
Chapter 2.
Normed Rings

Norms ‖ · ‖ of associative rings are generalizations of absolute values | · | of
integral domains, where the inequality ‖xy‖ ≤ ‖x‖·‖y‖ replaces the standard
multiplication rule |xy| = |x|·|y|. Starting from a complete normed commuta-
tive ring A, we study the ring A{x} of all formal power series with coefficients
in A converging to zero. This is again a complete normed ring (Lemma 2.2.1).
We prove an analog of the Weierstrass division theorem (Lemma 2.2.4) and
the Weierstrass preparation theorem for A{x} (Corollary 2.2.5). If A is a
field K and the norm is an absolute value, then K{x} is a principal ideal
domain, hence a factorial ring (Proposition 2.3.1). Moreover, Quot(K{x})
is a Hilbertian field (Theorem 2.3.3). It follows that Quot(K{x}) is not a
Henselian field (Corollary 2.3.4). In particular, Quot(K{x}) is not separably
closed in K((x)). In contrast, the field K((x))0 of all formal power series
over K that converge at some element of K is algebraically closed in K((x))
(Proposition 2.4.5).

2.1 Normed Rings

In Section 4.4 we construct patching data over fields K(x), where K is a
complete ultrametric valued field. The ‘analytic’ fields Pi will be the quotient
fields of certain rings of convergent power series in several variables over K.
At a certain point in a proof by induction we consider a ring of convergent
power series in one variable over a complete ultrametric valued ring. So, we
start by recalling the definition and properties of the latter rings.

Let A be a commutative ring with 1. An ultrametric absolute value
of A is a function | |: A → R satisfying the following conditions:
(1a) |a| ≥ 0, and |a| = 0 if and only if a = 0.
(1b) There exists a ∈ A such that 0 < |a| < 1.
(1c) |ab| = |a| · |b|.
(1d) |a + b| ≤ max(|a|, |b|).

By (1a) and (1c), A is an integral domain. By (1c), the absolute value
of A extends to an absolute value on the quotient field of A (by |ab | = |a|

|b| ).
It follows also that |1| = 1, | − a| = |a|, and
(1d′) if |a| < |b|, then |a + b| = |b|.

Denote the ordered additive group of the real numbers by R+. The
function v: Quot(A) → R+ ∪ {∞} defined by v(a) = − log |a| satisfies the
following conditions:
(2a) v(a) = ∞ if and only if a = 0.
(2b) There exists a ∈ Quot(A) such that 0 < v(a) < ∞.
(2c) v(ab) = v(a) + v(b).
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2.1 Normed Rings

(2d) v(a + b) ≥ min{v(a), v(b)} (and v(a + b) = v(b) if v(b) < v(a)).
In other words, v is a real valuation of Quot(A). Conversely, every real
valuation v: Quot(A) → R+ ∪ {∞} gives rise to a nontrivial ultrametric
absolute value | · | of Quot(A): |a| = εv(a), where ε is a fixed real number
between 0 and 1.

An attempt to extend an absolute value from A to a larger ring A′ may
result in relaxing Condition (1c), replacing the equality by an inequality. This
leads to the more general notion of a ‘norm’.

Definition 2.1.1: Normed rings. Let R be an associative ring with 1. A
norm on R is a function ‖ ‖: R → R that satisfies the following conditions
for all a, b ∈ R:
(3a) ‖a‖ ≥ 0, and ‖a‖ = 0 if and only if a = 0; further ‖1‖ = ‖ − 1‖ = 1.
(3b) There is an x ∈ R with 0 < ‖x‖ < 1.
(3c) ‖ab‖ ≤ ‖a‖ · ‖b‖.
(3d) ‖a + b‖ ≤ max(‖a‖, ‖b‖).

The norm ‖ ‖ naturally defines a topology on R whose basis is the
collection of all sets U(a0, r) = {a ∈ R | ‖a − a0‖ < r} with a0 ∈ R and
r > 0. Both addition and multiplication are continuous under that topology.
Thus, R is a topological ring. �
Definition 2.1.2: Complete rings. Let R be a normed ring. A sequence
a1, a2, a3, . . . of elements of R is Cauchy if for each ε > 0 there exists m0

such that ‖an − am‖ < ε for all m, n ≥ m0. We say that R is complete if
every Cauchy sequence converges. �
Lemma 2.1.3: Let R be a normed ring and let a, b ∈ R. Then:
(a) ‖ − a‖ = ‖a‖.
(b) If ‖a‖ < ‖b‖, then ‖a + b‖ = ‖b‖.
(c) A sequence a1, a2, a3, . . . of elements of R is Cauchy if for each ε > 0

there exists m0 such that ‖am+1 − am‖ < ε for all m ≥ m0.
(d) The map x → ‖x‖ from R to R is continuous.
(e) If R is complete, then a series

∑∞
n=0 an of elements of R converges if and

only if an → 0.
(f) If R is complete and ‖a‖ < 1, then 1−a ∈ R×. Moreover, (1−a)−1 = 1+b

with ‖b‖ < 1.

Proof of (a): Observe that ‖ − a‖ ≤ ‖− 1‖ · ‖a‖ ≤ ‖a‖. Replacing a by −a,
we get ‖a‖ ≤ ‖ − a‖, hence the claimed equality.

Proof of (b): Assume ‖a+ b‖ < ‖b‖. Then, by (a), ‖b‖ = ‖(−a)+(a+ b)‖ ≤
max(‖ − a‖, ‖a + b‖) < ‖b‖, which is a contradiction.

Proof of (c): With m0 as above let n > m ≥ m0. Then

‖an − am‖ ≤ max(‖an − an−1‖, . . . , ‖am+1 − am‖) < ε.

Proof of (d): By (3d), ‖x‖ = ‖(x− y)+ y‖ ≤ max(‖x− y‖, ‖y‖) ≤ ‖x− y‖+
‖y‖. Hence, ‖x‖ − ‖y‖ ≤ ‖x − y‖. Symmetrically, ‖y‖ − ‖x‖ ≤ ‖y − x‖ =
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Chapter 2. Normed Rings

‖x− y‖. Therefore, | ‖x‖ − ‖y‖ | ≤ ‖x− y‖. Consequently, the map x 	→ ‖x‖
is continuous.

Proof of (e): Let sn =
∑n

i=0 ai. Then sn+1 − sn = an+1. Thus, by (c),
s1, s2, s3, . . . is a Cauchy sequence if and only if an → 0. Hence, the series∑∞

n=0 an converges if and only if an → 0.

Proof of (f): The sequence an tends to 0. Hence, by (e),
∑∞

n=0 an converges.
The identities (1 − a)

∑n
i=0 ai = 1 − an+1 and

∑n
i=0 ai(1 − a) = 1 − an+1

imply that
∑∞

n=0 an is both the right and the left inverse of 1−a. Moreover,∑∞
n=0 an = 1 + b with b =

∑∞
n=1 an and ‖b‖ ≤ maxn≥1 ‖a‖n < 1. �

Example 2.1.4:

(a) Every field K with an ultrametric absolute value is a normed ring.
For example, for each prime number p, Q has a p-adic absolute value | · |p
which is defined by |x|p = p−m if x = a

b pm with a, b,m ∈ Z and p � a, b.
(b) The ring Zp of p-adic integers and the field Qp of p-adic numbers are

complete with respect to the p-adic absolute value.
(c) Let K0 be a field and let 0 < ε < 1. The ring K0[[t]] (resp. field

K0((t))) of formal power series
∑∞

i=0 ait
i (resp.

∑∞
i=m ait

i with m ∈ Z) with
coefficients in K0 is complete with respect to the absolute value |∑∞

i=m ait
i| =

εmin(i | ai �=0).
(d) Let ‖·‖ be a norm of a commutative ring A. For each positive integer

n we extend the norm to the associative (and usually not commutative) ring
Mn(A) of all n × n matrices with entries in A by

‖(aij)1≤i,j≤n‖ = max(‖aij‖1≤i,j≤n).

If b = (bjk)1≤j,k≤n is another matrix and c = ab, then cik =
∑n

j=1 aijbjk and
‖cik‖ ≤ max(‖aij‖ · ‖bjk‖) ≤ ‖a‖ · ‖b‖. Hence, ‖c‖ ≤ ‖a‖‖b‖. This verifies
Condition (3c). The verification of (3a), (3b), and (3d) is straightforward.
Note that when n ≥ 2, even if the initial norm of A is an absolute value, the
extended norm satisfies only the weak condition (3c) and not the stronger
condition (1c), so it is not an absolute value.

If A is complete, then so is Mn(A). Indeed, let ai = (ai,rs)1≤r,s≤n be
a Cauchy sequence in Mn(A). Since ‖ai,rs − aj,rs‖ ≤ ‖ai − aj‖, each of the
sequences a1,rs, a2,rs, a3,rs, . . . is Cauchy, hence converges to an element brs

of A. Set b = (brs)1≤r,s≤n. Then ai → b. Consequently, Mn(A) is complete.
(e) Let a be a proper ideal of a Noetherian domain A. By a theorem of

Krull,
⋂∞

n=0 an = 0 [AtM69, p. 110, Cor. 10.18]. We define an a-adic norm
on A by choosing an ε between 0 and 1 and setting ‖a‖ = εmax(n | a∈an). If
‖a‖ = εm and ‖b‖ = εn, and say m ≤ n, then an ⊆ am, so a + b ∈ am, hence
‖a + b‖ ≤ εm = max(‖a‖, ‖b‖). Also, ab ∈ am+n, so ‖ab‖ ≤ ‖a‖ · ‖b‖. �

Like absolute valued rings, every normed ring has a completion:
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2.1 Normed Rings

Lemma 2.1.5: Every normed ring (R, ‖ ‖) can be embedded into a complete
normed ring (R̂, ‖ ‖) such that R is dense in R̂ and the following universal
condition holds:

(4) Each continuous homomorphism f of R into a complete ring S uniquely

extends to a continuous homomorphism f̂ : R̂ → S.

The normed ring (R̂, ‖ ‖) is called the completion of (R, ‖ ‖).
Proof: We consider the set A of all Cauchy sequences a = (an)∞n=1 with
an ∈ R. For each a ∈ A, the values ‖an‖ of its components are bounded.
Hence, A is closed under componentwise addition and multiplication and
contains all constant sequences. Thus, A is a ring. Let n be the ideal of all
sequences that converge to 0. We set R̂ = A/n and identify each x ∈ R with
the coset (x)∞n=1 + n.

If a ∈ A � n, then ‖an‖ eventually becomes constant. Indeed, there
exists β > 0 such that ‖an‖ ≥ β for all sufficiently large n. Choose n0 such
that ‖an − am‖ < β for all n, m ≥ n0. Then, ‖an − an0‖ < β ≤ ‖an0‖,
so ‖an‖ = ‖(an − an0) + an0‖ = ‖an0‖. We define ‖a‖ to be the eventual
absolute value of an and note that ‖a‖ �= 0. If b ∈ n, we set ‖b‖ = 0 and
observe that ‖a + b‖ = ‖a‖. It follows that ‖a + n‖ = ‖a‖ is a well defined
function on R̂ which extends the norm of R.

One checks that ‖ ‖ is a norm on R̂ and that R is dense in R̂. Indeed, if
a = (an)∞n=1 ∈ A, then an + n → a + n. To prove that R̂ is complete under
‖ ‖ we consider a Cauchy sequence (ak)∞k=1 of elements of R̂. For each k we
choose an element bk ∈ R such that ‖bk−ak‖ < 1

k . Then (bk)∞k=1 is a Cauchy
sequence of R and the sequence (ak)∞k=1 converges to the element (bk)∞k=1 +n

of R̂.
Finally, let S be a complete normed ring and f : R → S a continuous

homomorphism. Then, for each a = (an)∞n=1 ∈ A, the sequence (f(an))∞n=1

of S is Cauchy, hence it converges to an element s. Define f̂(a + n) = s and
check that f̂ has the desired properties. �

Example 2.1.6: Let A be a commutative ring. We consider the ring R =
A[x1, . . . , xn] of polynomials over A in the variables x1, . . . , xn and the ideal
a of R generated by x1, . . . , xn. The completion of R with respect to a
is the ring R̂ = A[[x1, . . . , xn]] of all formal power series f(x1, . . . , xn) =∑∞

i=0 fi(x1, . . . , xn), where fi ∈ A[x1, . . . , xn] is a homogeneous polynomial
of degree i. Moreover, R̂ = A[[x1, . . . , xn−1]][[xn]] and R̂ is complete with
respect to the ideal â generated by x1, . . . , xn [Lan93, Chap. IV, Sec. 9]. If
R is a Noetherian integral domain, then so is R̂ [Lan93, p. 210, Cor. 9.6]. If
A = K is a field, then R̂ is a unique factorization domain [Mat94, Thm. 20.3].

If A is an integral domain, then the function v: R̂ → Z∪{∞} defined for
f as in the preceding paragraph by v(f) = mini≥0(fi �= 0) satisfies Condition
(2), so it extends to a discrete valuation of K̂ = Quot(R̂). However, by
Weissauer, K̂ is Hilbertian if n ≥ 2. [FrJ08, Example 15.5.2]. Hence, K̂
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Chapter 2. Normed Rings

is Henselian with respect to no valuation [FrJ08, Lemma 15.5.4]. Since v is
discrete, K̂ is not complete with respect to v. �

2.2 Rings of Convergent Power Series

Let A be a complete normed commutative ring and x a variable. Consider
the following subset of A[[x]]:

A{x} =
{ ∞∑

n=0

anxn | an ∈ A, lim
n→∞ ‖an‖ = 0

}
.

For each f =
∑∞

n=0 anxn ∈ A{x} we define ‖f‖ = max(‖an‖)n=0,1,2,.... This
definition makes sense because an → 0, hence ‖an‖ is bounded.

We prove the Weierstrass division and the Weierstrass preparation theo-
rems for A{x} in analogy to the corresponding theorems for the ring of formal
power series in one variable over a local ring.

Lemma 2.2.1:
(a) A{x} is a subring of A[[x]] containing A.
(b) The function ‖ ‖: A{x} → R is a norm.
(c) The ring A{x} is complete under that norm.
(d) Let B be a complete normed ring extension of A. Then each b ∈ B with

‖b‖ ≤ 1 defines an evaluation homomorphism A{x} → B given by

f =
∞∑

n=0

anxn 	→ f(b) =
∞∑

n=0

anbn.

Proof of (a): We prove only that A{x} is closed under multiplication. To
that end let f =

∑∞
i=0 aix

i and g =
∑∞

j=0 bjx
j be elements of A{x}. Consider

ε > 0 and let n0 be a positive number such that ‖ai‖ < ε if i ≥ n0
2 and

‖bj‖ < ε if j ≥ n0
2 . Now let n ≥ n0 and i + j = n. Then i ≥ n0

2 or j ≥ n0
2 .

It follows that ‖∑
i+j=n aibj‖ ≤ max(‖ai‖ · ‖bj‖)i+j=n ≤ ε · max(‖f‖, ‖g‖).

Thus, fg =
∑∞

n=0

∑
i+j=n aibjx

n belongs to A{x}, as claimed.

Proof of (b): Standard checking.

Proof of (c): Let fi =
∑∞

n=0 ainxn, i = 1, 2, 3, . . ., be a Cauchy sequence in
A{x}. For each ε > 0 there exists i0 such that ‖ain−ajn‖ ≤ ‖fi−fj‖ < ε for
all i, j ≥ i0 and for all n. Thus, for each n, the sequence a1n, a2n, a3n, . . . is
Cauchy, hence converges to an element an ∈ A. If we let j tend to infinity in
the latter inequality, we get that ‖ain − an‖ < ε for all i ≥ i0 and all n. Set
f =

∑∞
i=0 anxn. Then an → 0 and ‖fi − f‖ = max(‖ain − an‖)n=0,1,2,... < ε

if i ≥ i0. Consequently, the fi’s converge in A{x}.
Proof of (d): Note that ‖anbn‖ ≤ ‖an‖ → 0, so

∑∞
n=0 anbn is an element of

B. �
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2.2 Rings of Convergent Power Series

Definition 2.2.2: Let f =
∑∞

n=0 anxn be a nonzero element of A{x}. We
define the pseudo degree of f to be the integer d = max{n ≥ 0 | ‖an‖ =
‖f‖} and set pseudo.deg(f) = d. The element ad is the pseudo leading
coefficient of f . Thus, ‖ad‖ = ‖f‖ and ‖an‖ < ‖f‖ for each n > d. If
f ∈ A[x] is a polynomial, then pseudo.deg(f) ≤ deg(f). If ad is invertible
in A and satisfies ‖cad‖ = ‖c‖ · ‖ad‖ for all c ∈ A, we call f regular. In
particular, if A is a field and ‖ ‖ is an ultrametric absolute value, then each
0 �= f ∈ A{x} is regular. The next lemma implies that in this case ‖ ‖ is an
absolute value of A{x}. �

Lemma 2.2.3 (Gauss’ Lemma): Let f, g ∈ A{x}. Suppose f is regular of
pseudo degree d and f, g �= 0. Then ‖fg‖ = ‖f‖ · ‖g‖ and pseudo.deg(fg) =
pseudo.deg(f) + pseudo.deg(g).

Proof: Let f =
∑∞

i=0 aix
i and g =

∑∞
j=0 bjx

j . Let ad (resp. be) be the
pseudo leading coefficient of f (resp. g). Then fg =

∑∞
n=0 cnxn with cn =∑

i+j=n aibj .
If i + j = d + e and (i, j) �= (d, e), then either i > d or j > e. In

each case, ‖aibj‖ ≤ ‖ai‖‖bj‖ < ‖f‖ · ‖g‖. By our assumption on ad, we
have ‖adbe‖ = ‖ad‖ · ‖be‖ = ‖f‖ · ‖g‖. By Lemma 2.1.3(b), this implies
‖cd+e‖ = ‖f‖ · ‖g‖.

If i+j > d+e, then either i > d and ‖ai‖ < ‖f‖ or j > e and ‖bj‖ < ‖g‖.
In each case ‖aibj‖ ≤ ‖ai‖ · ‖bj‖ < ‖f‖ · ‖g‖. Hence, ‖cn‖ < ‖cd+e‖ for each
n > d + e. Therefore, cd+e is the pseudo leading coefficient of fg, and the
lemma is proved. �

Proposition 2.2.4 (Weierstrass division theorem): Let f ∈ A{x} and let
g ∈ A{x} be regular of pseudo degree d. Then there are unique q ∈ A{x}
and r ∈ A[x] such that f = qg + r and deg(r) < d. Moreover,

(1) ‖qg‖ = ‖q‖ · ‖g‖ ≤ ‖f‖ and ‖r‖ ≤ ‖f‖
Proof: We break the proof into several parts.

Part A: Proof of (1). First we assume that there exist q ∈ A{x} and
r ∈ A[x] such that f = qg + r with deg(r) < d. If q = 0, then (1) is
clear. Otherwise, q �= 0 and we let e = pseudo.deg(q). By Lemma 2.2.3,
‖qg‖ = ‖q‖ · ‖g‖ and pseudo.deg(qg) = e + d > deg(r). Hence, the coefficient
cd+e of xd+e in qg is also the coefficient of xd+e in f . It follows that ‖qg‖ =
‖cd+e‖ ≤ ‖f‖. Consequently, ‖r‖ = ‖f − qg‖ ≤ ‖f‖.
Part B: Uniqueness. Suppose f = qg + r = q′g + r′, where q, q′ ∈ A{x}
and r, r′ ∈ A[x] are of degrees less than d. Then 0 = (q − q′)g + (r − r′). By
Part A, applied to 0 rather than to f , ‖q − q′‖ · ‖g‖ = ‖r − r′‖ = 0. Hence,
q = q′ and r = r′.

Part C: Existence if g is a polynomial of degree d. Write f =
∑∞

n=0 bnxn

with bn ∈ A converging to 0. For each m ≥ 0 let fm =
∑m

n=0 bnxn ∈
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A[x]. Then the f1, f2, f3, . . . converge to f , in particular they form a Cauchy
sequence. Since g is regular of pseudo degree d, its leading coefficient is
invertible. Euclid’s algorithm for polynomials over A produces qm, rm ∈ A[x]
with fm = qmg + rm and deg(rm) < deg(g). Thus, for all k, m we have
fm − fk = (qm − qk)g + (rm − rk). By Part A, ‖qm − qk‖ · ‖g‖, ‖rm − rk‖ ≤
‖fm − fk‖. Thus, {qm}∞m=0 and {rm}∞m=0 are Cauchy sequences in A{x}.
Since A{x} is complete (Lemma 2.2.1), the qm’s converge to some q ∈ A{x}.
Since A is complete, the rm’s converge to an r ∈ A[x] of degree less than d.
It follows that f = qg + r

Part D: Existence for arbitrary g. Let g =
∑∞

n=0 anxn and set g0 =∑d
n=0 anxn ∈ A[x]. Then ‖g−g0‖ < ‖g‖. By Part C, there are q0 ∈ A{x} and

r0 ∈ A[x] such that f = q0g0 + r0 and deg(r0) < d. By Part A, ‖q0‖ ≤ ‖f‖
‖g‖

and ‖r0‖ ≤ ‖f‖. Thus, f = q0g + r0 + f1, where f1 = −q0(g − g0), and
‖f1‖ ≤ ‖g−g0‖

‖g‖ · ‖f‖.
Set f0 = f . By induction we get, for each k ≥ 0, elements fk, qk ∈ A{x}

and rk ∈ A[x] such that deg(rk) < d and

fk = qkg + rk + fk+1, ‖qk‖ ≤ ‖fk‖
‖g‖ , ‖rk‖ ≤ ‖fk‖, and

‖fk+1‖ ≤ ‖g − g0‖
‖g‖ ‖fk‖.

It follows that ‖fk‖ ≤
(

‖g−g0‖
‖g‖

)k

‖f‖, so ‖fk‖ → 0. Hence, also ‖qk‖, ‖rk‖ →
0. Therefore, q =

∑∞
k=0 qk ∈ A{x} and r =

∑∞
k=0 rk ∈ A[x]. By construc-

tion, f =
∑k

n=0 qng +
∑k

n=0 rn + fk+1 for each k. Taking k to infinity, we
get f = qg + r and deg(r) < d. �
Corollary 2.2.5 (Weierstrass preparation theorem): Let f ∈ A{x} be reg-
ular of pseudo degree d. Then f = qg, where q is a unit of A{x} and g ∈ A[x]
is a monic polynomial of degree d with ‖g‖ = 1. Moreover, q and g are
uniquely determined by these conditions.

Proof: By Proposition 2.2.4 there are q′ ∈ A{x} and r′ ∈ A[x] of degree < d
such that xd = q′f +r′ and ‖r′‖ ≤ ‖xd‖ = 1. Set g = xd−r′. Then g is monic
of degree d, g = q′f , and ‖g‖ = 1. It remains to show that q′ ∈ A{x}×.

Note that g is regular of pseudo degree d. By Proposition 2.2.4, there
are q ∈ A{x} and r ∈ A[x] such that f = qg + r and deg(r) < d. Thus,
f = qq′f + r. Since f = 1 · f + 0, the uniqueness part of Proposition 2.2.4
implies that qq′ = 1. Hence, q′ ∈ A{x}×.

Finally suppose f = q1g1, where q ∈ A{x}× and g1 ∈ A[x] is monic of
degree d with ‖g1‖ = 1. Then g1 = (q−1

1 q2)g and g1 = 1 · g + (g1 − g), where
g1 = g is a polynomial of degree at most d − 1. By the uniqueness part of
Proposition 2.2.4, q−1

1 q2 = 1, so q1 = q2 and g1 = g. �
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Corollary 2.2.6: Let f =
∑∞

n=0 anxn be a regular element of A{x} such
that ‖a0b‖ = ‖a0‖ · ‖b‖ for each b ∈ A. Then f ∈ A{x}× if and only if
pseudo.deg(f) = 0 and a0 ∈ A×.

Proof: If there exists g ∈ ∑∞
n=0 bnxn in A{x} such that fg = 1, then

pseudo.deg(f)+pseudo.deg(g) = 0 (Lemma 2.2.3 applied to 1 rather than to
f), so pseudo.deg(f) = 0. In addition, a0b0 = 1, so a0 ∈ A×.

Conversely, suppose pseudo.deg(f) = 0 and a0 ∈ A×. Then f is regular.
Hence, by Corollary 2.2.5, f = q · 1 where q ∈ A{x}×.

Alternatively, a−1
0 f = 1 − h, where h = −∑∞

n=1 a−1
0 anxn. By our

assumption on a0, we have ‖a−1
0 ‖ · ‖a0‖ = ‖a−1

0 a0‖ = 1, so ‖a−1
0 ‖ = ‖a0‖−1.

Since pseudo.deg(f) = 0, we have ‖a0‖ < ‖an‖, so ‖a−1
0 an‖ ≤ ‖a0‖−1‖an‖ <

1 for each n ≥ 1. It follows that ‖h‖ = max(‖a−1
0 an‖)n=1,2,3,... < 1. By

Lemma 2.1.3(f), a−1
0 f ∈ A{x}×, so f ∈ A{x}×. �

2.3 Properties of the Ring K{x}
We turn our attention in this section to the case where the ring A of the
previous sections is a complete field K under an ultrametric absolute value
| | and O = {a ∈ K | |a| ≤ 1} its valuation ring. We fix K and O for
the whole section and prove that K{x} is a principal ideal domain and that
F = Quot(K{x}) is a Hilbertian field.

Note that in our case |ab| = |a| · |b| for all a, b ∈ K and each nonzero
element of K is invertible. Hence, each nonzero f ∈ K{x} is regular. It
follows from Lemma 2.2.3 that the norm of K{x} is multiplicative, hence it
is an absolute value which we denote by | | rather than by ‖ ‖.
Proposition 2.3.1:
(a) K{x} is a principal ideal domain. Moreover, each ideal in K{x} is gen-

erated by an element of O[x].
(b) K{x} a unique factorization domain.
(c) A nonzero element f ∈ K{x} is invertible if and only if pseudo.deg(f) =

0.
(d) pseudo.deg(fg) = pseudo.deg(f) + pseudo.deg(g) for all f, g ∈ K{x}

with f, g �= 0.
(e) Every prime element f of K{x} can be written as f = ug, where u is

invertible in K{x} and g is an irreducible element of K[x].
(f) If a g ∈ K[x] is monic of degree d, irreducible in K[x], and |g| = 1, then

g is irreducible in K{x}.
(g) There are irreducible polynomials in K[x] that are not irreducible in

K{x}.
(h) There are reducible polynomials in K[x] that are irreducible in K{x}.
Proof of (a): By the Weierstrass preparation theorem (Corollary 2.2.5) (ap-
plied to K rather than to A) each nonzero ideal a of K{x} is generated by the
ideal a∩K[x] of K[x]. Since K[x] is a principal ideal domain, a∩K[x] = fK[x]

17
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for some nonzero f ∈ K[x]. Consequently, a = fK{x} is a principal ideal.
Moreover, dividing f by one of its coefficients with highest absolute value,
we may assume that f ∈ O[x].

Proof of (b): Since every principal ideal domain has a unique factorization,
(b) is a consequence of (a).

Proof of (c): Apply Corollary 2.2.6.

Proof of (d): Apply Lemma 2.2.3.

Proof of (e): By (a), f = u1f1 with u1 ∈ K{x}× and f1 ∈ K[x]. Write
f1 = g1 · · · gn with irreducible polynomials g1, . . . , gn ∈ K[x]. Then f =
u1g1 · · · gn. Since f is irreducible in K{x}, one of the gi’s, say gn is irreducible
in K{x} and all the others, that is g1, . . . , gn−1, are invertible in K{x}. Set
u = u1g1 · · · gn−1 and g = gn. Then f = ug is the desired presentation.

Proof of (f): The irreducibility of g in K[x] implies that d > 0. Our assump-
tions imply that pseudo.deg(g) = d. Hence, by Corollary 2.2.6, g � K{x}×.

Now assume g = g1g2, where g1, g2 ∈ K{x} are nonunits. By Corollary
2.2.5, we may assume that g1 ∈ K[x] is monic, say of degree d1, and |g1| = 1.
Thus pseudo.deg(g1) = d1. By Euclid’s algorithm, there are q, r ∈ K[x] such
that g = qg1 + r and deg(r) < d1. Applying the additional presentation
g = g2g1 + 0 and the uniqueness part of Proposition 2.2.4, we get that g2 =
q ∈ K[x]. Thus, either g1 ∈ K[x]× ⊆ K{x}× or g1 ∈ K[x]× ⊆ K{x}×. In
both cases we get a contradiction.

Proof of (g): Let a be an element of K with |a| < 1. Then ax − 1 is
irreducible in K[x]. On the other hand, pseudo.deg(ax − 1) = 0, so, by (c),
ax − 1 ∈ K{x}×. In particular, ax − 1 is not irreducible in K{x}.
Proof of (h): We choose a as in the proof of (f) and consider the reducible
polynomial f(x) = (ax−1)(x−1). By the proof of (f), ax−1 ∈ K{x}×. Next
we note that pseudo.deg(x− 1) = 1, so by (d) and (c), x− 1 is irreducible in
K{x}. Consequently, f(x) is irreducible in K{x}. �

Let E = K(x) be the field of rational functions over K in the variable
x. Then K[x] ⊆ K{x} and the restriction of | | to K[x] is an absolute
value. By the multiplicativity of | |, it extends to an absolute value of E.
Let Ê be the completion of E with respect to | | [CaF67, p. 47]. For each∑∞

n=0 anxn ∈ K{x} we have, by definition, an → 0, hence
∑∞

n=0 anxn =
limn→∞

∑n
i=0 aix

i. Thus, K[x] is dense in K{x}. Since K{x} is complete
(Lemma 2.2.1(c)), this implies that K{x} is the closure of K[x] in Ê.

Remark 2.3.2:
(a) |x| = 1.
(b) Let K̄ ⊆ Ē be the residue fields of K ⊆ E with respect to | |.

Denote the image in Ē of an element u ∈ K(x) with |u| ≤ 1 by ū. Then x̄ is
transcendental over K̄. Indeed, let h be a monic polynomial over K̄. Choose
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a monic polynomial p with coefficients in the valuation ring of K such that
p̄ = h. Since |p(x)| = 1, we have h(x̄) = p̄(x̄) �= 0. It follows that K̄(x̄) is the
field of rational functions over K̄ in the variable x̄ and K̄(x̄) ⊆ Ē. Moreover,
K̄(x̄) = Ē. Indeed, let u = f(x)

g(x) with f =
∑m

i=0 aix
i, g =

∑n
j=0 bjx

j �= 0, and
ai, bj ∈ K such that |u| ≤ 1. Then maxi |ai| ≤ maxj |bj |. Choose c ∈ K with
|c| = maxj |bj |. Then replace ai with c−1ai and bj with c−1bj , if necessary, to
assume that |ai|, |bj | ≤ 1 for all i, j and there exists k with |bk| = 1. Under

these assumptions, ū = f̄(x̄)
ḡ(x̄) ∈ K̄(x̄), as claimed.

(c) If | · |′ is an absolute value of E which coincides with | | on K and the
residue x′ of x with respect to | |′ is transcendental over K̄, then | |′ coincides
with | |.

Indeed, let p(x) =
∑n

i=0 aix
i be a nonzero polynomial in K[x]. Choose

a c ∈ K× with |c| = maxi |ai|. Then (c−1p(x))′ =
∑n

i=0(c
−1ai)′(x′)i �= 0

(the prime indicates the residue with respect to | |′), hence |c−1p(x)|′ = 1, so
|p(x)|′ = |c| = |p(x)|.

(d) It follows from (c) that if γ is an automorphism of E that leaves K
invariant, preserves the absolute value of K, and xγ is transcendental over
K̄, then γ preserves the absolute value of E.

In particular, γ is | |-continuous. Moreover, if (x1, x2, x3, . . .) is a | |-
Cauchy sequence in E, then so is (xγ

1 , xγ
2 , xγ

3 , . . .). Hence γ extends uniquely
to a continuous automorphism of the | |-completion Ê of E.

(e) Now suppose K is a finite Galois extension of a complete field K0

with respect to | | and set E0 = K0(x). Let γ ∈ Gal(K/K0) and extend γ in
the unique possible way to an element γ ∈ Gal(E/E0). Then γ preserves | |
on K. Indeed, |z|′ = |zγ | is an absolute valued of K. Since K0 is complete
with respect to | |, K0 is Henselian, so | |′ is equivalent to | |. Thus, there
exists ε > 0 with |zγ | = |z|ε for each z ∈ K. In particular, |z| = |z|ε for each
z ∈ K0, so ε = 1, as claimed. In addition xγ = x. By (d), γ preserves | | also
on E.

(f) Under the assumptions of (e) we let Ê0 and Ê be the | |-completions
of E and E0, respectively. Then Ê0E is a finite separable extension of Ê0

in Ê. As such Ê0E is complete [CaF67, p. 57, Cor. 2] and contains E, so
Ê0E = Ê. Thus, Ê/Ê0 is a finite Galois extension.

By (d) and (e) each γ ∈ Gal(E/E0) extends uniquely to a continuous
automorphism γ of Ê. Every x ∈ Ê0 is the limit of a sequence (x1, x2, x3, . . .)
of elements of E0. Since xγ

i = xi for each i, we have xγ = x. It follows that
res: Gal(Ê/Ê0) → Gal(E/E0) is an isomorphism.

(g) Finally suppose y = ax+b
cx+d with a, b, c, d ∈ K such that |a|, |b|, |c|, |d| ≤

1 and ād̄−b̄c̄ �= 0. Then āx̄+b̄ and c̄x̄+d̄ are nonzero elements of K̄(x̄), so ȳ =
āx̄+b̄
c̄x̄+d̄

∈ K̄(x̄). Moreover, K̄(x̄) = K̄(ȳ), hence ȳ is transcendental over K̄. We
conclude from (c) that the map x 	→ y extends to a K-automorphism of K(x)
that preserves the absolute value. It therefore extends to an isomorphism∑

anxn → ∑
anyn of K{x} onto K{y}. �
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Chapter 2. Normed Rings

In the following theorem we refer to an equivalence class of a valuation
of a field F as a prime of F . For each prime p we choose a valuation vp

representing the prime and let Op be the corresponding valuation ring.
We say that an ultrametric absolute value | | of a field K is discrete, if

the group of all values |a| with a ∈ K× is isomorphic to Z.

Theorem 2.3.3: Let K be a complete field with respect to a nontrivial
ultrametric absolute value | |. Then F = Quot(K{x}) is a Hilbertian field.

Proof: Let O = {a ∈ K | |a| ≤ 1} be the valuation ring of K with respect
to | | and let D = O{x} = {f ∈ K{x} | |f | ≤ 1}. Each f ∈ K{x} can be
written as af1 with a ∈ K, f1 ∈ D, and |f1| = 1. Hence, Quot(D) = F .

We construct a set S of prime divisors of F that satisfies the following
conditions:
(1a) For each p ∈ S, vp is a real valuation (i.e. vp(F ) ⊆ R).
(1b) The valuation ring Op of vp is the local ring of D at the prime ideal

mp = {f ∈ D | vp(f) > 0}.
(1c) D =

⋂
p∈S Op.

(1d) For each f ∈ F× the set {p ∈ S | vp(f) �= 0} is finite.
(1e) The Krull dimension of D is at least 2.

Then D is a generalized Krull domain of dimension exceeding 1. A
theorem of Weissauer [FrJ05, Thm. 15.4.6] will then imply that F is Hilber-
tian.

The construction of S: The absolute value | | of K{x} extends to an
absolute value of F . The latter determines a prime M of F with a real
valuation vM (Section 2.1). Each u ∈ F with |u| ≤ 1 can be written as
u = a f1

g1
with a ∈ O and f1, g1 ∈ D, |f1| = |g1| = 1. Hence, OM = Dm, where

m = {f ∈ D | |f | < 1}.
By Proposition 2.3.1, each nonzero prime ideal of K{x} is generated by

a prime element p ∈ K{x}. Divide p by its pseudo leading coefficient, if
necessary, to assume that |p| = 1. Then let vp be the discrete valuation of
F determined by p and let pp be its equivalence class. We prove that p is a
prime element of D. This will prove that pD is a prime ideal of D and its
local ring will coincide with the valuation ring of vp.

Indeed, let f, g be nonzero elements of D such that p divides fg in D.
Write f = af1, g = bg1 with nonzero a, b ∈ O, f1, g1 ∈ D, |f1| = |g1| =
1. Then p divides f1g1 in K{x} and therefore it divides, say, f1 in K{x}.
Thus, there exists q ∈ K{x} with pq = f1. But then |q| = 1, so q ∈ D.
Consequently, p divides f in D, as desired.

Let P be the set of all prime elements p as in the paragraph before the
preceding one. Then S = {pp | p ∈ P} ∪ {M} satisfies (1a) and (1b).

By Proposition 2.3.1(b), K{x} is a unique factorization domain, hence
K{x} =

⋂
p∈P Op, hence

⋂
p∈S Op = {f ∈ K{x} | |f | ≤ 1} = D. This settles

(1c).
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Next observe that for each f ∈ F× there are only finitely many p ∈ P
such that vp(f) �= 0, so (1d) holds.

Finally note that if f =
∑∞

n=0 anxn is in D, then |an| ≤ 1 for all n and
|an| < 1 for all large n. Hence D/m ∼= K̄[x̄], where K̄ and x̄ are as in Remark
2.3.2(b). Since x̄ is transcendental over K̄, m is a nonzero prime ideal and
m + Ox is a prime ideal of D that properly contains m. This proves (1e) and
concludes the proof of the theorem. �

Corollary 2.3.4: Quot(K{x}) is not a Henselian field.

Proof: Since K{x} is Hilbertian (Theorem 2.3.3), K{x} can not be Hensel-
ian [FrJ08, Lemma 15.5.4]. �

2.4 Convergent Power Series

Let K be a complete field with respect to an ultrametric absolute value | |.
We say that a formal power series f =

∑∞
n=m anxn in K((x)) converges at

an element c ∈ K, if f(c) =
∑∞

n=m ancn converges, i.e. ancn → 0. In this
case f converges at each b ∈ K with |b| ≤ |c|. For example, each f ∈ K{x}
converges at 1. We say that f converges if f converges at some c ∈ K×.

We denote the set of all convergent power series in K((x)) by K((x))0
and prove that K((x))0 is a field that contains K{x} and is algebraically
closed in K((x)).

Lemma 2.4.1: A power series f =
∑∞

n=m anxn in K((x)) converges if and
only if there exists a positive real number γ such that |an| ≤ γn for each
n ≥ 0.

Proof: First suppose f converges at c ∈ K×. Then ancn → 0, so there
exists n0 ≥ 1 such that |ancn| ≤ 1 for each n ≥ n0. Choose

γ = max{|c|−1, |ak|1/k | k = 0, . . . , n0 − 1}.

Then |an| ≤ γn for each n ≥ 0.
Conversely, suppose γ > 0 and |an| ≤ γn for all n ≥ 0. Increase γ, if

necessary, to assume that γ > 1. Then choose c ∈ K× such that |c| ≤ γ−1.5

and observe that |ancn| ≤ γ−0.5n for each n ≥ 0. Therefore, ancn → 0, hence
f converges at c. �

Lemma 2.4.2: K((x))0 is a field that contains Quot(K{x}), hence also K(x).

Proof: The only difficulty is to prove that if f = 1 +
∑∞

n=1 anxn converges,
then also f−1 = 1 +

∑∞
n=1 a′

nxn converges.
Indeed, for n ≥ 1, a′

n satisfies the recursive relation a′
n = −an −∑n−1

i=1 aia
′
n−i. By Lemma 2.4.1, there exists γ > 1 such that |ai| ≤ γi for each

i ≥ 1. Set a′
0 = 1. Suppose, by induction, that |a′

j | ≤ γj for j = 1, . . . , n− 1.
Then |a′

n| ≤ maxi(|ai| · |a′
n−i|) ≤ γn. Hence, f−1 converges. �
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Let v be the valuation of K((x)) defined by

v(
∞∑

n=m

anxn) = m for am, am+1, am+2, . . . ∈ K with am �= 0.

It is discrete, complete, its valuation ring is K[[x]], and v(x) = 1. The residue
of an element f =

∑∞
n=0 anxn of K[[x]] at v is a0, and we denote it by f̄ . We

also consider the valuation ring O = K[[x]]∩K((x))0 of K((x))0 and denote
the restriction of v to K((x))0 also by v. Since K((x))0 contains K(x), it is
v-dense in K((x)). Finally, we also denote the unique extension of v to the
algebraic closure of K((x)) by v.

Remark 2.4.3: K((x))0 is not complete. Indeed, choose a ∈ K such that
|a| > 1. Then there exists no γ > 0 such that |an2 | ≤ γn for all n ≥ 1. By
Lemma 2.4.1, the power series f =

∑∞
n=0 an2

xn does not belong to K((x))0.
Therefore, the valued field (K((x))0, v) is not complete. �
Lemma 2.4.4: The field K((x))0 is separably algebraically closed in K((x)).

Proof: Let y =
∑∞

n=m anxn, with an ∈ K, be an element of K((x)) which
is separably algebraic of degree d over K((x))0. We have to prove that
y ∈ K((x))0.

Part A: A shift of y. Assume that d > 1 and let y1, . . . , yd, with y = y1,
be the (distinct) conjugates of y over K((x))0. In particular r = max(v(y −
yi) | i = 2, . . . , d) is an integer. Choose s ≥ r + 1 and let

y′
i =

1
xs

(
yi −

s∑
n=m

anxn
)
, i = 1, . . . , d.

Then y′
1, . . . , y

′
d are the distinct conjugates of y′

1 over K((x))0. Also, v(y′
1) ≥ 1

and y′
i = 1

xs (yi−y)+y′
1, so v(y′

i) ≤ −1, i = 2, . . . , d. If y′
1 belongs to K((x))0,

then so does y, and conversely. Therefore, we replace yi by y′
i, if necessary,

to assume that

(1) v(y) ≥ 1 and v(yi) ≤ −1, i = 2, . . . , d.

In particular y =
∑∞

n=0 anxn with a0 = 0. The elements y1, . . . , yd are the
roots of an irreducible separable polynomial

h(Y ) = pdY
d + pd−1Y

d−1 + · · · + p1Y + p0

with coefficients pi ∈ O. Let e = min(v(p0), . . . , v(pd)). Divide the pi, if
necessary, by xe, to assume that v(pi) ≥ 0 for each i between 0 and d and
that v(pj) = 0 for at least one j between 0 and d.
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Part B: We prove that v(p0), v(pd) > 0, v(pk) > v(p1) if 2 ≤ k ≤ d−1 and
v(p1) = 0. Indeed, since v(y) > 0 and h(y) = 0, we have v(p0) > 0. Since
v(y2) < 0 and h(y2) = 0, we have v(pd) > 0. Next observe that

p1

pd
= ±y2 · · · yd ±

d∑
i=2

y1 · · · yd

yi
.

If 2 ≤ i ≤ d, then v(yi) < v(y1), so v(y2 · · · yd) < v(y1
yi

) + v(y2 · · · yd) =
v(y1···yd

yi
). Hence,

(2) v
(p1

pd

)
= v(y2 · · · yd).

For k between 1 and d − 2 we have

(3)
pd−k

pd
= ±

∑
σ

k∏
i=1

yσ(i),

where σ ranges over all monotonically increasing maps from {1, . . . , k} to
{1, . . . , d}. If σ(1) �= 1, then {yσ(1), . . . , yσ(k)} is properly contained in

{y2, . . . , yd}. Hence, v(
∏k

i=1 yσ(i)) > v(y2 · · · yd). If σ(1) = 1, then

v
( k∏

i=1

yσ(i)

)
> v

( k∏
i=2

yσ(i)

)
> v(y2 · · · yd).

Hence, by (2) and (3), v(pd−k

pd
) > v( p1

pd
), so v(pd−k) > v(p1). Since v(pj) = 0

for some j between 0 and d, since v(pi) ≥ 0 for every i between 0 and d, and
since v(p0), v(pd) > 0, we conclude that v(p1) = 0 and v(pi) > 0 for all i �= 1.
Therefore,

(4) pk =
∞∑

n=0

bknxn, k = 0, . . . , d

with bkn ∈ K such that b1,0 �= 0 and bk,0 = 0 for each k �= 1. In particular,
|b1,0| �= 0 but unfortunately, |b1,0| may be smaller than 1.

Part C: Making |b1,0| large. We choose c ∈ K such that |cd−1b1,0| ≥ 1 and
let z = cy. Then z is a zero of the polynomial g(Z) = pdZ

d + cpd−1Z
d−1 +

· · ·+ cd−1p1Z + cdp0 with coefficients in O. Relation (4) remains valid except
that the zero term of the coefficient of Z in g becomes cd−1b1,0. By the choice
of c, its absolute value is at least 1. So, without loss, we may assume that

(5) |b1,0| ≥ 1.
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Part D: An estimate for |an|. By Lemma 2.4.1, there exists γ > 0 such
that |bkn| ≤ γn for all 0 ≤ k ≤ d and n ≥ 1. By induction we prove that
|an| ≤ γn for each n ≥ 0. This will prove that y ∈ O and will conclude the
proof of the lemma.

Indeed, |a0| = 0 < 1 = γ0. Now assume that |am| ≤ γm for each
0 ≤ m ≤ n−1. For each k between 0 and d we have that pkyk =

∑∞
n=0 cknxn,

where

ckn =
∑

σ∈Skn

bk,σ(0)

k∏
j=1

aσ(j),

and

Skn = {σ: {0, . . . , k} → {0, . . . , n} |
k∑

j=0

σ(j) = n}.

It follows that

(6) c0n = b0n and c1n = b1,0an + b11an−1 + · · · + b1,n−1a1.

For k ≥ 2 we have bk,0 = 0. Hence, if a term bk,σ(0)

∏k
j=1 aσ(j) in ckn contains

an, then σ(0) = 0, so bk,σ(0) = 0. Thus,

ckn = sum of products of the form bk,σ(0)

k∏
j=1

aσ(j),(7)

with σ(j) < n, j = 1, . . . , k.

From the relation
∑d

k=0 pkyk = h(y) = 0 we conclude that
∑d

k=0 ckn = 0 for
all n. Hence, by (6),

b1,0an = −b0n − b11an−1 − · · · − b1,n−1a1 − c2n − · · · − cdn.

Therefore, by (7),

(8)
b1,0an = sum of products of the form − bk,σ(0)

k∏
j=1

aσ(j),

with σ ∈ Skn, 0 ≤ k ≤ d, and σ(j) < n, j = 1, . . . , k.

Note that bk,0 = 0 for each k �= 1 (by (4)), while b1,0 does not occur on the
right hand side of (8). Hence, for a summand in the right hand side of (8)
indexed by σ we have

|bk,σ(0)

k∏
j=1

aσ(j)| ≤ γ
∑ k

j=0 σ(j) = γn.

We conclude from |b1,0| ≥ 1 that |an| ≤ γn, as contended. �
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2.5 The Regularity of K((x))/K((x))0

Proposition 2.4.5: The field K((x))0 is algebraically closed in K((x)).
Thus, each f ∈ K((x)) which is algebraic over K(x) converges at some
c ∈ K×. Moreover, there exists a positive integer m such that f converges
at each b ∈ K× with |b| ≤ 1

m .

Proof: In view of Lemma 2.4.4, we have to prove the proposition only for
char(K) > 0. Let f =

∑∞
n=m anxn ∈ K((x)) be algebraic over K((x))0.

Then K((x))0(f) is a purely inseparable extension of a separable algebraic
extension of K((x))0. By Lemma 2.4.4, the latter coincides with K((x))0.
Hence, K((x))0(f) is a purely inseparable extension of K((x))0.

Thus, there exists a power q of char(K) such that
∑∞

n=m aq
nxnq = fq ∈

K((x))0. By Lemma 2.4.1, there exists γ > 0 such that |aq
n| ≤ γnq for all

n ≥ 1. It follows that |an| ≤ γn for all n ≥ 1. By Lemma 2.4.1, f ∈ K((x))0,
so there exists c ∈ K× such that f converges at c. If 1

m ≤ |c|, then f
converges at each b ∈ K× with |b| ≤ 1

m . �

Corollary 2.4.6: The valued field (K((x))0, v) is Henselian.

Proof: Consider the valuation ring O = K[[x]] ∩ K((x))0 of K((x))0 at v.
Let f ∈ O[X] be a monic polynomial and a ∈ O such that v(f(a)) > 0 and
v(f ′(a)) �= 0. Since (K((x)), v) is Henselian, there exists z ∈ K[[x]] such that
f(z) = 0 and v(z − a) > 0. By Proposition 2.4.5, z ∈ K((x))0, hence z ∈ O.
It follows that (K((x))0, v) is Henselian. �

2.5 The Regularity of K((x))/K((x))0
Let K be a complete field with respect to an ultrametric absolute value | |.
We extend | | in the unique possible way to K̃. We also consider the discrete
valuation v of K(x)/K defined by v(a) = 0 for each a ∈ K× and v(x) = 1.
Then K((x)) is the completion of K(x) at v. Let K((x))0 be the subfield of
K((x)) of all convergent power series.

Proposition 2.4.5 states that K((x))0 is algebraically closed in K((x)).
In this section we prove that K((x)) is even a regular extension of K((x))0.
To do this, we only have to assume that p = char(K) > 0 and prove that
K((x))/K((x))0 is a separable extension. In other words, we have to prove
that K((x)) is linearly disjoint from K((x))1/p

0 over K((x))0. We do that in
several steps.

Lemma 2.5.1: The fields K((x)) and K((x1/p))0 are linearly disjoint over
K((x))0.

Proof: First note that 1, x1/p, . . . , xp−1/p is a basis for K(x1/p) over K(x).
Then 1, x1/p, . . . , xp−1/p have distinct v-values modulo Z = v(K((x))), so
they are linearly independent over K((x)).

Next we observe that 1, x1/p, . . . , xp−1/p also generate K((x1/p)) over
K((x)). Indeed, each f ∈ K((x1/p)) may be multiplied by an appropriate
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power of x to be presented as

(1) f =
∞∑

n=0

anxn/p,

with a0, a1, a2, . . . ∈ K. We write each n as n = kp + l with integers k ≥ 0
and 0 ≤ l ≤ p − 1 and rewrite f as

(2) f =
p−1∑
l=0

( ∞∑
k=0

akp+lx
k
)
xl/p.

If f ∈ K((x1/p))0, then there exists b ∈ K× such that
∑∞

n=0 anbn/p converges
in K, hence anbn/p → 0 as n → ∞, so akp+lb

kbl/p → 0 as k → ∞ for each l.
Therefore, for each l, we have akp+lb

k → 0 as k → ∞, hence
∑∞

k=0 akp+lx
k

converges, so belongs to K((x))0.
It follows that 1, x1/p, . . . , xp−1/p form a basis for K((x1/p))0/K((x))0

as well as for K((x1/p))/K((x)). Consequently, K((x)) is linearly disjoint
from K((x1/p))0 over K((x))0. �

We set K[[x]]0 = K[[x]] ∩ K((x))0.

Lemma 2.5.2: Let u1, . . . , um ∈ K̃[[x]]0 and f1, . . . , fm ∈ K[[x]]. Set ui0 =
ui(0) for i = 1, . . . , m and

(3) f =
m∑

i=1

fiui.

Suppose u10, . . . , um0 are linearly independent over K, f ∈ K̃[[x]]0, and
f(0) = 0. Then f1, . . . , fm ∈ K[[x]]0.

Proof: We break up the proof into several parts.

Part A: Comparison of norms. We consider the K-vector space V =∑m
i=1 Kui0 and define a function μ: V → R by

(4) μ(
m∑

i=1

aiui0) = max(|a1|, . . . , |am|).

It satisfies the following rules:
(5a) μ(v) > 0 for each nonzero v ∈ V .
(5b) μ(v + v′) ≤ max(μ(v), μ(v′)) for all v, v′ ∈ V .
(5c) μ(av) = |a|μ(v) for all a ∈ K and v ∈ V .

Thus, v is a norm of V . On the other hand, | | extends to an absolute
value of K̃ and its restriction to V is another norm of V . Since K is complete
under | |, there exists a positive real number s such that
(6) μ(v) ≤ s|v| for all v ∈ V
[CaF67, p. 52, Lemma].
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Part B: Power series. For each i we write ui = ui0 +u′
i where u′

i ∈ K̃[[x]]0
and u′

i(0) = 0. Then

f =
∞∑

n=1

anxn with a1, a2, . . . ∈ K̃,(7a)

u′
i =

∞∑
n=1

binxn with bi1, bi2, . . . ∈ K̃, and(7b)

fi =
∞∑

n=0

ainxn with ai0, ai1, ai2, . . . ∈ K.(7c)

If a power series converges at a certain element of K̃×, it converges at
each element with a smaller absolute value. Since to each element of K̃×

there exists an element of K× with a smaller absolute value, there exists
d ∈ K× such that

∑∞
n=1 andn and

∑∞
n=1 bindn, i = 1, . . . , m, converge. In

particular, the numbers |andn| and |bindn| are bounded. It follows from the
identities |ancn| = |andn| · ∣∣ c

d

∣∣n and |bincn| = |bindn| · ∣∣ c
d

∣∣n that there exists
c ∈ K× such that

(8) max
n≥1

|ancn| ≤ s−1 and max
n≥1

|bincn| ≤ s−1

for i = 1, . . . , m.

Part C: Claim: |aincn| ≤ 1 for i = 1, . . . , m and n = 0, 1, 2, . . .. To prove
the claim we substitute the presentations (7) of f, u′

i, fi in the relation (3)
and get:

(9)
∞∑

n=1

anxn =
∞∑

n=0

m∑
j=1

ajnuj0x
n +

∞∑
n=1

m∑
j=1

n−1∑
k=0

ajkbj,n−kxn.

In particular, for n = 0 we get 0 =
∑m

j=1 aj0uj0. Since u10, . . . , um0 are
linearly independent over K and a10, . . . , am0 ∈ K, we get a10 = · · · = am0 =
0, so our claim holds in this case.

Proceeding by induction, we assume |aikck| ≤ 1 for i = 1, . . . , m and
k = 0, . . . , n − 1. By (5) and (6),

|ain| ≤ max(|a1n|, . . . , |amn|) = μ(
m∑

j=1

ajnuj0) ≤ s|
m∑

j=1

ajnuj0|,

hence

(10) |aincn| ≤ s|
m∑

j=1

ajnuj0c
n|.
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Next we compare the coefficients of xn on both sides of (9),

an =
m∑

j=1

ajnuj0 +
m∑

j=1

n−1∑
k=0

ajkbj,n−k,

change sides and multiply the resulting equation by cn:

m∑
j=1

ajnuj0c
n = ancn −

m∑
j=1

n−1∑
k=0

ajkck · bj,n−kcn−k.

By the induction hypothesis and by (8),

|
m∑

j=1

ajnuj0c
n| ≤ max

(|ancn|, max
1≤j≤m

max
0≤k≤n−1

|ajkck| · |bj,n−kcn−k|)(11)

≤ max(s−1, 1 · s−1) = s−1

It follows from (10) and (11) that |aincn| ≤ 1. This concludes the proof of
the claim.

Part D: End of the proof. We choose a ∈ K× such that |a| < |c|. Then
|ainan| =

∣∣aincn
(
a
c

)n∣∣ ≤ ∣∣a
c

∣∣n. Since the right hand side tends to 0 as n → ∞,
so does the left hand side. We conclude that fi converges at a. �
Lemma 2.5.3: The fields K((x)) and K1/p((x))0 are linearly disjoint over
K((x))0.

Proof: We have to prove that every finite extension F ′ of K((x))0 in
K1/p((x))0 is linearly disjoint from K((x)) over K((x))0.

If F ′ = K((x))0, there is nothing to prove, so we assume F ′ is a proper
extension of K((x)). Each element f ′ ∈ F ′ has the form f ′ =

∑∞
i=k bix

i with
bi ∈ K1/p and

∑∞
i=k bic

i converges for some c ∈ (K1/p)×. Thus, (f ′)p =∑∞
i=k bp

i x
ip ∈ K((x)) and

∑∞
i=k bp

i (c
p)i converges, so (f ′)p ∈ K((x))0. We

may therefore write F ′ = F (f), where F is a finite extension of K((x))0 in
F ′ and [F ′ : F ] = p.

By induction on the degree, F is linearly disjoint from K((x)) over
K((x))0. Let m = [F : K((x))0].

Moreover, K((x)) is the completion of K(x), so also of K((x))0. Hence,
F̂ = K((x))F is the completion of F under v. By the linear disjointness,
[F̂ : K((x))] = m.

The residue field of K((x)) and of K((x))0 is K and the residue field
of F̂ is equal to the residue field F̄ of F . Both K((x)) and K1/p((x)) have
the same valuation group under v, namely Z. Therefore, also v(F̂×) = Z,
so e(F̂ /K((x))) = 1. Since K((x)) is complete and discrete, [F̂ : K((x))] =
e(F̂ : K((x)))[F̄ : K] = [F̄ : K] [CaF65, p. 19, Prop. 3].
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Now we choose a basis u10, . . . , um0 for F̄ /K and lift each ui0 to an
element ui of F ∩ K̃[[x]]0. Then, u1, . . . , um are linearly independent over
K((x))0 and over K((x)), hence they form a basis for F/K((x))0 and for
F̂ /K((x)).

As before, F̂ ′ = K((x))F ′ is the completion of F ′. Again, both F ′ and F̂ ′

have the same residue field F ′ and [F̂ ′ : F̂ ] = [F ′ : F̄ ]. Note that F ′ ⊆ K1/p

and [F ′ : F̄ ] ≤ [F ′ : F ] = p. Therefore, F ′ = F̄ or [F ′ : F̄ ] = p.
In the first case f ∈ F̂ , so by the paragraph before the preceding one,

there exist f1, . . . , fm ∈ K((x)) such that f =
∑m

i=1 fiui. Multiplying both
sides by a large power of x, we may assume that f1, . . . , fm ∈ K[[x]] and
f(0) = 0. By Lemma 2.5.2, f1, . . . , fm ∈ K((x))0, hence f ∈ F . This
contradiction to the choice of f implies that [F ′ : F̄ ] = p. Hence, [K((x))F ′ :
K((x))F ] = [F̂ ′ : F̂ ] = p = [F ′ : F ]. This implies that F̂ and F ′ are linearly
disjoint over F . By the tower property of linear disjointness, K((x)) and F ′

are linearly disjoint over K((x))0, as claimed. �
Proposition 2.5.4: Let K be a complete field under an ultrametric abso-
lute value | | and denote the field of all convergent power series in x with
coefficients in K by K((x))0. Then K((x)) is a regular extension of K((x))0.

Proof: In view of Proposition 2.4.5, it suffices to assume that p = char(K) >

0 and to prove that K((x)) is linearly disjoint from K((x))1/p
0 over K((x))0.

Indeed, by Lemma 2.5.3, K((x)) is linearly disjoint from K1/p((x))0 over
K((x))0. Next observe that K1/p is also complete under | |. Hence, by Lemma
2.5.1, applied to K1/p rather than to K, K1/p((x)) is linearly disjoint from
K1/p((x1/p))0 over K1/p((x))0.

K((x)) K1/p((x)) K((x))1/p= K1/p((x1/p))

K((x))0 K1/p((x))0 K((x))1/p
0 = K1/p((x1/p))0

Finally we observe that K((x))1/p
0 = K1/p((x1/p))0 to conclude that K((x))

is linearly disjoint from K((x))1/p
0 over K((x))0. �

Notes
The rings of convergent power series in one variable introduced in Section
2.2 are the rings of holomorphic functions on the closed unit disk that ap-
pear in [FrP04, Example 2.2]. Weierstrass Divison Theorem (Proposition
2.2.4) appears in [FrP, Thm. 3.1.1]. Our presentation follows the unpub-
lished manuscript [Har05].

Proposition 2.4.5 appears as [Art67, p. 48, Thm. 14]. The proof given
by Artin uses the method of Newton polynomials.
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The property of K{x} of being a principle ideal domain appears in [FrP,
Thm. 2.2.9].

The proof that K((x))/K((x))0 is a separable extension (Proposition
2.5.4) is due to Kuhlmann and Roquette [KuR96].
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