin{equation*}
p_{k}=\sum_{n=0}^{\infty} b_{k n} x^{n}, \quad k=0, \ldots, d \tag{4}
\end{equation*}
$$

with $b_{k n} \in K$ such that $b_{1,0} \neq 0$ and $b_{k, 0}=0$ for each $k \neq 1$. In particular, $\left|b_{1,0}\right| \neq 0$ but unfortunately, $\left|b_{1,0}\right|$ may be smaller than 1 .
Part C: Making $\left|b_{1,0}\right|$ large. We choose $c \in K$ such that $\left|c^{d-1} b_{1,0}\right| \geq 1$ and let $z=c y$. Then z is a zero of the polynomial $g(Z)=p_{d} Z^{d}+c p_{d-1} Z^{d-1}+$ $\cdots+c^{d-1} p_{1} Z+c^{d} p_{0}$ with coefficients in O. Relation (4) remains valid except that the zero term of the coefficient of Z in g becomes $c^{d-1} b_{1,0}$. By the choice of c, its absolute value is at least 1 . So, without loss, we may assume that

$$
\begin{equation*}
\left|b_{1,0}\right| \geq 1 \tag{5}
\end{equation*}
$$

Part D: An estimate for $\left|a_{n}\right|$. By Lemma 2.4.1, there exists $\gamma>0$ such that $\left|b_{k n}\right| \leq \gamma^{n}$ for all $0 \leq k \leq d$ and $n \geq 1$. By induction we prove that $\left|a_{n}\right| \leq \gamma^{n}$ for each $n \geq 0$. This will prove that $y \in O$ and will conclude the proof of the lemma.

Indeed, $\left|a_{0}\right|=0<1=\gamma^{0}$. Now assume that $\left|a_{m}\right| \leq \gamma^{m}$ for each $0 \leq m \leq n-1$. For each k between 0 and d we have that $p_{k} y^{k}=\sum_{n=0}^{\infty} c_{k n} x^{n}$, where

$$
c_{k n}=\sum_{\sigma \in S_{k n}} b_{k, \sigma(0)} \prod_{j=1}^{k} a_{\sigma(j)},
$$

and

$$
S_{k n}=\left\{\sigma:\{0, \ldots, k\} \rightarrow\{0, \ldots, n\} \mid \sum_{j=0}^{k} \sigma(j)=n\right\}
$$

It follows that

$$
\begin{equation*}
c_{0 n}=b_{0 n} \text { and } c_{1 n}=b_{1,0} a_{n}+b_{11} a_{n-1}+\cdots+b_{1, n-1} a_{1} \tag{6}
\end{equation*}
$$

For $k \geq 2$ we have $b_{k, 0}=0$. Hence, if a term $b_{k, \sigma(0)} \prod_{j=1}^{k} a_{\sigma(j)}$ in $c_{k n}$ contains a_{n}, then $\sigma(0)=0$, so $b_{k, \sigma(0)}=0$. Thus,

$$
\begin{align*}
& c_{k n}=\text { sum of products of the form } b_{k, \sigma(0)} \prod_{j=1}^{k} a_{\sigma(j)}, \tag{7}\\
& \qquad \text { with } \sigma(j)<n, j=1, \ldots, k .
\end{align*}
$$

From the relation $\sum_{k=0}^{d} p_{k} y^{k}=h(y)=0$ we conclude that $\sum_{k=0}^{d} c_{k n}=0$ for all n. Hence, by (6),

$$
b_{1,0} a_{n}=-b_{0 n}-b_{11} a_{n-1}-\cdots-b_{1, n-1} a_{1}-c_{2 n}-\cdots-c_{d n}
$$

Therefore, by (7),

$$
\begin{align*}
b_{1,0} a_{n}= & \text { sum of products of the form }-b_{k, \sigma(0)} \prod_{j=1}^{k} a_{\sigma(j)} \tag{8}\\
& \text { with } \sigma \in S_{k n}, 0 \leq k \leq d, \text { and } \sigma(j)<n, j=1, \ldots, k
\end{align*}
$$

Note that $b_{k, 0}=0$ for each $k \neq 1$ (by (4)), while $b_{1,0}$ does not occur on the right hand side of (8). Hence, for a summand in the right hand side of (8) indexed by σ we have

$$
\left|b_{k, \sigma(0)} \prod_{j=1}^{k} a_{\sigma(j)}\right| \leq \gamma^{\sum_{j=0}^{k} \sigma(j)}=\gamma^{n}
$$

We conclude from $\left|b_{1,0}\right| \geq 1$ that $\left|a_{n}\right| \leq \gamma^{n}$, as contended.

Proposition 2.4.5: The field $K((x))_{0}$ is algebraically closed in $K((x))$. Thus, each $f \in K((x))$ which is algebraic over $K(x)$ converges at some $c \in K^{\times}$. Moreover, there exists a positive integer m such that f converges at each $b \in K^{\times}$with $|b| \leq \frac{1}{m}$.
Proof: In view of Lemma 2.4.4, we have to prove the proposition only for $\operatorname{char}(K)>0$. Let $f=\sum_{n=m}^{\infty} a_{n} x^{n} \in K((x))$ be algebraic over $K((x))_{0}$. Then $K((x))_{0}(f)$ is a purely inseparable extension of a separable algebraic extension of $K((x))_{0}$. By Lemma 2.4.4, the latter coincides with $K((x))_{0}$. Hence, $K((x))_{0}(f)$ is a purely inseparable extension of $K((x))_{0}$.

Thus, there exists a power q of $\operatorname{char}(K)$ such that $\sum_{n=m}^{\infty} a_{n}^{q} x^{n q}=f^{q} \in$ $K((x))_{0}$. By Lemma 2.4.1, there exists $\gamma>0$ such that $\left|a_{n}^{q}\right| \leq \gamma^{n q}$ for all $n \geq 1$. It follows that $\left|a_{n}\right| \leq \gamma^{n}$ for all $n \geq 1$. By Lemma 2.4.1, $f \in K((x))_{0}$, so there exists $c \in K^{\times}$such that f converges at c. If $\frac{1}{m} \leq|c|$, then f converges at each $b \in K^{\times}$with $|b| \leq \frac{1}{m}$.

Corollary 2.4.6: The valued field $\left(K((x))_{0}, v\right)$ is Henselian.
Proof: Consider the valuation ring $O=K[[x]] \cap K((x))_{0}$ of $K((x))_{0}$ at v. Let $f \in O[X]$ be a monic polynomial and $a \in O$ such that $v(f(a))>0$ and $v\left(f^{\prime}(a)\right) \neq 0$. Since $(K((x)), v)$ is Henselian, there exists $z \in K[[x]]$ such that $f(z)=0$ and $v(z-a)>0$. By Proposition 2.4.5, $z \in K((x))_{0}$, hence $z \in O$. It follows that $\left(K((x))_{0}, v\right)$ is Henselian.

2.5 The Regularity of $K((x)) / K((x))_{0}$

Let K be a complete field with respect to an ultrametric absolute value ||. We extend \| | in the unique possible way to \tilde{K}. We also consider the discrete valuation v of $K(x) / K$ defined by $v(a)=0$ for each $a \in K^{\times}$and $v(x)=1$. Then $K((x))$ is the completion of $K(x)$ at v. Let $K((x))_{0}$ be the subfield of $K((x))$ of all convergent power series.

Proposition 2.4.5 states that $K((x))_{0}$ is algebraically closed in $K((x))$. In this section we prove that $K((x))$ is even a regular extension of $K((x))_{0}$. To do this, we only have to assume that $p=\operatorname{char}(K)>0$ and prove that $K((x)) / K((x))_{0}$ is a separable extension. In other words, we have to prove that $K((x))$ is linearly disjoint from $K((x))_{0}^{1 / p}$ over $K((x))_{0}$. We do that in several steps.

Lemma 2.5.1: The fields $K((x))$ and $K\left(\left(x^{1 / p}\right)\right)_{0}$ are linearly disjoint over $K((x))_{0}$.

Proof: First note that $1, x^{1 / p}, \ldots, x^{p-1 / p}$ is a basis for $K\left(x^{1 / p}\right)$ over $K(x)$. Then $1, x^{1 / p}, \ldots, x^{p-1 / p}$ have distinct v-values modulo $\mathbb{Z}=v(K((x)))$, so they are linearly independent over $K((x))$.

Next we observe that $1, x^{1 / p} \ldots, x^{p-1 / p}$ also generate $K\left(\left(x^{1 / p}\right)\right)$ over $K((x))$. Indeed, each $f \in K\left(\left(x^{1 / p}\right)\right)$ may be multiplied by an appropriate
power of x to be presented as

$$
\begin{equation*}
f=\sum_{n=0}^{\infty} a_{n} x^{n / p} \tag{1}
\end{equation*}
$$

with $a_{0}, a_{1}, a_{2}, \ldots \in K$. We write each n as $n=k p+l$ with integers $k \geq 0$ and $0 \leq l \leq p-1$ and rewrite f as

$$
\begin{equation*}
f=\sum_{l=0}^{p-1}\left(\sum_{k=0}^{\infty} a_{k p+l} x^{k}\right) x^{l / p} \tag{2}
\end{equation*}
$$

If $f \in K\left(\left(x^{1 / p}\right)\right)_{0}$, then there exists $b \in K^{\times}$such that $\sum_{n=0}^{\infty} a_{n} b^{n / p}$ converges in K, hence $a_{n} b^{n / p} \rightarrow 0$ as $n \rightarrow \infty$, so $a_{k p+l} b^{k} b^{l / p} \rightarrow 0$ as $k \rightarrow \infty$ for each l. Therefore, for each l, we have $a_{k p+l} b^{k} \rightarrow 0$ as $k \rightarrow \infty$, hence $\sum_{k=0}^{\infty} a_{k p+l} x^{k}$ converges, so belongs to $K((x))_{0}$.

It follows that $1, x^{1 / p}, \ldots, x^{p-1 / p}$ form a basis for $K\left(\left(x^{1 / p}\right)\right)_{0} / K((x))_{0}$ as well as for $K\left(\left(x^{1 / p}\right)\right) / K((x))$. Consequently, $K((x))$ is linearly disjoint from $K\left(\left(x^{1 / p}\right)\right)_{0}$ over $K((x))_{0}$.

We set $K[[x]]_{0}=K[[x]] \cap K((x))_{0}$.
Lemma 2.5.2: Let $u_{1}, \ldots, u_{m} \in \tilde{K}[[x]]_{0}$ and $f_{1}, \ldots, f_{m} \in K[[x]]$. Set $u_{i 0}=$ $u_{i}(0)$ for $i=1, \ldots, m$ and

$$
\begin{equation*}
f=\sum_{i=1}^{m} f_{i} u_{i} \tag{3}
\end{equation*}
$$

Suppose $u_{10}, \ldots, u_{m 0}$ are linearly independent over $K, \quad f \in \tilde{K}[[x]]_{0}$, and $f(0)=0$. Then $f_{1}, \ldots, f_{m} \in K[[x]]_{0}$.
Proof: We break up the proof into several parts.
Part A: Comparison of norms. We consider the K-vector space $V=$ $\sum_{i=1}^{m} K u_{i 0}$ and define a function $\mu: V \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\mu\left(\sum_{i=1}^{m} a_{i} u_{i 0}\right)=\max \left(\left|a_{1}\right|, \ldots,\left|a_{m}\right|\right) \tag{4}
\end{equation*}
$$

It satisfies the following rules:
(5a) $\mu(v)>0$ for each nonzero $v \in V$.
(5b) $\mu\left(v+v^{\prime}\right) \leq \max \left(\mu(v), \mu\left(v^{\prime}\right)\right)$ for all $v, v^{\prime} \in V$.
(5c) $\mu(a v)=|a| \mu(v)$ for all $a \in K$ and $v \in V$.
Thus, v is a norm of V. On the other hand, $|\mid$ extends to an absolute value of \tilde{K} and its restriction to V is another norm of V. Since K is complete under $|\mid$, there exists a positive real number s such that
(6) $\mu(v) \leq s|v|$ for all $v \in V$
[CaF67, p. 52, Lemma].

Part B: Power series. For each i we write $u_{i}=u_{i 0}+u_{i}^{\prime}$ where $u_{i}^{\prime} \in \tilde{K}[[x]]_{0}$ and $u_{i}^{\prime}(0)=0$. Then

$$
\begin{align*}
f & =\sum_{n=1}^{\infty} a_{n} x^{n} \quad \text { with } a_{1}, a_{2}, \ldots \in \tilde{K} \tag{7a}\\
u_{i}^{\prime} & =\sum_{n=1}^{\infty} b_{i n} x^{n} \quad \text { with } b_{i 1}, b_{i 2}, \ldots \in \tilde{K}, \text { and } \tag{7b}\\
f_{i} & =\sum_{n=0}^{\infty} a_{i n} x^{n} \quad \text { with } a_{i 0}, a_{i 1}, a_{i 2}, \ldots \in K
\end{align*}
$$

If a power series converges at a certain element of \tilde{K}^{\times}, it converges at each element with a smaller absolute value. Since to each element of \tilde{K}^{\times} there exists an element of K^{\times}with a smaller absolute value, there exists $d \in K^{\times}$such that $\sum_{n=1}^{\infty} a_{n} d^{n}$ and $\sum_{n=1}^{\infty} b_{i n} d^{n}, i=1, \ldots, m$, converge. In particular, the numbers $\left|a_{n} d^{n}\right|$ and $\left|b_{i n} d^{n}\right|$ are bounded. It follows from the identities $\left|a_{n} c^{n}\right|=\left|a_{n} d^{n}\right| \cdot\left|\frac{c}{d}\right|^{n}$ and $\left|b_{i n} c^{n}\right|=\left|b_{i n} d^{n}\right| \cdot\left|\frac{c}{d}\right|^{n}$ that there exists $c \in K^{\times}$such that

$$
\begin{equation*}
\max _{n \geq 1}\left|a_{n} c^{n}\right| \leq s^{-1} \quad \text { and } \quad \max _{n \geq 1}\left|b_{i n} c^{n}\right| \leq s^{-1} \tag{8}
\end{equation*}
$$

for $i=1, \ldots, m$.
Part C: Claim: $\left|a_{i n} c^{n}\right| \leq 1$ for $i=1, \ldots, m$ and $n=0,1,2, \ldots$.. To prove the claim we substitute the presentations (7) of f, u_{i}^{\prime}, f_{i} in the relation (3) and get:

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} \sum_{j=1}^{m} a_{j n} u_{j 0} x^{n}+\sum_{n=1}^{\infty} \sum_{j=1}^{m} \sum_{k=0}^{n-1} a_{j k} b_{j, n-k} x^{n} \tag{9}
\end{equation*}
$$

In particular, for $n=0$ we get $0=\sum_{j=1}^{m} a_{j 0} u_{j 0}$. Since $u_{10}, \ldots, u_{m 0}$ are linearly independent over K and $a_{10}, \ldots, a_{m 0} \in K$, we get $a_{10}=\cdots=a_{m 0}=$ 0 , so our claim holds in this case.

Proceeding by induction, we assume $\left|a_{i k} c^{k}\right| \leq 1$ for $i=1, \ldots, m$ and $k=0, \ldots, n-1$. By (5) and (6),

$$
\left|a_{i n}\right| \leq \max \left(\left|a_{1 n}\right|, \ldots,\left|a_{m n}\right|\right)=\mu\left(\sum_{j=1}^{m} a_{j n} u_{j 0}\right) \leq s\left|\sum_{j=1}^{m} a_{j n} u_{j 0}\right|
$$

hence

$$
\begin{equation*}
\left|a_{i n} c^{n}\right| \leq s\left|\sum_{j=1}^{m} a_{j n} u_{j 0} c^{n}\right| \tag{10}
\end{equation*}
$$

Next we compare the coefficients of x^{n} on both sides of (9),

$$
a_{n}=\sum_{j=1}^{m} a_{j n} u_{j 0}+\sum_{j=1}^{m} \sum_{k=0}^{n-1} a_{j k} b_{j, n-k}
$$

change sides and multiply the resulting equation by c^{n} :

$$
\sum_{j=1}^{m} a_{j n} u_{j 0} c^{n}=a_{n} c^{n}-\sum_{j=1}^{m} \sum_{k=0}^{n-1} a_{j k} c^{k} \cdot b_{j, n-k} c^{n-k}
$$

By the induction hypothesis and by (8),

$$
\begin{align*}
\left|\sum_{j=1}^{m} a_{j n} u_{j 0} c^{n}\right| & \leq \max \left(\left|a_{n} c^{n}\right|, \max _{1 \leq j \leq m} \max _{0 \leq k \leq n-1}\left|a_{j k} c^{k}\right| \cdot\left|b_{j, n-k} c^{n-k}\right|\right) \tag{11}\\
& \leq \max \left(s^{-1}, 1 \cdot s^{-1}\right)=s^{-1}
\end{align*}
$$

It follows from (10) and (11) that $\left|a_{i n} c^{n}\right| \leq 1$. This concludes the proof of the claim.

Part D: End of the proof. We choose $a \in K^{\times}$such that $|a|<|c|$. Then $\left|a_{i n} a^{n}\right|=\left|a_{i n} c^{n}\left(\frac{a}{c}\right)^{n}\right| \leq\left|\frac{a}{c}\right|^{n}$. Since the right hand side tends to 0 as $n \rightarrow \infty$, so does the left hand side. We conclude that f_{i} converges at a.
Lemma 2.5.3: The fields $K((x))$ and $K^{1 / p}((x))_{0}$ are linearly disjoint over $K((x))_{0}$.

Proof: We have to prove that every finite extension F^{\prime} of $K((x))_{0}$ in $K^{1 / p}((x))_{0}$ is linearly disjoint from $K((x))$ over $K((x))_{0}$.

If $F^{\prime}=K((x))_{0}$, there is nothing to prove, so we assume F^{\prime} is a proper extension of $K((x))$. Each element $f^{\prime} \in F^{\prime}$ has the form $f^{\prime}=\sum_{i=k}^{\infty} b_{i} x^{i}$ with $b_{i} \in K^{1 / p}$ and $\sum_{i=k}^{\infty} b_{i} c^{i}$ converges for some $c \in\left(K^{1 / p}\right)^{\times}$. Thus, $\left(f^{\prime}\right)^{p}=$ $\sum_{i=k}^{\infty} b_{i}^{p} x^{i p} \in K((x))$ and $\sum_{i=k}^{\infty} b_{i}^{p}\left(c^{p}\right)^{i}$ converges, so $\left(f^{\prime}\right)^{p} \in K((x))_{0}$. We may therefore write $F^{\prime}=F(f)$, where F is a finite extension of $K((x))_{0}$ in F^{\prime} and $\left[F^{\prime}: F\right]=p$.

By induction on the degree, F is linearly disjoint from $K((x))$ over $K((x))_{0}$. Let $m=\left[F: K((x))_{0}\right]$.

Moreover, $K((x))$ is the completion of $K(x)$, so also of $K((x))_{0}$. Hence, $\hat{F}=K((x)) F$ is the completion of F under v. By the linear disjointness, $[\hat{F}: K((x))]=m$.

The residue field of $K((x))$ and of $K((x))_{0}$ is K and the residue field of \hat{F} is equal to the residue field \bar{F} of F. Both $K((x))$ and $K^{1 / p}((x))$ have the same valuation group under v, namely \mathbb{Z}. Therefore, also $v\left(\hat{F}^{\times}\right)=\mathbb{Z}$, so $e(\hat{F} / K((x)))=1$. Since $K((x))$ is complete and discrete, $[\hat{F}: K((x))]=$ $e(\hat{F}: K((x)))[\bar{F}: K]=[\bar{F}: K][\mathrm{CaF} 65$, p. 19, Prop. 3].

Now we choose a basis $u_{10}, \ldots, u_{m 0}$ for \bar{F} / K and lift each $u_{i 0}$ to an element u_{i} of $F \cap \tilde{K}[[x]]_{0}$. Then, u_{1}, \ldots, u_{m} are linearly independent over $K((x))_{0}$ and over $K((x))$, hence they form a basis for $F / K((x))_{0}$ and for $\hat{F} / K((x))$.

As before, $\widehat{F^{\prime}}=K((x)) F^{\prime}$ is the completion of F^{\prime}. Again, both F^{\prime} and $\widehat{F^{\prime}}$ have the same residue field $\overline{F^{\prime}}$ and $\left[\widehat{F^{\prime}}: \hat{F}\right]=\left[\overline{F^{\prime}}: \bar{F}\right]$. Note that $\overline{F^{\prime}} \subseteq K^{1 / p}$ and $\left[\overline{F^{\prime}}: \bar{F}\right] \leq\left[F^{\prime}: F\right]=p$. Therefore, $\overline{F^{\prime}}=\bar{F}$ or $\left[\overline{F^{\prime}}: \bar{F}\right]=p$.

In the first case $f \in \hat{F}$, so by the paragraph before the preceding one, there exist $f_{1}, \ldots, f_{m} \in K((x))$ such that $f=\sum_{i=1}^{m} f_{i} u_{i}$. Multiplying both sides by a large power of x, we may assume that $f_{1}, \ldots, f_{m} \in K[[x]]$ and $f(0)=0$. By Lemma 2.5.2, $f_{1}, \ldots, f_{m} \in K((x))_{0}$, hence $f \in F$. This contradiction to the choice of f implies that $\left[\overline{F^{\prime}}: \bar{F}\right]=p$. Hence, $\left[K((x)) F^{\prime}\right.$: $K((x)) F]=\left[\widehat{F^{\prime}}: \hat{F}\right]=p=\left[F^{\prime}: F\right]$. This implies that \hat{F} and F^{\prime} are linearly disjoint over F. By the tower property of linear disjointness, $K((x))$ and F^{\prime} are linearly disjoint over $K((x))_{0}$, as claimed.

Proposition 2.5.4: Let K be a complete field under an ultrametric absolute value $|\mid$ and denote the field of all convergent power series in x with coefficients in K by $K((x))_{0}$. Then $K((x))$ is a regular extension of $K((x))_{0}$.

Proof: In view of Proposition 2.4.5, it suffices to assume that $p=\operatorname{char}(K)>$ 0 and to prove that $K((x))$ is linearly disjoint from $K((x))_{0}^{1 / p}$ over $K((x))_{0}$.

Indeed, by Lemma 2.5.3, $K((x))$ is linearly disjoint from $K^{1 / p}((x))_{0}$ over $K((x))_{0}$. Next observe that $K^{1 / p}$ is also complete under \||. Hence, by Lemma 2.5.1, applied to $K^{1 / p}$ rather than to $K, K^{1 / p}((x))$ is linearly disjoint from $K^{1 / p}\left(\left(x^{1 / p}\right)\right)_{0}$ over $K^{1 / p}((x))_{0}$.

Finally we observe that $K((x))_{0}^{1 / p}=K^{1 / p}\left(\left(x^{1 / p}\right)\right)_{0}$ to conclude that $K((x))$ is linearly disjoint from $K((x))_{0}^{1 / p}$ over $K((x))_{0}$.

Notes

The rings of convergent power series in one variable introduced in Section 2.2 are the rings of holomorphic functions on the closed unit disk that appear in [FrP04, Example 2.2]. Weierstrass Divison Theorem (Proposition 2.2.4) appears in [FrP, Thm. 3.1.1]. Our presentation follows the unpublished manuscript [Har05].

Proposition 2.4.5 appears as [Art67, p. 48, Thm. 14]. The proof given by Artin uses the method of Newton polynomials.

The property of $K\{x\}$ of being a principle ideal domain appears in [FrP, Thm. 2.2.9].

The proof that $K((x)) / K((x))_{0}$ is a separable extension (Proposition 2.5.4) is due to Kuhlmann and Roquette [KuR96].
http://www.springer.com/978-3-642-15127-9
Algebraic Patching
Jarden, M.
2011, XXIV, 292 p., Hardcover
ISBN: 978-3-642-15 127-9

