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ON THE HOMOTOPY GROUPS OF THE UNION OF SPHERES
P. J. Hwroxt.

1. Introduction.

Let §; be a sphere of dimension 7,41, ,>1,9=1, ..., k, and let T'
be the union of the spheres S, ..., S}, with a single common point. Then
T serves as a universal example for homotopy constructions (see [1]). The
object of this paper is to compute the group m,(7'), n > 1, as a direct sum
of homotopy groups of spheres of appropriate dimensions]. Each
summand is embedded in ,(7T') by a certain multiple Whitehead product ;
the products which appear will be called basic products and will now be
defined.

Let Ty= 8, v8,,V...v8, , where 1 <u; <u, <...<u, k. Then
the injection m,(7)—>m,(7T) embeds =,(T,) univalently as a direct
summend in m,(7"). We will identify elements of «,(T,) with their images
in m,(T), and an element in the image of =,(7',) will be said to involve

the spheres S, , ..., §, . With these conventions, we define and order
the basic products as follows.
The basic products§ of weight 1 are the elements ¢, ..., v, where

4y <ty <...<y, i being the positive generator of =, ,(8)), t=1, ..., k.
Now suppose the basic products of weight < w defined and ordered. Then
a basic product of weight w > 1 is a Whitehead product [a, b], where a
is a basic product of weight w, b is a basic product of weight v, u+v = w,
a < b, and if b is defined as the Whitehead product, [¢, ], of the basic
products ¢, d, then ¢ <a. The basic products of weight w are then ordered
arbitrarily among themselves and are greater than any product of lesser

weight. .
It will be seen that a basic product of weight w is a string of symbols
Ly, - Ly, SUitably bracketed, where 1 <v; <4k, j=1, ..., w. Suppose

i; occurs w; times in this string. Then we will say that the basic product
tnvolves the sphere S; w; times, and the height of the basic product is
k
defined as X rw;
=1

=

t Received 29 May, 1954; read 17 June, 1954.

t T is, of course, simply-connected, but it is convenient to regard the trivial case
n = 1 as excluded from the discussion. Thus all homotopy groups discussed in this paper
are of dimension » > 1. .

§ It is convenient for this definition to think of ; as & Whitehead product of minimum
weight.

The definition of the basic products imitates P. Hall’s definition of basic commutators
(see §3 of this paper), with a minor modification which is unimportant algebraically, but
which ensures that [y, ;] and not [i, (] is & basic product. This appears to be natural
in many applications of Theorem A (see §6 of this paper).
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ON THE HOMOTOPY GROUPS OF THE UNION OF SPHERES. 155

Let the basic products be written p,, p,, ..., P, ..., and let the height
of p, be ¢, Then the main theorem may be expressed as

THEOREM A. 7, (T) ) m, (8%+1), where the direct summand =, (8%+1)
i=1
is embedded in m,(T') by composition with the basic product p;em, ., (T).

Note that, for each n, there are only finitely many non-zero terms
on the right-hand side, since the sequence {¢;} tends to infinity. Clearly
there is considerable choice in defining the basic products. However,
according to a theorem due to E. Witt (see [11]), the number of basic
products of weight w, involving the spheres §; w; times, s =1, ..., k, is

1y pdwd)

W g (Wifd) ... (wy/d)!’
where u(d) is the Mobius inversion function. Each such basic product
gives rise to a term ,(S%*!) in the direct sum decomposition of =, (7),

k
where ¢ = X 7;w;. Thus the number of occurrences of the term =, (S%+1)
i=1

on the right-hand side in Theorem A does not depend on the particular
choice of basic products and a different choice would lead at most to a
rearrangement of the summands and a change of embedding isomorphism.

Consider the case 7= 8, vS8,vS;. The basic products of weight 1 are
u, t, ta; those of weight 2 are [i, ¢, [41, t3], [tg, t5]; those of weight 3 are

[‘1’ (o1, ‘2]]’ [‘1: [e1) ‘a]]’ [‘2: [t15 ‘2]]’ [‘25 (1, ‘3]]’ [‘2: [e2) ‘3]]’ [‘3: (1) ‘2]],
[t [t a]]> [ea [tar 3] It will be observed that [, [u, t]] is not a
basic product. It can therefore be expanded as a linear combination of

terms involving basic products, and it is almost immediate that [‘1’ [ea, L3]:|

is a linear combination of [LZ, [e1s La]] and [¢3, [e1s cz]]. In fact, we deducet

TreEoREM B. Let aem,(X), Ben(X), yem(X). Then the “ Jacobi
tdentity *’ holds :

(=1 [B, ], o |+ (= 1) [, «],ﬁ]+<—1)w[[a;ﬁ],y] =0.

We also deduce the “relative Jacobi identity ’. Further applications
of Theorem A are given in the final section.

The author wishes to acknowledge the decisive contributions made by
J.-P. Serre and J. A. Green; the fundamental idea in the proof of
Theorem A is due to Serre, and the necessary extension of the algebraic
method is due essentially to Green. The author is also grateful to J. C.
Moore for his kind assistance.

t This theorem has also been proved by Hurewicz, G. W. Whitehead, Nakacka, Toda,
Uehara and probably others.
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156 P. J. Hivron

2. Two topological lemmas.

Let X be a path-connected space, and let Q be the space of loops on X.
Let 7 be the natural isomorphism #:m,,(X)=m,(Q), let & be the
Hurewicz homomorphism % : 7, (Q) - H,,(Q) and let

p=hy:my (X)) H,(Q)

Now the composition of loops in Q gives it the structure of an H-space
and induces a Pontryagin multiplication into the homology classes of Q.
We write this multiplication as £.¢'e H,, (Q), (e H,(Q), £ e H, (Q), or
sometimes just as ££'. '

Let Q be the space of loops on 7' and let ¢;= py;, y;€m, 1 (T), ¢, H, (Q),
¢=1, ..., k. Then Bott and Samelson have proved (see [2])

LemmaA 2.1. The Pontryagin homology ring of Q, the space of loops
on T, is a free associative ring, freely generated by the elements e, ..., .

Revert to the general case and let «em,,,(X), Bem,,(X) so that
[«, Blemp1q41(X). Then Samelson has proved (see [8])

Lemma 2.2, pfa,f]= (—l)p(pa.pﬁ—(—l)mpﬂ.pa).

3. An algebraical theorem.

Let R be a ring generated by e, ..., ¢, let e be an arbitrary mapping
of RX R into the set (1, —1), and let A be an arbitrary mapping of RX R
into the integers. Define for a, be R,

aob=A(a, b)ab—e(a, b)ba.

We call ¢ ob the quasi-commutator (qc) of @ and b, and define basic
- gc’s (bgc) exactly as for basic products, starting with the ordered set
ey, .-, ¢ of bgc’s of weight 1, and using the o operation instead of the
Whitehead product operation. Let the bgc’s be by, by, ..., b, .... We
define & bgc-monomial as a word M of the form b, b;...5;,. The weight
of M is its degree as & polynomial in e, ..., ¢, and the disorder of M is
the number of pairs (%, v), 1l <u <v<r, with¢, >¢,. Then M has zero
disorder if and only if it has the form b, by": ..., n, > 0.

THEOREM 3.1. Any monomial in ey, ..., e, of degree w can be written
as o linear combination of bgc-monomials of weight w and zero disorder.

THEOREM 3.2. If e, ..., ¢, are free generators of the free associative
ring R, then the bgc-monomials of zero disorder constitute a free additive
basis for R.

THEOREM 3.3. The number of bgc’s of weight w is
Quw, b= 3 p@d) i,
W g)w

where w 1s the Mobius function.
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These theorems have all been provedt in the case e=—1, A=—1
(see [11]). Clearly Theorem 3.3 cannot depend on the particular choice
of “ commutator . Assume Theorem 3.1. Then the bgc-monomials of
zero disorder span R. Since R is graluated by degree and since the
number of monomials spanning the subring of B consisting of homogeneous
elements of degree d, say, is finite and the same for commutators as for
quasi-commutators, Theorem 3.2 follows from the known facts for com-
mutators. The proof of Theorem 3.1 in its generalized sense presents
no new difficulties, and it should be sufficient to sketch the proof, which is
modelled on the ideas of P. Hall and Magnus.

We define the degree of M = b, b,,... b, tober. Now let b be the first bgc
(in the sequence b,, b,, ...) to occur in disorder in M, in the sense that
b=b, for a pair (u, v), 1 <u<v <7, with ¢, >1,. Suppose that b first
occurs in disorder in. M as b;, so that, certainly, ¢, ;, >¢,. Now
b, 0b;_, = Ab; b, ,—eb; b, (writing A, € for short). Thus

Ty—1 to—1 iy

M = erb,,...b, b, b, b ....b,—eb;...b;, (b,0b; )b, ...
=eA\M'—eM", say.
We now show that, if M arose from a monomial in the e,, ..., ¢, by

successive applications of this process, then b, 0b, _ is a bgc. Certainly
b, <b;_,. Now gc’s of weight > 1 arise by this process (they were not
present at the start), so that, if b, , = « 0B, « must at an earlier stage have
been the first bgc to be in disorder. Obviously this process, applied, say,
to b, does not put into disorder any b’ < b, so that « <b; and b; 0b;, | is a
bgc. Thus M is expressed as eAM'—eM'"’', where M', M"’ a,re bgc-monomials,
M’ has less disorder than M, and M"’ has smaller degree. M’ still has
degree r, and, of course, the weights of M’, M’ are the same as that of M.

We have now established the basis for an induction. For if we suppose
that all bgc monomials of degree < r may be expressed as a linear combina-
tion of monomials of zero disorder, we have a process for steadily reducing
the disorder of a monomial of degree ». In this way the proof of
Theorem 3.1 is completed.

4. Proof of Theorem A.

Let Q be the space of loops on 7. By (2.1), H(Q) is the free
associative ring freely generated by e,, ..., e;,. Let the o operation in
H(Q) be specified for homogeneous elements by defining A(a, b) = (—1)?,
e(a, b) = (—1)rat, where aeH »(Q), beH (Q). It is then clear from
(2.2) that p maps the basic products P1s Pas +-+5 Py, ... ONt0 & complete set
of bge’s by, by, ..., by, ..., where pp;=b,,t=1, 2, ..

t In P. Hall's definition of basic commutators, the commutator (ab—ba) would only
be basic if @ > b. Thus we get the same definition as Hall if we define a0 b = ba—ab
and admit @ 0 b as basic only if @ << b. See the footnote on basic products.
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158 P. J. Hwroxn

Let g; be the height of p;. Use the symbol p; for & map S%+1— T in the
class p;. Then p; induces a map f;: Q;— Q, where €, is the space of loops
on 8%+l and hence a homomorphism f.:H(Q)—~>H(Q). Let »; be the
natural isomorphism v, (8% =~ =, ((}), and let &; be the Hurewicz
isomorphism h;:m, (Q) = H,(€%). Then H(Q;) is a free ring freely
generated by b, = I;7;¢, where « is the positive generator of =, (8%%2).

Lemma 4.1. fuis a ring-homomorphism and fib = b,.

That f is a ring-homomorphism follows from the more general
proposition that a map X —» Y always induces a homomorphism of the
Pontryagin ring of Q(X) into that of Q(Y). Tbat f.b, = b; follows from
the commutativity of the diagram

g1 (S%H) = Mg (T)

iy . $n
'”q.'(Qi) ﬂ 7, (Q)
hiy $h

2,Q) Lm0,

where p;, fi+ are induced by p;, f;. It follows from (4.1) that
fobi"=0br.

Consider the maps f;: Q;—Q, f;: Q;—Q, induced by p;, p;, If we
represent composition of loops in Q by w . w’, w, w’€Q, then we may define
f;', : Q"X Qj% Q byfu(w,-, (.U,') =‘f"w' 'f]' w;, wiS Q", w; & Qj' NOW let 'y,S H(Q"),
y;€H(;). Theny,®y;eH (X Q).

Lemma 4.2.  (fi) (v;®vy;) = (feevd) - (fio75):

Let u: I? - Q, be a singular p-cube of Q;, and let v : [7-> Q, be a singular
g-cube of Q,. Then (u, v): I? X I9—> Q, X Q;, given by (u, v)(x, y) = (uz, vy),

ze I?, ye I9, is a singular (p+4-g)-cube of Q; X Q,, and we may restrict atten-
tion to such cubes of QX Q, in considering the homology of Q;X Q,. Then

Jo(u, v)(x, y) =fiux . f;vy. (4.3)

Thus, if we allow f;, f;, f;; also to stand for the induced chain-mappings,
(4.3) reads
Ji(u®v) =fiu. f;v,
the multiplication on the right being the multiplication of elements of the
chain-group of Q which induces the Pontryagin multiplication of homology
classes. The lemma thus follows by passing to homology classes.
We have maps f;: ;—~Q,¢=1, 2, .... These induce maps

wf i X o X Q> Q,
given by v
"lf(wl, ey wm) =f1w1 “eee .fmwm, wl-S Q",
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where, for the sake of definiteness, we take the bracketing on the right-
hand side to be the natural bracketing from the left. Let w, be the null-
loopin Q;. Then, ifl < m, we may identify Q, X ... X €, with the subspace
QX .. XY Xl X Xwd of Q X ...xXQ,. Since each f; maps
w2 to the null-loop in Q, it follows that

mf] QX oo X Q=0 X oo X Q= Q.
Let Q* = l(PlQ,.. Now H(Q,) is the free ring generated by b;. Since the
1

dimension of b tends to infinity with ¢, it follows that H(Q%) is
additively generated by the (finite) tensor products b;™ @b, @... and
the set of maps ,f induce a well-defined homomorphism

é: H(Q¥)—>H(Q).
By (4.1) and an easy extensiont of (4.2),
(b @by ...) =bl. b ... 4.4)

Since the expressions 57157 ... form a free additive basis of H(Q), by
Theorem 3.2, it follows that ¢ is in fact an additive isomorphism of
H(Q*) onto H(Q).

Let us suppose for simplicity of notation that the first ¢ of the spheres
in 7' have dimension 2. Then the set of maps {,,f} induces an isomorphism
of 7, (Q*) onto m (Q), mapping each n;;;onto ny;, e =1, ..., 8. Let Q be the
universal cover of Q and let Q¥ be the universal cover of Q#;  then
Q# = £~21 X .o X ﬁt X Q1 X ..., where ﬁ,- is the universal cover of
1=1,...,&. The maps ,f, m=t,¢41, ..., may be lifted uniquely to maps

I QX QX X QX Qg X o X Q> G,
sending the class of null-loops on Q, X ... X Q,, to the class of null-loops
on Q. Moreover, writing ,,Q* for the space of arguments of ,g, and
embedding ,Q% in ,,Q% in the obvious way, ¢ < { < m, we have
bl w2 =g, Q%> Q, (4.5)
which induces a well-defined homomorphism
é:H(Q%)~>H(Q).
LemMA 4.6. ;is an isomorphism onto H (S~).).
Let Q#0= Q¥ Q#0=0 x..XO0, X X..., Q0 =0, Q® the

covering space of Q with fundamental group (me,,,, ..., 7y), # <¢. Then
Q)= Q% QOW=0Q, Q*® ig a covering space of Q¥®-D with cover-

t Despite the appearance of (4.4), ¢ is not a ring-homomorphism. If we identify
b, e H(Q,) with b, Q@u, € H(Q, X 0,), u, being the unit element of H(Q,), and similarly

identify b," with u,®b,’, then b,’.b,’ = b,’ ®b,’, by . by’ = +(b,"Qby"), but, of course,
by by # by by in H().
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160 P. J. HirtoN

transformation group (7,¢,), and Q® is a covering space of Q®-V with
cover-transformation group (n:,). Moreover, there exist sets of maps

{nf™},

@ X X QX Qg X XY Xl X Q= QO

such that , f® covers , fo-,  fO= f fO= g and the set {,f®)}
induces a homomorphism

¢ : H(Q*) > H(Q®),

and an isomorphism of =,(Q¥®) onto =,(Q®) mapping =n, ounto 7,
u+1<<s <t. We assert that the appropriate cover-transformation groups
operate trivially on the homology groups of the spaces Q¥4 Q®.  This
follows from

Lemma 4.7. If X is an H-space and Y is a covering space of X, then
Y ts an H-space and the factor group m (X)/m (Y) operates trivially on the
homology groups of Y.

The argument is almost exactly as on p. 478 of [9]. Writing = for the
subgroup m, (Y) of 7, (X) and E for the space of paths on X emanating from
the distinguished point e€ X, we define an operation fvg in £ by

(fvgrt=ftvgt,

the operation on the right being that given by the H-structure of X.
Now Y is obtained from E by identifying f, f' € E when and only when

the loop &, given by
h(t) =£(2t), 0<t<4,

=f(2—-2), $<t<1,
represents an element of 7. Writing this equivalence f= f’, we have to
show that, if f~~f’and g~ ¢’ then fvg~f’'vg’. Now theloop k, given by
k@t)=g(2t), 0<t<%,
=g¢'(2—-2t), $<i<1

represents an element of =, and the loop A vk represents the product of
the elements represented by %, k; but

(hvE) ()= (fvg)(2t), 0t}
= (f'vg)(2—2), $<iL1

so that Y carries a multiplication induced by that in E. Let us write
ee E for the null-loop on ee X and let p,: X, e—> X, ¢ be a homotopy such
that po=1, pyz =2z ve. Then p,/: E,e>E,e, given by (p,f)(w) = p, f(u),
is such that p,’ =1, p,"f=/fve. Moreover, it is easy to veryify that p,
induces & homotopy Y — Y deforming {f} to {f} v {e}, rel {e}, where {f},
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{e} stand for the equivalence classes (points of ¥) ocontaining f, e.
Similarly {f} may be deformed to {e}v{f}]. rel {¢}, and ¥ is an H-space.

That =, (X)/m (Y) operates trivially on the homology groups of Y
also follows almost exactly ason p. 478 of [9]. Itis only necessary to observe
that Serre’s second step remains valid in our more general situation because
m;(Y) is normal in m(X), the fundamental group of an H-space being
abelian. This completes the proof of Lemma 4.7.

Since ¢ is an isomorphism of H(Q*) onto H(Q), Lemma 4.6 now
follows from ¢ applications of

Lemma 4.8. Let f: X, —+ X, be @ map inducing isomorphisms

¢: H(X)) = H(X,), m(X;)=m(X,).
Let = be a normal subgroup of m (X,) such that = = =, (X, )/ is cyclic infinite
and let w* = m (X,)/¢m. Let Y,, Y, be covering spaces of X,, X, with cover-
transformation groups =, =%, which act trivially on the homology groups of
Y,, Y, and let g: Y, Y, be the unique map lifting f and sending the class
of null-loops to the class of null-loops. Then g induces isomorphisms

Y H(Y,) = H(Y,), m(Y)=m(Y,).

It is trivial that g induces the isomorphism m (Y,) =~ = (¥,). Let o¢
generate = and let k; be the projection ¥Y;—»X;, =1, 2. Serre shows
on p. 503 of [9], that the sequence

0> C(Y) = 0(Y) 3 0(X)~0 4.9)

is exact, where C stands for chain-group. Moreover, we olearly have
commutativity in the diagram

0->0(Y) oY) 3 (X)) >0
7y vy . VI
0 C(¥y) 57 O(¥,) 3 C(Xy) >0
It follows from (4. 9) and the fact that #* acts trivially on the homology
groups of Y, that there is an exact sequence

0> H,(Y) 5 H,(X) 3 Hy o (Y) >0, (4.10)
and from the commutativity of the previous diagram that the diagram
0_>'H'n,( Yl) I:i;' Hn(Xl) 'a_; 1L—1(Y1)'_>O

vy oy vy

0> H,(Y,) ™S H,(Xy) 3 H,y(¥5) >0

is commutative. Thus ¢k, = Koy ¢, $0, =0,¢. Since ¢, ky, are (1-1),
the first equation shows that ¢ is (1-1), and since 0,, ¢ are onto, the second
equation shows that ¢ is onto. Thus Lemma 4.8 is established and with
it Lemma 4. 6.

JOouUR. 118. M
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162 P. J. HuroN

- Tt should be noted that our method of proof of (4.6) enables us to
calculate the homology groups of H((}) and, of course, of H(Q#); for it
follows from (4.10) that the homology groups of Y, are free abelian if and
only if those of X, are free abelian, in which case

H,(X)=H,(Y)+H, (Y,

Now the homology groups of Q are free abelian, so that the homology
groups of all the Q® are free abelian, and, moreover, finitely generated.
Thus if p( is the n-th Betti number of Q™, p® =p,, p? =73,, we have

Pu70 = pP+p0,
whence

= Pp+tPp_1+ - +( ):pn_r+ A Pnw

and, inverting thls formula,

y t(t+1) '-'L,.!(t+r_1)23n_r+---

(1 M ..;?’(!t—{—n—l) 2

ﬁn =pn—tpn—1+"'+(—l

After this digression we return to the proof of Theorem A.

By an obvious extension of the Whitehead theorem (see [10]), we deduce
from (4.6) that the set of maps ,,¢ induces isomorphisms of the homotopy
groups of * onto those of Q, so that the set of maps ,,f induces isomorphisms
of the homotopy groups of Q* onto those of Q. But =, ;(Q¥) = Zm,_;(Q).

=

Thus =,_ 1(Q)_Z]w-n_l(Q) moreover ,_,

(Q;) is embedded in =, ,(Q)
by composition Wlth the homotopy olass of f;, so that, in the induced

isomorphism
ma(T) =2 S, (834),
. i=1

m,(8%+1) is embedded in ,(7") by composition with p;, This completes
the proof of Theorem A.

Theorem 3.3 does not play a prominent role in the statement of
Theorem A. @Q(w, k) is the number of basic products of weight w, but,
in general, different basic products of the same weight belong to homo-
topy groups of 7' of different dimensions. However, in the important
special case when 7, =r,=...=r,=r, we have '

CoroLLARY 4.10. Let T be the union of k (r+1)-spheres with a single
common point, r =1. Then

(1) = E (8um of Q(w, k) copies of 7-,'n'(,gwr+1)) ,

w=1

where Q(w, k)=—;— % u(d)kvre,
dlw
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5. The Jacobi identity

As mentioned in the introduction, if 7' = SP+1vSgtlvSr+l, then
[cl, [t, L3]J is not a basic product. This means that, in the direct sum
decomposition,

48

Tptqir+l (M= ;

. Tp+g+r+1 (82:+1),
(]

we get a non-trivial representation of [Ll, [es, La]:l,

[‘1» [e2s ‘3]] =

DO, 4B Tpigypyy (S4H).

T8
L

Now suppose that p;, ..., p;,, ... are the basic products not involving S,.
Shrinking §; to a point, we get

[}
0= X% p;, 0a,
A=1

whence «; =0, A=1, 2, .... Similarly, we see that «;= 0 for any basic

product p; which does not involve all of 8;, S,, 8;. For a basic product
p; involving 8,, S,, and §;, we have ¢;+1>p+q+r+1, except for

[Lz, [e1s L3]:] and [:‘3: [e1 Lz]]. Thus

[‘1’ [e2s ‘3]] = “,__"2: (o, ‘3]]+b[‘3’ [ ‘a]]s (5.1)
where a, b are integers. Moreover, only one such relation can exist, since
there is no non-trivial relation between the basic products. Thus, if p
is the homomorphism p:m, .00y (T)—>H, ., (Q), then p[cl, [eas :.3]] is
uniquely expressible as a linear combination of p[cz, [e1s La]] and
p[ca, (e, czﬂ, and the relation

oo Lo t5]] = ap e, [11, 1] ] +-Bp[ g, [, wa]]
subsists in H,,,, ., (Q) if and only if (5.1) subsists in =, ,...,(T). The
problem is therefore to find a linear rvelation between p[Ll, [e2 L3]],
pl:cz, [e15 L3]:| and p[ba, [e1 42]] in which the coefficient of p[al, [ta L3]] is 41,

Let us change notation slightly (in view of the result we wish to prove).
Let T=8,7v8,2v8y, and let us look for a linear relation between

p[[az, 4], Ll] , p[[za, uls LZ:I and p[[cl, L), L3] in which the coefficient of
p[[bz, Ll ¢1:| is 4-1; it is then clear that the same linear relation will hold

between [[LZ, t3), Ll], [[L3, ul Lz] and [[Ll, L], L3].

t The ensuing calculation is implicit in the last remerk of [8]. ,
M2
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Now, by (2.2),

o[l 1l 1] = (= 1) (ol 1] . e — (—1)@+4o-Dey . plig, 1))
= (=1t {(—1)0 ey e — (— 1) WV egey ) ey
— (—1)@Xp-D (—1)e-1 91(9203— (—1)@-Dr-Dg, ez) }
= (—1)tleye5e,+ (—1)THt1le ey,
+ (_ 1)2-7Q+f11+¢1 el 62 e3+ (-— I)PQ+"I7+Q1’+T el e3 ez.
Similarly,
P[[‘s: ul, ‘2] = (=1)"tege 0 (—1)PH*le g5y
. 4 +(_1)47‘+Pq+7'626331+(_I)Q'+PQ+TP+Pezele3’
an
P[[‘p o), ‘3] = (—=1)"*e, epe5+(—1)P1* P ee €5
+ (_... l)rp+qr+p €36, 62+ (._. 1)1'10+qr+pq+q €3656;.
We observe that
(~1)2p [ [1g, ta), 1 |+ (= 1) p[ [1g: 1], 13 ]+ (=12 p[ [y 12, 15 ] =0,

whence
(“l)pq[[bz, ), ‘1]‘*‘(“1)”[[‘3, ul, ‘2]""(—1)”0[[‘1’ ), ‘3] =0.

Theorem B now follows by mapping 8,2 vS8,2v Sy into X by a map
which agrees on §,? with a representative of a&m,(X), on 8,2 with a repre-
sentative of Bem, (X), and on S,” with a representative of y e, (X).

We note that any further relation between Whitehead products would
imply a relation between quasi-commutators; by the same argument as
that used by Magnus in the case of ordinary ring commutators (see [7]),
we have

CoroLLARY 5.2. All identical relations between Whitehead products
follow from the skew-commutative law [«x, B]l= (—1)P?[B, «], aem,(X),
Bem,(X), and the Jacobi identity by application of the laws of addition and
the distributivity of the Whitehead product.

We now prove

THEOREM 5.3. Let [, 1], [, élen, (X, A) be generalized Whitehead
products of elements e,y (X, A), nem(A) in the sense of [1],8,1>1, so
that the symbol [] stands for the Whitehead product in whatever sense s
relevant. Then, if aem, (X, 4), Bem,(4), yem,(4), we have

(—1)@+0e[ [8, y], a]+(=1)[ [y, o], B]4+(—1y@+[ [«, ], ] = 0.

To prove this, we propose, for convenience, to modify the Blakers- .

Massey definition of the generalized Whitehead product in a manner due
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to M. G. Barratt. Consider the homotopy sequence

e (BEV Sy, 8PVE) S 7y (8P VS Sy (B VS~ ...,

where E$t! is a cell bounded by 8. Since ¢ is onto in all dimensions,
d is (1-1), and it is clear that dm  (EStivSy, 8,°vS,) contains
[t to] €mery (88 VSY). Let § =d[y, 1,], and let (£, n) be the class of 8
map E3ttv 8y, 8,¥vSy—X, A, which agrees on E*+! with a representastlve
of ¢ and on S, with a representative of 7. We then define

(£, n) = (&, m)o0b, [n, &1 = (—1)[& 7]".
These definitions are related to those of Blakers-Massey by
(&, n) = —[& 9], [n &1 = (=1)"[n, £]. (5.4)

Moreover, using the symbol [ ]’ temporarily to denote also the ordinary
Whitehead product, we have immediately

alé, n) = [d€, 1), dln, §]' = [n, d€]". (5.5)
Now consider the homotopy sequence
>, (BBFLv 8,2V Sy, 8,7 v8,2v.8yT) 4 o1 (82 VSV S *) -
>y (BPHLY 82V 8y > ...

Again, ¢ is onto in all dimensions, so that & is (1-1), and the image of d
obviously contains [[¢2, )’ L1]', [[La, 4], LZJ’ and [[‘1’ ]’ c,,]'. Let «, be
the positive generator of =, ,(E%+1, §,7). Then it is clear from (5. 5) that

[ (=12 [tg, 1), ey |+ (=1 [1g, 1], 1) + (=172 [ [ 1], 5] }
= (—l)pq[[bz, ], ‘1] +(— l)q"[[‘a’ ul's ] +(— "’[[‘1: ]’ ‘a] =0.

It now follows from the univalence of d, by mapping E?+! v 8,2 v 8y into X
in the obvious way, that

(—12e[ B, 41> o] + (=) [ [y, o, B] +(—1y*[ [, B, ¥] =0.

The theorem as stated results from this, using (5. 4).

6. Applications

Let yem,(8") and let ® be the homomorphism @ : 7, (87) > =, (8,7 v.Syr)
obtained by pinching an equatorial S™! to a point. Let H; ;,¢=1, 2, ...,
project m, (8" v.§,7) onto its (1+2)-nd direct summand in the decomposition
given by Theorem A and let H, , = H; ;®. Thus we have

Z{0 : 77'%(8') —:'"13(82’—1)r
Hy, Hy:m(8) >, (S7-2), ...
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and
Oy = (4y+1) 0y = 4, 0y +1, 0y 1y, 1] 0Hyy
+w [0 w]] 0Hyy+ [ [s w] | 0Hyy+.... (6.1)

The homomorphism H is a generalization of the Hopf invariant, and may
easily be seen to generalize that defined in [3] if n <4r—4. In fact, we
have

THEOREM 6.2. H* = EH,, where H* :m, (8"} > m, ,(8%) is the homo-
morphism defined in [3), and E is the suspension.

This follows immediately from

Lemma 6.3. Let T=28,7vS,® let p; be the i-th basic product, of
height q;, and let x:m, (87X 8%, Sy Vv8®)—>m,, 1(8+) be induced by
shrinking S,"v8y® to a point. Then xd=i(p;0a)=0, aem,(S%t), 4> 3,
xd Y ps0a) = Ea, aem,(S+s-1),

Of course d:m,,,(8," X8, 8,7v8y®)—>m,(8,"vS,®) is univalent, and
dry (S X 85, 8 V8~ T m (Sat),
i=3
The proof is now just as in the proof of Lemma 3 of [4]. In fact, we

draw the analogous conclusion, generalizing that of Lemma 3 of [4],
namely

THEOREM 6.4. xm, (8,7 X 8,8, 8, v8,®) = Em,(8r+s-1).

The projections H;_; (¢>1) are not canonical since they depend
essentially on the choice of basic products. However, the basic products
Ps; Py Ps would be affected at most by changes of sign and the interchange
of p,, pg if the spheres 87, S were reordered and are, to that extent,
canonical. We revert later to this question. Meanwhile we prove

Lemma 6.5, Let o, Bem(X), [, B]=0. Then, if yem,(S"),
(«+B)oy = «0y+Boy.
For it follows immediately from (6.1) thatf
(a+B) 0y = w0y+BOy+[x, floHyy+[« [2, ]]oHyy
+[8, [« B 0 Hyy+ ...,
and all the later terms disappear since [«, 8] = 0.

THEOREM 6.6. Let o be the homomorphism induced by the map
STv8"— 8" in the class (v, 1), and let d' : m, ., (8" X 8", §7v8")—> =, (8") be given

t As pointed out by Serre, this lemma admits an elementary proof.
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by d' = »d. Tken.all elements of d' m, 1 (8" 8", 8"V 8) are expressible as

[¢, ] o0, aem,(8¥-1), r odd,
[¢, (Joo+ I:L, s, L]] o1, oem, (8%1), rem,(8¥-2), r even.
In particular, all Whitehead products in =, (S7) are so expressible. Moreover,

2([¢, t]00) =0, 7 odd,
3([;, s, L]:I Or) =0, r even.}

We recall from [5] that [o, [z, ] =0, r odd, and that 3[, [, ]] =0
and [L, [, L]] € By, _3(8™1), r even. It follows easily that all g-tuple
Whitehead products involving only the element ¢ vanish in 8", where
g>3if ris odd, and ¢ >4 if r is even]. The first half of the theorem
now follows from the fact that, if aed’m, (87X 87, 8§7v.Sr), then

oa=[¢, JOH a'—}—[c, [e 4,]] oH,’ a'+[c, [e, L]] oH, o'+ ...,

where a =o', o' edm, ,(S"x 8", S vs).
The second half of the theorem now follows from Lemma 6.5.

TrEoREM 6.7. Let aem,(87), Bem(X), and let k be an integer. Then,
if r i3 odd,

kBoa=k(Bow), k=4m or 4m+1,
=k(Boa)+[B, BloHya, k=4m—2 or 4m—1.

Since kf = Bok:, k(Boa) =B oka=Bok(tox), and [B, Bl=PBO[, ], it
is obviously sufficient to prove the theorem if §=1. Assume % positive,
and suppose we have proved that

k(k—1)
2

Then (ki+i)oa=kioa+ta+[k, JoHa, since all the “higher”
products venish. By (6.5), we deduce that

kiooa=ka+ [¢, JoHa. (6.8)

(b+1)0a = (k-+1)at (k*;l)’“ [, o H,a.

Thus (6.8) is proved if % is positive (it is, of course, trivial if k= 0 or 1).

t Some of the results of this section and further results of the same type have been

obtained by I. M. James and will be published in & forthcoming paper, ‘ On the suspension _

triad .

1 See Theorem 6.10 for a stronger result. By a *‘ g-tuple Whitehead product »,
we mean an element obtained by (g—1) applications of the Whitehead product operation.
Thus a basic product of weight w is & w-tuple Whitehead product.
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Again, 0= (bi—k)oa=kioa+(—k)oa—k?[i, JOH,a, so that, k
being positive,
k(k—1)
2

Ic(kl)

(—k)ou= —ka— [, JoHya+k?[i, JOH

= —ka+ [¢, JoHya.

This establishes (6.8) for all £, and the theorem follows from the fact
thatt 2([¢, JJoHya) =

The analogous result, in case r is even, may be proved similarly. We
will merely state it.

THEOREM 6.9. Let aenm,(S"), Benm (X), and let k be an integer. Then
if ris even,

k,80a=k(,80a)+M2_1) (8, ﬁ]OHo“‘l‘QC‘H— (8. 18, B]]oﬂla

Note fhat 3([;3, [B, /3]] oH, oc) =0 and]

(k-+1) k(k—1)

3 = Omod3, kt=9m—1, 9m, Im-1,

=—1mod3, k=9Im+42, 9m+3, Im-+4,
1mod3, k=9m—4, Im—3, Im—2.

Of course, we use in (6.7) and (6.9) the fact that, for any
integer g, g[¢, tJoa = q([i, Jox), which follows immediately from (6.5).

THEOREM 6.10. Let aem(S"), Ben,(S), yem,(8"). Then
[« [8, ¥]] =0, r odd,

3[«, [B, y]] =0, r even,
and all g-tuple products in S™ vanish, g > 3.

First, assume r odd. Then [B, y] = [¢, t]Oo, by (6.6), and

[oc, [B, 'y]] = [L o, [t L]OO’].
The result now follows from Theorem (2.1) of [6] and the fact that
[z, [+, L]] = 0. Next, assume 7 even. Then

(B, y1=1[t, ] OU—I—[L, [es L]] or and 3[B, y] =3[, ¢]oo.

t We know of no case in which [i,1JoHya # 0, with 7 odd."
i The author and I. M. James have now proved (independently) that the term
(8, (8, B1]oH,a is zero.
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Thus 3[% (B, 'y]] = l:oc, 3[B, 'y]] = [:c o«, 3[i, (] 00‘|, and the result again
follows from Theorem (2.1) of [6] and the fact that [L, 3, c]] =0.

Now, obviously, the vanishing of all g-tuple products implies the
vanishing of all ¢’-tuple products, ¢’ > q. Thus the last assertion of the
theorem is proved if » is odd and it remains to show that all quadruple
products in 8" vanish if  is even. We first prove a lemma.

Lemua 6.11. [a’ (B, 7']] = [" [e, "]] or, for some TEM, .y _o(S¥2).

Consider first [al, (s, '}/2]] w em(Sy), Biem 'ygewn(Sz) Then
[0‘1: [By, ’)’2]] = [‘1: o) °,U+[‘1, 41, Lz]:l °T’+|:¢z: (1) ‘2]] o'+ ..., (6.12)

where e o(871), 7, T Emnia (8% 2%). Now apply xd-! to
(6.12). By an adaptation of the argument of Lemma 3 of [4], we have

0= Ho.

By Corollary 2 on p. 282 of [10], the order of ¢ is a power of 2. Now
apply n to (6.12). Then [ot, (B, 'y]:] = [, L]OO’+[L, [e, L]:| or, where
T=1'47", and, multiplying by 3, we have 0= 3([i, Joo). Since the
order of o, and hence of [i, <] 0o, is a power of 2, it follows that [i, JJooc=10
and the lemma, is proved.

Reverting to the theorem, we see that

[8, |:oc, (B, 'y]]] = [L 039, [b, [¢, L]] O'r] =0,

since [a, [L, [e, L]]] =0, and, using the Jacobi identity, all quadruple

products vanish, and the theorem is proved.
Next, we take up again the question of the homomorphisms H, ;.
We recall from [4] that 2H%* o =0 if aem,(8"), r odd. It follows} that

2Hyo=0 if r is odd and n <{4r—4. The difficulty of extending this
result to general values of n is due to the fact that the homomorphisms
H;_, are not canonical. We demonstrate the difficulty if » <5r—>5.
Then (y+t)0a =1, 0att,00+p,0Hga+...+ps0H;«, where

H3’ H4’ HS : 77.”(8‘1')_*7711(841'—3),

and

b= [‘1: [‘1: [e1 ‘2]]]: D= [‘2’ I:‘l: [t ‘2]]]: Py = [‘2: [‘2, ¥ Lz]]:l-

t I. M. James has communicated to me a proof of this for arbitrary n, based on a
theorem in his paper, ““ On the suspension triad ™.
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Let A be the automorphism (87 v87) = =, (87 v.S7) induced by the map

which exchanges the two r-spheres. Then, applying A, we get, if r is even,
(tgty)oa=, 004y 0at+p;0H a+p;0H, a+p,0Hya+ps0H,

+p; 0Hya+ps0Hya,
where, by the Jacobi identity,

Py = [‘1’ [‘2’ [, ‘2]]] = —Pr+[Ps, D5

= —p, 4P, 0[v, o¥], where ¥ generates m,,_, (8%-1).
We deduce, if r is even, n < 5r—5, that
H,=H, H,=H; 2H,=0, [* *]oH,=0. (6.12)
Now let » be odd. Again applying A, we get
(ta+4) Oa =t 00+ Oa+(—p;s) 0Hyoa—p; 0 Hy a—p, 0 Hy
—p3O0Hya—p, 0Hyo—pg O Hgo
and, by the Jacobi identity, p," = p,+p; 0 [, o¥]. Also
(—ps)oHyou = —(p; 0 Hy «)+ [P35, Ps] OHO(HO“)
' = —(p3 OHy ) +p5 0 [v¥, v¥] 0 Hy(H, ).
‘We deduce, if 7 is odd, » < 5r—5, that
H,=—H,  Hy=-—H, 2H,=0, 2H,= [\*, *]o(H2+H,). (6.13)

Note that 4Hya = 0; on general grounds we may deduce that, if » is odd,
H,«is always of order a power of 2. We hope to revert to these questions
in & later paper.

We close this section with a theorem which generalizes an origina]
result due to Hopf. Let us say that H; , has weight w if the basic product
Piyo has weight w. Then, if ¢ stands for the positive generator of = (89)
for any g, we have '

TaEOREM 6.14. Hi(kioa)=k¥.0H;x, where H; has weight w. In
particular

H'.((-—L)Oa) = H;o if H; has even weight,

= —10H;« if H; has odd weight,
For

(u+) 0kioa= (ki,+kiy) 0o = ki, Oatkiy 0+ [key, kg OHga+...,

the general term being k¥, ;0H;«, where H; is of weight w. Since
k*p 30 Hyja = p; 3 0k¥ 0 Hya, the result follows.
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Notice that, if H; has weight w, then H; maps m,(8) into m,, (Swr-1+1),
Now w(r—1)+1 is odd if w is even or if w and r are odd. We then deduce,
as a corollary, using 6.7,

CorOLLARY 6.15. H(kioa)=FkvY H;a, where H, has weight w, if
(1) w s even,
or (i) w is odd, v is odd, k ¢s even,

or (ili) w 4s odd, r ¢s odd, k=1 mod 4.

7. Appendiz to Section 3

It seems to be of some interest to consider the general operation of

quasi-commutation and certain special cases. The Jacobi identity for

triple products proved in Section 5 arises from the existence of a Jacobi
identity for the particular quasi-commutators chosen. In general, one
would not expect a Jacobi identity to subsist. However, (3.1) tells us
that it is always possible to express a0 (boc) as a linear combination of
monomials in the bgcs @, b, ¢, a 0b, a 0¢, boc, a0 (a0bd),ao(aoc), bo(aob),
bo(aoc), bo(boc), co(aobd), co(aoc), co(boc), with zero disorder, and
(3.2) tells us that this representation is unique if a, b, ¢ are algebraically
independent in B. One would then say that a Jacobi identity subsists if,
in fact, a0 (boc) is expressible as a linear combination of bo(aoc¢) and
co(aob). The argument adopted in Section 5 may be adapted to show
that, if @, b, ¢ are independent, the monomials occurring in the expansion
of a0 (b oc) must each contain all of the symbols a, b, ¢, so that we have
proved

THEOREM 7.1. In a ring R, with quasi-commutators a 0b, we always
hawve

a o (boc)= m,(abc)+mya(boc)+msb(aoc)+m,uc(aob)
+mz;bo(aoc)+mzco(aod),

where the m; are integers, 1 <1 < 6, and the representation is unique if a, b, c,
are algebraically independent.

If we carry out the process described in Section 3 for the operation
a0b=ab+ba, we find

TaEOREM T7.2. If aob=ab-+tba, then

ao(boc)=2a(boc)+2b(aoc)+2c(e0b)—bo(aoc)—co(aob).
The case A = 0, ¢ = — 1 is of combinatorial interest ; for then ¢ 0b = ba
and (3.1) allows us to insert brackets into any monomial in ey, ..., ¢, in
such a way that the bracketed terms constitute a monomial in the bgcs of
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zero disorder. Thus, for example, e2e,2=¢,(e,e,%), eje,6, =e4(e5e,).
The latter example shows all that is left of the “ Jacobi identity » in this
special case.
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THE ISOMORPHISM BETWEEN LF(2, 3%2) AND 4,
W. L. Epcg*.

The isomorphism of the linear fractional group LF (2, 3?%), of ovder 360,
and the alternating group A is on record ([1], 309; and [5], with PSL
for LF, 8 and 9). If one seeks not merely for record but for proof one
might take the conclusion to Chapter XII of [1], in which chapter the
subgroups of LF(2, q) for any Galois field GF(gq) are obtained and
catalogued ; representations of LF(2, ¢q) as permutation groups have
degrees equal to the indices of these subgroups whenever LF(2, q) is simple,
ag it is known to be if ¢ > 3. For ¢ = 32 there are subgroups of index 6.
But while the fact of the isomorphism has been common knowledge for
so long, and while it cannot be gainsaid that a proof has been available,
it may be questioned whether an essential reason for the existence of these
subgroups of index 6 has been perceived. LF(2, g) may be handled as

* Received 29 July, 1964; read 256 November, 1954.
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