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Abstract

Inspired by the concept of opetopic set introduced in a recent paper by John C. Baez and
James Dolan, we give a modified notion called multitopic set. The name reflects the fact that,
whereas the Baez/Dolan concept is based on operads, the one in this paper is based on
multicategories. The concept of multicategory used here is a mild generalization of the
same-named notion introduced by Joachim Lambek in 1969. Opetopic sets and multitopic sets
are both intended as vehicles for concepts of weak higher dimensional category. Baez and
Dolan define weak n-categoriesas ( n+1) -dimensional opetopic sets satisfying certain
properties. The version intended here, multitopic n-category, is similarly related to multitopic
sets. Multitopic n-categories are not described in the present paper; they are to follow in a
sequel. The present paper gives complete details of the definitions and basic properties of the
concepts involved with multitopic sets. The category of multitopes, analogs of opetopes of
Baez and Dolan, is presented in full, and it is shown that the category of multitopic setsis
equivalent to the category of set-valued functors on the category of multitopes.
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I ntroduction

In [B/D2] and [B/D3], John C. Baez and James Dolan have introduced a concept of weak
higher dimensional category. The present paper is inspired by the work of Baez and Dolan. It
is the first of two papers in which a modification of the Baez/Dolan proposal is offered and
described in detail.

There are other proposals for related concepts; see [Ba], [T].

The problem of the identification of the weak higher dimensional categories has been
recognized for some time; see e.g. [S1], [S2], [S3], [$4] . The motivations for the Baez/Dolan
work were described in [B/D1]. In [M2], the second author of this paper describes another
motivation, one that relates higher dimensional categories to the foundations of mathematics.
In [M2], a program for a new type-theoretical foundation, termed structuralist, is described in
which there is a hierarchy of totalities of higher and higher dimensions, starting with sets. In
this framework, sets are taken to be totalities with an equality predicate. However, no equality
is assumed between elements of different sets, and, essentially as a consequence, no equality of
sets is contemplated. Because of this, sets do not form a set, or even a set-like totality like a
class. Instead, sets form a category, the category of sets; and the role of equality as principle
of identity is taken over by isomorphism, a concept derived from the structure of category.
When we say that equality of objects is not part of the structure of the category, we have in
mind a notion of category that is not the same as the one we deal with on the basis of the
standard set-theoretical foundation. The negative statement of the denial of equality can be
given objective content only by specifying a suitably constrained language to be adopted as the
formal language of the structuralist foundation. The work [M3] proposes First Order Logic
with Dependent Sorts (FOLDYS) as the basis for such a language.

Classically, categories form 2-categories; the latter concept can already be found in [M L]. The
structuralist foundation involves the program of revising category-theoretical concepts in
which equality of objects of a category is used by replacing that equality by specified

isomor phisms of objects. As a matter of fact, it has been widely accepted among category
theorists that equality of objects should be avoided; the tendency to replace equality of objects
by isomorphism is a common one in category theory. Jean Benabou's notion [Be] of bicategory
is an instance of this tendency. In the case of a 2-category, the 1-arrows from a fixed O-cell to
another O-cell form a(n ordinary) category. Applying the "isomorphisms-for-equality”



treatment to the part of the definition of 2-category which explicitly refers to equality of
1-arrows (e.g., the the associative law of composition of 1-arrows) results in the concept of
bicategory. We do not simply require the existence of certain isomorphism-2-arrows, but
introduce specified ones (coherence isomorphisms), and we attach them to the structure.
Furthermore, certain natural coherence conditions are imposed on the coherence isomorphisms
(the Mac Lane pentagon is an example; see [M L], p. 158, formulated for monoidal categories,
that is, bicategories with a single 0-cell). It should be emphasized that the concept of
bicategory was motivated in the first place by more mathematical considerations than the ones
connected to the structuralist foundation. Bicategories have turned out to be extremely useful,
and a great deal more flexible than 2-categories.

The paper [M 1] deals with a more elementary instance of replacing equality of objects by
isomorphism; the notion of (saturated) anafunctor is introduced, in which the value-object of
a(n ana)functor at any given argument-object is determined (strictly) up to isomorphism.
Anafunctors are "mathematically equivalent” to functors, but only at the cost of an application
of the Axiom of Choice. The replacement of the composition-functors in the definition of a
bicategory by anafunctors results in anabicategories, which are held, in [M1] and [M3], to be
the right concept for totalities of categories, at least from the point of view of the structuralist
foundation. Saturated anabicategories are equivalent to bicategories, again via Choice.
Saturated anabicategories are equivalent in a canonical manner, without the use of Choice, to
the Baez/Dolan weak 2-categories, and the multitopic 2-categories that the sequel to this paper
will describe.

Besides being the first answer to a long-standing problem, the Baez/Dolan proposal has severa
remarkable features. The main one is a complete elimination of explicit lists of coherence
structure and conditions. This feature is already fully apparent when one looks at the case

n=2 , aBaez/Dolan weak 2-category. It is related to a bicategory as a fibration is related to a
pseudo-functor [G]. The coherence isomorphisms and conditions present in the definition of
pseudo-functor are, in the corresponding fibration, eliminated in favor of a structure defined by
a universal property, that of Cartesian arrows. Such an elimination of coherence takes place in
a Baez/Dolan (B/D) weak n-category as well, for all n . For n=2 , the composition of
1-cellsis defined by a universal property, and accordingly, its result, the composite, is not a
uniquely defined thing, but one which is determined up to isomorphism,; recall that the last
feature is present also in anabicategories. There are no coherence isomorphisms (such as the
associativity isomorphism), no coherence conditions (such as Mac Lane's pentagon). The way
thisis achieved is similar to the case of fibrations inasmuch one adds more entities to the



original (pseudo-functor, respectively, bicategory) to get the new structure (fibration,
respectively, B/D weak 2-category). In the case of a fibration, the arrows between objects in
different fibers of the total category are new with respect to the data of the pseudo-functor. In
the case of the B/D weak 2-category, we have 2-cells whose domain is a composable string of
1-cells, of arbitrary finite lengths in fact, instead of just a single 1-cell. These "multi-arrows’
are new entities with respect to the corresponding (ana)bicategory, and they are taken away
when one passes from the B/D 2-category to the corresponding bicategory; of course, before
being taken away, they are used to define the data for the bicategory.

Multitopic higher dimensional categories, as we will call the objects that we intend to
introduce, will share the above general aspects of the Baez/Dolan weak higher dimensional
categories.

Although the proposal to be explained here was directly inspired by the B/D proposdl, its
exposition will not make this fact clear. In fact, at the present time, we do not see the precise
equivalence of the two proposals. A conspicuous difference is the absence here, and the
presence in [B/D3], of actions of permutation groups. It is possible to introduce an "up to
isomorphism" variant of the basic notion of multicategory used in this paper (more on this will
follow soon); this higher-dimensional variant of "multicategory” (in which, for instance,
isomorphisms between arrows in a multicategory would appear) seems more directly related to
[B/D3] than what is found here.

On the other hand, even if there are close ties between the proposal of [B/D3] and that of this
paper, their mathematical forms are entirely different. The [B/D3] concept is abstract and
conceptual; ours here is concrete and geometric.

The above description concerning the 2-dimensional case already indicates the starting point of
the approach of the present paper. We define a concept of k-dimensional cell, or k-cell, for
al k=0, 1, 2,3,... ,inaninductive way. For k>0, a k-cell hasadomain and a
codomain; the codomainisan (k- 1) -cell, but the domain is a pasting diagram of

(k- 1) -cells. The inductive character of the definition lies in the definition of pasting
diagrams. These are related to what go under the same name in the literature (see e.g. [P1],
[P2]), but are greatly smplified by the fact that the codomains of cells is always a single cell.
Despite the fact that the Baez/Dolan concept is not explained in terms of cells whose domains
are pasting diagrams of lower cells, the crucial restriction to single-cell codomains also
originatesin [B/D3].



The present paper's approach is consciously geometrical. At the same time, great care is taken
to express everything in algebraic terms. The main algebraic tool we use is the concept of
multicategory, a modified form of the same-named notion introduced by Joachim Lambek in
1969; see [L1] and [L2]. It is worth remarking that one of the first uses Lambek made of
multicategories was to proof-theory, for an algebraic formulation of Gentzen's proof-system for
intuitionistic propositional logic.

Lambek's concept is closely related to monoidal categories. A multicategory may be said to be
mathematically equivalent to a strictly associative monoidal category in which the monoid of
the objects under the tensor-product is a free monoid (on the objects of the multicategory as
generators). In a multicategory, we have objects and arrows; each arrow has a source which is
afinite tuple of objects, and a target, a single object. The main distinguishing point about the
notion of multicategory isthat it is phrased in terms of a composition, a ternary operation, two
of whose arguments are arrows, the third being the place where the target of one the arrows is
to fit into the source of the other; of course, the result of composition is an arrow. From the
point of view of the arrows, we have a system of binary compositions. Two of the laws are an
associative law and a commutative law of composition as in the ordinary binary case, but
suitably decorated with places.

We generalize Lambek's notion in two steps, one mgjor and a minor. The major step isto
make explicit and generalize the amalgamation that takes place in composition. When two
arrows are composed, the source of the composite results by amalgamating the sources of the
original arrows in a certain way. In the Lambek case, this amagamation is the standard one of
inserting the source of one of the arrows into the source of the other at the given place. In the
generalized concept, the amalgamation is made arbitrary, subject to certain laws. It should be
noted that for the precise statement of the laws of multicategory, one has to make an explicit
reference to this amalgamation already in Lambek's case. Lambek does not make the
amalgamation explicit, but there is an acknowledgement of the resulting incompleteness of the
formulation in lines 12 and 11 from the bottom on p.222 of [L2].

It does not seem possible to relate the general concept of multicategory with that of monoidal
category as closely as in the case of the Lambek multicategory. The new concept is
"essentially geometric"; it has geometric instances (see below), but it does not seem to have
"semantical” instances, apart from the standard Lambek case, which does have many
"semantical” examples.



On the other hand, the generalized concept is a mild generalization. This is withessed by the
fact that the free multicategory in the Lambek sense on a set of objects and generating arrows
is aso the free multicategory on the same generating data in the generalized sense.

The main point of the new notion is that multicategories with non-standard amalgamation
appear in nature. The multicategory of function-replacement derived from a free multicategory
plays a central role in our work; it is needed for the definition of the domain, a

(k- 1) -pasting diagram, of a k-pasting diagram.

The first section of the paper is an extended informal introduction. After the next three
sections on multicategories, on morphisms of multicategories, and free multicategories,
respectively, section 5 gives the construction of the multicategory of function-replacement.

Section 6 uses the preceding machinery to put together the definition of multitopic set, the
main notion arrived at in this paper. A multitopic n-category, the main object we want, will,
in the sequel to this paper, be defined as an ( n+1) -dimensional multitopic set with additional
properties; no new data are needed. Baez and Dolan used opetopic sets instead; the name of
their notion is derived from operads, the abstract algebraic concept at the basis of their work.
Let us note that by a multitopic set. we mean what also could be called an w-dimensional
multitopic set; an n-dimensional one isin fact a truncated one.

Section 7 identifies a particular category, the category Mul ti t ope of multitopes, and
identifies multitopic sets defined in the section 6 as set-valued functors on the category of
multitopes. More precisely, we prove that MSet , the naturally defined category of multitopic
sets, is equivalent to the category of functors from Mul titope to Set . Multitope is
related to the terminal object 7 of MSet . The objectsof Mul tit ope areidentical to the
pasting diagrams of the multitopic set 7 ; on the other hand, the identification of the arrows of
Mul tit ope takesadditional work. It should be emphasized that all the complexity involved
in the definition of multitopic sets in general is already present in the definition of the terminal
one, 7 , despite the fact that this object is absolutely uniquely given.

The category Mul titope and, forany n=0, 1, 2, ..., itstruncation Mul tit ope[ n]
toinclude k-pasting diagramsof 7 for k=0, ..., n, arefundamenta from the point of
view taken in this paper. In [M3], a concept of L-equivalence, for variable signatures L for
FOLDS, isintroduced, and it is shown that, when used in conjunction with the ana-concepts of



[M1], L-equivalence becomes identified with categorical equivalence in many cases, for
instance in the case of biequivalence for bicategories. Mul tit ope[ n] isthe
FOLDS-signature for multitopic n-sets. In view of the fact that multitopic n-categories are
multitopic n-sets with additional properties formulated in FOLDS, Mul ti t ope[ n] isthe
FOLDS-signature also for multitopic n-categories. Thus, now, even before we have given the
further details of the definition of multitopic n-category, we have a notion of equivalence of
multitopic n-categories. In Baez's and Dolan's work, we aso find a notion of equivalence for
weak n-categories. The comparison awaits further work.

The Appendix contains some details of proofs for sections 4 and 5.

It should be emphasized that this paper is only a part, in fact, just a beginning, of the work of
establishing the concept of weak higher dimensional category. Even when we have the full
definition (which is given by [B/D3], and promised, in a modified form, to be given by the
sequel to this paper), the accompanying structures are still to be provided.

The second author thanks Marek Zawadowski for extended discussions, and valuable
suggestions. He thanks members of the Department of Mathematics of the University of New
Hampshire, especially Donovan van Osdol and Steven Shnider, and the BRICS group of the
Department of Computer Science of Aarhus University, in particular Carsten Butz, Prakash
Panangaden and Glynn Winskel, for their kind hospitality and their interest in the work
presented here.



1. An informal description

1.1. n-graphsand multitopic sets.

In the classical, strict, concept of higher-dimensional category (HDC), an HDC A consists of
k-cellsin each of several dimensions k , where k rangesover aset {0, ..., n}

( n-category), or over all natural numbers ( w-category). Let us denote the class of all k-cells
of A by Ck For k>0, each k-cell a is"based on" two (k- 1) -cells, the domain da
and codomain ca of a;when b=da, c=ca, wewrite a: b—>c ; we havethe
assignments d, =d: G —G _,, ¢, =¢c: G —G _, aspart of the structure of the HDC
A . The part of the structure of A so far described isan n-graph in the case of

" n-category”, w-graph inthe case of " w-category"”; the datafor an n-graph can be
summarized in the diagram.

C (1)

A feature of n-graphs, is globularity: for any aDCk, k>1, b=da and c=ca must be
parallel, that is, either k- 1=0, or else db=dc , cb=cc:

where e=db=dc , f=cb=cc . Put another way,
dd=dc , dc=cc, )

where d and ¢ ambiguously denote any of the domain, respectively codomain maps

d: G —GCG 1 ¢ G —G 1. withtherestriction that the composites intended
should be meaningful. n-graphs are defined by having data as in (1), the domain/codomain
assignments satisfying globularity (2). An n-category (in the usual sense) has severa
additional operations of composition; see, e.g., [S2].



The notion of HDC of the present paper will retain the above general features, except for one
thing: the domain of a cell is no longer a cell itself; rather, it is a pasting diagram (see below)
of cells. Note the asymmetry: we only mentioned "domain”, not "codomain™; codomains will
remain single cells.

The role of n-graphsis taken up by ( n-dimensional) multitopic sets; below, there will be an
explanation for the choice of the name of the concept. The data for a multitopic set are
summarized in the diagram

d d

| V\d | V\d -PZ"' -Pk,\ﬁ-Pk+l"'
IESESIESN

Qe Qe 92 %o S oo
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where Ck isthe set of k-cells, Pk the set of k-dimensional pasting diagrams ( k-pd's for
short), each i isanincluson map, andthe d and ¢ are domain and codomain maps. All
meaningful instances of the globularity condition (2) will hold.

In the next subsection, we will explain the notion of pasting diagram; here, we note that they
are not independent data governed by relations and properties; rather, they are defined
explicitly in terms of cells. The most important point to keep in mind that there is an essential
recursive character to the notion of multitopic set; this is because the notion of ( k+1) -cell
cannot be explained before we know what k-pd's are, and k-pd's, in turn, are defined in terms
of k-cells.

The higher dimensional categories, multitopic n-categories, whose definition is the eventual
goal of the present paper, are based on multitopic sets, just as n-categories are based on
n-graphs. As a compensation for the increased complexity in multitopic sets in comparison to
higher dimensional graphs, we have the fundamental fact that a multitopic n-category is an
(n+1) -dimensional multitopic set with additional properties only; no additional data are
required. (Note, however, the placing of the prefixes n and n+1 in this description.)



1.2. Pasting diagrams

The expression of "pasting diagram" refers to the idea of a composable diagram, one which, if
a concept of composition of cells were available, would result in a single cell after all the
meaningful compositions denoted in the diagram are performed. This is an approximate
expression of an intuitive idea. It turns out that composability in higher dimensionsis a
difficult concept, and despite several contributions (e.g., [S1], [J], [P1], [P2]) it is hot yet
completely clarified. It is to be emphasized that the concept "composable diagram” is a
geometric one in that it does not involve composition of cellsin the algebraic sense.
Composability is the geometric precondition of (iterated) composition.

An important point for this paper, inspired by the Baez/Dolan work, is the restriction of cells
totheform a: a—>b, where a isapasting diagram (pd), but b isasingle cell. The first
consequence is that the notion of pd itself becomes simple, and abstractly manageable, in
comparison with the (potential) more comprehensive concept that would allow both the
domain and the codomain to be arbitrary pd's. The "Baez/Dolan restriction” (as we may call
the above-mentioned restriction) is not a necessary feature of the intended notion of HDC,; it
is, rather, a simplifying idea; the thus simplified notion of pd turns out to be sufficient for
carrying the intended structure of an HDC.

A O-dimensional pd (or 0-pd) is just a O-cell (object). A 1-dimensional pd (or 1-pd) isa
composable string of 1-cells:

M

1 7R B R | (3)

where the Xi 's are O-cells, the f i 'sare 1-cells. n=0 isallowed, in which case there are no
arrows; but in this case, there is still an object, X, , and we have the empty string of arrows
starting and ending in Xl .

l 1

A 2-pd consistsof O-, 1- and 2-cells, each 2-cell initisfroma 1-pd, a string of one cells
(possibly empty), to a single 1-cell; and the whole thing is composable. Here is an example of
a 2-pd, which we denote by the single letter



7 f 11
y consists of the O-cells Xi , 1<i <8, 1-cdls fj , 1<) <11 (numbered in no particular
order), and the 2-cells a, b, ¢, d, e . Thefigureis supposed to make clear the
domain/codomain relations among the cells and 1-pd's involved. Notice the constraint that
each 2-cell targetsa single 1-cell; in a2-pd in a more general sense, both domains and
codomains could be general 1-pd's. Perhaps it is superfluous to say that the 2-pd y isthe
totality of the items listed; it is not the result of some kind of composition performed on those
items. Of course, the relative position of its component 2-cells is part of the defining data of
the 2-pd.

There are features of 2-pd's that become important elements of the general concept of a k-pd.
The above 2-pd can be regarded as obtained by composition, in a new sense of "formal”
composition, which applies to pd's rather than cells. This composition may also be called
grafting. For instance, y is obtained by grafting from the following two pd's a and f:

X -
o R— e R N
/ . \“%
f lc f
6 7
X5 ¢ x4

and

10



X5 ¢ x4
8
ng \e f s _d / 10
X X
7 f 11 8
More precisely, we graft a into B at f g and obtain the original y . Of course, the same

pd y can also be obtained in several other ways as the result of grafting, e.g. by grafting o
into €, where

(which is a pd consisting of asingle 2-cell), and

fa

X
6
f X
f e f
6 7
X5 ¢ x4
8
f
f QT \e 12 ﬂj / 10
X7 f s
The grafting composition is a binary operation as far as the number of arguments that are pd's
is concerned; but it also has a third argument, the place at which the grafting takes place. The

11

11



two grafting compositions displayed are denoted as Bof a=y, and Eog o=y ; read eq.
8 7
the first as a composed (grafted) into B at f8 IS y.

Given (B as above, and, say,

X 2 3 X 4
6 e 2
% o b %
_ f 6 e f 7
X5 x4

where the primed items may or may not be equal to the corresponding non-primed items in

B , the composite B°f a’ ismeaningful if and only if f’8:f g and as a consequence,
8

’5=X5 : ’4=X4 : fé is distinguished as the target-1-cell of o ;t ( a) d5f f’8 . For the

given [, and an undetermined o’ , the condition for Bof a’  to be well-defined is that

8
t(a)=fg.

It is perfectly possible that several items in the above pd's that are now denoted by different
symbols are actually the same. For instance, it is possible that all the O-cells are the same, and
al the 1-cells are the same. If so, the 2-cells a, ¢, d, e could al be the same, although b
cannot be the same as those since its shape is different: its domain pd is a length-3 1-pd,
whereas the domains of the others are of length 2. Assuming, e.g., that all the said

coincidences actually take place, the subscript f8 in Bof a cannot refer to the f8 simply
8
as a 1-cell; it has to refer to the place of f8 ; we have f8=f 9=f 10 and we can just as

well compose a into [ at the two other places, now denoted f 9 and f 10 and the
results of these compositions are all very different, distinguished already by their shapes. This
tells us that in the concept of pd there has to be an essential element that we may call place; in
a 2-pd, there are places for 1-cells, each of which carries the "occurrence”" of a particular
1-cell.

Note that it does not make sense to compose anything into a at f 11 OF into y at places

other than fg, f 1 f2, f3, f4, f5, f 10 the result would not be a "composable diagram".
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The listed places of y, the ones at which it is legitimate to compose something into y , are
the source places of y ; they are, together with the target place f 11 "outer places'; the
"inner places' are the rest, f 6’ f 7 f g’ f 12 - s( y) denotesthe tuple

f 10" f5, f4, f3, f2, f 1 f9 [, and it is called the source of y ; the reason for the order
will be explained below. In the example, s( y) isafunction on the set
[1,6]={1,2,3,4,5,6} , anditsvaluesare s(y) (1) =f 10 etc. The source places
themselves of y areidentified with the natural numbers 1, 2, 3, 4, 5, 6 ; theplace 1
carries an occurrence of flO’ the place 2 oneof f 5 EfC. Writing [s(y) | forthe

domain of the function s( y) , the source-placesof y arethe elementsof [s(y) | .

Similarly, S(B):Eflo, f8,f1D. Since the place of f8 in B is 2, wewill write B°20!

for Bof8a; we have y:Boza.

For general 2-pd's a and (3,
3 Bopa makes sense if and only if pOIs(pB)| and s(B)(p)=t(a) .

We have identified what we take to be the essential structure on pd's. the placed composition
ao 0 B, aternary operation as explained above.

1.3. Multicategories

The abstract concept of structure for the operation of placed composition is called
multicategory. Multicategories were introduced by J. Lambek in 1969 [L1]; one of the uses he
made of them was to define a multicategory of proofs in the Gentzen formal system for
intuitionistic logic, where the placed composition corresponds to the Cut-rule. A Lambek
multicategory C hasaset O=Q( C) of objects, and aset A=A(C) of arrows, each arrow o
has asource s( a) whichisafinite tuple of objects, and atarget t (a) whichisasingle

object ; when s( a) :f(, t(a)=Y, wewrite a: )?%Y; C has, for each object X, an
identity arrow 1X: [XO-X; and C hasa placed composition as in (3) above. These data
are to satisfy certain laws, the first of which regulates the source and the target of a composite,
with the remaining laws being two identity laws, an associativity law, and a commutativity

13



law. The definition will be given in section 2; the reader will notice that the definition in
section 2 is, initially, something more general and more complicated than the one indicated
here; later in that section, however, it is pointed out what exactly the Lambek concept is as a
special case. Later in this introduction we will turn to the reasons why we need the more
general concept of multicategory.

Thus, the 2-pd's (in agiven HDC A) form a Lambek multicategory (the 1-pd's also do, in
fact, they form an ordinary category). More is true: the 2-pd's form a free multicategory, with
objects the 1-cells, and generating arrows the 2-cells. Hence, all 2-pd's are generated by the
2-cells by using the operation of placed composition. This should be seen as an intuitively
natural fact about pasting (composable) diagrams. (Let us remind ourselves that here we are in
the business of defining what pasting diagrams are; the definition is constrained by intuitive
ideas, which we are trying to make explicit.) Freeness is meant here in the sense of a strict
universal property; it will be crucial later that the free Lambek multicategory maintains its
universal property in the larger context of all (generalized) multicategories in the sense of
Section 2.

For precise definitions concerning morphisms of multicategories, and free multicategories, see
sections 3 and 4. Here we only give a brief idea.

Let O be aset of objects, L aset of arrows, with each f L equipped with a source

s(f) DO* , and atarget t (f) 0JO; data as described define alanguage £ . The terminology
isnatural, since £ isexactly what is usually called a language (signature) for multi-sorted
algebras; the elements of O are the sorts; the elements of L are the sorted operation

symbols. The free multicategory, C=#( £) , on L isdefined by the conditions that

(C) =0, LOA(C , and any "interpretation” (a rather obvious notion) £——D to any
multicategory D can be uniquely extended to a morphism C——D. It turns out that the
concrete description of F( £) isvery smple. Its arrows are the terms, in the sense used in
describing the syntax of first order logic, built up from sorted variables and the operation
symbols of L , with the further ssmplification that we use only a single variable for each sort
X, which variable therefore may just as well be identified with X itself.

Thus, we now have a term-representation of 2-pd's. Turning to the examples above, we have
the following:

14



y:oe(d(fyg c(b(fg fyfg) alfyfi))).fg),
B:e(d(fqig.fg) fg),

5: b(fg fyfs)
ere(d(f g c(foa(f, 1)), fg)

To understand these, consider the following. Any expression x(y, z,...) standsfora
repeated composition; x(y, z,...)=... (Xoly) °5Z. .. 2 istheplacein XoqY that

"corresponds to" the place 2 in x . Each fi stands for 1]c , the identity arrow

[
1]c _

0, O —>f, . Since a(f,, f,) is a withidentities composedinto a, a(f,, f ;)

equals a itself; we could write a in place of a(f o f l) above, except that in that case we

would have not used the normal form which is intended by the term-representation. For

t 1:b(f5, f4, f3) : t2=a(f2, f 1) , theterm a=c(t 1 t 2) is, readly, the

multicategory composite (Colt 1) ° ot 2:( Coot 2) oqtq the equality is the commutative

law; 2=4, 1=1 (why?). We also see that placed composition corresponds to substitution:
the fact that Boza:y is reflected in the fact that y isthe result of substituting a for f8

in B.

The term-representation is a ssimple linear way of writing down 2-pd's; in fact, it will also be
available for k-pd'sfor any k . However, note that in this notation, several elements that are
clear in the geometric picture are suppressed. All O-cells, and al but the input 1-cells are
suppressed, although they can be be recovered by the information concerning the targets of the
2-cells involved.

Let us note that the 1-pd's also admit a term representation, since they also form a
multicategory, which in fact is an ordinary category, since only unary arrows appear. The 1-pd
in (1) is represented by the term fn(. .. (f2(f 1(X1) )...) . The source-assignment to
2-cells above follows the left-to-right order in the term-representation; this is the reason why
we used the "reverse”" order for those sources above.

Let us move from dimension 2 to dimension 3 .

A 3-cell u isto havea?2-pd du(:d3u) as domain, and a 2-cell cu as codomain.
Globularity requires that we should have ddu=dcu, cdu=ccu ; however, we have not
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defined da, ca for 2-pd's o asyet, and we need them now for a=du . The definition of
the domain of a pd isamajor issue in our enterprise; the codomain is easy. In the case of the
example y above, dy is

2 '3 la
Ty - X

thisis the "upper part of the contour (boundary) of y". cy isthe 1-cell X7 $X8 ,
the "lower" part of the contour of y, the cell that "closes off" dy. Thus, a3-cell u for
which du=y, with y asinthe example, looks necessarily like u: y—>g, where g isa

2-cell of the following "shape":

f f
2 3 Xy 4
— /Z\X

X
4
5 lg )

X
7 fll 8

which meansthat dg=dy, cg=cy. One cannot faithfully represent u in a 2-dimensional
drawing; but u has a good 3-dimensional geometric representation; in this, the 2-pd y is
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placed in the plane of the table, say; the 2-cell g is spanned out in a curved surface above the
table, with its contour joining the contour of y according to the the identifications inherent in
the facts dg=dy, cg=cy; the3-cell u "fills' the space between y and g, "inthe
direction” from y to g .

3-pd's will be construed as arrows in the free multicategory on the language whose objects
(sorts) are the 2-cells, operation-symbols the 3-cells, and in which the sorting of the latter is
given as follows. Every 3-cell u comeswith du, aZ2-pd; regard du inthe
term-representation; look at all the operation-symbol occurrencesin du , which are 2-cells;

define s(u) to be the left-to-right tuple [du [0 of those occurrences; s( u) DCZ asit
should be. t (u) isdefinedtobe c(u) .

For instance, for u: y—g consdered above, s(u)=[&, d, c, b, all.
We will now describe a 3-pd ¢ which is parallel to the 3-cell u considered before. This
involves the statement that d¢=du , and therefore involves the determination of the domain

d¢ of a3-pd ¢ . The systematic way of defining the domain of a pd is our main task.

Let ususethe 2-pd's B and & introduced above, as well as the following n and A ; we
will use two new 2-cells, h and i :

r]=h(f10,c(f7,f6),f9) :

6 N T fo
/ le \
X5 ¢ x4
8
ng lh /10
X X
7 f1q 8
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A= i(fgb(fg fafa),alfyfy), fg):

Xg— 2 iﬁ////%xz\\\iﬂ\\é
/i}///ﬂ X, VR

f
a\ 1 5
X ////////?g//////% \\\\\\\?;7\\\\\\\\\:iI;Nx

Now we introduce the 3-cdlls:

B%h,n#i,é X b, A—Y g.

The first thing to check is that these are well-formed, that is, in each case the assigned domain
(a 2-pd) and codomain (a 2-cell) are paralel; thisis true. Now, notice that these four 3-cells

"line up" as follows:
\
(3)

B/V%h 0n

In fact, we have

s(v) =[e,dd, s(w=Ch,cO, s(x)=0Db0, s(y)=04,b,al];

h=s(w) (1) , i =s(y) (1) , b=s(y)(2) ;

and
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¢ g5¢ Y(W(V(e, d), c), x(b), a)

is well-defined as a 3-pd. Note that, to an even larger extent than before, what ¢ really is
cannot be directly seen on its defining expression; only by taking into account the descriptions
of all the ingredients, which themselves were defined in smilar ways, can we grasp what ¢
is. The faithful geometric representation of the 3-pd ¢ isa 3-dimensional object, obtained by
joining the 3-dimensional cells v, w, x, y ; the target 2-cell h of v isjoined with the
occurrence of h in n,smilarly for i and b ; we get a spherical (Ssmply connected)
3-dimensional object subdivided appropriately. The full entity ¢ involves four levels of
ingredients. k-cellsfor al of k=0, 1, 2, 3. The 2-dimensional boundary of this object
consists of the 2-pd y as domain, and the 2-cell g as codomain; we have d¢=y, cp=g .
The 2-cells h,i and one of the occurrencesof b are"inner" 2-cellsin ¢ , not denoted in
the term representation. ¢ isindeed parallel to the 3-cell u: y->g ; asaconsequence, a
4-cell of the shape ¢ ——>g ispossible.

1.4. The domain of a pasting diagram

We turn to explaining how d¢ , and in general, the domain of an arbitrary pd, is determined
algebraically.

As explained before for the cases k=1, 2 and 3, we construe the set Pk of k-pd'sof the

HDC A asthe arrows of a free multicategory CE whose objects are the elements of Ck 1
( (k-1) -cells), and whose generating arrows are the elements of Ck . (Weuse the

superscript 0 since there will be a modified ("twisted") variant Ck which will be the final
version.) The k-cells allG,  come with adomain dallP,_, andacodomain calC _, .

For the determination of C(k) ,weadsoneed sa and ta for aDCk; as done above for low
vauesof k ,weput sa=[dal], and ta=ca .

Let k=1 be arbitrary, and let allP . Forany yiOP, , welet [y denotethe
k+1 k

left-to-right list of function-symbol occurrencesin y . Thus, sa isatuple of elements of
Ck , and da isto be defined in such away that [daJ isaso atuple of elements of Ck .
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The first fact on how da isdefinedisthat sa and [da [l are almost equal; one is obtained
from the other by a permutation. That is, |sal = |[bdall , and thereisa permutation

Ga:G: Isal Q |[dad such that

Isal 6 Mo O
sa © daO
Cn

Note that, by what was said above, for a asingle cell, da isaready defined, and
sa=[da; forsuch a, 60{ can be taken to be the identity.

The second, and main, fact about the way da is defined is that there is an operation assigning
a new "composite" qué toany v, 6DPk and g0 | Oy satisfying certain conditions of
compatibility (that we will see below in detail) such that

d(asB) = (da)og ) (dp) 4
that is, the domain of the grafting composite of two ( k+1) -pd'sisthe o-composite of the
domains of the ( k+1) -pd's. This, together with knowing what da isfor single-cell pd's «
determines the operation d .

Let us describe the operation o . In fact, this can be done on an arbitrary free multicategory.

Start with C=F( £) , the free Lambek multicategory on the arbitrary language £ ; we use the
notation we had before; O=Q( £) =Q( C) isthe set of objectsof C; A=A(C) isthe set of
arrows of C; wewrite sa for sC( a) , ta for tC( a) . Forany oA, welet ([
denote the left-to-right list of function-symbol occurrencesin a , as we did before. We let
T(a) dgf(sa,t a) . Notethat T(a)=T(f) meansthat a and [ are"paralle inthe
multicategory C".

We are going to define a partial operation
(a,B,p) %aupﬁ ( a, BOA pO 0O ; aDpBDA) .

defined whenever
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T(B)=T( lap)) . ©)

The intuitive idea behind the operation o, called function-replacement, is that on:lpB isthe
function obtained by evaluating, at the place p and only at that place, the function-variable
Co[{ p) asthe composite function B . The condition (5) saysthat [ isof the same type as
Co[{ p) , and therefore, the said evaluation is possible.

Given alUA and pO [0 , let f=[[{p)OL. Then a can be written in the form
a=a’ oqf(al,...,an) : (6)

where a’ , Ao anDA, and g isasuitable place qs(a’ ) . Notethat if f occurs
in more than one place in a , then this decompositionat f of o isnot unique; however, we
have in mind the decomposition of a at the place p, inwhich f "standsfor the
occurrence at p ". What these obscure words mean is intuitively clear, and will be made
precise in section 5. The notation f(al, Ce an) follows the term-representation explained
above; it is, structurally, a repeated (or ssimultaneous, because of the presence of an appropriate
commutative law) composition, as it was also indicated above.

Now, suppose, that, in addition, BOA such that (5). Let
We put

aupB daf @ qu( aq, .., 0p) - (7)

Here, B( Agoeees an) =B( all 1,..., an/ n) issimultaneous composition. T( B) =T(f)
impliesthat s( B)=s(f) , and so t(ori )=s(f)(i)=s(P) (i) , which makesthe term

B( PRI an) well-defined; but also, T( B) =T(f) impliesthat t (B) =t (f) , which

ensures that t ( SB( Agsevs an) )=t(pP)=t(f)=s(a)(q) , andthus, the composition at
g iswell-defined.

Let us see how this works for the examples of 3-pd's ( k=2 ) in the previous subsection. We
are going to make the discussion easier to follow, by replacing the place-number p by the
symbol which occursat p in the given term; since the terms in the examples are separated,
that is, have no repeated occurrences of symbols, this will not introduce ambiguity. Note that
under this convention, with f =(sa) (p) =t a, (4) becomes
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d(ae; f) = (da)og (dp) ;

and therole of 6 disappears (of course, for the general, non-separated case, the said
simplification is not valid).

The 3-pd ¢ introduced in the previuos subsection can be written in the following two ways.
¢ = (Y°i (W°hV)) X = (Y°bx) % (W°hV)

(compare (3)). Let us go through the definition of the domain of each of the constituent 3-pd's
here.

d(wepv) = (dw o (dv) =no,B.

The decompositionof n at h has n’ :1f (we arewriting n° for what was a’ inthe
11

general case (6)); that is, now o' can beignored in (6) and (7). (7) gives

€ aaf MRB=BT 10/ 110 c(T 7. Tg) /TG Tg) =
e(d(f1g c(f7.fg)) . Fo) :

that is,
I
fe X — f
_— le \
X5 f X4
8
ng \e f 1, ﬂj/flo
X7 f Xg

11

¢ isobtained by replacing h with [ asit should.
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Next,
d(ye; (wepv)) = (dy) oo, d(wepv)) = Ao, €.
i isagan the head-operationin A , and so

g5s Aoy E= &(F 1ol F 10 b(F e T fa) /T alfyfy)/fgfolfg)
e(d(f g, c(b(fg, fa fa),alfy fq)).fg),

that is,
(:
X fa fa X, T4
6 % T2y
f X /b 3. f
f6 lc f7 y
5 : 4
8
f
ng \e 12 ﬂj /10
X7 f Xg

11

Note that { istheresult of replacing i by & in A.
Finally,
d¢ = d(y<>i (Wohv))mbdx = Zl:lbé: Zmbb ={;

notethat o=b , and when b isreplaced by b , nothing happens. Of course, {=y, for our
initial y, so this calculation confirms what we said "geometrically" about ¢ and y.

Let uslook at the other way of expressing ¢ . We have

d(yobx) =dy =A,

23



for the same reason as in the preceding case. d(thv) = ¢ was calculated above. Then
dp=d(yex) o d(wepv) =Ag &= 7=y,
as it should be the case.

In this subsection, we described the way the domain-function d: Pk 17 Pk is actualy
calculated, and saw that, in some examples at least, it agrees with the geometric intuition.
However, thereby the problem of definining d isfar from resolved. For instance, it is not
clear that, in general, (4) is a compatible way of determining dy for yDPk+1 , 5 usualy,

y can be written in more than one way as y=a- 0 B, and we must see that the corresponding
right-hand side expressions for dy give the same result. There are other problems too. E.g.,
we have to see that if in (4), the left side is well-defined, so is the right side. Also note that we
have not made any reference yet to thefact that d and ¢ on Ck +1 ae determined so that
the globularity condition (2) is satisfied. It is worth noting that that condition refers, besides d
on Pk+1 , dsoto d asdefined on Pk . This suggests that dk must be defined recursively
in k.

1.5. Generalizing multicategories

The operation o used in the last subsection looks like a multicategory operation. Let us start
with C, afree multicategory on £ aswe had in the last subsection for the purposes of
defining the operation o on the arrows of C; let's use the same accompanying notation. We
are going to define D, a new multicategory, albeit in a somewhat generalized sense with
respect to what we had above. D is called the multicategory of function-replacement. The
arrows of D arethe same asthoseof C: A(D) =A(C) =A. Theideaisto consider each
alJA to be afunction not of its variable-occurrences, but of its function-symbol occurrences.

The objectsof D are pairs (f(; Y) where )?DO* isatuple of objectsof C,and Y isa

single object: Q( D) :O* xO. If hEO 10 f n [, then, by definition,
sD( a) =S( a) d5f (I f 10 Tf nD and tD( Q) d5f T(a)=(sa,t a) . The operation °D
is defined to be the operation o explained in the previous subsection.
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Before we say more on to what extent D is a multicategory, let us point out in what aspect it
fails to be one.

Consider alanguage £ in which we have sorts U, V, W X, Y and function-symbols
f: U VO>W, g: XO->U, h: U YO>W, i: VO Y. (8

Let B=f(g(X),V), a=h(U,i(V)) , termsin A(L) . Wehave a: [U, VO->W, thus
T(a)=T(f) , andso Bmla:Bufa is well-defined. Now, we have leV\flf(g(X) , V)
as the decompositionof f at 1 (at f ), s0

Bmlazlwla(g(X)/U, VIV) =a(g(X)/U VIV) =h(g(X),i(V)) .
Also,

[BEO, g0, S(B=00rf, TgEL Y, VO W, (X3 U) O,
ECh,i O, S(a)=0rh, Ti GO LU, YOW, (VO Y) O,
(Bojal=th, g, i 0,

S(foya)=0Th, Tg, Ti =0 U, YO W, (X0 U), (VO Y) .

In a Lambek multicategory E, if s(p)=0b,, ..., b 0, se(a)=0[,, ..., a_[], then
E 1 n E 1

(B)
for Bopa:Bop a, we have

sE( a) isinserted in the place of aIO ; thisiswhat we mean by standard amalgamation of
the sources. The operation o is much like a multicategory composition, except for the
standard amalgamation. If D had standard amalgamation, S( Bmla) would have to be the
result of inserting [Th, Ti Ointo [Of, TgO inthe place of Tf , resulting in

(Orh, Ti, TgOd; but S( Bmla) is, rather, [OTh, Tg, Ti F0OTh, Ti, Tg .

We cannot hope that another ssimple "rule of amalgamation” applies, either. Suppose that in the
above, U=V, but all other objects listed are distinct; so we have the previous example, still
with non-standard amalgamation. But also, for 7 =f (U, g( X)) ,

B Of a=h(U,i(g(X)) , and S( B Oy a)=0Ch,i,gEFEY Bmf a) , despite the fact that
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S(B)=S(pP) . Thatis, the source of a composite does not depend just on the sources (and
targets) of the composed arrows, unlike in the ordinary, Lambek, multicategory.

There is a generalized notion of "multicategory” which allows for "non-standard”
amalgamation. In this we have, as part of the structure, so-called amalgamating maps

U=y[ B, a,p] , ¢=¢[ B, a,p] :

s(AVp—s(Bopo) P s(a)

associated with any meaningful composition ( 3, a, p) Hﬁ%pa, which puts together the
source of Bopa in a specific, but a priori undetermined, way from the source of [ (take
away the symbol at place p ) and the source of a . The notation abbreviates the following:
¢ isamap fromtheset [s(p)|-{p} totheset \s(Bopa)\ (where |s|=don(s) ,
and s\ p=st( Isl-{p}) ) such that

(B 1-{p} —¥—— s(Bp0)
s(A\p Z/ s(B° ,0)

and similarly for ¢ . In the standard case, the amalgamating maps correspond to the fact that
in s( Bopa) , "sa isinsertedin sf intheplace p ". Inthe generalized concept, there are
coherence conditions on the amalgamating maps, one for each of the four laws: the unit laws,
the associative law, and the commutative law. The above-described structure D isa
multicategory in the generalized sense (in comparing this part with the official definition of
section 2, and the definition of D in section 5, note that the concept being described here is a
1-level multicategory as opposed the more general 2-level version given in those sections, we
will comment on the reason for the 2-level version later in the introduction).

The reason for the general concept of multicategory and for the particular multicategory D is
to provide a concept under which d: Pk 1 Pk becomes a morphism of multicategories.
A morphism F: C—D of multicategories maps objects to objects, arrows to arrows, but,
instead of being compatible strictly with the source-assignments, it has a system of transition

isomorphisms 6,: 1s (&) | = Isp(Fa) | (aDA(C) ) such that
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%

scla) | —————— Isp(Fa) |
sl a)j o FD( Fa)
Ao — ¢~ AD

F isto preserve placed composition; in formulating this, the transition isomorphisms play a
role: given that Bopa iswell-formed in C, FBqua for q:QB( p) iswell-formedin D;
we require that F(Bopa):FBqua. It is aso required that the 90{ be compatible with the
amalgamating maps.

There is a trade-off between amalgamating maps and transition isomorphisms. Given any
morphism F: C-—>D of multicategories, there is a factorization of F

inwhich @ isanisomorphism, and in fact, it is an identity on both objects and arrows, and
F isstrict, its trangition isomorphisms are all identities. In other words, by changing the
domain to an isomorphic copy, abeit with "twisted" amalgamating maps, it is possible to turn
a morphism into a strict one.

1.6. Constructing higher dimensional cells

We are ready to summarize the construction of higher dimensional cells. Assuming that we
have a set Ck of k-cellsfor k=0, 1, ..., n, andwe have defined k-pd'sfor the same
k's, with domain and codomain maps d: Pk+1%Pk , C: PkJrleCk , We introduce
(n+1) -cells aDCrl+1 by declaring each da:dn+1( a) and ca:cn+1( a) tobea
specific n-pd a=da, resp. n-cell b=ca suchthat da=db, ca=cb, thatis,

dda=dca, cda=cca. 9
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We let Dn be the multicategory of function-replacement based on Cn, the free

0

multicategory with arrows the n-pd's, and C be the free multicategory with standard
n+1

amalgamation, and with objects the n-cells, and generating arrows the ( n+1) -cellsjust

declared; in other words, C0 =F(L) where Q( L) :Crl , L(L) :Crl+1 , and in which
0

n+1
sﬁ(a)ztdaD, tﬂ(a) =ca ( aDCn+1). P isthe set of arrowsin Cn+1' The
0

main step in the definition isto define d%=d®. .- c®. . — D by the freeness of C
n+l- “n+1 n n+1
0

as to extend the determination of d on Crl +1 - For this, it is crucial that Cn +1 although it
is defined as a Lambek multicategory, it remains free on £ in the larger category of all

multicategories with possibly non-standard amalgamation. Finally, we alter CO

n+1 to the
isomor phic copy Cn +1 by "twisting" the amalgamation maps to ensure that d: Cn +1 Dn

is strict. As aresult, we get the main formula saying that

n+1
0

d(Bepa) = (dp)oy(da) (10)
every time Bopa is a meaningful composition in Crl+1 .
Let us see the effect of the above general procedure for some particular 3-cells and 3-pd's. In
what follows, U, V, W ... denote 1-céels, f, g, h,... 2-cédls, u,v, 3-cels, Greek

letters are used to denote pd's of various dimensions.

We adopt a single O-cell that we indicate by o ; the 1-cells U, V, W X, Y aredl like
o—o. The2-cells f, g, h,i areasin (8). We add

k: X, VI—W, /¢ U, XO—W.
We are assuming that U=V, but all other 1-cells denoted differently are distinct.

Consider the 2-pd's a=h( U, i (U)) and B=f(g(X), U) :
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a B :

Vi " U \Y " \\x
///Q lh\m D//lfN/i 3

O

W W

We have foja = h(g(X),i(U))

Bl:lla :

\Y X
S
O O
W

We introduce the 3-cells u and v by declaring du=a, cu=f and dv=f, cv=k ; the
globularity conditions (9) are satisfied. We let

¢ = voqu = v(u(h,i),g)

L lND:“ﬁDV/me

v U/ Tk\x
" .

O

We have

dy = d(Volu) = (dv) ml(du) = Bl:lla ;
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scs(w) = yO= Ch,g,il.

Now, look at
B =f(y g(X) :
X O
/« K
U f
o~ l O
W
and

Welet v’ 0IC, with dv’ =8 , cv' =k (dB =dk , c@ =ck hold), and

3

y o= v’olu = v (u(h,i),g) :

K/ [RRE K%

v’ k\
] l ] .
w
We have

SC3(¢I’) = My O=h,i g0,
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We just have to get used to the fact that

SC3(V(U(h,i),9)) =th,g,i 0,

and
scs(v’(u(h,i),g)) =[h,i,gO

at the same time. Of course, this does not look so surprising if we look at the full
representations of the two 3-pd's ¢=v(u(h,i),g) and ¢ =v’ (u(h,i),g) , whichare
different "geometrically".

1.7 Introducing two levels of objects

Some remarks concerning the "2-leveled" version for the notion of multicategory, for whose
definition we refer to section 2. Thisis introduced purely for technical convenience. The
2-leveled notion packs more structure into the multicategory D of function-replacement,
structure that is already there "naturally”. For instance, instead of having the source of a as
sD( a) =[o(f 1) v, T(f n) [, we haveit, in the 2-leveled verson of D, as

sD( a)=0 10 f n [(=[o 0. The effect isto restrict the scope of the composition
operation o ; composition in the 2-leveled version remains the same as in the 1-leveled
version, but it is defined for a subset of the domain of the 1-leveled composition. For y ,000D,
the composite 6|:|py Is meaningful, in the 2-leveled version, if and only if pO |0 , and
for f=[Bp) , wehave df =dy and cf=cy. Thisisin fact the case exactly when the
function-replacement composite is the meaningful geometrically. Under the 1-leveled version,
the multicategory D has composites that cannot be realized geometrically in Euclidean space.

The 2-leveled concept helps technically. An example is the equality da=Co 0 holding for all
aDCn+1 . Thisisimmediate if d isdefined by the freeness of CnJrl with respect to the
2-leveled version of "multicategory”; it would require additional arguments if we used the

1-leveled version.
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1.8. Final remarks

g
Obvioudly, for any fixed n , n-graphs are the objects of a category of the form Set n ;

here, 9, is the category whose shape in given in (1). It turns out that n-dimensional
multitopic sets, with a natural notion of morphism, also form a category of the form

nt
Set . Inthis case, the description of the exponent category mnt ne the category of

n-dimensional multitopes, is less easy to describe. In fact, there is, apparently, no other way of
describing mt n than by the same recursive process that serves defining multitopic setsin
general. The objects of nt n ae the same as the pasting diagrams (elements of the
Pn-component) in the terminal n-dimensional multitopic set, the one that has exactly one cell
in each possible type (domain/codomain pair; in fact, here "domain" suffices; this description
is an oversmplification, and neglects an inherent recursion). The arrows of nt n aemore
difficult to explain. The definition of the nt n and the proof of their connection to multitopic
setsin general are given in section 7.

n

The fact just stated is the justification for the name "multitopic set”. It is a similar construction
to "smplicial set" , with "simplices’ in the background, and also to "opetopic set" of [B/D3],
based on "opetopes’, in which operads, the basic abstract concept for [B/D3], are referred to.
We copied and modified "opetope” and "opetopic set" of [B/D3], bearing in mind
multicategories as the basic abstract concept, replacing operads.

We note that "higher dimensional (or: n-dimensional) multicategory”, a term that may seem at
first to be the appropriate one for our concept of multitopic set, isin fact incorrect and
mideading. "Higher dimensional multicategory” would rightly be expected to generalize
"multicategory"; however, in our multitopic sets only special multicategories figure, namely,
the free ones, and another particular kind, the multicategories of function replacement, closely
tied to the free multicategories. For multitopic sets, particular multicategories are used as a
tool to describe a specific geometric arrangement, that of cells of various dimensions fitting
together in pasting diagrams. Of course, thisis similar to the use of operads in [B/D3].
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2. Multicategories

For /ON={0,1,2,...} , wewrite [1, /] fortheset {1,2,...,4}; [1, {]=0
when /=0 .

Let O be aset. A tuple (string) of elements of O isafunction of the form ¢: [ 1, /] —>O,
for some /0N .Wewrite |¢| fortheset [1, /] , and Zh(¢) for £. O* is the set of

all tuples of elements of O. 100 IS the empty tuple ( |1/ =0). For XOO, X0 is
the one-term tuple whose only termis X; [IXO =[1, 1] ={1} , X[ 1) =X.

It will be convenient to work with the following category O# . Its objects are each a function
s whose domain [s| isafinite set (possibly empty) of positive integers, and whose range is
asubset of O; s: Is| ->0. Anarow s —t isafunction f: [s| — |t | suchthat

(the circle in a diagram denotes the assertion that the diagram commutes).

A multicategory C isgiven by data (i) to (vii) and conditions (viii) to (xi) as follows.

) A set O=Q(C) of upper level objects, or smply, objects.

(ii) A st O=0(C) of lower level objects.

(iii) A map 00O XX, assigning a lower-level object X to every
object X .

(iv) A set A=A(C) of arrows.
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(V) To each arrow f asource s(f)=sf=sc(f) DO* , and atarget
t(f)=t f) 0O isassigned; we write Xt S Aif s(f)=X, t(f)=A here, X0O ,

ALO.

(i) Given s(f) 1 5t(f), s(g) — 9 >t(g) , and pdis(g)

suchthat (s(g)(p)) =t(f) , which situation we indicate by the notation

S(f) !

g
>s(e) —9-t(g)

a composite gopf is defined; it is an arrow; we have t(gopf)=t(g) ; furthermore, we
have specified amalgamating maps

Y=¢tg.t.pl = s(9)\p——s(gepyf),

9=¢l9.1.p] : s(f) ——s(ge,f)

(morphisms in O# ), forming the coprojections of a coproduct in O# . (s(g)\p meansthe
restricted function s(g) I'( Is(g) I-{p}) ; adso, forasubset PO Is(g) | , weusethe
notation s(g)\ P inasmilar sense.) In plain words, the set \s(gopf)\ Is the digoint
sum of thesets Is(g) -{p} and Is(f) | , withinjections ¢ and ¢ ; and these

injections are morphisms of the functions ( O# -objects) s(g)\p, s(f) ; thatis, we have
the commutative diagram

s(g)-{p}N
i

I X B

s(geph) | s(g°pf) ©
/"’
R
s(f)

Sy
/ o
It follows that \s(gopf) | isgivenas [ 1, {+m 1] where [s(f)|=[1, {] ,
's(g) | =[1, M ; however, thisfact leaves open multiple possibilities for the amalgamating
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maps ¢ and ¢ .Let me emphasizethat ingeneral, Yy=y[ g, f,p] , ¢=¢[ g, f, p] depend
in an essential way on all three arguments g, f, p ; in particular, it is possible that
s(g')=s(9) , s(f")=s(f) , but s(g"«,f")#s(ge,f) .

1 .
(vii) For each YOO, an identity map D¥YO— ' 5V .
For the data listed, we require the following laws to be obeyed.
(viii) (unit law 1) Whenever gOA, pOis(g) ! , and

1
Y=s(g) (p) , which, in particular, implies D{D%s(g) — 9 t(g) (although the

latter only says that Ysz , which is weaker than what we are assuming now), we require
that

9°ply=9-
Moreover, we require that

y=ylg, 1. pl=incl.: (1s(g) I-{p}) > Is(g) | .
¢=¢l 9, 1, p] =(1i>p)

(which imply that ( ¢, yA p) isa coproduct pairin O7 ).

(ix) (unit law 2) Under the assumption that

s(f) 1 oo

Y (thatis, t (f)=Y), we require that

and ¢=¢[ 1Y’ f,p]=id (making (¢, y\ 1=1) acoproduct pair in O# ).
(x) (associative law) In the situation

f g
s(f)ﬁs(g) g s(h)

t(h),
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we require that

(heg@) e 1= hegl0:p1) ;

here, p=¢[ h, g, q] (p) . Let usrefer to the four compositions by the numbers asin
3 4 2 1

(heg@)« 1 Reg(geph)

Note that the compositions 1 and 3 are well-defined by the assumptions. 2 is meaningful
since we have t(gopf):t(g) .4 ismeaningful since, for ¢=¢[ g, h, q] ,

s(hoq9) (P) =s(he,0) (¢(P)) =s(9) (p) =t(F)

the second equality because we have ¢: s( g) %s(hoqg) in d&

We abbreviate

6,=00g.f.p] . y=ylg.f.p] . $,=¢[h. 9. a] . Y,=y(h,g.q] ,
63=9Lh, g, al , Yg=gih, g, al , 6,9l hega,f, Pl Y=uihecg, T, pl .

We require that the following diagram be commutative:

s(g)\p
wl — byt
s(gepf) \\\*s(hoqg)\p
v,
\\ o
o 3
st 0) - ) oo
s(f)/ | w\\s(h)\q

Here, ¢3r is the redtriction of ¢3 to the appropriate domain. Since (¢3, ¢’3) isa
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coproduct, |6:¢3( p) O m( L,U3) , thus the use of L,Ug in the diagram is legitimate.

(xi) (commutative law) In the situation

s(g)
s(h) —Mt(h) , pzq,

s(fy ~ T

for g=¢i h, f, p] (q)=y,(q) (snce p#q, qbdon(s(h)\p) ,so0 ¢,(q) isdefined),
p=¢[h, g, a] (p) =y3(p) , werequire

(h31)% g = (n¥ )
q p

The fact that the composites 2 , 4 are well-defined is seen as in the previous case. With
¢i : Lpi similarly as above, we require the commutativities as in

s(h)\{p, a}

™

v, Uy
o, - :s((hoqg)opf)e//////; ///;3
\ % s((hopf)oqg)“gg\\\\\ y

s(f) — ~s(g)

Since gl m( L/Jl) , we have gl m( ¢1) , S0 the use of ¢1 isjustified; similarly for ¢3 .

The map Yy isinjective; so, qUl nwlr( s(h)1-{p,q})) , and the use of the
restricted wlr isjustified. Similarly for L,USP

(end of definition of "multicategory™).
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The standard definition of multicategory (see [L1], [L2]) is the special case in which (i)

O=0, X=X for al XJO (aone-level multicategory, as opposed to the general two-level
notion), and (ii) we make the standard choice for the amalgamating maps as explained now.

For X:D>(i QD[l, q Y:D1(j QD[l, n] - bothin O , andfor pO[ 1, , a

particular index, Yo X denotes the result of inserting X into Y at the place p ; thisin

Y
effect replaces Yp by X. This means that Y|:|pX=Z: EZkEi(D[ 1,n] where n=/+m 1,
Zszk when 1<k<p, Zk:Xk_erl when p<k<p+/{, and Zk:Yk_ (+1 when
p+{<k<n . Define

do=d[ Y, X, p]: IXI > 1ZI , u=y[Y, X p]: IYI-{p} > IZ

by ¢(i)=p+i-1; ¢(j)=] when 1<j<p, and ¢(j)=p-j+1 when p<j<n; we
have the coproduct diagram

X 7o ¥ Wp

in O# . When the multicategory has the just specified connecting maps:. for the composition
gopf . ¢l g. 1. pl=¢[s(9).s(f).p] . ¢lg.f.pl=Uls(g).s(f).p] . wetdk
about a multicategory with standard amalgamation. In particular, the source of geo f
depends, in the standard case, only on the sources of the factors, and the place p ; not
necessarily so in the general case.

Note that in the standard case, the commutativities required for associativity and
commutativity ((ix) and (x)) are automatic.

There is a further remark to be made about the commutative diagrams in the laws of
associativity and commuitativity, to the effect that they are, to a large extent, automatically
true. Referring to the notation in (x), suppose that the functions s(f) , s(g) , s(h) are
one-to-one (non-repeating tuples), and their ranges are pairwise digoint. | clam that, as a
consequence of the preceding conditions, the commuitativities required in (x) are now true.

First of al, since sdgfs(hoq(gopf)) isacoproduct (in O#)of non-repeating
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(generalized) tuples, it isitself non-repeating. But then for any t DO# , there can be at most

one morphism t —>s in d& . Thisimplies each of the three commutativitiesin (x). The
same can be said about (xi). We will exploit this fact in section 5.

As a consequence of the definition, in any multicategory, we have a concept of simultaneous

composition. Assume gUA , p; U s(g) | fori=1,..., m, p; ;tpj when i % .
Assume that fi OA for 1=1,..., m, such that t(fi):(s(g)(i )) * for all
i 0[ 1, M . Then we define
hdéfg(fllpl’le Por .-, fn{pn’? : D
and with P={ Py pnﬂ} , the amalgamating functions
i y:s(g)\P——>s(h) , w:w[g’HjQD[l,n‘]’quD[l,n‘]]
¢iZS(fi)%S(h), ¢i:¢i[g’ﬁjqD[l,nj’EijD[l,nj]

such that s('h) isthe coproduct of the O#-objects s(g)\P, s(fi) (10[1,mM) viathe
coprojections ¢, (pi (1001, M) . Thedefinition is by recursionon m. When m=0 ,

h=g , wehave (=i ds(g) . Suppose ne2l1, and assume that

h=g(f 1/ Py f2/ Porvo -, f m 1/ Pm 1) has been defined, with corresponding
amalgamating functions

w:s(g)\P  —ss(h) (P ={p;:i0[1,m1]}),
6 :s(f;) —>s(h) (i0[1,m1]).

where p_=¢(p_) , and, with d=¢| ot P d=uf h,f . p,] . wedefinethe
amalgamating functions for (1) as y=gs(YIP) , ¢, =go¢ (i 0[1,m1] ) and ¢ =¢.
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In the simultaneous composition, the order of the composed-in factorsis immaterial. Precisely
speaking, we have the generalized commutative law, which says the following:

g(fllpl,lep2 ..... fn{pn,?=g(f1/p1,f2/p2 ..... fn{pn’?

provided for a permutation o: [ 1, n] Q[ 1,m , wehave f)i =P i and fAi =f oi
(101, mM ) ; moreover,

where, of course, we have used the obvious notation for the corresponding amalgamating
functions, that is,

v=ule M e, i Hopa,m!
% =019 Ty e m 5 Hopg, m!

For the case m=2 , the generalized commutative law is identical to the original form of the
commutative law (including the commutativity of the corresponding diagram). The general
case be proved by using the commutative law alone, by representing the arbitrary permutation
o as aproduct of transpositions each of which exchanges two elements standing next to each
other in the "previous' permutation.

Therefore, the best way of looking at simultaneous composition is that we have an arrow g ,
aset PUIs(g) ! , andafunction prp: P—A, such that t(fp) =s(g) (p) (pOP) ,
giving rise to the composite h=g( [f ID/ D%DP) , and to the amalgamating maps

Y=yl g, Eprpr_] :s(@)\P=s(h) . ¢9,=0,1 9, O Lppl - s(T5) —>s(h) (pLP) .
In fact, we can define

h:g(Efp/prDP) = g(ffllpl,flep2 ..... Fn{pn’?

for an arbitrary repetition-free enumeration Epj %[ 1, mM of P, andfor Fi :fp ; of
' i

course,
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o Tplhoed =000 O Gope, m 5 Gopa, m!-

and

Op, L9 5 pCoopl =i L0 5 G, oy Oy Gopa, ] -

Suppose P, Q1 Is(qg) | , PnQ=0 ; write P and fg for the assignments P=[1 ID/ p%DP’
Q:Efq/quDQ. Suppose both gf Pz =g( Efp/p%up) , 9(Q =9( Efq/quDd are
well-defined. We can consider g( PUQ =g( O r/ r q, DPDd , and we have

o( ISD@) =g( IS) ( (5) =g( (5) ( IS) , with the following diagram commuting:

s(g)\ (POIQ

pr \wr

\s( 9(9)
//f

Y - v~
, s(g(PIQ) / ;
o = 5N A o
\ ~ s(9(P)(Q)
s(fp)%‘s(g(@(m)qb\s(fq)
Here, the further specification of the maps is self-explanatory. It should be mentioned that the

map ¢: s(f p) —>s(g( ISDQ) ) =s(g( é) ( ,S)) has two meanings, which coincide:
o=¢[ g, ISDQ p] =¢[ g(é) P, p] ; similarly for g in placefor p .

Wewriteg(fl,f2 ..... fn,),or g(EfiE{nzl),for g(flll,f2/2 ..... fn{n).
The notation g( f 1 f IRERE f n’? (in which there is no notation of the place where each
fi is being composed into g ) will never be used unless all placesof g areinvolved (that
is, m=£/h(s(g)) ), and fi iscomposed into g attheplace i . Now, P=[1, n] : the
Y-map for g(f 1 f IRERE f H isempty: its domain is the empty set [s(g) | - P=0 ;

s(g(fl,f2 ..... fn’?) is the coproduct of the s(fi) via the maps

G =619 O Grpq pglis(f) >s(a(fyfo ..., f)) (o).
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Let us formulate a version of the transitive law, involving a simultaneus composition. Using
the notation of the previous paragraph, let 1 O] 1, n] , pO \s(fi ) | , and suppose fi oph
is well-defined. Then for q:rpi (p) , wehave

The coherence commutativities in this case are:

s(fi)\p

w/
S(f °ph) o ?s(g(f)\a
N . v /
| s(g(f)oh))/
¢\ s L
s(g(f"))
I
s(fj)

)

s(g(f"))

s(9(f) °gh)
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3. Morphisms of multicategories

Given multicategories C, D, amorphism F: C—D isgiven by data and conditions as
follows.

(i) Maps F: O(C) >Q(D) , F: O(C) >Q(D) on objects such that
a9 ) a0
F o F

QD QD)

(i) Amap F: A(C) —A(D) onarrows; tD( Ff):lf(tc(f)) IS
required for al f OA(C) .
(i) For any f OA(C) , atransition bijection
6;: s(f) | > Isy(Ff) | such that
O
\sc(f)\ > \sD(Ff)\
sC(f)l o lsD( Ff) (1)
a0 = ogy)
Note that this isthe same as to say that 6, : Fes(f) —— >s(Ff) in o(D)*.
AV ley :
(@iv) F preservesidentitiess F( LY(———>Y) = [FYO———>(FY) .
(v) F preserves composition. Given f, gOA(C) , pO \SC( Q) !,

tf)=(s(9)(p)) ~ (sothat gopf is well-defined), for 6:99(p)D Isp(Fg) | we
have that
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t o Ff) ?FUCU))=RSdng)5fFHSdgMp)'?SdFm(@'

(i) (i) (iii)
thus (Fg) o (Ff) iswell-defined. We require that
p
F(gouf) =(Fg) e (FF)
p
moreover,
6! )
sd9)-{p} d sp(Fg) |- {p}
vt g, pl o Yl Ff, Fg, p]
Oyo 1
s ge,f) P Isp(F(ge,t)) 1= s (Fg) oﬁ(Ff))
¢“’9plT © TMFLFgﬁl
\sc(f)\ o \SD( Ff) |

F G

There is a composition of morphisms of multicategories. Given C D E, for
H=G-F. C——E, wehave H isthe usua composite as far as the effect on objects and
arrows is concerned, and Gf: \sc(f) | — \SE( Hf ) | isgiven asthe composite

G oG
SAf) s Usp(FE) | T Is(GFf) | . Itisfairly clear that H isso

defined is indeed a morphism of multicategories. We also have the obvious identity morphism
I dC: C-C.

The said items form the category Mul ti cat of (small) multicategories and their morphisms.

Let us emphasize that multicategories are treated here as O-dimensional objects, that is,
objects of a 1-dimensional, ordinary, category, in contrast to the fact that categories are
usually treated as 1-dimensional objectsin a 2-dimensional category. This fact is the key
specific feature of our approach. There are isomorphisms of multicategories, but there are, at
least for us, no equivalences of them.



Let us note that every morphism F: C—D can be factored, in a unique manner, in the form

c F /D

(DNC, —F
so that the isomorphism ® isthe identity on objects and arrows, and F' is strict, that is, al
its transition maps are identities. To define C , weput Q(C ) =Q( C) =0,

A(C )=A(C) =A, and, for any f A, tC,(f):tC(f):t(f) . Forany fOA, SC,(f)
is defined by Sc (f)I= \sc(f)\ , and the commutative diagram

6
s s se (f)

O
sd;F\NZ//éc(n
O

(this diagram is obtained by decomposing (1) in the form

el

using the transition map 9f for F.Given f, gOA, pO Sc (9) I such that

)

t(f)=sc () (p) , weput go* f =geot with p=6; *(p) . To define the
p
amalgamating functions ¢’ =¢~ [f, g, pl , W =y [, 0, p] , we use the commutative

squaresin

6. X
s9) 1 -{p} 4 sc (9) 1-{p}
v o W
ngpf
\SC(gopf)\ SC’(9°6f))
fﬁ o &
\SC(f)\ g \sc(f)\
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where ¢ and (¢ are the amalgamating functions given with C. It isimmediatethat C is
well-defined. The transition maps for ® are the given Bf ; the effect of F' on objects and
arrowsisthat of F.
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4. The free multicategory

We need only the free multicategory in the case there is only one level of objects; therefore,
we restrict the definition to this case. However, note that the free one-level multicategory will
be free with respect to the general, two-level, variety.

Suppose O isaset (of "objects’), L isaset (of "generating arrows'), and for each f [L ,

we are given s(f) DO* , and t (f)OO. Such data determine alanguage £ ; we may write
o= L, L=L(L) , S=S -, t:tﬁ' The free multicategory F( £) =C on the given
language is defined by the universal property as follows. We have that O( £) =Q(C)

L(£) OA(C) Sc tC extend the given maps S and tﬁ; and every time D isa
multicategory, and we are given F(X) OQ(D) , F(f)OQ(D) for XOO, fOL such that

tD(F(f)):(F(tﬁ(f))) -, and we are also given Gf: \sﬁ(f)\% \SD(Ff)\ such

that

O
\sﬁ(f)\ _ \SD(Ff)\
Sﬁ(f)l o) lSD(Ff)
a0 = a(D)

(when Gf is the identity, sD( Ff) :Fosﬁ(f) ) for al fOL(L) , thereisaunique
morphism F: C-—>D of multicategories extending the givendata F and 6, , . The
unigqueness, up to isomorphism, of F( £) isclear; its existence could be proved routinely by
the Adjoint Functor Theorem (or, Initial Object Theorem; see [M L]). Instead, we will find a
direct description and proof of existence for F( L) .

We first formulate a characterization.

@ Let £ bealanguage as above. Suppose C isa 1-level multicategory with
Ao =0L) , L(LHOAC , and Sc tC extend S, and tL,respectiver. Then C
isfreeon £ if and only if the following condition (2) holds:
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(2) (Unique Readability) for every alA(C) ,

either @ azlx for some XOQ( L) ,
or (b) a=f( PRI OTII am? for some fOL( L) ,
m=/h(s(f)) , a; OA(C) such that t(ai):s(f)(i) (g1 m)

( f(al, Aoy oo an’? refers to ssimultaneous composition; see the end of section 1.);
and furthermore,

exactly one of (a), (b) isthe case; in case (a), X isuniquely determined by a,
and in case (b), theitems f |, a; are uniquely determined by a .

Note that there are no additional conditions put on the amalgamating functions.

Note that in case (b), for each i , Kh(s(ai )) <{Zh(s(a)) , which fact implies that under
(2), A(C) isgenerated by L( L) intheobvioussense: A(C) istheleast set ¥ containing
each 1X (XOO(£)) andsuchthatif fOL(L) , Ay, 0y, ey anpﬂ’ and

f(al, Aoy oo an,? is well-defined, then f(al, Aoy oo an’? 04 . Infact, if the
condition (2) holds, we may apply structural induction, respectively, structural recursion, to
prove that a property holds for all arrows of C, respectively, to define afunction, say ¢,
whose domainis A(C) . Inthe latter case, we should have the definition of the function ¢
at arguments 1X, X0 ©) , and away that determines the value of ® at any argument of
the form f(al, Uy oo ey an,} (fOL(L)) from the following data: f,al, Uy, ooy @
and d)(al), <D(a2), Cey dJ(an,? ; unique readability ensures that thereby @ isuniquely
determined.

m

The proof of the if part consists in verifying the universal property of C under the condition
(2). Let us use the notation in the statement of the universal property. The effect of F on the
arrows a of C, including the connecting maps 6 0 Is defined by structural recursion on
a . Of course, the amalgamating maps for the composition in C and those for the
compositionin D are used in this definition. The details are put into the Appendix.

(Note that the if part of (1) is an important piece in the justification of the generalized notion
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of multicategory introduced in this paper; the if part of (1) shows that the generalized notion
is, after al, not so far from the standard concept of multicategory; in fact, the if part of (1)
shows that, in a sense, the generalized notion is the algebraic essence of the standard notion. )

Next, for a given language £, we exhibit a particular multicategory F( £) with standard
amalgamation satisfying the condition (2). Then, by the if part already shown, F( £) isfree
on L ; and since any multicategory free on £ isisomorphic to £, and the condition (2) is
clearly invariant under isomorphism, the "only if" part will follow.

C=F( £) , inthe specific sense now to be adopted, is defined to have objects O( C) =Q( £) .
The arrows are defined inductively as follows:

(1) each XOS isan arrow; SC(X):D(D, tC(f):X.
(i)  whenever fOL with /h(f)=n, and, foreach i 1, n] , a; IS an arrow
such that tC(ai):s(f)(i) , then

adgff(miqm[l,rﬂ) =f(al,az,...,an~? (©))

is an arrow, and sC( a) isthe concatenation sC( al)"sc( 012)". .. "sC( anq? ; that is,

n
with n = Zh(sc(a)) , Ny = lh(sc(ai)) , wehave n= ) n; , and for any
i =1
jOl1,n], withid[1,n determinedsuchthat j O ( ) nh) +1, ) nh] ) , we have
h<i h<i

scla) (j)=s(a;) (] h;i ny) -

In (3), f(al, Aoy - an,? means something determined from f and the a; so that,
conversely, f and the a; can be recovered from it. Thus, f(al, Aoy - am? may be
the concatenation of the strings [ [, Ag o Qo oony O Thisisal right if and only if
thesets O £) and L( L) aredigoint. In the general case, a set-theoretical construct such as
[, f, PRI OTII amD (functionon [ 1, m+2] with values as listed) can be taken for
f(al, Aoy ovvsy an,? ; now, for clause (i), we take [0, X[ to be the arrow, rather than
plain X.

The notation in (3) isin agreement with the notation for simultaneous composition, as will
become clear when we have defined compositionin 7( £) .
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The compositionin F( £) isdefined by substitution. Given

s(p—Fs(a) Tt
aopB isdefined as a( B/ p) , theresult of substituting B in a for t(B)=s(a)(p) at
the place p . The value of the expression a( B/ p) isdefined by recursion on the complexity
of a.If a=X0O, andthus s(a)(p)=X, then a(p/ p)=L. If a:f(Etri EiD[l n]) ,

then, using the notation adopted under (ii), for a specific j O[ 1, M , we p= ) nj +q with
h<j

a0 1,n;] ; andweput a( B/ p) =f ( o, Qopg, ng) - Where a; =a; when

i1, m-{j}, and &j :aj (b/q) . Itisleft to the reader to verify that in this way we
have defined a multicategory with standard amalgamation.
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5. A 2-evel multicategory with non-standard amalgamation

Let £ bealanguage, and C a (not necessarily standard, but 1-level) multicategory free over
L (see section 4). For aOA=A(C) , wedefine L[] to be "the tuple of occurrences of
operation symbolsin a, listed from the left to the right". For a formal definition, we use
unique redability (4.(1)), which enables us to employ a recursion. For XOO, EJlXD:J_ , the
empty tuple. For fOL( L) , m=Lh(s(f)) , a; HA, n; =Ih( Etri 0,

m
a:f(al, Opyve vy an,?DA, weput (h( oD =1+ ) i, Cb[{1)=f , andfor
i =1
o1, m, kD[l,ni] , =1+ ) nh+k, we define Ebr[(j):Ebri [({k) . Thisisthe
h<i

same as saying that

AN

N N
0,0, .. o[, (1)

0 (a m

..,an,}DzEfDAEbr

1 9p» - 1

where we used the well-known operation of concatenation of tuples, [f [J means the one-term
tuple whose only termis f ; of course, it is also the same as [ in the sense being defined
now, for a=f .

Let us fix a multicategory E , not necessarily 1-level, or with standard amalgamation. A free
multicategory over E isasystem (£, C, d: C>E) where £ isalanguage, C isa
(1-level) multicategory free over £ suchthat (Q( £) =) O(C) =Q( E) , the morphism

d: C—>E of multicategories is the identity on upper-level objects, and it is strict. A morphism
H: (Ll, Cl’ dl) e(ﬁz, C2’ d2) of free multicategories over E is a mapping

H A( £1) — A( £2) such that for any f OA( £1) , we have SLZ( H(f)):sﬁl(f) ,

t » (H(f))=t , (f) ,andfor theinduced strict morphism H: C, —>C, (whichisthe
£2 £1 1 2

identity on objects) we have the commutative diagram

We aso say that H is amorphism of languages, and write H: £1 eﬁz (note that by a
"morphism of languages' one might a priori mean something more general; we do not need
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the more general concept).

Theorem. Thereisauniquely determined assignment of a multicategory
D=D] £, C, d] toany free multicategory (£, C, d) over E such that conditions (i) to (vi)
hold.

(i) QA D)=L(£) , QD) =A(E) xQ(E) , A(D)=A(C) .

(iD) Using the abbreviation T( a) =(d( a) ,tC( a)) (alA=A(D)=A(0 )
the mapping Q( D) %q D) is s M(s(i)) q Ois| -

(i) For allA, we have tD( a)=T(a) and sD( a) =[o 0.

(iv) For foL=qD) , 1{P=f .

(v) Let uswrite o for (D) , and o for (O . Whenever on:lpB IS

well-defined, we have that

a=a oqf ( Agoeees an) (2
and

aupB d5f a qu( Agrees an) (©))
for f=[[{p) , andfor some a’ , Agoeees anDA and qO \SC( a) | (we are referring

here to smultaneous composition in C, discussed in the last section).

(vi) Whenever H: (£1, Cl' dl) e(ﬂz, C2, d2) is a morphism of free
multicategories over E , DJ =0 £j , CJ , dj ] ., the mappings

H: O Dl) :L(£1) —( D2) =L( £2)
id: (D)) =A(E) xQ(E) -~ >Q(D,) =A(E) xQ(E)
H: A Dl) =A( Cl) —A( D2) =A( CZ)

constitute a strict morphism H: D1 HDZ of multicategories.

The multicategory D=DJ £, C, d] is called the multicategory of function-replacement
associated with ( £, C, d) . The name derives from the main clause, (v). This clause tries to
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say that

" ampB results by replacing the "function-symbol” f=[t[{ p) attheplace p in a
by the arrow B ";

however, it actually says less, namely that

" aupB results by replacing the "function-symbol” f =[tr[{ p) at someplace in a
by the arrow (.

Note the difficulty of saying the first of these two statements mathematically; this difficulty
comes from the fact that f may occur at more than one placein a . The theorem avoids
specifying the particular decomposition (2) that "belongs to" the place p, and still manages to
give the complete definition of the concept of the multicategory of function replacement. The
price we pay is that we do not have the definition of Of £, C, d] for any particular

(£, C d) spelled out in detail; rather, we have the complete definition of the global
assgnment (£, C d)——D £ C d] .

The rest of this section is devoted to the proof of the theorem; certain technical details will be
relegated to the Appendix.

We prove the theorem in two stages. In the first, we fix (£, C, d) , afree multicategory
over E, and define the operationsfor D=D[ £, C, d] partially, for certain combinations of
arguments only, ones that we will call "separated”. The second stage will involve the use of

morphisms of free multicategories over E to complete the definition.

With the fixed (£, C,d) , wehave C=Q( L) =Q(C) , L=L(£L) , A=A(CO) . a,By
denote elementsof A, f, g elementsof L.

The construction of D takesplacein C. Therole E and d have in the construction is
summarized in the following lemma:
4) Lemma.
(1) d( a)=d( B) impliesthat s(a)=s(p) .
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() daeB)=(da) <\ & (ap) ,
and more generally
d( a( Agoeees orn))z(dor)(dor1 ..... da.))
whenever aorB , a( Agseees an) are well-defined; here, we refer to simultaneous
composition, in C ontheleft andin E on the right.
(ili)  Suppose that d(al) =d(az) , d(Bl) =d(B2) and
c(Bl) =C(B2) . Suppose alorBl is well-defined. Then also,
@ O’2°rB2 is well-defined,;
(b) d(aye, By) =d(ayo, By) ;
as a consequence,
(© S(a]_OrBl) :S(azorﬁz) ;
and we have, for the amalgamating functions for C, that

@  ¢lay, By r1=0lay By r] . Ylay, By rl=ulay, By 1] .

Thisis essentially immediate from the fact that d: C—E is a strict morphism which is the
identity on objects; here are some details.

For (i): since d: C—E isastrict morphism which is the identity on objects,
SE(d(a))zsC( a) =s(a) . Therefore, d( a)=d( ) implies s(a)=s(p) .

For (ii): thisis a consequence of the fact that d isastrict morphism d:C—>E of
multicategories.

For (iii):

Remember that aorB iswell-defined iff rO0Is(a)| and s(a)(r)=c(p) . Thus, (a) is
Clear.

Writing a,B for a., B. , foreither i =1 or i =2, wehave d(a-_ p) =d(a) oEd(B) ,
i’ Fi r r

implying (b). By the strictnessof d , ¢[ a, B, r] :¢E[ d(a),d(p),r] , and similarly for
Y . The equalities d(al) :d(az) , d(Bl) :d(BZ) now clearly imply (d).

Let uswrite ||a|| for the range of the function [ix{, the set of function-symbols occurring
in a. The definition of [ gives that



IfCag, o) || = {F30]lag]|0. .. Ofla |l
and by induction on a , we see that

Note the obvious fact that, for a, BOA, the existence of at least one map [P (o0 in
#
L

as Bl = llall O ]1A]l - (5)

is equivalent to the condition ||B||0]|a| -

Let a0A andlet fO||a|| . Any representation of a in the form of (2), with suitable o
etc., is called a decomposition of a at f .

(6) Lemma. Assume fO||a|| . Thereis at least one deconposition of a at
Proof: see Appendix.

a isseparated if [0 isarepetition-free tuple: the function [0 |Co0 —L is
one-to-one. A system (al, Aoy oo an) of terms is separated if each a; IS separated,
and the ranges ||a || are pairwise digoint sets. Note the obvious fact that if a is separated,

B isany term, then there is at most one arrow [B> [ in L# . For fOL, the

well-defined term f(al, Uy vv ey ak) IS separated iff the system (f, Ay, 0y, ey an)
IS separated. By inductionon a , we seethat a- [ isseparated iff (a, B) isaseparated
system; in particular, if a. B is separated, then |lal[n]|B8]|=C0 .
The following lemma is intuitively obvious.

(7)  Lemma. For aseparated term o , the decomposition at f O|al| (see (2)) is

unique.

Proof: see Appendix.
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Let a, BUA, and fOL . We declare on:lfB to be well-defined if and only if a is
separated, f O||a||, and T(f)=T(B) (for T, see(ii) of the theorem); if so, aoy B is
given by the expression (3), that is,

on:lfB = a o B(or1 ..... an) :

where we refer to (2), the (unique) decompositionof a at f (by (6) and (7)). Note that,
instead of a"place” p , we now have a function-symbol f in the subscript position. We il
have to see that the expression defining aoy B iswell-defined.

Notethat T(f)=T(B) impliesthat s(f)=s(B) and t(f)=t(pB) . The smultaneous
composition 3( Agoees an) iswell-defined since (s(B) (1)) =(s(f) (i )):t(ai) ,
the second equality from the fact that f ( Ageees an) is well-defined. The composition at
g iswell-defined since

(sCa)(q)) =t(f) =t(f) =t(Pflag, ..., ay))
the first equality holding since (2) is well-defined.
The first thing we check is that
T(ao f) =T(a) . (8)

provided aoy B iswell-defined. Applying d to the expressions (2) and (3), and applying (4)
repeatedly, we get that

d(a) = d(a’)oqd(f)(d(al) ----- d(ag,)) .
and

d(agg B) =d(a') = d(B) (d(ay) ..., d(a,))
on the right-hand side, we have simultaneous composition in E . The equality d(f) =d( )

ensures that d(on:uf pB) =d( a) . We aso have that c(on:uf B)=c(a )=c(a) . By (4),it
follows that (8) holds.
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The definition of ooy B gives immediately that we have

llace Bll=Cllall- {£}) Ol - 9

Next, we clam

(10) Lemma. Assuming the pair (a, B) is separated and f [ aorB|| ,
(aogy) o B if £0]|al

(ae Bopy =
ae (Bogy) if 0|8l

(Note that the same place r appears on the two sides. The upper right-hand occurrence of the
composition op ar is meaningful, since by (8) and (4), s( ooy y)=s(a) .)

Proof: see Appendix.

Note that, together with the equality f Of B=p (provided f Of B iswell-defined), (10)
determines the value of acg y in all cases, since the generating arrows f 0L , together with
the identities generate A . Of course, (10) cannot be used to define o, directly at least, since
terms can, in general, be written in the form Qo B in more than one way.

The definition of ooy B intermsof o C and what we know about separatedness and o c
makes it clear that if the pair ( a, B) is separated, then so isthe term ao; B (alittle less
would in fact suffice).

We are ready to state and prove the associative and commutative laws for the separated case;
the proof uses (10).

(11) Lemma. Assume that the triple (a, B, y) is separated, f O||al| ,
g0llacy All=Cllall- ¢t 1) DAl T(B =T(f) and T(y)=T(g) . Then
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(aogy) o B if g0|q|

(ao; Bogy =
7790 ani(pogy i ol

(Note that the assumption implies that the left-hand side is well-defined. Note also that the
right-hand expressions are well-defined too; if gO||B|| , we have, by (8),
T( Bug y) =T(B) =T(f) , making aoy ( Bug y) well-defined.)

Proof: see Appendix.

Assume again that ( a, B) isseparated, and f O||al| , so acy B is well-defined. Let

pU |0 suchthat [r[({p)=f . Aswe have noted, the separatedness of aoy B ensures
there is at most one morphism [0 p—— Ebn:lf B0, and at most one [PIH—— Etn:lf pO.
But also, since ||acy B||=(||al|- {f}) O||B]| , there are such morphisms

wop— ¥ g g ? o, (15)
Y=y B 1) L 9=0(a B.1) ;

we have defined the amalgamating maps for the composition o oo partially, for the
"separated case”. Finally, we note that, provided the triple (a, B, y) is separated, each one
of the diagrams made up of amalgamating maps for the composition - oo associated with
either the associative law 5d§f ( ooy B) Oy y=aog ( Bug y) in 1.(xi) or the commutative law
5d§f ( ooy B) ':'g y=( ooy B) ':'g y in 1.(xii) asthe case may be, is automatically commutative,
by the separatedness of the term o , which impliesthat into [0 from any other object of

L# there is at most one morphism.

This completes the work of establishing the multicategory structure in the restricted sense of
applying to the "sufficiently separated” arguments. We now enter the second stage of the proof
of the theorem.

Let F: (£, C d) — (L C d) beamorphism of free multicategories over E . We say
that F isample, or that (2, é, a) isan ample expansion of (£, C,d) via F, if for each
fOL there are infinitely many distinct f OL such that F(f)=f .
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It is almost obvious that we have

(12) Lemma. Any free multicategory ( £, C, d) over E has ample expansions.

Proof: see Appendix.

Let F:C>C be an ample expansion . Since F isdtrict, for any BDA:A( é) ,
s.(B) :SC( F(B)) . Wewill write s(pB) , t(p) for s, (B) , t . .(B) , respectively,
C C C

just likein C.We have, for any aUA, that

[F( a) CEFo (o0 :

N

L (13)

(F(a) O = |hO s
R O
[(F( a) F
L
Of course, "separated” terms in C are meant asthey werein C.

Here is another "obvious' lemma.

(14) Lemma. F: C >Cis surjective: For any alJL , thereisat least one separated
BDﬁ suchthat F( ) =a . Infact, forany alL , and any finiteset | , thereis at least one

separated BOL suchthat F(B)=a and ||B||nl =0 .

Proof: see Appendix.

We use the notations ¢(a) =t &(a) , T(a)=(d(a), c(a)) for alA. Since

d(a)=d(Fa) , ¢(a)=c(Fa) , wehavethat T(a)=T(a) for a=F(q) .
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Now, we can define aupB for any a, BOA=A(C) , and pUO |0 such that, for
f=Cal{p) , T(B)=T(f) . Let alJA be separated such that F( a) =a by (14); next, let
BOA be separated such that F( B) =B and ||B||n||a||=0 by (14) again. Let f=m{p) .
By (13), F(f)=f ; wehave T(B)=T(f) , and &upﬁ:&ufjs is well-defined. We define

On:lpB d5f F( &ElfAB) :
Further, we define the amalgamating maps

mop ¥ [uupﬁw B0, (15)
v=y_(a, B p) , 9=9_(a, B p)

asthe F-images of the maps

mqal p# [ﬁmAﬁD# Ef&D,
f
b=y (a B.f) , ¢=¢(a B.f) .
Asmapsof sets, ¢ and ¢ arethe same as lil and $,respectively; by (13) , e.q.,
‘mOpl=mApl, \EbrupBD=\E5n:|Af3D . thus, we can define
f

Y m0pl — o B0 as W=w: similarly, ¢=¢ : then by (13) again, ¢ and @ are

maps asin (15). It isalso obviousthat ( ¢, ¢) are the coprojections of a coproduct in L# :

Let us show that this definition is legitimate: that is, the result does not depend on the choice

of the ample expansion F: C-cC , and the choice of &,f& :

Let a, BOA(C) , pO|od , f=Co{p) . Let Ca,B and f be as above. Assume
G ézf(Z) —C isanother ample expansion, ( a, f&) a separated pair of termsin A:A( é)
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suchthat G(a)=a, G P)=B; let =0 p) ; wewant to show that
F( &ufjs) =q &nfﬁ) , (16)

and that the amalgamating maps ¢, aso come out to be the same when we use the new
data.

We claim that there is a morphism H: LL of languages (see above) such that

NO % (17)
L

and such that Ho Lot =0, Ho Ef&D: EfSD for the particular a and [ giventous. The

latter two conditions determine the effect of H on the subset ||a]|0{|B|| of L ; these
conditions are possible to fulfill since [0, (B0 are injective functions, and ||a||n||B]|=0 .
The restriction of H to ||a]|&]{|B]| so determined will satisfy what it has for (17) to hold. On
the rest of the set L , H can be defined arbitrarily, except for being subject to (17); the

ampleness of G ensures that for every éDﬁ thereis QDI: such that G(g]) =F( é) ; we may

put H(g) =g .

H givesrise to a morphism H: C— > C for which the transition isomorphisms 8 ( QDI:)

g
are all identities. H isthe identity on objects. It follows from the strictnessof F and G,
and (17) that H is strict.

We claim that H( &) =a, H(B)=f. Note that for a,;=H(a) , Ble( B) , we have
Q(ay)=G(a) and G(B;) =GP ; also, [y C=CirCHe (a0, [Py C=CPO. The
assertion then follows from the following observation: if y, 30L, & y)=Q(J) ,

Oy=[B0 then Y=o thisis proved by an induction on the length of G( V) =&( d) .
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The definition of ao B viathe structure of C, and that of do_ 3 viathe structure of  C
f f

tell usthat H( ao . B) =ao. B holds as a consequence of H( &) =&, H( B) =3, the facts that
f f

H isastrict morphism, and that H isthe identity on objects. For this, one notes, in the first

place, that the decomposition of a at f iscarried by H into the decomposition of o at

Y

f . Now, (16) follows by (17). The assertion on the amalgamating maps is also clear.
The condition (v) is clearly met by the construction.
We now prove assertion (vi) of the Theorem, even though we have not yet proved that

DO £, C, d] isamulticategory. Assume the data for (vi) as shown. The claim is that in this
case we have

(Dy) (D,)
HL T) = 1H(f2) (18)
e anlp) - 2
(aclp) = (Ho) a2(HP (19)
and
6 [a B.pl =¢ ([Ha HB.p] . & ([a f,pl =y 4 Ha HB p] , (20
O O O O

every time améB is well-defined (|:|i is the composition in Di ).

(18) isimmediate. The proofs of (19) and (20) are also easy: having set up F: C-C ,
a-Fsa, B-Fs B asisneeded for the definition of améB as améB:F( aoip) , wehavea
f

valid set-up HF: C>C, , arsHa, B-T5HB for the disambiguated definition of

( Ha) ES( HB) as (Ha) Dg(HB) =( HF)(&mflAﬁ) =( H( F( &uflﬁ)) . which shows (19); (20)

issimilarly seen.

The relation
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T(ag,f) = T(a)

follows instantly from the definition of amp B, thevariant (8) of the same law established in

the "separated case”, and applied in C, and by the fact T( @) =T(a) when F(a)=a .

The rest of the required laws for o are also easily established. We treat the associative law.

Suppose a, B, yUA, on:lpB and Bl:lqy are well-defined, and d:d)D[ a, B,p]l(q) , tosee
thet (acyB) ogy=ao,(Ba,y) . Choosean ample F: (£, C d) >(£ C d) and by (14),
choose arrows &, B, yOA(C) suchthat a isseparated, F( Q) =a, B is separated,
18llnllall=0, F(B=B. v isseparated, ||Vl llalloflBll) =0, and F(y)=y. Then,
with f=Ap) , g=BLAp) , we have (&upﬁ) ud?/:( ao, p) ug;?,
f

ao(fogy)=ao,(Boyy) . and (ao,B)oy=ao,(Bo,y) as (a, B, y) isaseparated

p q f g f g f g
triple, and in the separated case, we know that the associative law holds (see (11)). By (vi)

(already proved), F((&upﬁ) uq;?) = (ao,B) oGy and &up(ﬁuq 9)):aup(3uq y) . It
follows that (On:lpB) qu= On:lp( Bl:lq y) .

The commutative law and the commutative diagrams involving the amalgamating maps are
established similarly.

We have left the treatment of the identity arrows for the end.

For t0L=0(D) , 1¢P) isdefinedtobe f DA itsdlf; since s(f)=[F O, and
tD(f):f':T(f) , the source and the target of l]S D) are as they should be.

To see that the first unit law holds, let us assume first that BOA is separated, pO | [P0

f=[BL p) , toseethat Bmpf =f and for ¢:¢D[ B, f,p], w:LpD[ B, f,p] , wehave
d(1)=p and ¢Y(i)=i for iO[ 1,1 h(B)]-{p} . By condition (v) in the Theorem (which
we have proved), it is clear that BEIpf =f . The separatedness of (3 ensuresthat ¢ and @

cannot be anything else but the ones described. Turning to the general case, let F: C>C be

an ample expansion, and fiDA such that F( ﬁ) =3 . Let fA:EfSE( p) . Then, by what we
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just saw, ﬁupf:ﬁ and for ¢=¢[ B, f,p] , U=u[{ B, f,p] , wehave ¢(1)=p and
@(i)=i for iO[1, ¢h(B)]-{p} .Since o ispreserved by F (condition (vi), already
proved), the desired result follows.

The other unit law is similarly seen.

The uniqueness assertion in the Theorem is clear from what we have gone through.



6. Multitopic sets

An multitopic set S, by definition, consists of data (i) to (iii), subject to conditions (iv) to
(viii):

) a sequence ECk EkD[N of sets [to indicate dependence on S, we may
write Ck( S) for Ck , and similarly for the other ingredients to follow],

(i) sequences ECk QD[N , EDk QD[N of multicategories,
and

(i) morphisms dk+1: CkJrlﬂDk ( kON) of multicategories
such that

(iv) CO has only identity arrows, and Q( CO) =C0 ;

(v) for k=1, Ck is free on a language £k for which O(Lk) =Ck_ 1
L( 'Ck) :Ck ;

(vi) DO:CO ;

(vii) q Dk) =Ck:O( Ck+1) , and dk+1: Ck+1 %Dk is a strict morphism
which is the identity on upper level objects;

(viii) for k=1, Dk Is the multicategory of function-replacement associated

d
K

with Ck — Dk- 1 (see the previous section).
The multitopic set S givesrise to the following diagram of sets and functions:

d d

-Po\d " -P2... -kaPk+l...
IESES RSN

Qe Qe 92 % e S o

Here, Ck isthe set of k-cells, and itisgivenin (i) inthe datafor S. Pk:A( Ck) =A( Dk) ;
its elements are called the k-pasting diagramsof S . We have omitted subscripts from the
maps, each should be understood with the same subscript as its domain; e.g.,

dk+1: Pk+1 ePk , which is the effect on arrows of the morphism dk+1: Ck+1 eDk :
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Ck+1:t Ck+1 .

In general, d(a) isthedomain, c(a) isthecodomainof a whatever a isto which the
d or ¢ inquestion applies. In particular, we talk about domain and codomain of both cells
and pasting diagrams.

ik: CkePk is the inclusion of the generating arrows into the free Csz( £k) . dk and
Cy with domain Ck are the composites dki K cki K respectively.

We have
dd=dc , cd=cc ;
in more detail,

dd

k9k+17d

kck+1’ Ckdk+1:Cka+1 : (1)

d d// Py d// Pe+1
>/\ =

-1 ¢ &

P

k-1

for al KON-{O0} . Thisisthe familiar "globular" aspect of higher-dimensional category
theory: it says that the domain and the codomain of a cell of dimension k+1 greater than 1
are parallel to each other, that is, they agree as far as their domains and codomains are
concerned. Note however that domains and codomains here are very different things; the
domains are pasting diagrams, the codomains are individual cells.

To see (1), let us abbreviate dk+1 and Cr+1 by d and c , respectively. d on upper level
objects is the identity i dck . Recall that, by the definition of Dk asin (viii) , we have that

a , the lower level object corresponding to the upper level object aDCk , IS
azﬂa)=wMan4M).Rmmmadmmmtqgmfﬂm=wgﬁhcg@)
( BDPk ).
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On lower level objects, the effect d of d isforced by the required commutativity of

d
AC+) — g > ADBY)

idl . lT

ACyq) Tq D)

to be d(a) =T(a) . Since d: CI(JrlﬂDk preserves "target”, for any aDPk+1,
t  (da))=d(t (a)) , thatis T(da)=T(ca) , whichis (1).
D¢ Cer1

Notethat Q(D,)=L(£,)=C, ., QD,)=A(D,_,)*Q(C)=P,_ ;xC,_ ;. andwehave

A(D) =A(C,) .

The fact that dk+1: Ck+1 HDk is a strict morphism which is the identity on objects

implies that Sck (a) =Sp (a)=C[od, where [0 isdefined as the left-to-right tuple of
+1 K

function-symbol occurrencesin a ; see the previous section.

The fundamental equality is

d(acyp) = (da)o,(dp) ( pO 0, cp=[l(p) ),

signifying part of the fact that d:dk +1 is a strict morphism of multicategories, here
a, BDCk+1 , o isthe compositionin Ck+1’ o isthe composition in Dk :

It is possible to build an multitopic set recursively. An n-truncated multitopic set is given by
data ECk q(D[ 0,n] ECk q(D[ 0,n] EDk q(D[ 0, n-1] as above in (i), (ii), (iii), but
with the index k ranging over theintegers O to n inclusivein the first two sequences, and
upto n-1 inthelast; the conditions (iv) to (viii) are assumed. Every (full) multitopic set S
givesrise to its n-truncation Stn, an n-truncated multitopic set; also, if n=m, an
n-truncated one, S, givesriseto SIm, an mtruncated one. On the other hand, if for each
n , thereis given Srl , an n-truncated multitopic set , and Sn+1 Pn:Srl for al n, then
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there is a unique multitopic set S for which Srn:Sn foral n.

With CO an arbitrary set (of 0-cells), we let CO:JE( £0) be the (free) multicategory whose
objects are the O-cells, and whose only arrows are identities (O(£0) :C , L(£0) =0). We
have P —A( ) DCO Thisisall thereisto a O-truncated multltoplcset

After having determined C0 , we let C1 , the set of 1-cells, be any set, and we let

d - C ePO CO Cq: CleCO be arbitrary functions (the domain and codomain
assgnmentsfor 1-cells). We let D, 0= CO The language £ has O(£1) =CO, and
L(Ll) =C, ; Sﬁl(f):[dl(f) DDCO (singleton tuple) ,tﬁl(f)zcl(f) DCO. Thereis

nothing to say about the amalgamating functions for C1 .
Given an

n-truncated multitopic set S, with notation used above,
an arbitrary set C N1 (of (n+1)-cells);
functions Ch+t: Cn+1eC dn+1: Cn+1

dndn+1_dncn+1’ Cndn+1 CnCn+1

/

we have a uniquely determined ( n+1) -truncated multitopic set S which extends the given

- P such that

n+1 '

data. To define S , we first let Dn be the multicategory of function-replacement associated

with d - C =D, 4 -

Next, we define the language £n+1 to have Q( £n+1) :Cn , L( £n+1) :Cn+1 . For

fOC,, Sy (F) g5 W (f) DG ; Welet t . () 45 ¢,,1(F)OC,

n+1 n+1
We define C(r)1 +1 (not yet Crl +1 ) asthe free multicategory on £n +1 with standard
amalgamation.
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To define d%=d2,.: P

n+1: Cn 1 Dn , amorphism of multicategories, we use the freeness of
C(r)1+1 : dO is defined on upper level objects as the identity:
d%: o, ,)=C, >QD)=C, is | dg. - Onlower level objects the effect o d2 is
forced by the required commutativity of
Oy 4 4p
S n+1) i d S n)
i dl o lT
O .
d

to be d’=T, weput, for adQ(C2,,)=C., d’(a)=T(a) =(d (a),c.(a)) .

On a generating arrow fDL(£n+1) :Cn+1’ we put dO(f) :dn+1(f) . Weneed to
0 ;0
havethat t  (d~(f))=d~(t
Dn £n+

T(dn+1(f)):T(cn+1(f)) , which reduces to dn(dn+1(f))=dn(cn+1(f)) and
cn( dn+1( f)) =cn( Cn+1( f)) , which are true by the assumptions we have made on
d C

(f)) ; but this means
1

n+l’' “n+l°-

_ 0,1y .
For 0C., . s£n+l(f)—Edn+1(f) 0, and sDn(d (f))=0_,,(f) O; aso, the

effect of d0 on the upper level objects is the identity; therefore, it is legitimate to define the

transition isomorphism 81 1s . (f)| 2> sy (d(f)) | (seesection 3) to be the
n+1 n

identity.

0
The freeness of Cn+1
0

dO: Cn w1 Dn , amorphism of multicategories, extending the determination of d0

given on £n+1 . In particular, dO is the identity on the upper level objects. However, d0 is

not, in general, a strict morphism, since Drl may have nonstandard amalgamation. We factor
0

d

on £n +1 ensures the existence and unigueness of

asin
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0 d
Cn+1 Dn
N o /
d
C / n+1
n+1

so that @ isan isomorphism which acts as the identity on objects and arrows (but may be
non-strict), and drl +1 is strict (see the end of section 2.). Thisis the definition of the desired

dn+1: Cn+1HDn . Since Cn+1 DC2+1 , by an isomorphism which is the identity on

objects and arrows, Crl +1 isalso freeon £ with possibly nonstandard amal gamation.

n+1’
We have completed the definition of S.

Putting Sn + 1:én , we produce a sequence of truncated multitopic sets Sn which togerther
define a full multitopic set S . The definition of the Sn and S isby anon-deterministic
recursion, with the data on the n-cells and their domains and codomains being parameters that
are to some extent arbitrary.
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7. The category of multitopes

Suppose S=( Cn, Cn, Dn, dn) S= (C C D d ) N are multitopic sets. A

nCN ’
morphism ®: S—S of multitopic sets consists of maps dJn: Crl eCn such that

d)n and (Dn 1 combine to induce a, necessarily unique, strict morphism of

multicategories Cn %Cn +17

and
the ®  arecompatible with the d's: ®__,.d =d -®

Because of the definition of Drl in terms of Cn and the d's, it follows that the dJn induce

astrict morphism D, — Dn

Under this definition of morphism, we have a category MsSet of multitopic sets, with obvious
composition and identities.

We are particularly interested in the terminal multitopic set 7 . Thisis obtained if we stipulate
that for each n , there be exactly one n-cell of any possible type; that is, exactly one 0-cell
altogether; exactly one 1-cell altogether; and for each n>1 , for each pair ( 3, b) DanCn
such that dB=db, cpB=cb, there be exactly one allC such that da=@, ca=b; in

n+1
other words that for each n=1 , the mapping Crl +1 ——>Q inthe diagram

/ \(dc)
SN Ac>

induced by the pullback Q:P = o Cn, be an isomorphism. It is easy to see, by
n-1 -1

going through the recursive buildup of any given multitopic set S as given in the previous
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section, that if 7 issuch as described, then thereisauniqgue map S—7 : 7 isterminal.

On the other hand, the existence of 7 as described is also assured by the same recursive
procedure. Note that in this case, the non-deterministic element of the recursion, the arbitrary

choice of the ( Cn d is eliminated by the condition given.

+1" 9n+1 Cnag)

Let us use the notations Cn:Cn(T) : Dn:Dn(T) : Cn:Cn(T) : Pn:Pn(T) ; we
continuetouse d, ¢ and i without further specifying tags both for 7 and for other
multitopic sets as they might come up. It will be convenient to have a new element * , and set

P ={*}.

Given an arbitrary multitopic set S, we use the notation ®: S—7 for the terminal map, as
well as for its various components. For any entity a in S, ®(a) isitstype.

The first remark isthat d: Cnépn- 1 ( n=0). Thisistruewhen n=0 and n=1.

Let n=2 . We know that

U

C.—P x C .
n n-1"P _,xC_,Nn-1
a —— (da,ca)
Therefore, it suffices to show that
Pr-1*p . xc. .Gn-1 - Pn-1
n-2 " "n-2
(B, b) B
But for (8, b) asshown,
db=df, cb=cf; 1)

and, by the definition of 7 , with any given BOP,
satisfying (1).

n- 1 thereisexactly one bUC 4

What the last-shown fact signifies is that the sets Crl may be dropped, the sets Pn may be
used for them as well. However, to avoid confusion, we continue to use the Cn . When
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poP. .. pisd t(pOC,.

Our aim here is to show that there is a specific category Mul tit ope , the category of
multitopes, such that the multitopic sets are the same as set-valued functorson Mul tit ope :

Mul titope

MSet ~ Set . Theobjectsof Mul titope arethe elements of the Prl for al

nONO{ - 1} (wewrite P_,={*}); Co(Multitope)= @ P

nD[Nﬂ*} "

In what follows, S denotes an (arbitrary) multitopic set, with the notation for its ingredients
we used before; ©: S—7, ®(a) isthetypeof a.

Given any pDPn_ 1 including the possibility p=* 0P 1 Cn( p) isthe set of n-cells of

type p: Cn(p) ={ aDCn: o(a)=p} for n=1, and Co(*):C0 for n=-1. Similarly,
for pDPn, let Pn(p) =( aDPn: o( a) =p} .

For emphasis, let uswrite [ p] , or even [ p] n (the subscriptis n, not n-1, since
[ o] n isthe "sort" for n-cells, not (n-1) -cells), for the object of Mul ti t ope

corresponding to pDPn_ 1 (n=0). For the Set -valued functor S: Mul ti t ope —> Set
corresponding to S, we will have S([ p] ) =C.(p) ; S(*)=C, .

To identify the arrows of Mul tit ope , we have to do more work.

(C)
For n=1, let uscall aDPn proper if a;tlb " for any bDCn_ 1 ie,if [od 20,
improper otherwise. For n=0, all aDPO:CO are proper. We use "proper", "improper" for

elements of Pn in asimilar way.

Note the following fact. To know a proper pasting diagram aDPn , 1t suffices to know its
type p=9( a) andthe n-cellsfilling its places; in other words,

(1) supposing that a, BDPn( p) have the same proper type p, and for all
pl b0 =1B0O=Ip0 , wehave b p)=[BLp) , then a=4.
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Thisisintuitively clear, and seen very easily by an induction on /h( (o) . Note, however,
that the assignment p+> [ [{ p) satisfies conditions, due to "links" within o ; therefore, to
determine a we need, beyond itstype p, asuitably "linked" filling out its places with
n-cells. Next, we give the description of these links.

Let n21, and pOP. . Recal that s (p)=[p0and s~ (p)=Mdp0; pd|pO isa
n Dn Cn

place where a "function-symbol”, [p[{p) , occursin p; r0|dpO isaplace wherea
"variable", [dp[{r) , occurs in p.If p:f(pl, C pm? , [pO isthe concatenation of
[f O and the Epi [J; we have the injections Ky =4, [, JTERE an : Epi —— [pL;

K, (j)=1+ ) Inh( EphE) +j : [p0O isthe coproduct of [ [] and the Epi [ viathe
h<i

coprojections v: | 0 —p: 11 andthe [T

Li nkl( p) isaset, specified below, of certain triples (p, g, s) , theso-called 1-links of
p,suchthat p,q0 |CpO , andfor

p=CpUp) , 9=Cp Q) , )

we have, in particular, sO |HpOd , and

[Mp(s) = cq. ©)
Intuitively, (p, g, s) OLi nk 1( p) means that the the function-symbol occurrence of
[(p{q) a q in p plugsdirectly into the occurrence of [p[{p) a p in p atthe place
s of the function-symbol [p[{ p) . To see an exmaple, let X, YDCn_ 1 & b, cDCrl ,
a: by, YO X, b: X, YO>Y, c: X, Y, YO>Y inthe multicategory Cn , and let
p =a(c(Xb(XY)),Y),b(al(Y,Y),Y)) 0P .
Then [pl¥I[4&, c, b, b,ald, and

Li nkl(p)z{(l,Z, 1),(2,3,2),(1,4,2),(4,5,1)};

for instance, (4,5, 1) OLi nkl( p) since the second occurrence of a , which isat place 5
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in p, plugs directly into the second occurrence of b , whichisat place 4 in p, and this
takes place at the 1st place of the function-symbol b .

Here is the formal, recursive, definition. When p isimproper, Li nkl(p) =0 . Let
p:f(pl, C. pn,} . We define
. m .
Li nk,(p) =_U1{(ui (p), y(a),s): (p,q,s)0Link,(p;)}
| =
0 {(1,ui(1),i): oL, nm, julye; 010} .

The terms of the first union are there because all the 1-links in the p; giverise to 1-linksin
p viathe maps [T the final term says that the head-occurrence (if any) of a
function-symbol in o which occurs at b, (1) in p,isplugged directly into the

head-occurrence of f in p, at the argument-place i of f .

(3) (under (2)) is seen immediately for (p, q, s) OLi nkl( p) .

Given p,let aOP_(p) . For pO |0 =Cp0 , let uswrite p for w{p) ; then
p=[p( p) =d(p) ; we have ;3Dcn(dp') . Given (p, q, s)OLi nk,(p) , wehave
[Hp ('s) =cq ; (3)

this is a consequence of (3). We claim that, conversely,

(4) given P proper, and for each p0 |Cp0 , acell apDCn(dp)
such that for every (p, q, s) OLi nkl(p) ,

(0C

EdapE(s)zca n-1)

q
then there is a unique 0P, (p) such that 6d§f (r{(p) =a, ( pUICp0 ).

The proof is arelatively straightforward induction.
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Next, Li nk2(p) will denote a set of certain triples (p, r,s) , the2-linksin p, such
that, amomg others, p0 |CpO , rO0|@Mp0 and, for p=Cp{p) , sOdpO ,

[dp(s) = CHp[(r) . ©)

Intuitively, the 2-links (p, r, s) arethose for which the variable-occurrencein p at r
plugs directly into the function-symbol occurrencein p at p, at the place s of the
function-symbol [p[{p) . For instance, let us consider the p taken as an example above, and
assume that as far as p and its subterms are concerned, the multicategory Cn has standard
amalgamation; in particular, an( p)=0X X, Y,Y,V,Y, YO, andinfact each i of the

seven places 1 to 7 referstothe i th occurrence from the left of an element of C._, in
p . (This assumption is, of course, not automatically true.) In this case, we have

Link2(p) =
{((2,1,1),(3,2,1),(3,3,2),(1,4,2),(5,5,1),(5,6,2),(4,7,2) }

Formally, we define Li nkz(p) as follows. When p isimproper, Li nk2(p) =0 . Let
p=f(pq -+ - Py - We have the amalgamating functions ¢, : s~ (p;) ——sx (P) |
n n

that is, qbi : Eﬁpi 0—— pl,

m
Link,(p) = \J{(H (p), ¢ (r),s): (p,r,s)OLink,(p;)}
1 =1

0 {(1,ui(1),i): o1, nm, | Lo, O =0}
(5) isimmediately seen.
It is easy to see that

(5) if p isproper, thenfor every r 0 [[[dp[] , thereisaunique
(p,r,s)0OLi nk2( p) with second component the given r .

Supposing that P, () , pO PO, p=CpL(p)=6(p) , and (p,r,s) OLinky(p)
we have
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Mp(s) = Mar), 6)
as a consequence of (5).

We are ready to define the category Mul tit ope . Aswe said, its objectsare [ p] n» one
for each nN, pOP, Next, we give generating arrows for Mul titope . They are

n-1-
: d5 p .
Multitope[1] [P a1 ! [dp] .
one for each n2-1, pOP_ and dp=d( Cp(p)) P, 4 ;
: p
Multitope[2] [ o] N+l [ dp] n

one for each n>-1 and pDPn .

Finally, we give defining relations that the generating arrows are to satisfy. These come in four
groups Mul titope[ 3] to Mul titope[6] .

Multitope[3]:

L] n+1

dp,E///// \\\\ip,q

[dp] , o [dd] . (7)

ddp,\é\N Z///édq

1615 1

one for each n>0 , pDPrl , and (p,q,s)0OLi nkl(p) . Note that the codomain of
ddp, s is [61] n-1 for 91: d( Mps)) , andthe codomain of qu is [92] n-1

for 62:d(dd) : by the fact that d(dq)=d(cq) , and by (3), we have 6,=6, , and o,
the diagram (7) makes sense.
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Multitope[4]:

LAl n+1

a4, p// \\Cp

[dp] , o [del (8)

ddpk /dp, ‘
N
n-1

[ 1]

one for each n>1, pDPrl , and (p,r,s)OLi nk2( p) . Note that the codomain of

dyp, s 15 [ Tq] g for 1y=d( [P(s)) . andthatof dy,  is [Tp] 1 for 1)=
d(Tdp(r)) , andby (5), 1,=T,, thus, (8) is meaningful.

Multitope[9] :
[Pl ha1
d / C
b1 S
[d1] o [dol . 9)
Cdi\ Cdp
[&] 1

one for each n>0, proper pDPn. Note that 10 |[pO ; iz[p[(l) . The codomain of
Cy1 is dd1, that of Cdp is ddp. We have ci:cp as a general, and obvious, rule for

al proper p . Therefore ddi:dci:dcp:ddp, thus, (9) is meaningful.
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Multitope[6] :

[1g]n+1
c
19
[dp] =lid], commutes: d; o 1€y =C; o€y
g9 g9
[da] 4
(Co) .
whenever glC_, . Note that lgzlg op, . ig=i _4(9)0P, 4. I0g0O={1},

Ogl{1l)=g, dig=dg.

The category Mul ti t ope isthe one whose arrows are generated by the generating arrows,
under the identification of arrows forced by the defining relations; briefly, the category whose
presentation was given above.

Given any multitopic set S, we may define S: Mul ti t ope ——Set asfollows. We put

S([ p] n) =Cn( p) . For the generating arrow in Mul ti t ope[ 1], we note that
S(LdP] . 1) =Cy_1(dpP) . andif aOS([ 0] ) =C(p) . then ayz¢dalP, 1(p) .
and for p=Ha{p) , ®(p)=p, and thus |5DCn_1(d|d) ; this means that we can define

é(dp, p):Cn(p)%Cn_l(db) : ar—p=Malp) .
Asfor Mul titope[2] ,
é(cp):Cn(p) ——C _,(dp) : ar—ca;

note that since d®( ca) =dc®( a) =dd®( a) =d®( da) =ddp, we have ®(ca)=dp, and so
caDCn_ 1(dp) :
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The diagrams which are the images under S of the onesin Mul tit ope[ 3] to
Mul titope[ 6] commute:

Mul titope[3]:

45, p \\\\\\dp,q

p q , (10)
ddp,\é\N Cdq
[Up [ s) =cq
1
(3")
Mul titope[4]:
a

dpp / Cp

b .

p ca , (11

ddp,s )
p [ s)=Mar)=0Mcal{r)

T

(5)

Mul titope[5]:

a
dp’/ \ K
1 ca

Cq1 Z///édp

cl=cda=cca

(12)



Mul titope[6]:

a
l ; (13)
C

the reason for the last equality is that now da=or=1f for some f DCn_ 1 and so

dda=i f DPn_ 1 cca=cda=f , andso [dcal{1l)=[ddal{1)=f=cca.

Therefore, the S: Mul tit ope ——Set iswell-defined.

It is clear that any arrow Y: SleS2 in MSet givesriseto anatura transformation
p: éleéz , whose components Cln( p) —> Czn( p) arethe restrictions of Y: Cﬂ;%Cﬁ .

We have afunctor =: MSet _ »Set Ml titope. S S, VW .

| omit the (easy) proof of the fact that = isfull and faithful.

Let usshow that Z issurjective on objects. Let TOSet Op , toconstruct SOMSet for

which S=T ; we are going to use the standard notation for S Ck:Ck( S) , etc.
We define COdgf T([*] 0) .

Let n=0 . Suppose we have constructed the n-truncation (see the previous section) Stn of
S, sothat

Sty =Ttn ; (14)

here we are using a self-explanatory notation. Stn involves k-cellsand k-pasting diagrams
foradl k=-1,0,...,n. Miltitopeln isthe category whose objects are the [ p] K for
pDPk , and for the same range of k , and whose arrows the arrows generated by the
generators and relationsin Mul titope[ 1] to Mul titope[ 6], withthevaueof n
appearingin Mul ti tope[ 1] to Multit ope[ 6] restricted to the range from O the
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present n (inclusive). Ttn isthe Set -valued functor on Mul ti t ope I'n which isthe
restriction of T . For the canonical functor =: Mul titopefn—Mil titope,TIn is
To=. (Incidentally, = isfull and faithful.)

Next, we define

(15) Cn+1 and dn+1: Cn+1ﬂpn’ Ch+l: Cn+1ﬂcn such that when
n>1, adso d_d =d _c c.d =c,C

n"n+l “n"n+l’ “n n+l "n n+1l"

weput Cp.q g @ (LAl ney) -
pDPn

Let pDPn , aldT([ p] r]Jrl) DCn+1 .

We let cn+1(a) =cad§fT(cp)(a) , for the arrow cp from Mul titope[2]. Since
caldT([ dp] n) , and (9), we have caDCn(dp) .
To define ?: a5 dn+1( a) :daDPn , we distinguish two cases. First, assume p is

(C)
improper; p:1g N for some gDCn_l. Thetype of a hastobe ®a=p ; thus,
(C)
azlc N for a suitable cDCn_1 for which ®(c) =g ; moreover, c=ca=cda=cca, and

_ _ (C)
caDCn( dp) were determined above. SO, let us define dadgf 1C for Cyafcca .

For n=1, weneed dda=dca, cda=cca.

We have dp=d(1g) =ig; for b=ca, wehave bOC (ig) ; so, db=if for some
fDCn_l; f=0db[{1) . Applying Mul titope[6] to T (and remembering (9)), we get
that [dcal{1l)=cca : read (13) asto imply the equality stated in it. This means that

dca=i cca. Also, dda:d(lc):i c=i cca. Therefore, dda=dca is established.
Since dazlc, cda=c ; cca=c by thedefinitionof ¢ ; cda=cca is established.
Second, assume p is proper. We now apply (4). We let ap d5f T(dp, ID)(a)

(pO 1 pO) . Thefactthat T respectsthe diagram Mul tit ope[ 3] (compare (10)) gives
that the condition in (4) is satisfied. Therefore, we have aDPn( pP) such that
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IO=EUE(IO)=T(dp, p)(a) foral pOCpO . Welet dayz;a .

To seethat cda=cca, it sufficestoinvoke the fact that T "satisfies® Mul ti t ope[ 5] ;
see (12).

We have dda, dcaDPn_ 1(dp) . To show the equality dda=dca , we distinguish two
cases. dp isproper (Casel), dp isimproper (Case 2).

Case 1. Let a=da, B=dca . We have that BDPn_l(dp) , and B satisfies the condition

p(s) =(B(r) foral (p,r,s)0Link,(p) , by Miltitope[4] appliedtoT.By
(6), and (5), thus [B(r)=Cda{r) foral rO|Mp0 , which means, by (1), that
p=da ; thisiswhat we wanted.

Case 2. Now, n- 1>1 . Any (improper) BDPn_l(dp) isdetermined by cf; if

Bl, BZDPn_ 1(dp) , and cBlchZ, then Bl:BZ. For Bl:dda, BZ:dca,
cBlzcdda = ccda = ccca = cdca,

T T T

1 2 3

where 1 and 3 hold by thelaw " cd=cc " holdingin Sfn, 2 by the fact that
cda=cca .

We have completed (15).

By what we have done in the previous section, we now have S=S r(n+l) , the
(n+1) -truncation of the desired S ; by recursion, we have the full S.

The construction of S clearly ensuresthat S=T, for the effect on both objects and arrows of
Mul titope.

This completes the proof that Mset ~Set Mil titope )

We develop a notation for multitopes.
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In what follows, we work in 7, the terminal multitopic set. To have a notation for cells and
pd's, we make the following decisions:

(i) We make each of the bijections dn: Crl QPn_ 1 ( n=0) equal the identity map.
(if) For elements of the free multicategory F( £) we may use Polish notation. That is,
instead of writing f(or1 ..... an) (fOL(L) , a; OA(F(L)) ), we may write
fal. 0 In particular, i f n=0, thenthetermisjust f . (It isknown that thereisno
loss of unique readability when we so omit all parentheses and commas. In a complex
expression, the key to decoding is to use the arity of each operation symbol. In our notation,
the arity will be contained in the notation of the operation symbol itself.) Alternatively, we
may use the original parenthesis’comma notation as well.
(iii) The ingredients of the notation of members of A( F( £)) are the elements of
(L) andthoseof L(L) . Thus, the ingredients for the elements of Pn:A( F Ln) )
( n21) aretheelementsof C =P _,, andthoseof C =P , . When
BDCn_ 1:Pn- 2 isused in Prl , weput B inbrackets [ ] ; when aDCn:Pn_ 1
Pn , weput a incurly brackets { } . When n=0, only the second part applies.
(iv) We denote the single element of CO=P_ 1 by * (aswe aready did above).

isused in

The above fixes the notation, with a choice of using Polish notation, or the parenthesis’comma
notation. The Polish normal form for the generating arrow BDanL( £n) =Pn_ 1 (n=l1l) as

it appearsin P =A(C)) is {B}[yq]...[y,] where [Bl=ly,,..., y,P,_5 . As
an abbreviation, we will write { g} for { B} [ yl] . VZ] . On the other hand, for
yDPn_ o, We have [ y] DPn In proper notation.

The single element of ClzPO is {*} . The elements of CZ:P1 are the expressions
{{*}}y{{*}}... {{*}}[*] , with zero or more parts of the form {{*}} . If
a={{*}{{*}}... . {{*}}[*] DP1:CZ:L(£2) DA(CZ) has ¢ occurrencesof {{*}} ,

then S (a) =S¢ (a)y=MdaFoFEH*}, {*},..., {*} DDCZ ( £ occurrences), and
2 2
t » (a)=t~ (a)={*}0C, . Consequently, an inductive definition of C,=P, isas
£2 02 1 2

follows:

(@ [{*}]0P,;
(b) if {{*}}{{*}}...{{*}}[*]DP1 has ¢ occurrencesof {*} , and

ag, ..., a,0P, . then {{{*}}{{*}}.. . {{*}}[*1ta ..., a,0pP, .
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Note that, for /=0, (b) gives {[*]} asan example of a member of P2 ; of coursg, itis
different from the one in (a).

To have an example, consider the 2-pd y considered in section 1; yDPZ( S) insome
multitopic set S that accommodates the cellsinvolved. Thetypeof y, ®( y) DP2 , isas

follows. Let us write upper bar for "type", x for ®(x) . Then
a=c=d=e={{*}}{{*}}[*]=¢0C,=P; , and b={{*}}{{*}}{{*}}[*]=n0C,=P, .
Thetypeof al of the f, is {*}DCI:P0 . Thus, abbreviating #=[{*}] , 43:{ o} ,
n={n} , we have

N N

V= G(O(H, d(N(H #, ), p(#,#))), #)
or, in Polish notation,

Y = Od#dnH b
or, without abbreviations,

y = {{{UPHO IO O O O L D )
{H{UPHUPHO I T T
{H{OPHU T OO LTI

Thisis not meant as a particularly intuitive representation; it is a Ssystematic notation
well-suited for mechanical manipulation.

The inductive definition of Prl and c(a) for aDPn isthis:
(@ forany yiP ., [VI0OP,; and c[y]={y}UP_;:

(b) whenever BDPn_l, EBE:I:Dyl ..... Yy DDP:I_Z, a; DPn, ca;=y; , we
have {B}al. . OIKDPn and c({B}al. .. az) =dg.

For d on Pn, we have
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d( alopaz) = (dal) up(daz)
whenever pD\EchrlD . Also, d({p})=p and d([ y])={y} for BDPn_l, yDPn_Z.

We look at the types of the 3-cells considered in subsection 1.6 of section 1. Let'suse ¢, 43 ,
# asabove, o={{*}}[*] , 0={ 0} . Wehave f=h=¢, i =g=0, a=¢#0H# , B=¢oH# :
also, Bmla:Bu1&:$5#6#; a, B, BoyalP, . For the3-cells u, v, wehave u=a,
v=p, both elements of (;3:|:>2 . The 3-pd ¢’:V°1u:V( u(h,i),9) (from 1.6 too),
p={BH{at[ gl [ [ ={pon#}{g#art[¢][d[a ;
dy = BEI:LE{ = 435#5# :

Also, B =¢#oH=a, V' =f , @ =V’ oqu=v’ (u(h,i),g) , and

¢ ={a}{a[ 4] [0 [a] ={p#os{d#om}[¢][ol[ 0] ;
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Appendix

We prove the if direction of 3.(1). We use the notation introduced in and before the statement
of 3.(1). On the basisof thedata £, C, F definedon £, and EBf q oL satisfying the
conditions in the definition of the free multicategory, we have to define F: C—>D, including

00 L oA -

Wewrite s, t, O, L, A for ScTS tC:tL’ Ao =00L , L(L , AO ,
respectively. Let'swrite O for (D) , A for A(D) , X for F(X) (XOJO), f for F(f)
( fOA) . Wewill write s(p) , t(p) for sD(B) : tD(B) , respectively, when BOA.

We define a = F(a) by structural recursion.

CXO>X.

If azlxz XO-> X, welet 1X
Assumethat fOL, [s(f)[=[1,n], Ao anDA,t(ai):(s(f)(i))';thus,
a=f ( a) =f (ag, ..., a,) iswell-defined. Consider

9 . F |:| £

L Fos(f) ———s(f), (N

and write i for Bf(i) , and jw for 912 1(j) (i,j002,n] ). Assume that 6{i IS
defined for al i [ 1, n] , and t(é{i ) =(t( a; )) ' (induction hypothesis). We let

a = ff(&w, a.,..., a) = ff(&wll, al2,..., a./n)
1 2 n 1 2 n

We observe that this is well-defined:

t(ajw)=(t7—ﬂajw =(s(f) (1)) =s(F) (6 (i) =s(F) (i)
1

*
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here, the equality marked * isthe content of (1). Also,

t(a)=t(f)=(T(F)) =(T(Qa)) . Thiscompletesthe definition of the mapping

a—a=F(a) .

Next, we define Ba: Fos(a) %s(&) . For azlx, there is no choice. Consider

N

a=f (d) asabove. Let a=Chy, . . ., a_0, and

¢ = o\t ds(a) Hos(a)
[l

& = o D1f dls(a) —os(a)

arrowsin d& : 6& , respectively. We know that the morphisms qu are coprojections
making s( a) acoproduct of the s(&j) in 6# . Therefore, there is a uniquely determined

morphism Ga: Fos(a) —s(a) forwhich the following diagram in 6& commutes for
each j [ 1, n] :

C]
Fos( Q) a s(a)
¢jw o ¢7j )
Fos(a.) s(a.)
j %.. j

j
it isalso clear that 90{ is an isomorphism. This completes the definition of the Ga.

We need to verify the requisite propertiesof F: C-—>D defined by the above specifications.
First, we show

@) =T ppe B ©

here, p= Ga( p) .
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We employ a structural induction on a . When azlx , the assertion is obvioudly true. Let

a=f (a) , with al the accompanying notation used above. Assume that a- _f3 is
well-defined. There are uniquely determined i 0O 1, n] and qO |s( a; ) | for which
p=c,bi (q) ; theassociative law, in the form applying to a sSimultaneous composition, gives
that

aopB = f(or1 ..... a4, 0 qu, A fqree e an) : 4
Let j=i ; jN:i . According to the definition of y-— y, we have
a. p=f(a.1,..., a J@-1,0 0 Blj,a g+, ..., a_ /n) (5
Pro (i-1) A G n
Let qzeai (q) ; by theinduction hypothesis,
G B B ©)

Consider the diagram (2), and chase the element q in the lower left corner. We obtain that

¢j (g)=p . Since we have

we get, by associativity in D, that

ao B=f(a.l1l,..., a N/(j-l),&ioj/j,&_ Jj+1, .., a lny (7)
p 1 (j-1) q (j+1) n

which, after a comparison with (5) and (6), gives (3).

It remains to show that the 6 o satisfy the coherence condition in 2.(v).
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We consider a=f (a) and o B as before; we write f(a') to abbreviate the right-hand

sideof (4), f(a ) for the right-hand side of (5) (equivalently, (7)). We want to prove the

commutativitiesin

0
(Fes(a))\p a
1] o?
Fos(a B “pP
¢ o?
Fos(B)
%%

What we have to go on are the following facts. First, as the induction hypothesis, the

commutativities

4

s( B)

(Fos(a;))\q
% °
Gai .
Fes(a; <)
ﬂ o
Fos(B )
%%

s( B)

S(ETB) =s(a<>pB)

(8)

(9)

where we used the notations Jl&)ﬁ/rfﬁ in the obvious senses. Second, we have the coherence
conditions associated with associativity, bothin C and D, to wit
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P
¢’kl ]
(11)

Y
Wl ] o
(13)

s(a)\p
(k¢i,€=9f(k))
> Y

~ s(a- P
p
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Further, we have the definition of 6 a in terms of the diagrams (2), that is

C] C]
Fos( a) a s( @) Fos( a) a s( @)
¢; o ‘ﬁj O o @g (14
Fos( a. a. Fo o
S(O!I) Qai S(O!I) S(O{k) Qak S(O{k)

and the definition of 90°p329f(5’) , thatis

0, o 0, o
F°S(G°pﬁ) s(ao _p) F°S(G°pﬁ) s(ae _p)

p p
¢; o ¢7j P o ¢7’g (15)
Fos(a; o B) s(a; o B) Fos(ay) s(ay)
I q Gai i g k Gak k

Let us remark that in each of these diagram, we actually have functions on sets, and as
functions of sets, e.g. d)i :s(ai ) —s(a) and ¢i : F<>s(ori ) —Feos(a) arethe same,
namely d)i: \s(ai) —>Is(a) | .

Consider the upper commutativity in (8). s( a)\ p isthe coproduct of s(ai )\q and
s( ak) (k#i) viathe coprojections ¢i M, ¢k ; therefore, the required commutativity is

proved if we can show that it holds when we precompose it with the said coprojections.

We observe (not without a certain amount of experimentation) that using some of the diagrams
above, we can fit together the cube
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Mg 14 12
S
/ 15 /

in which the front face is (8) upper (the one we want to see commute), the left face is (10)
upper, the right face is (12) upper, the bottom face is (15) left, the top face is (14) left, and the
back face is (9) upper. All of these, except the front face, commute. It follows that the front
face commutes when precomposed by the left upper edge, which is ¢i I thisisthe first
thing we want. As far as precomposing with ¢k ( k#1) isconcerned, the back face of the
cube collapses, and we get

\ 14 \
; - / -
here again, the front face is (8) upper, the left face is (11), the right face is (13), the bottom

face is (15) right, the top face is (14) right; thus, we again have the desired concluson. As we
said, this shows the commutativity of (8) upper.

The proof for (8) lower is left to the reader.

This completes the proof of the existence of the morphism F: C-—>D; the uniquenessof F is
clear from what we have seen.

Next, the proofs of some lemmas in section 4 are provided.
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Proof of 4.(6) Lemma:
We employ induction according to 3.(2).
If azlx, then |[[Co[0 isempty; the assertion is vacuoudly true.

Let or:g(B1 ..... Bnq? , with gL ; m :Zh(s(Bi )) . There aretwo cases. p=1 (Case
1), p#l (Case 2) .

InCase1l,wehave f=[r[{1)=g and n=m; weput o =1x where X=t (g) , and
a; :Bi (10[1,m ); (1) isclear.

In Case 2, by (1), thereis i [ 1, ] suchthat pO \EBi [0 . By assumption, we have
Bi =yorf(al, C an)

for suitable vy, r, A, oo Q- Then for

6déf g( Bl’ Lo BI -1 1Y, Bl 4+ Bn.? ,
Sdéff(al’ L),
Saef i L9 By - B i1 Ly By BJ(1) O is(9) 1,
O 55 0°gV=0(By - B 1 Vi B B.)
[ o' iswell-defined since t (y) =t (B) I,
qdéf pLS v, r](r),

we have 4.(2):
a oqf(al, o an) =(004Y) °qf = 0o ( yoqs) =0 B =a.

This completes the proof.
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Proof of 4.(7) Lemma:

For the proof, let us first make a general statement. Given an identity
9(By. - By =nogé

with gL , Bl ..... Bm n, é0A, it follows that

either r/=1x and g(B1 ..... Bn’? =,
or for unique i O[ 1, n , ﬁ and t O \s(ﬁ)\ , we have

B =Boy & ad n=g(By, - B .1 B B yqo-- By

andfor ¢; =¢, [9; By, - . -, Bi 1 ﬁ Bi y1:-- - B, . wehave s=¢, (1) .

Thisis proved by an induction on n , according to 3.(2); no separatedness is involved.

Let fOL, n=¢h(s(f)) , B=(By. ..., B . 8=(3y. ..., 5) . F(B . (9
well-defined. Assume

e=a ) () =ye4f ()
and ¢ isseparated, to show that a:y,§=3 and p=gq. Wedo aninductionon o .

Let first azlx; X=t (f) necessarily. Then E:f(ﬁ) f y=1Y, then Y=X=t (f) ,
and a=y. Otherwise, ||y]|20, and ||y||n||f (&) ||=0. andso f0O|y|| ; but y=g( y)
for asuitable gOL, yOA , and o yoqf(S):g(ﬁ) for a suitable AOA

e=f ( B) =y<>qf ( 3) =g( ﬁ) isimpossible; contradiction.

Next, a=g(a) , gOL, a=( ag, - a) 0" . Thenforaunique i O[ 1, n{ , for

¢i =¢i [ g, 5] , and for aunique r [ \s(ori ) |, we have p=¢i (r) , andfor
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&zai orf(B) , we have

szaopf(ﬁ) =g(ag, - O 1, 0,0 g, an -

Since ¢ isseparated, we have that g#f .
€=V°qf(5)=g(al,...ai_1, a, Qg a)
implies that

either y=1X and E:f(S) , acaseexcluded by f #g ;
or forsome jO[1,n-{i}, a and sOIs(a)! ,we have q =&osf(3) , acase
again excluded since ||orj |[n||a]|=0 by the separatedness of ¢ ;

or for some a and sOIs(a) | ,we have &zﬁrosf(c%) and
yzg(orl,...ori_l,ér,ori+1 ..... an

PETRERE anJ , we have (f)i(s):q.

_Q>
Q

and for ‘i’i =p[giaq, ... 0 4,

In this case, we have &:ai o f ( B) :&osf (&) . By the induction hypothesis applied to

a; , weget a =a,r=s and =4. Butthen

‘i’i=¢i[g;al,...ai_l,&,ai+1 ..... a.]
=g, [giay, ... 0 1,0, 0 4, .., al=¢;

p=¢ (r)=¢(s) =q,

and



and the proof is complete.

Proof of 4.(10) Lemma:
Assume first that f Of|al| . Write a inthe form 4.(2), with o abbreviating ay, . . ., a

a=a oqf(ﬁ) :

and

aog y=d oqy(ﬁ)

We havethat s( a) isthecoproduct of s(a’ ) andthe s(ai) (100 1,n]) , viathe
amalgamating maps

Uagr¥la  f(a),al:s(a) >s(a),
g5 Lo f(a),al:s(f(a)) >s(a) .

Therefore, we have the two mutually exclusive cases r Ol m( ) (Case 1), and r Ol n( ¢)

(Case 2). Leaving aside the easier Case 1, we take up Case 2. s(f ( 5) ) isthe coproduct of
the s(ori ) (i0[1,n]) , viathe maps

¢, =¢: [f,a]:s(a) ——s(f(a)) .
Wehave r = ¢(s) for auniquely determined s ; and s=¢i (t) for uniquely determined

i and t . Two applications of the associative law (one of the original form, the other of the
form related to simultaneous composition) give that

a0 B=(a oot (a) o B=a o (f(a) P =
a o f(or1 ..... a4, 0 otB, A fqree e an)
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Therefore,

(oo Bopy=a oqy(ag, ..., O 1o 0o BO s a) - (1)

On the other hand,
aogy = o | a) .

Comparing d(a" < Y a)) and d( o oqf(a)) , by 4.(4) we see that they are equal,

because d( y)=d(f) ; aso, ¢[ o, y(a),ql=¢[ o ,f(q), q]=¢, and similarly for the
Y's. Therefore,

(o y) o B= (0 o qU @) o B=a oo () ogh) |

with the same s as the one determined above. For smilar reasons, we have, for the same i
and t asabove,

(a) B - y( al ..... O{I -1 O{I Ot B, O{I +1' O{n)
and so,
(aop y) o B = oqy( Agoeees A o 0oy Bty q0e e s, a,) (2
(1) and (2) confirm the desired equality (oror B) 0f Y = (on:|f Y) °r B.

We will not consider Case 1, neither the second case in the lemma, fO|B||, and take 4.(10)
as having been proved.
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Proof of 4.(11) Lemma:

In the possession of 4.(10), we can perform an induction on o , in the sense of showing the
equalities for azlx and oL , and assuming themfor & and € inplace of a, with al
other parameters unconstrained, we prove it for a:5°r €. Since A istheleast set
containing all lx, L and closed under the operations ( 9, €) Hc‘ior €, thisisavalid
procedure.

The basis case =1, isvacuous. Let a=h0OL . Then gO||a|| would mean g=h, and
since fO|[al|, f=h=g; however, fO||ac B|| and gOf|acy B|, contradiction. It
remains to consider the case gU||B|| . Since acy B iswell-defined, h=f , and acy B=B.
Both (on:uf B) ':'gV and on:uf(Bugy) are equal to Bmgy.

For the induction step, we let a=8- ¢, and distinguish, because of lall=|| 8| €]| . the
following six mutually exclusive and jointly exhaustive cases:

[1]: t0[sll . gollo]l ;
[2): t0[gll . gOllell ;
[3]: t0/ell, go|lo]l ;
[4]: t0/ell . gOllell ;
[5]: tollell . gollgll ;
[6]: t0/ell . g0||Bll -
[1] : we want to show: ((5ors)ufﬁ)ugy3((5ore)ugy)ufﬁ;
T
we have:

|
(8, &) o Bogy = (33 B) > &)myy = (33 Bogy) = ¢
]
((3ogV)cg B ope = ((8gV) o &)y B = (8¢, &) o V) B :

all equalities except the one marked (*) which is the induction hypothesis for o , are valid
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instances of 4.(10), sometimes used "backwards'.

—
(2] : (8, &5 BogyE (8, o Neh
(.

|
(8, &) o Bogy = (53 B) = &) myy = (5B =, (eay))

1 |
= (8, (eogN) B = (8¢, &) myV) B :

in this case, the induction hypothesis is not used.

|
[3]: (8, &5 BogyE (3, o Neh
]

|
(8, &) o Bogy = (8 (e B)oyy = (80y) =, (et B)

]
= ((9gV) °r &) B = (8¢ &) oV B -

|
[4]: (8, o BogyE (8, o Neh
(.
|
(8, &) o Bogy = (8 (e B)myy = &, (e B ogy)

1 |
= 6o ((eogNog B = (8¢, (eagn)opB = (82 o B -

—
[5]: (8, &) o Bogy= (8o &) e (Bayy)
1]
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|
((3ep &) Byogy = ((Oo B) o &) ogy = (0o B)ogy) o €
T__
= (8¢ (BogV) ey & = (9o &) o (Bagy)

|
[6]: (8, &) 0 Bogy = (8 &) o (Bayy)
1]

|
(8, &) o Bogy = (& (e B)myy = &, (e B ogy)
1]

= &0, (e (Bagy) = (&, &) (Bayy)

This completes the proof of 4.(11).

Proof of 4.(12) Lemma:

Assume £1 , £2 are languages with 0(51) = £2) . Temporarily, we will mean by an

morphism H: £1 eﬂz of languages a mapping H: A( £1) - A( £2) such that

sﬁ(H(f)):sﬁ(f) and t£( H(f)):tﬁ(f) for all fDL(ﬁl) (thus, we do not consider
2 1 2 1

any action on the objects themselves now). Note that an "ample expansion" F: C>C redricts

to a morphism LSL.

We first choose a language £ with a morphism F: LSL (as described) such that for every
fOL there areinfinitely many f OL=L(£) with F(f)=f . Take C=F(L) to bethe free
multicategory on L , say, with standard amalgamation. Using Gg:i ds( 9) for al gDﬁ ,
we have a uniquely determined morphism FO: F( L) —>C of multicategories for which

FO( g) =F(g) asgiven to begin with, for each gDI: , and whose transition isomorphisms, at
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each gDI: , areidentities. "Twist" Z( 2) by using the transition isomorphisms of FO ; that
is, use the factorization of F0 into an isomorphism ® which is the identity on objects and
arrows, and a strict morphism asin 2.

F

A

(L) 0

N

C isfree aswel [, since, by the characterization 3.(1), being free is invariant under twisting (or,

C

because éEf:). F: C>C isthe desired ample expansion. We define d: C>E asthe

composite d=d-F ; d isastrict morphism which is the identity on objects;

Proof of 4.(13) Lemma:
The proof is by inductionon a .

If azlx, lex IS the necessary choice. Let a:f(al, C an) . We apply the induction
i there is separated BlDA with F(B;)=a; such
that | nl[B,[|#0; thereis BZDA with F(B,)=a, and |[B,|ln(10][B D=0 ... ;

there is BnDA with F( ) =a, and [[B,[ln(1O[[B,|OlIB, 0. - . Df[B,. 11 =0 . Now,

let 3=1 0| B, [|0]|B,[0. - . DI[B, || - By assumption, there is g0l suchthat g0y, and

hypothesis successively to Ao -on @

F(g) =F(f) . Inparticular, s(g)=s(f) . Thus, B= g(Bl, Ce Bn) DA is well-defined,
and sincethe sets {g} , ||B1l. lIB,ll .- - .. [IB,Il arepairwisedigoint, B is separated.
Also, the construction ensures that ||B|[n1 =0 . Since F isamorphism,

F(B)=F(g) ( F( Bl), T Bn) ) =a . The proof is complete.
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