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Introduction

In [B/D2] and [B/D3], John C. Baez and James Dolan have introduced a concept of weak

higher dimensional category. The present paper is inspired by the work of Baez and Dolan. It

is the first of two papers in which a modification of the Baez/Dolan proposal is offered and

described in detail.

There are other proposals for related concepts; see [Ba], [T].

The problem of the identification of the weak higher dimensional categories has been

recognized for some time; see e.g. [S1], [S2], [S3], [S4] . The motivations for the Baez/Dolan

work were described in [B/D1]. In [M2], the second author of this paper describes another

motivation, one that relates higher dimensional categories to the foundations of mathematics.

In [M2], a program for a new type-theoretical foundation, termed structuralist, is described in

which there is a hierarchy of totalities of higher and higher dimensions, starting with sets. In

this framework, sets are taken to be totalities with an equality predicate. However, no equality

is assumed between elements of different sets, and, essentially as a consequence, no equality of

sets is contemplated. Because of this, sets do not form a set, or even a set-like totality like a

class. Instead, sets form a category, the category of sets; and the role of equality as principle

of identity is taken over by isomorphism, a concept derived from the structure of category.

When we say that equality of objects is not part of the structure of the category, we have in

mind a notion of category that is not the same as the one we deal with on the basis of the

standard set-theoretical foundation. The negative statement of the denial of equality can be

given objective content only by specifying a suitably constrained language to be adopted as the

formal language of the structuralist foundation. The work [M3] proposes First Order Logic

with Dependent Sorts (FOLDS) as the basis for such a language.

Classically, categories form 2-categories; the latter concept can already be found in [M L]. The

structuralist foundation involves the program of revising category-theoretical concepts in

which equality of objects of a category is used by replacing that equality by specified

isomorphisms of objects. As a matter of fact, it has been widely accepted among category

theorists that equality of objects should be avoided; the tendency to replace equality of objects

by isomorphism is a common one in category theory. Jean Benabou's notion [Be] of bicategory

is an instance of this tendency. In the case of a 2-category, the 1-arrows from a fixed 0-cell to

another 0-cell form a(n ordinary) category. Applying the "isomorphisms-for-equality"
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treatment to the part of the definition of 2-category which explicitly refers to equality of

1-arrows (e.g., the the associative law of composition of 1-arrows) results in the concept of

bicategory. We do not simply require the existence of certain isomorphism-2-arrows, but

introduce specified ones (coherence isomorphisms), and we attach them to the structure.

Furthermore, certain natural coherence conditions are imposed on the coherence isomorphisms

(the Mac Lane pentagon is an example; see [M L], p. 158, formulated for monoidal categories,

that is, bicategories with a single 0-cell). It should be emphasized that the concept of

bicategory was motivated in the first place by more mathematical considerations than the ones

connected to the structuralist foundation. Bicategories have turned out to be extremely useful,

and a great deal more flexible than 2-categories.

The paper [M1] deals with a more elementary instance of replacing equality of objects by

isomorphism; the notion of (saturated) anafunctor is introduced, in which the value-object of

a(n ana)functor at any given argument-object is determined (strictly) up to isomorphism.

Anafunctors are "mathematically equivalent" to functors, but only at the cost of an application

of the Axiom of Choice. The replacement of the composition-functors in the definition of a

bicategory by anafunctors results in anabicategories, which are held, in [M1] and [M3], to be

the right concept for totalities of categories, at least from the point of view of the structuralist

foundation. Saturated anabicategories are equivalent to bicategories, again via Choice.

Saturated anabicategories are equivalent in a canonical manner, without the use of Choice, to

the Baez/Dolan weak 2-categories, and the multitopic 2-categories that the sequel to this paper

will describe.

Besides being the first answer to a long-standing problem, the Baez/Dolan proposal has several

remarkable features. The main one is a complete elimination of explicit lists of coherence

structure and conditions. This feature is already fully apparent when one looks at the case

n=2 , a Baez/Dolan weak 2-category. It is related to a bicategory as a fibration is related to a

pseudo-functor [G]. The coherence isomorphisms and conditions present in the definition of

pseudo-functor are, in the corresponding fibration, eliminated in favor of a structure defined by

a universal property, that of Cartesian arrows. Such an elimination of coherence takes place in

a Baez/Dolan (B/D) weak n-category as well, for all n . For n=2 , the composition of

1-cells is defined by a universal property, and accordingly, its result, the composite, is not a

uniquely defined thing, but one which is determined up to isomorphism; recall that the last

feature is present also in anabicategories. There are no coherence isomorphisms (such as the

associativity isomorphism), no coherence conditions (such as Mac Lane's pentagon). The way

this is achieved is similar to the case of fibrations inasmuch one adds more entities to the
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original (pseudo-functor, respectively, bicategory) to get the new structure (fibration,

respectively, B/D weak 2-category). In the case of a fibration, the arrows between objects in

different fibers of the total category are new with respect to the data of the pseudo-functor. In

the case of the B/D weak 2-category, we have 2-cells whose domain is a composable string of

1-cells, of arbitrary finite lengths in fact, instead of just a single 1-cell. These "multi-arrows"

are new entities with respect to the corresponding (ana)bicategory, and they are taken away

when one passes from the B/D 2-category to the corresponding bicategory; of course, before

being taken away, they are used to define the data for the bicategory.

Multitopic higher dimensional categories, as we will call the objects that we intend to

introduce, will share the above general aspects of the Baez/Dolan weak higher dimensional

categories.

Although the proposal to be explained here was directly inspired by the B/D proposal, its

exposition will not make this fact clear. In fact, at the present time, we do not see the precise

equivalence of the two proposals. A conspicuous difference is the absence here, and the

presence in [B/D3], of actions of permutation groups. It is possible to introduce an "up to

isomorphism" variant of the basic notion of multicategory used in this paper (more on this will

follow soon); this higher-dimensional variant of "multicategory" (in which, for instance,

isomorphisms between arrows in a multicategory would appear) seems more directly related to

[B/D3] than what is found here.

On the other hand, even if there are close ties between the proposal of [B/D3] and that of this

paper, their mathematical forms are entirely different. The [B/D3] concept is abstract and

conceptual; ours here is concrete and geometric.

The above description concerning the 2-dimensional case already indicates the starting point of

the approach of the present paper. We define a concept of k-dimensional cell, or k-cell, for

all k=0, 1, 2, 3, ... , in an inductive way. For k>0 , a k-cell has a domain and a

codomain; the codomain is an (k-1)-cell, but the domain is a pasting diagram of

(k-1)-cells. The inductive character of the definition lies in the definition of pasting

diagrams. These are related to what go under the same name in the literature (see e.g. [P1],

[P2]), but are greatly simplified by the fact that the codomains of cells is always a single cell.

Despite the fact that the Baez/Dolan concept is not explained in terms of cells whose domains

are pasting diagrams of lower cells, the crucial restriction to single-cell codomains also

originates in [B/D3].
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The present paper's approach is consciously geometrical. At the same time, great care is taken

to express everything in algebraic terms. The main algebraic tool we use is the concept of

multicategory, a modified form of the same-named notion introduced by Joachim Lambek in

1969; see [L1] and [L2]. It is worth remarking that one of the first uses Lambek made of

multicategories was to proof-theory, for an algebraic formulation of Gentzen's proof-system for

intuitionistic propositional logic.

Lambek's concept is closely related to monoidal categories. A multicategory may be said to be

mathematically equivalent to a strictly associative monoidal category in which the monoid of

the objects under the tensor-product is a free monoid (on the objects of the multicategory as

generators). In a multicategory, we have objects and arrows; each arrow has a source which is

a finite tuple of objects, and a target, a single object. The main distinguishing point about the

notion of multicategory is that it is phrased in terms of a composition, a ternary operation, two

of whose arguments are arrows, the third being the place where the target of one the arrows is

to fit into the source of the other; of course, the result of composition is an arrow. From the

point of view of the arrows, we have a system of binary compositions. Two of the laws are an

associative law and a commutative law of composition as in the ordinary binary case, but

suitably decorated with places.

We generalize Lambek's notion in two steps, one major and a minor. The major step is to

make explicit and generalize the amalgamation that takes place in composition. When two

arrows are composed, the source of the composite results by amalgamating the sources of the

original arrows in a certain way. In the Lambek case, this amalgamation is the standard one of

inserting the source of one of the arrows into the source of the other at the given place. In the

generalized concept, the amalgamation is made arbitrary, subject to certain laws. It should be

noted that for the precise statement of the laws of multicategory, one has to make an explicit

reference to this amalgamation already in Lambek's case. Lambek does not make the

amalgamation explicit, but there is an acknowledgement of the resulting incompleteness of the

formulation in lines 12 and 11 from the bottom on p.222 of [L2].

It does not seem possible to relate the general concept of multicategory with that of monoidal

category as closely as in the case of the Lambek multicategory. The new concept is

"essentially geometric"; it has geometric instances (see below), but it does not seem to have

"semantical" instances, apart from the standard Lambek case, which does have many

"semantical" examples.
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On the other hand, the generalized concept is a mild generalization. This is witnessed by the

fact that the free multicategory in the Lambek sense on a set of objects and generating arrows

is also the free multicategory on the same generating data in the generalized sense.

The main point of the new notion is that multicategories with non-standard amalgamation

appear in nature. The multicategory of function-replacement derived from a free multicategory

plays a central role in our work; it is needed for the definition of the domain, a

(k-1)-pasting diagram, of a k-pasting diagram.

The first section of the paper is an extended informal introduction. After the next three

sections on multicategories, on morphisms of multicategories, and free multicategories,

respectively, section 5 gives the construction of the multicategory of function-replacement.

Section 6 uses the preceding machinery to put together the definition of multitopic set, the

main notion arrived at in this paper. A multitopic n-category, the main object we want, will,

in the sequel to this paper, be defined as an (n+1)-dimensional multitopic set with additional

properties; no new data are needed. Baez and Dolan used opetopic sets instead; the name of

their notion is derived from operads, the abstract algebraic concept at the basis of their work.

Let us note that by a multitopic set. we mean what also could be called an ω-dimensional

multitopic set; an n-dimensional one is in fact a truncated one.

Section 7 identifies a particular category, the category Multitope of multitopes, and

identifies multitopic sets defined in the section 6 as set-valued functors on the category of

multitopes. More precisely, we prove that MSet , the naturally defined category of multitopic

sets, is equivalent to the category of functors from Multitope to Set . Multitope is

related to the terminal object T of MSet . The objects of Multitope are identical to the

pasting diagrams of the multitopic set T ; on the other hand, the identification of the arrows of

Multitope takes additional work. It should be emphasized that all the complexity involved

in the definition of multitopic sets in general is already present in the definition of the terminal

one , T , despite the fact that this object is absolutely uniquely given.

The category Multitope and, for any n=0,1,2,..., its truncation Multitope[n]

to include k-pasting diagrams of T for k=0, ..., n , are fundamental from the point of

view taken in this paper. In [M3], a concept of L-equivalence, for variable signatures L for

FOLDS, is introduced, and it is shown that, when used in conjunction with the ana-concepts of
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[M1], L-equivalence becomes identified with categorical equivalence in many cases, for

instance in the case of biequivalence for bicategories. Multitope[n] is the

FOLDS-signature for multitopic n-sets. In view of the fact that multitopic n-categories are

multitopic n-sets with additional properties formulated in FOLDS, Multitope[n] is the

FOLDS-signature also for multitopic n-categories. Thus, now, even before we have given the

further details of the definition of multitopic n-category, we have a notion of equivalence of

multitopic n-categories. In Baez's and Dolan's work, we also find a notion of equivalence for

weak n-categories. The comparison awaits further work.

The Appendix contains some details of proofs for sections 4 and 5.

It should be emphasized that this paper is only a part, in fact, just a beginning, of the work of

establishing the concept of weak higher dimensional category. Even when we have the full

definition (which is given by [B/D3], and promised, in a modified form, to be given by the

sequel to this paper), the accompanying structures are still to be provided.

The second author thanks Marek Zawadowski for extended discussions, and valuable

suggestions. He thanks members of the Department of Mathematics of the University of New

Hampshire, especially Donovan van Osdol and Steven Shnider, and the BRICS group of the

Department of Computer Science of Aarhus University, in particular Carsten Butz, Prakash

Panangaden and Glynn Winskel, for their kind hospitality and their interest in the work

presented here.
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1. An informal description

1.1. n–graphs and multitopic sets.

In the classical, strict, concept of higher-dimensional category (HDC), an HDC A consists of

k-cells in each of several dimensions k , where k ranges over a set {0, ..., n}

( n-category), or over all natural numbers ( ω-category). Let us denote the class of all k-cells

of A by C . For k>0 , each k-cell a is "based on" two (k-1)-cells, the domain dak
and codomain ca of a ; when b=da , c=ca , we write a:bA�@c ; we have the

assignments d =d:C A�@C , c =c:C A�@C as part of the structure of the HDCk k k-1 k k k-1
A . The part of the structure of A so far described is an n-graph in the case of

" n-category", ω-graph in the case of " ω-category"; the data for an n-graph can be

summarized in the diagram.

d d d1 2 nM���������N M���������N M���������NC C C ... C C (1)0M���������N 1M���������N 2 n-1M���������N nc c c1 2 n

A feature of n-graphs, is globularity: for any a∈ C , k≥1 , b=da and c=ca must bek
parallel, that is, either k-1=0 , or else db=dc , cb=cc :

bA�����@e fA�����@c

where e=db=dc , f=cb=cc . Put another way,

dd=dc , dc=cc , (2)

where d and c ambiguously denote any of the domain, respectively codomain maps

d :C A�@C , c :C A�@C , with the restriction that the composites intendedk k k-1 k k k-1
should be meaningful. n-graphs are defined by having data as in (1), the domain/codomain

assignments satisfying globularity (2). An n-category (in the usual sense) has several

additional operations of composition; see, e.g., [S2].
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The notion of HDC of the present paper will retain the above general features, except for one

thing: the domain of a cell is no longer a cell itself; rather, it is a pasting diagram (see below)

of cells. Note the asymmetry: we only mentioned "domain", not "codomain"; codomains will

remain single cells.

The role of n-graphs is taken up by ( n-dimensional) multitopic sets; below, there will be an

explanation for the choice of the name of the concept. The data for a multitopic set are

summarized in the diagram

d d dP M������NP M������NP ... P M������NP ...0i � 1i � 2 ki � k+1	d � 	d � 	d �O 	 � O 	 � O O 	 � O� � � � � � � �i� c� 	 i� c� 	 i� i� c� 	 i�� � 	 � � 	 � � � 	 �� + 	 � + 	 � � + 	 �I I IC M������NC M������NC ... C M������NC ...0 c 1 c 2 k c k+1

where C is the set of k-cells, P the set of k-dimensional pasting diagrams ( k-pd's fork k
short), each i is an inclusion map, and the d and c are domain and codomain maps. All

meaningful instances of the globularity condition (2) will hold.

In the next subsection, we will explain the notion of pasting diagram; here, we note that they

are not independent data governed by relations and properties; rather, they are defined

explicitly in terms of cells. The most important point to keep in mind that there is an essential

recursive character to the notion of multitopic set; this is because the notion of (k+1)-cell

cannot be explained before we know what k-pd's are, and k-pd's, in turn, are defined in terms

of k-cells.

The higher dimensional categories, multitopic n-categories, whose definition is the eventual

goal of the present paper, are based on multitopic sets, just as n-categories are based on

n-graphs. As a compensation for the increased complexity in multitopic sets in comparison to

higher dimensional graphs, we have the fundamental fact that a multitopic n-category is an

(n+1)-dimensional multitopic set with additional properties only; no additional data are

required. (Note, however, the placing of the prefixes n and n+1 in this description.)
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1.2. Pasting diagrams

The expression of "pasting diagram" refers to the idea of a composable diagram, one which, if

a concept of composition of cells were available, would result in a single cell after all the

meaningful compositions denoted in the diagram are performed. This is an approximate

expression of an intuitive idea. It turns out that composability in higher dimensions is a

difficult concept, and despite several contributions (e.g., [S1], [J], [P1], [P2]) it is not yet

completely clarified. It is to be emphasized that the concept "composable diagram" is a

geometric one in that it does not involve composition of cells in the algebraic sense.

Composability is the geometric precondition of (iterated) composition.

An important point for this paper, inspired by the Baez/Dolan work, is the restriction of cells

to the form a:αA@b , where α is a pasting diagram (pd), but b is a single cell. The first

consequence is that the notion of pd itself becomes simple, and abstractly manageable, in

comparison with the (potential) more comprehensive concept that would allow both the

domain and the codomain to be arbitrary pd's. The "Baez/Dolan restriction" (as we may call

the above-mentioned restriction) is not a necessary feature of the intended notion of HDC; it

is, rather, a simplifying idea; the thus simplified notion of pd turns out to be sufficient for

carrying the intended structure of an HDC.

A 0-dimensional pd (or 0-pd) is just a 0-cell (object). A 1-dimensional pd (or 1-pd) is a

composable string of 1-cells:

f f f1 2 nX A��@X A��@X A��@...A��@X (3)1 2 3 n+1

where the X 's are 0-cells, the f 's are 1-cells. n=0 is allowed, in which case there are noi i
arrows; but in this case, there is still an object, X , and we have the empty string of arrows1
starting and ending in X .1

A 2-pd consists of 0-, 1- and 2-cells; each 2-cell in it is from a 1-pd, a string of one cells

(possibly empty), to a single 1-cell; and the whole thing is composable. Here is an example of

a 2-pd, which we denote by the single letter
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γ :

f f fX \�� 2 3 ���-X \�� 4) 6 ��� *��� 2 ���� �` oXf � � X \�� #b 3	 f1� a3 ���� ] 1 ��� 	 5� ���� ��� 	� ���� ��� 	�*��� f Pc f ��� k6 7 ���X o X5 A�����������������������������������������@ 4\�� f��� 8 �O ��� J� ��� � �f � � e f ��� + d f9� 12 ��� � 10� 3 ��� ��� #���oX A����������������������������������@ X7 f 811

γ consists of the 0-cells X , 1≤i≤8 , 1-cells f , 1≤j≤11 (numbered in no particulari j
order), and the 2-cells a, b, c, d, e . The figure is supposed to make clear the

domain/codomain relations among the cells and 1-pd's involved. Notice the constraint that

each 2-cell targets a single 1-cell; in a 2-pd in a more general sense, both domains and

codomains could be general 1-pd's. Perhaps it is superfluous to say that the 2-pd γ is the

totality of the items listed; it is not the result of some kind of composition performed on those

items. Of course, the relative position of its component 2-cells is part of the defining data of

the 2-pd.

There are features of 2-pd's that become important elements of the general concept of a k-pd.

The above 2-pd can be regarded as obtained by composition, in a new sense of "formal"

composition, which applies to pd's rather than cells. This composition may also be called

grafting. For instance, γ is obtained by grafting from the following two pd's α and β :

α :

f f fX \�� 2 3 ���-X \�� 4) 6 ��� *��� 2 ���� �` oXf � � X \�� #b 3	 f1� a3 ���� ] 1 ��� 	 5� ���� ��� 	� ���� ��� 	�*��� f Pc f ��� k6 7 ���X o X5 A�����������������������������������������@ 4f8

and
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β :

X X5 A�����������������������������������������@ 4\�� f��� 8 �O ��� J� ��� � �f � � e f ��� + d f9� 12 ��� � 10� 3 ��� ��� #���oX A����������������������������������@ X7 f 811

More precisely, we graft α into β at f , and obtain the original γ . Of course, the same8
pd γ can also be obtained in several other ways as the result of grafting, e.g. by grafting δ
into ε , where

δ :

f f3 ���-X \�� 4*��� 2 ���oXX \�� #b 3	 f1 ��� 	 5��� 	��� 	f ��� k7 ���o X4

(which is a pd consisting of a single 2-cell), and

ε :

fX \�� 2) 6 ��� � �`f � � X \�� 1� a3 ���� ] 1 ��� � ���� ��� � ���� ��� �*��� f Pc f ��� 6 7 ���X o X5 A�����������������������������������������@ 4\�� f��� 8 �O ��� J� f ��� � �f � � e 12 ��� + d f9� ��� � 10� 3 ��� ��� #���oX A����������������������������������@ X7 f 811

The grafting composition is a binary operation as far as the number of arguments that are pd's

is concerned; but it also has a third argument, the place at which the grafting takes place. The
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two grafting compositions displayed are denoted as βv α=γ , and εv δ=γ ; read e.g.f f8 7
the first as α composed (grafted) into β at f is γ .8

Given β as above, and, say,

α’ :

f f fX \�� 2 3 ���-X \�� 4) 6 ��� *��� 2 ���� �` oXf � � X \�� #b 3	 f1� a3 ���� ] 1 ��� 	 5� ���� ��� 	� ���� ��� 	�*��� f Pc f ��� k6 7 ���oX’ A�����������������������������������������@ X’5 4f’8

where the primed items may or may not be equal to the corresponding non-primed items in

β , the composite βv α’ is meaningful if and only if f’=f , and as a consequence,f 8 88
X’=X , X’=X . f’ is distinguished as the target-1-cell of α ; t(α) = f’ . For the5 5 4 4 8 def 8
given β , and an undetermined α’ , the condition for βv α’ to be well-defined is thatf8
t(α’)=f .8

It is perfectly possible that several items in the above pd's that are now denoted by different

symbols are actually the same. For instance, it is possible that all the 0-cells are the same, and

all the 1-cells are the same. If so, the 2-cells a, c, d, e could all be the same, although b

cannot be the same as those since its shape is different: its domain pd is a length-3 1-pd,

whereas the domains of the others are of length 2. Assuming, e.g., that all the said

coincidences actually take place, the subscript f in βv α cannot refer to the f simply8 f 88
as a 1-cell; it has to refer to the place of f ; we have f =f =f , and we can just as8 8 9 10
well compose α into β at the two other places, now denoted f and f , and the9 10
results of these compositions are all very different, distinguished already by their shapes. This

tells us that in the concept of pd there has to be an essential element that we may call place; in

a 2-pd, there are places for 1-cells, each of which carries the "occurrence" of a particular

1-cell.

Note that it does not make sense to compose anything into α at f , or into γ at places11
other than f , f , f , f , f , f , f ; the result would not be a "composable diagram".9 1 2 3 4 5 10
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The listed places of γ , the ones at which it is legitimate to compose something into γ , are

the source places of γ ; they are, together with the target place f , "outer places"; the11
"inner places" are the rest, f , f , f , f . s(γ) denotes the tuple6 7 8 12
〈 f , f , f , f , f , f , f 〉 , and it is called the source of γ ; the reason for the order10 5 4 3 2 1 9
will be explained below. In the example, s(γ) is a function on the set

[1, 6]={1, 2, 3, 4, 5, 6} , and its values are s(γ)(1)=f , etc. The source places10
themselves of γ are identified with the natural numbers 1, 2, 3, 4, 5, 6 ; the place 1

carries an occurrence of f , the place 2 one of f , etc. Writing Qs(γ)R for the10 5
domain of the function s(γ) , the source-places of γ are the elements of Qs(γ)R .

Similarly, s(β)= 〈 f , f , f 〉 . Since the place of f in β is 2 , we will write βv α10 8 1 8 2
for βv α ; we have γ=βv α .f 28

For general 2-pd's α and β ,

(3) βv α makes sense if and only if p∈ Qs(β)R and s(β)(p)=t(α) .p

We have identified what we take to be the essential structure on pd's: the placed composition

αv β , a ternary operation as explained above.p

1.3. Multicategories

The abstract concept of structure for the operation of placed composition is called

multicategory. Multicategories were introduced by J. Lambek in 1969 [L1]; one of the uses he

made of them was to define a multicategory of proofs in the Gentzen formal system for

intuitionistic logic, where the placed composition corresponds to the Cut-rule. A Lambek

multicategory C has a set O=O(C) of objects, and a set A=A(C) of arrows; each arrow α
has a source s(α) which is a finite tuple of objects, and a target t(α) which is a single

� �object ; when s(α)=X , t(α)=Y , we write α:XA�@Y ; C has, for each object X , an

identity arrow 1 : 〈 X 〉 A@X ; and C has a placed composition as in (3) above. These dataX
are to satisfy certain laws, the first of which regulates the source and the target of a composite,

with the remaining laws being two identity laws, an associativity law, and a commutativity
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law. The definition will be given in section 2; the reader will notice that the definition in

section 2 is, initially, something more general and more complicated than the one indicated

here; later in that section, however, it is pointed out what exactly the Lambek concept is as a

special case. Later in this introduction we will turn to the reasons why we need the more

general concept of multicategory.

Thus, the 2-pd's (in a given HDC A ) form a Lambek multicategory (the 1-pd's also do, in

fact, they form an ordinary category). More is true: the 2-pd's form a free multicategory, with

objects the 1-cells, and generating arrows the 2-cells. Hence, all 2-pd's are generated by the

2-cells by using the operation of placed composition. This should be seen as an intuitively

natural fact about pasting (composable) diagrams. (Let us remind ourselves that here we are in

the business of defining what pasting diagrams are; the definition is constrained by intuitive

ideas, which we are trying to make explicit.) Freeness is meant here in the sense of a strict

universal property; it will be crucial later that the free Lambek multicategory maintains its

universal property in the larger context of all (generalized) multicategories in the sense of

Section 2.

For precise definitions concerning morphisms of multicategories, and free multicategories, see

sections 3 and 4. Here we only give a brief idea.

Let O be a set of objects, L a set of arrows, with each f∈ L equipped with a source

*s(f)∈ O , and a target t(f)∈ O ; data as described define a language L . The terminology

is natural, since L is exactly what is usually called a language (signature) for multi-sorted

algebras; the elements of O are the sorts; the elements of L are the sorted operation

symbols. The free multicategory, C=F(L) , on L is defined by the conditions that

O(C)=O , L⊂ A(C) , and any "interpretation" (a rather obvious notion) LA�@D to any

multicategory D can be uniquely extended to a morphism CA�@D . It turns out that the

concrete description of F(L) is very simple. Its arrows are the terms, in the sense used in

describing the syntax of first order logic, built up from sorted variables and the operation

symbols of L , with the further simplification that we use only a single variable for each sort

X , which variable therefore may just as well be identified with X itself.

Thus, we now have a term-representation of 2-pd's. Turning to the examples above, we have

the following:
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γ : e(d(f , c(b(f , f , f ), a(f , f ))), f ) ,10 5 4 3 2 1 9
α : c(b(f , f , f ), a(f , f )) ,5 4 3 2 1
β : e(d(f , f ), f ) ,10 8 9
δ : b(f , f , f )5 4 3
ε : e(d(f , c(f , a(f , f ))), f )10 7 2 1 9

To understand these, consider the following. Any expression x(y, z, ...) stands for a

repeated composition; x(y, z, ...)=...(xv y)vz...; 2 is the place in xv y that1 2 1
"corresponds to" the place 2 in x . Each f stands for 1 , the identity arrowi fi

1fi〈 f 〉 A�����@f . Since a(f , f ) is a with identities composed into a , a(f , f )i i 2 1 2 1
equals a itself; we could write a in place of a(f , f ) above, except that in that case we2 1
would have not used the normal form which is intended by the term-representation. For

t =b(f , f , f ) , t =a(f , f ) , the term α=c(t , t ) is, really, the1 5 4 3 2 2 1 1 2
multicategory composite (cv t )vt =(cv t )vt ; the equality is the commutative1 1 2 2 2 2 1 1

 law; 2=4 , 1=1 (why?). We also see that placed composition corresponds to substitution:

the fact that βv α=γ is reflected in the fact that γ is the result of substituting α for f2 8
in β .

The term-representation is a simple linear way of writing down 2-pd's; in fact, it will also be

available for k-pd's for any k . However, note that in this notation, several elements that are

clear in the geometric picture are suppressed. All 0-cells, and all but the input 1-cells are

suppressed, although they can be be recovered by the information concerning the targets of the

2-cells involved.

Let us note that the 1-pd's also admit a term representation, since they also form a

multicategory, which in fact is an ordinary category, since only unary arrows appear. The 1-pd

in (1) is represented by the term f (...(f (f (X ))...) . The source-assignment ton 2 1 1
2-cells above follows the left-to-right order in the term-representation; this is the reason why

we used the "reverse" order for those sources above.

Let us move from dimension 2 to dimension 3 .

A 3-cell u is to have a 2-pd du(=d u) as domain, and a 2-cell cu as codomain.3
Globularity requires that we should have ddu=dcu , cdu=ccu ; however, we have not
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defined dα , cα for 2-pd's α as yet, and we need them now for α=du . The definition of

the domain of a pd is a major issue in our enterprise; the codomain is easy. In the case of the

example γ above, dγ is

f f fX \�� 2 3 ���-X \�� 4) 6 ��� *��� 2 ���� �` oXf � X 3	 f1� 1 	 5� 	� 	� k
X X5 4

�O� �f � f9� � 10� #

X X7 8

that is,

f f f f f f f9 1 2 3 4 5 10X A����@X A����@X A����@X A����@X A����@X A����@X A�����@X ;7 5 6 1 2 3 4 8

f11this is the "upper part of the contour (boundary) of γ ". cγ is the 1-cell X A�����@X ,7 8
the "lower" part of the contour of γ , the cell that "closes off" dγ . Thus, a 3-cell u for

which du=γ , with γ as in the example, looks necessarily like u:γA@g , where g is a

2-cell of the following "shape":

f f fX \�� 2 3 ���-X \�� 4) 6 ��� *��� 2 ���� �` oXf � X 3	 f1� 1 	 5� 	� 	� k
X X5 � 4�g ,� �O P� �f � f9� � 10� #

X A����������������������������������@ X7 f 811

which means that dg=dγ , cg=cγ . One cannot faithfully represent u in a 2-dimensional

drawing; but u has a good 3-dimensional geometric representation; in this, the 2-pd γ is
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placed in the plane of the table, say; the 2-cell g is spanned out in a curved surface above the

table, with its contour joining the contour of γ according to the the identifications inherent in

the facts dg=dγ , cg=cγ ; the 3-cell u "fills" the space between γ and g , "in the

direction" from γ to g .

3-pd's will be construed as arrows in the free multicategory on the language whose objects

(sorts) are the 2-cells, operation-symbols the 3-cells, and in which the sorting of the latter is

given as follows. Every 3-cell u comes with du , a 2-pd; regard du in the

term-representation; look at all the operation-symbol occurrences in du , which are 2-cells;

*define s(u) to be the left-to-right tuple 〈 du 〉 of those occurrences; s(u)∈ C as it2
should be. t(u) is defined to be c(u) .

For instance, for u:γA@g considered above, s(u)= 〈 e, d, c, b, a 〉 .

We will now describe a 3-pd ϕ which is parallel to the 3-cell u considered before. This

involves the statement that dϕ=du , and therefore involves the determination of the domain

dϕ of a 3-pd ϕ . The systematic way of defining the domain of a pd is our main task.

Let us use the 2-pd's β and δ introduced above, as well as the following η and λ ; we

will use two new 2-cells, h and i :

η = h(f , c(f , f ), f ) :10 7 6 9

f � X \�� 6 ���� ] 1 ��� f���� ��� 7���� ��� *��� Pc ��� ���X o X5 A�����������������������������������������@ 4f8 �O� �f � � f9� �h � 10� �P #

X A����������������������������������@ X7 f 811
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λ = i(f , b(f , f , f ), a(f , f ), f ) :10 5 6 3 2 1 9

f f fX \�� 2 3 ���-X \�� 4) 6 ��� *��� 2 ���� �` oXf � � X \�� #b 3	 f1� a3 ���� ] 1 ��� 	 5� ���� ��� 	� ���� ��� 	�*��� f f ��� k6 7 ���X o X5 � 4��i �O �� � �f � P f9� � 10� #

X A����������������������������������@ X7 f 811

Now we introduce the 3-cells:

v w x yβA�����@h , ηA�����@i , δA�����@b , λA�����@g .

The first thing to check is that these are well-formed, that is, in each case the assigned domain

(a 2-pd) and codomain (a 2-cell) are parallel; this is true. Now, notice that these four 3-cells

"line up" as follows:

δG���� x�����g (3')
b y∈ λA����������@g∈i��B��v L w��qh ∈ η*���β

In fact, we have

s(v) = 〈 e, d 〉 , s(w)= 〈 h, c 〉 , s(x)= 〈 b 〉 , s(y)= 〈 i, b, a 〉 ;

h=s(w)(1) , i=s(y)(1) , b=s(y)(2) ;

and
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ϕ = y(w(v(e, d), c), x(b), a)def

is well-defined as a 3-pd. Note that, to an even larger extent than before, what ϕ really is

cannot be directly seen on its defining expression; only by taking into account the descriptions

of all the ingredients, which themselves were defined in similar ways, can we grasp what ϕ
is. The faithful geometric representation of the 3-pd ϕ is a 3-dimensional object, obtained by

joining the 3-dimensional cells v, w, x, y ; the target 2-cell h of v is joined with the

occurrence of h in η , similarly for i and b ; we get a spherical (simply connected)

3-dimensional object subdivided appropriately. The full entity ϕ involves four levels of

ingredients: k-cells for all of k=0, 1, 2, 3 . The 2-dimensional boundary of this object

consists of the 2-pd γ as domain, and the 2-cell g as codomain; we have dϕ=γ , cϕ=g .
The 2-cells h , i and one of the occurrences of b are "inner" 2-cells in ϕ , not denoted in

the term representation. ϕ is indeed parallel to the 3-cell u:γA@g ; as a consequence, a

4-cell of the shape ϕA�@g is possible.

1.4. The domain of a pasting diagram

We turn to explaining how dϕ , and in general, the domain of an arbitrary pd, is determined

algebraically.

As explained before for the cases k=1 , 2 and 3 , we construe the set P of k-pd's of thek
0HDC A as the arrows of a free multicategory C whose objects are the elements of Ck k-1

( (k-1)-cells), and whose generating arrows are the elements of C . (We use thek
superscript 0 since there will be a modified ("twisted") variant C which will be the finalk
version.) The k-cells a∈ C come with a domain da∈ P and a codomain ca∈ C .k k-1 k-1

0For the determination of C , we also need sa and ta for a∈ C ; as done above for lowk k
values of k , we put sa= 〈 da 〉 , and ta=ca .

Let k≥1 be arbitrary, and let α∈ P . For any γ∈ P , we let 〈 γ 〉 denote the� k+1 k
left-to-right list of function-symbol occurrences in γ . Thus, sα is a tuple of elements of

C , and dα is to be defined in such a way that 〈 dα 〉 is also a tuple of elements of C .k k
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The first fact on how dα is defined is that sα and 〈 dα 〉 are almost equal; one is obtained

from the other by a permutation. That is, QsαR=Q 〈 dα 〉 R , and there is a permutation

≅θ =θ:QsαRA�@Q 〈 dα 〉 R such thatα

θQsαRA���������@Q 〈 dα 〉 R	 �	 �	 { �sα 	 � 〈 dα 〉k +
Cn

Note that, by what was said above, for α a single cell, dα is already defined, and

sα= 〈 dα 〉 ; for such α , θ can be taken to be the identity.α

The second, and main, fact about the way dα is defined is that there is an operation assigning

a new "composite" γW δ to any γ, δ∈ P and q∈ Q 〈 γ 〉 R satisfying certain conditions ofq k
compatibility (that we will see below in detail) such that

d(αv β) = (dα)W (dβ) ; (4)p θ(p)

that is, the domain of the grafting composite of two (k+1)-pd's is the W-composite of the

domains of the (k+1)-pd's. This, together with knowing what dα is for single-cell pd's α
determines the operation d .

Let us describe the operation W . In fact, this can be done on an arbitrary free multicategory.

Start with C=F(L) , the free Lambek multicategory on the arbitrary language L ; we use the

notation we had before; O=O(L)=O(C) is the set of objects of C ; A=A(C) is the set of

arrows of C ; we write sα for s (α) , tα for t (α) . For any α∈ A , we let 〈 α 〉C C
denote the left-to-right list of function-symbol occurrences in α , as we did before. We let

T(α) = (sα,tα) . Note that T(α)=T(β) means that α and β are "parallel in thedef
multicategory C ".

We are going to define a partial operation

(α, β, p)�������@αW β ( α, β∈ A, p∈ Q 〈 α 〉 R; αW β∈ A ) .p p

defined whenever
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T(β)=T( 〈 α 〉 (p)) . (5)

The intuitive idea behind the operation W , called function-replacement, is that αW β is thep
function obtained by evaluating, at the place p and only at that place, the function-variable

〈 α 〉 (p) as the composite function β . The condition (5) says that β is of the same type as

〈 α 〉 (p) , and therefore, the said evaluation is possible.

Given α∈ A and p∈ Q 〈 α 〉 R , let f= 〈 α 〉 (p)∈ L . Then α can be written in the form

α=α’v f(α , ..., α ) , (6)q 1 n

where α’, α , ..., α ∈ A , and q is a suitable place q∈ s(α’) . Note that if f occurs1 n
in more than one place in α , then this decomposition at f of α is not unique; however, we

have in mind the decomposition of α at the place p , in which f "stands for the

occurrence at p ". What these obscure words mean is intuitively clear, and will be made

precise in section 5. The notation f(α , ..., α ) follows the term-representation explained1 n
above; it is, structurally, a repeated (or simultaneous, because of the presence of an appropriate

commutative law) composition, as it was also indicated above.

Now, suppose, that, in addition, β∈ A such that (5). Let

We put

αW β = α’v β(α , ..., α ) . (7)p def q 1 n

Here, β(α , ..., α )=β(α /1, ..., α /n) is simultaneous composition. T(β)=T(f)1 n 1 n
implies that s(β)=s(f) , and so t(α )=s(f)(i)=s(β)(i) , which makes the termi
β(α , ..., α ) well-defined; but also, T(β)=T(f) implies that t(β)=t(f) , which1 n
ensures that t(β(α , ..., α ))=t(β)=t(f)=s(α’)(q) , and thus, the composition at1 n
q is well-defined.

Let us see how this works for the examples of 3-pd's ( k=2 ) in the previous subsection. We

are going to make the discussion easier to follow, by replacing the place-number p by the

symbol which occurs at p in the given term; since the terms in the examples are separated,

that is, have no repeated occurrences of symbols, this will not introduce ambiguity. Note that

under this convention, with f=(sα)(p)=tα , (4) becomes
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d(αv β) = (dα)W (dβ) ;f f

and the role of θ disappears (of course, for the general, non-separated case, the said

simplification is not valid).

The 3-pd ϕ introduced in the previuos subsection can be written in the following two ways:

ϕ = (yv (wv v))v x = (yv x)v (wv v)i h b b i h

(compare (3')). Let us go through the definition of the domain of each of the constituent 3-pd's

here.

d(wv v) = (dw)W (dv) = ηW β .h h h

The decomposition of η at h has η’=1 (we are writing η’ for what was α’ in thef11
general case (6)); that is, now α’ can be ignored in (6) and (7). (7) gives

ξ = ηW β = β(f /f , c(f , f )/f , f ) =def h 10 10 7 6 8 9
e(d(f , c(f , f )), f ) ;10 7 6 9

that is,

ξ :

f � X \�� 6 ���� ] 1 ��� f���� ��� 7���� ��� *��� Pc ��� ���X o X5 A�����������������������������������������@ 4\�� f��� 8O ��� J� ��� � �f � � e f ��� + d f9� 12 ��� � 10� 3 ��� ��� #���oX A����������������������������������@ X7 f 811

ξ is obtained by replacing h with β as it should.
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Next,

d(yv (wv v)) = (dy)Wv d(wv v)) = λW ξ .i h i h i

i is again the head-operation in λ , and so

ζ = λW ξ = ξ(f /f , b(f , f , f )/f , a(f , f )/f , f /f )def i 10 10 5 6 3 7 2 1 6 9 9
e(d(f , c(b(f , f , f ), a(f , f )), f ) ,10 5 6 3 2 1 9

that is,

ζ :

f f fX \�� 2 3 ���-X \�� 4) 6 ��� *��� 2 ���� �` oXf � � X \�� #b 3	 f1� a3 ���� ] 1 ��� 	 5� ���� ��� 	� ���� ��� 	�*��� f Pc f ��� k6 7 ���X o X5 A�����������������������������������������@ 4\�� f��� 8 �O ��� J� f ��� � �f � � e 12 ��� + d f9� ��� � 10� 3 ��� ��� #���oX A����������������������������������@ X7 f 811

Note that ζ is the result of replacing i by ξ in λ .

Finally,

dϕ = d(yv (wv v))W dx = ζW δ = ζW b = ζ ;i h b b b

note that δ=b , and when b is replaced by b , nothing happens. Of course, ζ=γ , for our

initial γ , so this calculation confirms what we said "geometrically" about ϕ and γ .

Let us look at the other way of expressing ϕ . We have

d(yv x) = dy = λ ,b
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for the same reason as in the preceding case. d(wv v) = ξ was calculated above. Thenh

dϕ = d(yv x)W d(wv v) = λW ξ = ζ = γ ,b i h i

as it should be the case.

In this subsection, we described the way the domain-function d:P A@P is actuallyk+1 k
calculated, and saw that, in some examples at least, it agrees with the geometric intuition.

However, thereby the problem of definining d is far from resolved. For instance, it is not

clear that, in general, (4) is a compatible way of determining dγ for γ∈ P , ; usually,k+1
γ can be written in more than one way as γ=αv β , and we must see that the correspondingp
right-hand side expressions for dγ give the same result. There are other problems too. E.g.,

we have to see that if in (4), the left side is well-defined, so is the right side. Also note that we

have not made any reference yet to the fact that d and c on C are determined so thatk+1
the globularity condition (2) is satisfied. It is worth noting that that condition refers, besides d

on P , also to d as defined on P . This suggests that d must be defined recursivelyk+1 k k
in k .

1.5. Generalizing multicategories

The operation W used in the last subsection looks like a multicategory operation. Let us start

with C , a free multicategory on L as we had in the last subsection for the purposes of

defining the operation W on the arrows of C ; let's use the same accompanying notation. We

are going to define D , a new multicategory, albeit in a somewhat generalized sense with

respect to what we had above. D is called the multicategory of function-replacement. The

arrows of D are the same as those of C : A(D)=A(C)=A . The idea is to consider each

α∈ A to be a function not of its variable-occurrences, but of its function-symbol occurrences.

� � *The objects of D are pairs (X; Y) where X∈ O is a tuple of objects of C , and Y is a

*single object: O(D)=O ×O . If 〈 α 〉 = 〈 f , ..., f 〉 , then, by definition,1 n
s (α)=S(α) = 〈 Tf , ...,Tf 〉 and t (α) = T(α)=(sα,tα) . The operation vD def 1 n D def D
is defined to be the operation W explained in the previous subsection.
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Before we say more on to what extent D is a multicategory, let us point out in what aspect it

fails to be one.

Consider a language L in which we have sorts U, V, W, X, Y and function-symbols

f: 〈 U, V 〉 A@W , g: 〈 X 〉 A@U , h: 〈 U, Y 〉 A@W , i: 〈 V 〉 A@Y . (8)

Let β=f(g(X), V) , α=h(U, i(V)) , terms in A(L) . We have α: 〈 U, V 〉 A@W , thus

T(α)=T(f) , and so βW α=βW α is well-defined. Now, we have β=1 v f(g(X), V)1 f W 1
as the decomposition of β at 1 (at f ), so

βW α = 1 v α(g(X)/U, V/V) = α(g(X)/U, V/V) = h(g(X), i(V)) .1 W 1

Also,

〈 β 〉 = 〈 f, g 〉 , S(β)= 〈 Tf, Tg 〉 = 〈 ( 〈 U, V 〉 ; W), ( 〈 X 〉 ; U) 〉 ,

〈 α 〉 = 〈 h, i 〉 , S(α)= 〈 Th, Ti 〉 = 〈 ( 〈 U, Y 〉 ; W), ( 〈 V 〉 ; Y) 〉 ,

〈 βW α 〉 = 〈 h, g, i 〉 ,1
S(βW α)= 〈 Th, Tg, Ti 〉 = 〈 ( 〈 U, Y 〉 ; W), ( 〈 X 〉 ; U), ( 〈 V 〉 ; Y) 〉 .1

In a Lambek multicategory E , if s (β)= 〈 b , ..., b 〉 , s (α)= 〈 a , ..., a 〉 , thenE 1 n E 1 m
(E)

for βv α=βv α , we havep p

s (βv α)= 〈 b , ..., b , a , ..., a , b , ..., b 〉 ;E p 1 p-1 1 m p+1 n

s (α) is inserted in the place of a ; this is what we mean by standard amalgamation ofE p
the sources. The operation W is much like a multicategory composition, except for the

standard amalgamation. If D had standard amalgamation, S(βW α) would have to be the1
result of inserting 〈 Th, Ti 〉 into 〈 Tf, Tg 〉 in the place of Tf , resulting in

〈 Th, Ti, Tg 〉 ; but S(βW α) is, rather, 〈 Th, Tg, Ti 〉 ≠ 〈 Th, Ti, Tg 〉 .1

We cannot hope that another simple "rule of amalgamation" applies, either. Suppose that in the

above, U=V , but all other objects listed are distinct; so we have the previous example, still

with non-standard amalgamation. But also, for β’ = f(U, g(X)) ,

β’W α=h(U, i(g(X)) , and S(β’W α)= 〈 h, i, g 〉 ≠S(βW α) , despite the fact thatf f f
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S(β’)=S(β) . That is, the source of a composite does not depend just on the sources (and

targets) of the composed arrows, unlike in the ordinary, Lambek, multicategory.

There is a generalized notion of "multicategory" which allows for "non-standard"

amalgamation. In this we have, as part of the structure, so-called amalgamating maps

ψ=ψ[β, α, p] , ϕ=ϕ[β, α, p] :

ψ ϕs(β)\pA�������@s(βv α)M�������Ns(α)p

associated with any meaningful composition (β, α, p)���@βv α , which puts together thep
source of βv α in a specific, but a priori undetermined, way from the source of β (takep
away the symbol at place p ) and the source of α . The notation abbreviates the following:

ψ is a map from the set Qs(β)R-{p} to the set Qs(βv α)R (where QsR=dom(s) ,p
and s\p=s�(QsR-{p}) ) such that

ψQs(β)R-{p}A���������@Qs(βv α)R	 � p	 �	 { �s(β)\p 	 � s(βv α)k + p
O ,

and similarly for ϕ . In the standard case, the amalgamating maps correspond to the fact that

in s(βv α) , " sα is inserted in sβ in the place p ". In the generalized concept, there arep
coherence conditions on the amalgamating maps, one for each of the four laws: the unit laws,

the associative law, and the commutative law. The above-described structure D is a

multicategory in the generalized sense (in comparing this part with the official definition of

section 2, and the definition of D in section 5 , note that the concept being described here is a

1-level multicategory as opposed the more general 2-level version given in those sections; we

will comment on the reason for the 2-level version later in the introduction).

The reason for the general concept of multicategory and for the particular multicategory D is

to provide a concept under which d:P A�@P becomes a morphism of multicategories.k+1 k
A morphism F:CA@D of multicategories maps objects to objects, arrows to arrows, but,

instead of being compatible strictly with the source-assignments, it has a system of transition

≅isomorphisms θ :Qs (α)RA���@Qs (Fα)R ( α∈ A(C) ) such thatα C D

26



θαs (α)RA��������@Qs (Fα)RC D
� �s (α)� �s (Fα)C � { � D� �P P
O(C) A�������@ O(D) .F

F is to preserve placed composition; in formulating this, the transition isomorphisms play a

role: given that βv α is well-formed in C , Fβv Fα for q=θ (p) is well-formed in D ;p q β
we require that F(βv α)=Fβv Fα . It is also required that the θ be compatible with thep q α
amalgamating maps.

There is a trade-off between amalgamating maps and transition isomorphisms. Given any

morphism F:CA@D of multicategories, there is a factorization of F ,

FCGA��������������@ D�� ��B��≅ ��Φ �� ��h L F’C’ ,

in which Φ is an isomorphism, and in fact, it is an identity on both objects and arrows, and

F’ is strict, its transition isomorphisms are all identities. In other words, by changing the

domain to an isomorphic copy, albeit with "twisted" amalgamating maps, it is possible to turn

a morphism into a strict one.

1.6. Constructing higher dimensional cells

We are ready to summarize the construction of higher dimensional cells. Assuming that we

have a set C of k-cells for k=0, 1, ..., n , and we have defined k-pd's for the samek
k's, with domain and codomain maps d:P A@P , c:P A@C , we introducek+1 k k+1 k
(n+1)-cells a∈ C by declaring each da=d (a) and ca=c (a) to be an+1 n+1 n+1
specific n-pd α=da , resp. n-cell b=ca such that dα=db , cα=cb , that is,

dda=dca , cda=cca . (9)
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We let D be the multicategory of function-replacement based on C , the freen n
0multicategory with arrows the n-pd's, and C be the free multicategory with standardn+1

amalgamation, and with objects the n-cells, and generating arrows the (n+1)-cells just

0declared; in other words, C =F(L) where O(L)=C , L(L)=C , and in whichn+1 n n+1
0s (a)= 〈 da 〉 , t (a)=ca ( a∈ C ). P is the set of arrows in C . TheL L n+1 n+1 n+1

0 0 0 0main step in the definition is to define d =d :C A��@D by the freeness of Cn+1 n+1 n n+1
0as to extend the determination of d on C . For this, it is crucial that C , although itn+1 n+1

is defined as a Lambek multicategory, it remains free on L in the larger category of all

0multicategories with possibly non-standard amalgamation. Finally, we alter C to then+1
isomorphic copy C by "twisting" the amalgamation maps to ensure that d:C A�@Dn+1 n+1 n
is strict. As a result, we get the main formula saying that

d(βv α) = (dβ)W (dα) (10)p p

every time βv α is a meaningful composition in C .p n+1

Let us see the effect of the above general procedure for some particular 3-cells and 3-pd's. In

what follows, U, V, W, ... denote 1-cells, f, g, h, ... 2-cells, u, v, 3-cells; Greek

letters are used to denote pd's of various dimensions.

We adopt a single 0-cell that we indicate by W ; the 1-cells U, V, W, X, Y are all like

WA�@W . The 2-cells f, g, h, i are as in (8). We add

k: 〈 X, V 〉 A���@W , #: 〈 U, X 〉 A�@W .

We are assuming that U=V , but all other 1-cells denoted differently are distinct.

Consider the 2-pd's α=h(U, i(U)) and β=f(g(X), U) :
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α : β :

G��V ��B W G W �� X�� �� G � ����	 i �% �� U V ��B �� + g �gL k �� �� �� ���� � �� �� � U ���� Y �h h L �f �gL P PW W W WA��������������������@ A�������������������@
W W

We have βW α = h(g(X), i(U)) :1

βW α :1
G��V ��B W �� X�� G � ����	 i �% �� + g �gL k �� ���� � U ���� Y �h �gL PW W .A����������������������@

W

We introduce the 3-cells u and v by declaring du=α , cu=f and dv=β , cv=k ; the

globularity conditions (9) are satisfied. We let

ψ = vv u = v(u(h, i), g) :1

G��V ��B W G W �� X�� �� G � ����	 i �% �� U V ��B �� + g �gL k �� �� u �� ���� � �� �� � U ���� Y �h h ����� L �f �gL P PW W f W WA��������������������@ A�������������������@
W W

WGU ��B �� X�� ��v �� �k ��L P h������ WA��������������@ W .
W

We have

dψ = d(vv u) = (dv)W (du) = βW α ;1 1 1

so
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s (ψ) = 〈 dψ 〉 = 〈 h, g, i 〉 .C3

Now, look at

β’ = f(U, g(X) :

X ��B W G�� ����	 g �% �� UL k �� ���� � ���� U �f hL PW WA��������������������@
W

and

β’W α = h(U, i(g(X)) :1

X ��B����	 g U�% W GL k �� ����	 �� U�� k�% ��L i�� � ���� �f hC� Y PW W .A��������������������@
W

We let v’∈ C with dv’=β’ , cv’=k ( dβ’=dk , cβ’=ck hold), and3

ψ’ = v’v u = v’(u(h, i), g) :1

V ��B W G X ��B W G�� �� �� ����	 i �% �� U ��	 g �% �� UL k �� �� u L k �� ���� � �� �� � ���� Y �h h ����� �� U �f hL P L PW W f W WA��������������������@ A��������������������@
W W

WGX ��B �� U�� ��v’ �� �k ��L P h������ WA��������������@ W .
W

We have

s (ψ’) = 〈 dψ’ 〉 = 〈 h, i g 〉 .C3

30



We just have to get used to the fact that

s (v(u(h, i), g)) = 〈 h, g, i 〉 ,C3
and

s (v’(u(h, i), g)) = 〈 h, i, g 〉C3

at the same time. Of course, this does not look so surprising if we look at the full

representations of the two 3-pd's ψ=v(u(h, i), g) and ψ’=v’(u(h, i), g) , which are

different "geometrically".

1.7 Introducing two levels of objects

Some remarks concerning the "2-leveled" version for the notion of multicategory, for whose

definition we refer to section 2. This is introduced purely for technical convenience. The

2-leveled notion packs more structure into the multicategory D of function-replacement,

structure that is already there "naturally". For instance, instead of having the source of α as

s (α)= 〈 T(f ), ...,T(f ) 〉 , we have it, in the 2-leveled version of D , asD 1 n
s (α)= 〈 f , ...,f 〉 = 〈 α 〉 . The effect is to restrict the scope of the compositionD 1 n
operation W ; composition in the 2-leveled version remains the same as in the 1-leveled

version, but it is defined for a subset of the domain of the 1-leveled composition. For γ ,δ∈ D ,

the composite δW γ is meaningful, in the 2-leveled version, if and only if p∈ Q 〈 δ 〉 R , andp
for f= 〈 δ 〉 (p) , we have df=dγ and cf=cγ . This is in fact the case exactly when the

function-replacement composite is the meaningful geometrically. Under the 1-leveled version,

the multicategory D has composites that cannot be realized geometrically in Euclidean space.

The 2-leveled concept helps technically. An example is the equality dα= 〈 α 〉 holding for all

α∈ C . This is immediate if d is defined by the freeness of C with respect to then+1 n+1
2-leveled version of "multicategory"; it would require additional arguments if we used the

1-leveled version.
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1.8. Final remarks

gnObviously, for any fixed n , n-graphs are the objects of a category of the form Set ;

here, g is the category whose shape in given in (1). It turns out that n-dimensionaln
multitopic sets, with a natural notion of morphism, also form a category of the form

mtnSet . In this case, the description of the exponent category mt , the category ofn
n-dimensional multitopes, is less easy to describe. In fact, there is, apparently, no other way of

describing mt than by the same recursive process that serves defining multitopic sets inn
general. The objects of mt are the same as the pasting diagrams (elements of then
P -component) in the terminal n-dimensional multitopic set, the one that has exactly one celln
in each possible type (domain/codomain pair; in fact, here "domain" suffices; this description

is an oversimplification, and neglects an inherent recursion). The arrows of mt are moren
difficult to explain. The definition of the mt and the proof of their connection to multitopicn
sets in general are given in section 7.

The fact just stated is the justification for the name "multitopic set". It is a similar construction

to "simplicial set" , with "simplices" in the background, and also to "opetopic set" of [B/D3],

based on "opetopes", in which operads, the basic abstract concept for [B/D3], are referred to.

We copied and modified "opetope" and "opetopic set" of [B/D3], bearing in mind

multicategories as the basic abstract concept, replacing operads.

We note that "higher dimensional (or: n-dimensional) multicategory", a term that may seem at

first to be the appropriate one for our concept of multitopic set, is in fact incorrect and

misleading. "Higher dimensional multicategory" would rightly be expected to generalize

"multicategory"; however, in our multitopic sets only special multicategories figure, namely,

the free ones, and another particular kind, the multicategories of function replacement, closely

tied to the free multicategories. For multitopic sets, particular multicategories are used as a

tool to describe a specific geometric arrangement, that of cells of various dimensions fitting

together in pasting diagrams. Of course, this is similar to the use of operads in [B/D3].
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2. Multicategories

For # ∈ �={0, 1, 2, ...} , we write [1, #] for the set {1, 2, ..., #} ; [1, #]=∅
when #=0 .

Let O be a set. A tuple (string) of elements of O is a function of the form ϕ:[1, #]A@O ,

*for some # ∈ � . We write QϕR for the set [1, #] , and #h(ϕ) for # . O is the set of

* *all tuples of elements of O . �∈ O is the empty tuple ( Q�R=∅ ). For X∈ O , 〈 X 〉 ∈ O is

the one-term tuple whose only term is X ; Q 〈 X 〉 R=[1, 1]={1} , 〈 X 〉 (1)=X .

#It will be convenient to work with the following category O . Its objects are each a function

s whose domain QsR is a finite set (possibly empty) of positive integers, and whose range is

a subset of O ; s:QsRA@O . An arrow sA@t is a function f:QsRA@QtR such that

fQsRA���������@QtR	 J	 �s 	 { � t	 �k +O

(the circle in a diagram denotes the assertion that the diagram commutes).

A multicategory C is given by data (i) to (vii) and conditions (viii) to (xi) as follows.

(i) A set O=O(C) of upper level objects, or simply, objects.

� �(ii) A set O=O(C) of lower level objects.

� � �(iii) A map OA�@O:X�@X , assigning a lower-level object X to every

object X .

(iv) A set A=A(C) of arrows.
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*(v) To each arrow f a source s(f)=sf=s (f)∈ O , and a targetC
� � f � � *t(f)=t (f)∈ O is assigned; we write XA���@A if s(f)=X , t(f)=A ; here, X∈ O ,C

�A∈ O .

f g(vi) Given s(f)A���@t(f) , s(g)A���@t(g) , and p∈ Qs(g)R
�such that (s(g)(p)) =t(f) , which situation we indicate by the notation

f gs(f)A������@s(g)A���@t(g) ,p

a composite gv f is defined; it is an arrow; we have t(gv f)=t(g) ; furthermore, wep p
have specified amalgamating maps

ψ=ψ[g, f, p] : s(g)\pA���@s(gv f) ,p

ϕ=ϕ[g, f, p] : s(f)A���@s(gv f)p

# #(morphisms in O ), forming the coprojections of a coproduct in O . ( s(g)\p means the

restricted function s(g)�(Qs(g)R-{p}) ; also, for a subset P⊂ Qs(g)R , we use the

notation s(g)\P in a similar sense.) In plain words, the set Qs(gv f)R is the disjointp
sum of the sets Qs(g)R-{p} and Qs(f)R , with injections ψ and ϕ ; and these

#injections are morphisms of the functions ( O -objects) s(g)\p , s(f) ; that is, we have

the commutative diagram

Qs(g)R-{p}\�� 	 ��� 	 ��� s(g)\p	 ��� 	 ��� ψ 	 ��� 	 { ��� k �`
$ Qs(gv f)RA�����������@ O) p s(gv f)� p �� { ���� ]ϕ� ����� ����� ����� �������� s(f)*���Qs(f)R

It follows that Qs(gv f)R is given as [1, #+m-1] where Qs(f)R=[1, #] ,p
Qs(g)R=[1, m] ; however, this fact leaves open multiple possibilities for the amalgamating
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maps ϕ and ψ . Let me emphasize that in general, ψ=ψ[g, f, p] , ϕ=ϕ[g, f, p] depend

in an essential way on all three arguments g, f, p ; in particular, it is possible that

s(g’)=s(g) , s(f’)=s(f) , but s(g’v f’)≠s(gv f) .p p

1Y �(vii) For each Y∈ O , an identity map 〈 Y 〉 A����@Y .

For the data listed, we require the following laws to be obeyed.

(viii) (unit law 1) Whenever g∈ A , p∈ Qs(g)R , and

1Y gY=s(g)(p) , which, in particular, implies 〈 Y 〉 A����@s(g)A����@t(g) (although thep
� �latter only says that Y=Y , which is weaker than what we are assuming now), we requirep

that

gv 1 =g .p Y

Moreover, we require that

ψ=ψ[g, 1 , p]=incl.:(Qs(g)R-{p})A@Qs(g)R ,Y
ϕ=ϕ[g, 1 , p]=(1�@p)Y

#(which imply that (ϕ, ψ\p) is a coproduct pair in O ).

(ix) (unit law 2) Under the assumption that

1f Y �s(f)A����@ 〈 Y 〉 A����@Y (that is, t(f)=Y ), we require that1

1 v f = f ,Y 1

#and ϕ=ϕ[1 , f, p]=id (making (ϕ, ψ\1=�) a coproduct pair in O ).Y

(x) (associative law) In the situation

f g hs(f)A�����@s(g)A�����@s(h)A�����@t(h) ,p q
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we require that

(hv g)v f = hv (gv f) ;q  q pp

here, p=ϕ[h, g, q](p) . Let us refer to the four compositions by the numbers as in

3 4 2 1

(hv g)v f , hv (gv f) .q  q pp

Note that the compositions 1 and 3 are well-defined by the assumptions. 2 is meaningful

since we have t(gv f)=t(g) . 4 is meaningful since, for ϕ=ϕ[g, h, q] ,p

s(hv g)(p) = s(hv g)(ϕ(p)) = s(g)(p) = t(f) ;q q

#the second equality because we have ϕ:s(g)A�@s(hv g) in O .q

We abbreviate

ϕ =ϕ[g, f, p] , ψ =ψ[g, f, p] , ϕ =ϕ[h, g, q] , ψ =ψ[h, g, q] ,1 1 2 2
ϕ =ϕ[h, g, q] , ψ =ψ[h, g, q] , ϕ =ϕ[hv g, f, p] , ψ =ψ[hv g, f, p] .3 3 4 q 4 q

We require that the following diagram be commutative:

s(g)\p G��t ���� ��ψ �� �� ϕ �1 �� �� 3�� ���� ���� ��W h s(gv f) { �Ds(hv g)\pp �� �� q�� ��1 �� ψ ���� ϕ 4�� "� ��2 ���� s(hv (gv f)) �� �� �� q p ��ϕ h W � ψ1 � { = { 3�% s�� �� �� s((hv g)vf) ���� ϕ q p ψ �� �C� 4 2 �Fs(f) s(h)\q

Here, ϕ � is the restriction of ϕ to the appropriate domain. Since (ϕ , ψ ) is a3 3 3 3
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coproduct, p=ϕ (p)∉ Im(ψ ) , thus the use of ψ in the diagram is legitimate.3 3 3

(xi) (commutative law) In the situation

s(g)G�� g�� q��h hs(h)A�����@t(h) , p≠q ,��B���� pL fs(f)

for q=ψ[h, f, p](q)=ψ (q) (since p≠q , q∈ dom(s(h)\p) , so ψ (q) is defined),1 1
p=ψ[h, g, q](p)=ψ (p) , we require3

1 2 3 4(hv f)v g = (hv g)v f .p  q q p

The fact that the composites 2 , 4 are well-defined is seen as in the previous case. With

ϕ , ψ similarly as above, we require the commutativities as ini i

s(h)\{p, q} G��t ���� ��ψ � �� �� ψ �1 �� �� 3�� ���� ���� �� W h s(hv f)\q { �Ds(hv g)\pp �� �� q�� ��1 �� ψ ���� ψ 4�� "� ��2 ���� �� �� �� s((hv g)vf) ��ϕ h q p W � ϕ1 � { = { 3�% s�� �� �� s((hv f)vg) ���� ϕ p q ϕ �� �C� 4 2 �Fs(f) s(g) .

 Since q∈ Im(ψ ) , we have q∉ Im(ϕ ) , so the use of ϕ is justified; similarly for ϕ .1 1 1 3
The map ψ is injective; so, q∉ Im(ψ �(Qs(h)R-{p, q})) , and the use of the1 1

restricted ψ � is justified. Similarly for ψ �1 3

(end of definition of "multicategory").

37



The standard definition of multicategory (see [L1], [L2]) is the special case in which (i)

� �O=O , X=X for all X∈ O (a one-level multicategory, as opposed to the general two-level

notion), and (ii) we make the standard choice for the amalgamating maps as explained now.

� � *For X= 〈 X 〉 , Y= 〈 Y 〉 , both in O , and for p∈ [1, m] , ai i∈ [1, #] j j∈ [1, n]
� � � �particular index, YW X denotes the result of inserting X into Y at the place p ; this inp

� � � �effect replaces Y by X . This means that YW X=Z= 〈 Z 〉 , where n= #+m-1 ,p p k k∈ [1, n]
Z =Y when 1≤k<p , Z =X when p≤k<p+ # , and Z =Y whenk k k k-p+1 k k- #+1
p+ # ≤k≤n . Define

� � � � � � � �ϕ=ϕ[Y, X, p]:QXRA@QZR , ψ=ψ[Y, X, p]:QYR-{p}A@QZR

by ϕ(i)=p+i-1 ; ψ(j)=j when 1≤j<p , and ϕ(j)=p-j+1 when p<j≤n ; we

have the coproduct diagram

� ϕ � ψ �XA�����@ZM������NY\p

#in O . When the multicategory has the just specified connecting maps: for the composition

gv f , ϕ[g, f, p]=ϕ[s(g), s(f), p] , ψ[g, f, p]=ψ[s(g), s(f), p] , we talkp
about a multicategory with standard amalgamation. In particular, the source of gv fp
depends, in the standard case, only on the sources of the factors, and the place p ; not

necessarily so in the general case.

Note that in the standard case, the commutativities required for associativity and

commutativity ((ix) and (x)) are automatic.

There is a further remark to be made about the commutative diagrams in the laws of

associativity and commutativity, to the effect that they are, to a large extent, automatically

true. Referring to the notation in (x), suppose that the functions s(f) , s(g) , s(h) are

one-to-one (non-repeating tuples), and their ranges are pairwise disjoint. I claim that, as a

consequence of the preceding conditions, the commutativities required in (x) are now true.

#First of all, since s = s(hv (gv f)) is a coproduct (in O ) of non-repeatingdef q p
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#(generalized) tuples, it is itself non-repeating. But then for any t∈ O , there can be at most

#one morphism tA@s in O . This implies each of the three commutativities in (x). The

same can be said about (xi). We will exploit this fact in section 5.

As a consequence of the definition, in any multicategory, we have a concept of simultaneous

composition. Assume g∈ A , p ∈ Qs(g)R for i=1, ..., m , p ≠p when i≠j .i i j
�Assume that f ∈ A for i=1, ..., m , such that t(f )=(s(g)(i)) for alli i

i∈ [1, m] . Then we define

h = g(f /p , f /p , ..., f /p ) , (1)def 1 1 2 2 m m

and with P={p , ..., p } , the amalgamating functions1 m

ψ:s(g)\PA���@s(h) , ψ=ψ[g, 〈 f 〉 , 〈 p 〉 ]j j∈ [1, m] j j∈ [1, m]
and

ϕ :s(f )A���@s(h) , ϕ =ϕ [g, 〈 f 〉 , 〈 p 〉 ]i i i i j j∈ [1, m] j j∈ [1, m]

#such that s(h) is the coproduct of the O -objects s(g)\P , s(f ) (i∈ [1, m]) via thei
coprojections ψ , ϕ (i∈ [1, m]) . The definition is by recursion on m . When m=0 ,i
h=g , we have ψ=id . Suppose m≥1 , and assume thats(g)
�h = g(f /p , f /p , ..., f /p ) has been defined, with corresponding1 1 2 2 m-1 m-1
amalgamating functions

� - � -ψ :s(g)\P A�@s(h) ( P ={p :i∈ [1, m-1]} ),i
� �ϕ :s(f )A�@s(h) ( i∈ [1, m-1] ) .i i

We put

�h = hv f , mpm

 � � �  � � where p =ψ(p ) , and, with ϕ=ϕ[h, f , p ] , ψ=ψ[h, f , p ] , we define them m m m m m
� � � � �amalgamating functions for (1) as ψ=ψv(ψ�P) , ϕ =ψvϕ ( i∈ [1, m-1] ) and ϕ =ϕ .i i m
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In the simultaneous composition, the order of the composed-in factors is immaterial. Precisely

speaking, we have the generalized commutative law, which says the following:


  
  
 g(f /p , f /p , ..., f /p ) = g(f /p , f /p , ..., f /p )1 1 2 2 m m 1 1 2 2 m m

≅  
provided for a permutation σ:[1, m]A�@[1, m] , we have p =p and f =fi σi i σi
( i∈ [1, m] ) ; moreover,


 
ψ=ψ , ϕ =ϕi σi

where, of course, we have used the obvious notation for the corresponding amalgamating

functions, that is,


 
 ψ=ψ[g, 〈 f 〉 , 〈 p 〉 ] ,j j∈ [1, m] j j∈ [1, m]

 
 ϕ =ϕ [g, 〈 f 〉 , 〈 p 〉 ] .i i j j∈ [1, m] j j∈ [1, m]

For the case m=2 , the generalized commutative law is identical to the original form of the

commutative law (including the commutativity of the corresponding diagram). The general

case be proved by using the commutative law alone, by representing the arbitrary permutation

σ as a product of transpositions each of which exchanges two elements standing next to each

other in the "previous" permutation.

Therefore, the best way of looking at simultaneous composition is that we have an arrow g ,

a set P⊂ Qs(g)R , and a function p�@f :PA@A , such that t(f )=s(g)(p) (p∈ P) ,p p
giving rise to the composite h=g( 〈 f /p 〉 ) , and to the amalgamating mapsp p∈ P
ψ=ψ[g, 〈 f 〉 ]:s(g)\PA@s(h) , ϕ =ϕ [g, 〈 f 〉 ]:s(f )A@s(h) (p∈ P) .p p∈ P p p p p∈ P p
In fact, we can define

� � �h=g( 〈 f /p 〉 ) = g(f /p , f /p , ..., f /p )p p∈ P 1 1 2 2 m m

�for an arbitrary repetition-free enumeration 〈 p 〉 of P , and for f = f ; ofj j∈ [1, m] i pi
course,
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�ψ[g, 〈 f 〉 ]=ψ[g, 〈 f 〉 , 〈 p 〉 ] ,p p∈ P j j∈ [1, m] j j∈ [1, m]
and

�ϕ [g, 〈 f 〉 ]=ϕ [g, 〈 f 〉 , 〈 p 〉 ] .p p p∈ P i j j∈ [1, m] j j∈ [1, m]i


 
 
Suppose P, Q⊂ Qs(g)R , P∩Q=∅ ; write P and Q for the assignments P= 〈 f /p 〉 ,p p∈ P

 
 
Q= 〈 f /q 〉 . Suppose both g(P) = g( 〈 f /p 〉 ) , g(Q) = g( 〈 f /q 〉 ) areq q∈ Q p p∈ P q q∈ Q


 
well-defined. We can consider g(P∪ Q) = g( 〈 f /r 〉 ) , and we haver r∈ P∪ Q

 
 
 
 
 
g(P∪ Q)=g(P)(Q)=g(Q)(P) , with the following diagram commuting:

s(g)\(P∪ Q) G� ���� ��ψ� �� �� ψ��� � ���� � ���� � ���� � ��
 W �ψ h 
s(g(P)) { � { �Ds(g(Q))�� � ���� � ��1 �� P ψ ���� ψ �� "� �� ���� 
 
 �� �� �� s(g(P∪ Q)) ��ϕ h W � ϕ� { = 
 
 {�% s(g(P)(Q)) s�� �� �� ���� = 
 
 ��s(f )� ϕ s(g(Q)(P)) ϕ �Fs(f )p q .

Here, the further specification of the maps is self-explanatory. It should be mentioned that the


 
 
 
map ϕ:s(f )A���@s(g(P∪ Q))=s(g(Q)(P)) has two meanings, which coincide:p

 
 
 
ϕ=ϕ[g, P∪ Q, p]=ϕ[g(Q), P, p] ; similarly for q in place for p .

mWe write g(f , f , ..., f ) , or g( 〈 f 〉 ) , for g(f /1, f /2, ..., f /m) .1 2 m i i=1 1 2 m
The notation g(f , f , ..., f ) (in which there is no notation of the place where each1 2 m
f is being composed into g ) will never be used unless all places of g are involved (thati
is, m= #h(s(g)) ), and f is composed into g at the place i . Now, P=[1, m] : thei
ψ-map for g(f , f , ..., f ) is empty: its domain is the empty set Qs(g)R-P=∅ ;1 2 m
s(g(f , f , ..., f )) is the coproduct of the s(f ) via the maps1 2 m i

ϕ =ϕ [g, 〈 f 〉 ]:s(f )A@s(g(f , f , ..., f )) (i∈ [1, m]) .i i i i∈ [1, m] i 1 2 m
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Let us formulate a version of the transitive law, involving a simultaneus composition. Using

the notation of the previous paragraph, let i∈ [1, m] , p∈ Qs(f )R , and suppose f v hi i p
is well-defined. Then for q=ϕ (p) , we havei

g(f , f , ..., f )v h = g(f , ..., f , f v h, f , ..., f ) .1 2 m q 1 i-1 i p i+1 m

The coherence commutativities in this case are:

s(f )\p G��t i ���� ��ψ �� �� ϕ ��� �� i�� ���� ���� ��W h �s(f v h) { �Ds(g(f))\qi p �� ���� ��1 �� ψ ���� ϕ’ ��� ��i � ���� s(g(f)v h)) ��� �� q ��ϕ h W� { =�% �� �� s(g(f’))��C� ϕs(h)

s(f ) Gj ������ ϕ� �� j� ��ϕ’� ��j� ��� { h �� �Ds(g(f))\q� ��P �� ;ψ ������� ��s(g(f’)) ��W=
�s(g(f)v h))q

�we have used the abbreviations g(f)=g(f , f , ..., f ) ,1 2 m
�g(f’)=g(f , ..., f , f v h, f , ..., f ) ; j≠i .1 i-1 i p i+1 m
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3. Morphisms of multicategories

Given multicategories C , D , a morphism F:CA�@D is given by data and conditions as

follows.

� � �(i) Maps F:O(C)A@O(D) , F:O(C)A@O(D) on objects such that

�( ) �O(C)A�������@O(C)
� �� ��F� { �F� �P P�O(D)A�������@O(D) .�( )

�(ii) A map F:A(C)A�@A(D) on arrows; t (Ff)=F(t (f)) isD C
required for all f∈ A(C) .

(iii) For any f∈ A(C) , a transition bijection

≅θ :Qs (f)RA���@Qs (Ff)R such thatf C D

θfQs (f)RA��������@Qs (Ff)RC D
� �� �s (f)� { �s (Ff) (1)C � � D� �P P
O(C)A�����������@O(D) .F

≅ #Note that this is the same as to say that θ :Fvs (f)A���@s (Ff) in O(D) .f C D

1 1Y � FY �(iv) F preserves identities: F( 〈 Y 〉 A����@Y) = 〈 FY 〉 A�����@(FY) .

(v) F preserves composition. Given f, g∈ A(C) , p∈ Qs (g)R ,C
� t (f)=(s (g)(p)) (so that gv f is well-defined), for p=θ (p)∈ Qs (Fg)R weC C p g D

have that
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� � � �  �t (Ff) = F(t (f)) = F(s (g)(p) ) = F(s (g)(p) = s (Fg)(p) ,D C C C DO O O
(ii) (i) (iii)

thus (Fg)v (Ff) is well-defined. We require thatp

F(gv f) = (Fg)v (Ff) ;p p

moreover,

θ �g Qs (g)R-{p}A�����������������@Qs (Fg)R-{p}C D
� � ψ[f, g, p]� { �ψ[Ff, Fg, p]� �� θ �P gv f PpQs (gv f)RA�����������@Qs (F(gv f))R=Qs ((Fg)v (Ff))RC p D p D pO� Oϕ[f, g, p]� { � � �ϕ[Ff, Fg, p]� �

Qs (f)RA���������������������@ Qs (Ff)R .C θ Df

F GThere is a composition of morphisms of multicategories. Given CA���@DA���@E , for

H=GvF:CA��@E , we have H is the usual composite as far as the effect on objects and

arrows is concerned, and θ :Qs (f)RA��@Qs (Hf)R is given as the compositef C E
(F) (G)θ θf FfQs (f)RA������@Qs (Ff)RA������@Qs (GFf)R . It is fairly clear that H is soC D E

defined is indeed a morphism of multicategories. We also have the obvious identity morphism

Id :CA@C .C

The said items form the category Multicat of (small) multicategories and their morphisms.

Let us emphasize that multicategories are treated here as 0-dimensional objects, that is,

objects of a 1-dimensional, ordinary, category, in contrast to the fact that categories are

usually treated as 1-dimensional objects in a 2-dimensional category. This fact is the key

specific feature of our approach. There are isomorphisms of multicategories, but there are, at

least for us, no equivalences of them.
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Let us note that every morphism F:CA@D can be factored, in a unique manner, in the form

FCG������������@D�� ��B�� ��Φ ≅ h L F’C’

so that the isomorphism Φ is the identity on objects and arrows, and F’ is strict, that is, all

its transition maps are identities. To define C’ , we put O(C')=O(C)=O ,

A(C')=A(C)=A , and, for any f∈ A , t (f)=t (f)=t(f) . For any f∈ A , s (f)C’ C C’
is defined by Qs (f)R=Qs (f)R , and the commutative diagramC’ C

θfQs (f)R ���������@Qs (f)RC 	 J C’	 { �	 �s (f) 	 � s (f)C k + C’
O

(this diagram is obtained by decomposing (1) in the form

�����@ A������@ )� /� � - - �� � �� � �P + P
A�������������@

using the transition map θ for F . Given f, g∈ A , p∈ Qs (g)R such thatf C’
 C’ C -1 t(f)=s (f)(p) , we put gv f = gv f with p=θ (p) . To define theC’  p fp

 amalgamating functions ϕ’=ϕ [f, g, p] , ψ’=ψ [f, g, p] , we use the commutativeC’ C’
squares in

θ �g Qs (g)R-{p}A�����������������@Qs (g)R-{p}C C’
� �ψ� { �ψ’� �� θ �P gv f PpQs (gv f)RA�����������������@ Qs (gv f))RC p C’ pO� Oϕ� { �� �ϕ’� �

Qs (f)RA���������������������@ Qs (f)R .C θ C’f
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where ϕ and ψ are the amalgamating functions given with C . It is immediate that C’ is

well-defined. The transition maps for Φ are the given θ ; the effect of F’ on objects andf
arrows is that of F .
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4. The free multicategory

We need only the free multicategory in the case there is only one level of objects; therefore,

we restrict the definition to this case. However, note that the free one-level multicategory will

be free with respect to the general, two-level, variety.

Suppose O is a set (of "objects"), L is a set (of "generating arrows"), and for each f∈ L ,

*we are given s(f)∈ O , and t(f)∈ O . Such data determine a language L ; we may write

O=O(L) , L=L(L) , s=s , t=t . The free multicategory F(L)=C on the givenL L
language is defined by the universal property as follows. We have that O(L)=O(C) ,

L(L)⊂ A(C) , s , t extend the given maps s and t ; and every time D is aC C L L
multicategory, and we are given F(X)∈ O(D) , F(f)∈ O(D) for X∈ O , f∈ L such that

� ≅t (F(f))=(F(t (f))) , and we are also given θ :Qs (f)RA���@Qs (Ff)R suchD L f L D
that

θfQs (f)R A��������@Qs (Ff)RL D
� �� �s (f)� { �s (Ff)L � � D� �P P
O(L)A�����������@O(D)F

(when θ is the identity, s (Ff)=Fvs (f) ) for all f∈ L(L) , there is a uniquef D L
morphism F:CA@D of multicategories extending the given data F and θ . The( )
uniqueness, up to isomorphism, of F(L) is clear; its existence could be proved routinely by

the Adjoint Functor Theorem (or, Initial Object Theorem; see [M L]). Instead, we will find a

direct description and proof of existence for F(L) .

We first formulate a characterization.

(1) Let L be a language as above. Suppose C is a 1-level multicategory with

O(C)=O(L) , L(L)⊂ A(C) , and s , t extend s and t , respectively. Then CC C L L
is free on L if and only if the following condition (2) holds:
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(2) (((UUUnnniiiqqquuueee RRReeeaaadddaaabbbiiillliiitttyyy))) for every α∈ A(C) ,

either (a) α=1 for some X∈ O(L) ,X
or (b) α=f(α , α , ..., α ) for some f∈ L(L) ,1 2 m

m= #h(s(f)) , α ∈ A(C) such that t(α )=s(f)(i) (i∈ [1, m])i i

( f(α , α , ..., α ) refers to simultaneous composition; see the end of section 1.);1 2 m

and furthermore,

exactly one of (a), (b) is the case; in case (a), X is uniquely determined by α ,

and in case (b), the items f , α are uniquely determined by α .i

Note that there are no additional conditions put on the amalgamating functions.

Note that in case (b), for each i , #h(s(α ))< #h(s(α)) , which fact implies that underi
(2), A(C) is generated by L(L) in the obvious sense: A(C) is the least set X containing

each 1 (X∈ O(L)) and such that if f∈ L(L) , α , α , ..., α ∈ X andX 1 2 m
f(α , α , ..., α ) is well-defined, then f(α , α , ..., α )∈ X . In fact, if the1 2 m 1 2 m
condition (2) holds, we may apply structural induction, respectively, structural recursion, to

prove that a property holds for all arrows of C , respectively, to define a function, say Φ ,

whose domain is A(C) . In the latter case, we should have the definition of the function Φ
at arguments 1 , X∈ O(C) , and a way that determines the value of Φ at any argument ofX
the form f(α , α , ..., α ) (f∈ L(L)) from the following data: f,α , α , ..., α1 2 m 1 2 m
and Φ(α ), Φ(α ), ..., Φ(α ) ; unique readability ensures that thereby Φ is uniquely1 2 m
determined.

The proof of the if part consists in verifying the universal property of C under the condition

(2). Let us use the notation in the statement of the universal property. The effect of F on the

arrows α of C , including the connecting maps θ , is defined by structural recursion onα
α . Of course, the amalgamating maps for the composition in C and those for the

composition in D are used in this definition. The details are put into the Appendix.

(Note that the if part of (1) is an important piece in the justification of the generalized notion
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of multicategory introduced in this paper; the if part of (1) shows that the generalized notion

is, after all, not so far from the standard concept of multicategory; in fact, the if part of (1)

shows that, in a sense, the generalized notion is the algebraic essence of the standard notion. )

Next, for a given language L , we exhibit a particular multicategory F(L) with standard

amalgamation satisfying the condition (2). Then, by the if part already shown, F(L) is free

on L ; and since any multicategory free on L is isomorphic to L , and the condition (2) is

clearly invariant under isomorphism, the "only if" part will follow.

C=F(L) , in the specific sense now to be adopted, is defined to have objects O(C)=O(L) .

The arrows are defined inductively as follows:

(i) each X∈ S is an arrow; s (X)= 〈 X 〉 , t (f)=X .C C
(ii) whenever f∈ L with #h(f)=n , and, for each i∈ [1, n] , α is an arrowi

such that t (α )=s(f)(i) , thenC i

α = f( 〈 α 〉 ) = f(α , α , ..., α ) (3)def i i∈ [1, m] 1 2 m

is an arrow, and s (α) is the concatenation s (α )^s (α )^...^s (α ) ; that is,C C 1 C 2 C m
n

with n = #h(s (α)) , n = #h(s (α )) , we have n= � n , and for anyC i C i ii=1
j∈ [1, n] , with i∈ [1, m] determined such that j∈ [( � n )+1, � n ] ) , we haveh hh<i h≤i
s (α)(j)=s (α )(j- � n ) .C C i hh<i

In (3), f(α , α , ..., α ) means something determined from f and the α so that,1 2 m i
conversely, f and the α can be recovered from it. Thus, f(α , α , ..., α ) may bei 1 2 m
the concatenation of the strings 〈 f 〉 , α , α , ..., α . This is all right if and only if1 2 n
the sets O(L) and L(L) are disjoint. In the general case, a set-theoretical construct such as

〈 1, f, α , α , ..., α 〉 (function on [1, m+2] with values as listed) can be taken for1 2 m
f(α , α , ..., α ) ; now, for clause (i), we take 〈 0, X 〉 to be the arrow, rather than1 2 m
plain X .

The notation in (3) is in agreement with the notation for simultaneous composition, as will

become clear when we have defined composition in F(L) .
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The composition in F(L) is defined by substitution. Given

β αs(β)A�����@s(α)A�����@t(α) ,p

αv β is defined as α(β/p) , the result of substituting β in α for t(β)=s(α)(p) atp
the place p . The value of the expression α(β/p) is defined by recursion on the complexity

of α . If α=X∈ O , and thus s(α)(p)=X , then α(β/p)=β . If α=f( 〈 α 〉 ) ,i i∈ [1, m]
then, using the notation adopted under (ii), for a specific j∈ [1, m] , we p= � n +q withjh<j

 q∈ [1, n ] ; and we put α(β/p)=f( 〈 α 〉 ) , where α =α whenj i i∈ [1, m] i i
i∈ [1, m]-{j} , and α =α (b/q) . It is left to the reader to verify that in this way wej j

have defined a multicategory with standard amalgamation.
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5. A 2–level multicategory with non–standard amalgamation

Let L be a language, and C a (not necessarily standard, but 1-level) multicategory free over

L (see section 4). For α∈ A=A(C) , we define 〈 α 〉 to be "the tuple of occurrences of

operation symbols in α , listed from the left to the right". For a formal definition, we use

unique redability (4.(1)), which enables us to employ a recursion. For X∈ O , 〈 1 〉 =� , theX
empty tuple. For f∈ L(L) , m= #h(s(f)) , α ∈ A , n = #h( 〈 α 〉 ) ,i i i

m
α=f(α , α , ..., α )∈ A , we put #h( 〈 α 〉 )=1+ � n , 〈 α 〉 (1)=f , and for1 2 m ii=1
i∈ [1, m] , k∈ [1, n ] , j=1+ � n +k , we define 〈 α 〉 (j)= 〈 α 〉 (k) . This is thei h ih<i
same as saying that

^ ^ ^ ^〈 f(α , α , ..., α ) 〉 = 〈 f 〉 〈 α 〉 〈 α 〉 ... 〈 α 〉 , (1)1 2 m 1 2 m

where we used the well-known operation of concatenation of tuples; 〈 f 〉 means the one-term

tuple whose only term is f ; of course, it is also the same as 〈 α 〉 in the sense being defined

now, for α=f .

Let us fix a multicategory E , not necessarily 1-level, or with standard amalgamation. A free

multicategory over E is a system (L,C,d:CA@E) where L is a language, C is a

(1-level) multicategory free over L such that (O(L)=)O(C)=O(E) , the morphism

d:CA@E of multicategories is the identity on upper-level objects, and it is strict. A morphism

H:(L ,C ,d )A@(L ,C ,d ) of free multicategories over E is a mapping1 1 1 2 2 2
H:A(L )A@A(L ) such that for any f∈ A(L ) , we have s (H(f))=s (f) ,1 2 1 L L2 1
t (H(f))=t (f) , and for the induced strict morphism H:C A@C (which is theL L 1 22 1
identity on objects) we have the commutative diagram

HC A���������@C1 2	 �	 { �d 	 � d1 	 � 2k + .E

We also say that H is a morphism of languages, and write H:L A@L (note that by a1 2
"morphism of languages" one might a priori mean something more general; we do not need
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the more general concept).

Theorem. There is a uniquely determined assignment of a multicategory

D=D[L,C,d] to any free multicategory (L,C,d) over E such that conditions (i) to (vi)

hold.

�(i) O(D)=L(L) , O(D)=A(E)×O(E) , A(D)=A(C) .

(ii) Using the abbreviation T(α)=(d(α),t (α)) ( α∈ A=A(D)=A(C) )C
�the mapping O(D)A�@O(D) is s�@ 〈 T(s(i)) 〉 .i∈ QsR

(iii) For α∈ A , we have t (α)=T(α) and s (α)= 〈 α 〉 .D D
(D)(iv) For f∈ L=O(D) , 1 =f .f
(D) (C)(v) Let us write W for v , and v for v . Whenever αW β isp

well-defined, we have that

α = α’v f(α , ..., α ) (2)q 1 n
and

αW β = α’v β(α , ..., α ) (3)p def q 1 n

for f= 〈 α 〉 (p) , and for some α’, α , ..., α ∈ A and q∈ Qs (α)R (we are referring1 n C
here to simultaneous composition in C , discussed in the last section).

(vi) Whenever H:(L , C , d )A@(L , C , d ) is a morphism of free1 1 1 2 2 2
multicategories over E , D =D[L , C , d ] , the mappingsj j j j

H : O(D )=L(L )A�����@O(D )=L(L )1 1 2 2
� �id: O(D )=A(E)×O(E)A�����@O(D )=A(E)×O(E)1 2

H : A(D )=A(C )A�����@A(D )=A(C )1 1 2 2

constitute a strict morphism H:D A��@D of multicategories.1 2

The multicategory D=D[L,C,d] is called the multicategory of function-replacement

associated with (L,C,d) . The name derives from the main clause, (v). This clause tries to
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say that

" αW β results by replacing the "function-symbol" f= 〈 α 〉 (p) at the place p in αp
by the arrow β ";

however, it actually says less, namely that

" αW β results by replacing the "function-symbol" f= 〈 α 〉 (p) at some place in αp
by the arrow β ".

Note the difficulty of saying the first of these two statements mathematically; this difficulty

comes from the fact that f may occur at more than one place in α . The theorem avoids

specifying the particular decomposition (2) that "belongs to" the place p , and still manages to

give the complete definition of the concept of the multicategory of function replacement. The

price we pay is that we do not have the definition of D[L,C,d] for any particular

(L,C,d) spelled out in detail; rather, we have the complete definition of the global

assignment (L,C,d)���@D[L,C,d] .

The rest of this section is devoted to the proof of the theorem; certain technical details will be

relegated to the Appendix.

We prove the theorem in two stages. In the first, we fix (L,C,d) , a free multicategory

over E , and define the operations for D=D[L,C,d] partially, for certain combinations of

arguments only, ones that we will call "separated". The second stage will involve the use of

morphisms of free multicategories over E to complete the definition.

With the fixed (L,C,d) , we have O=O(L)=O(C) , L=L(L) , A=A(C) . α,β,γ
denote elements of A , f, g elements of L .

The construction of D takes place in C . The role E and d have in the construction is

summarized in the following lemma:

(4) Lemma.

(i) d(α)=d(β) implies that s(α)=s(β) .

53



(E)(ii) d(αv β) = (dα)v (dβ) ,r r
and more generally

d(α(α ,...,α ))=(dα)(dα ,...,dα ))1 n 1 n
whenever αv β , α(α , ..., α ) are well-defined; here, we refer to simultaneousr 1 n
composition, in C on the left and in E on the right.

(iii) Suppose that d(α )=d(α ) , d(β )=d(β ) and1 2 1 2
c(β )=c(β ) . Suppose α v β is well-defined. Then also,1 2 1 r 1

(a) α v β is well-defined;2 r 2
(b) d(α v β ) = d(α v β ) ;1 r 1 2 r 2

as a consequence,

(c) s(α v β ) = s(α v β ) ;1 r 1 2 r 2
and we have, for the amalgamating functions for C , that

(d) ϕ[α , β , r]=ϕ[α , β , r] , ψ[α , β , r]=ψ[α , β , r] .1 1 2 2 1 1 2 2

This is essentially immediate from the fact that d:CA@E is a strict morphism which is the

identity on objects; here are some details.

For (i): since d:CA@E is a strict morphism which is the identity on objects,

s (d(α))=s (α)=s(α) . Therefore, d(α)=d(β) implies s(α)=s(β) .E C

For (ii): this is a consequence of the fact that d is a strict morphism d:CA@E of

multicategories.

For (iii):

Remember that αv β is well-defined iff r∈ Qs(α)R and s(α)(r)=c(β) . Thus, (a) isr
clear.

EWriting α,β for α , β , for either i=1 or i=2 , we have d(αv β) =d(α)v d(β) ,i i r r
Eimplying (b). By the strictness of d , ϕ[α,β,r]=ϕ [d(α),d(β),r] , and similarly for

ψ . The equalities d(α )=d(α ) , d(β )=d(β ) now clearly imply (d).1 2 1 2

Let us write kαk for the range of the function 〈 α 〉 , the set of function-symbols occurring

in α . The definition of 〈 α 〉 gives that
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kf(α , ..., α )k = {f}∪ kα k∪ ...∪ kα k1 n 1 n

and by induction on α , we see that

kαv βk = kαk ∪ kβk . (5)q

Note the obvious fact that, for α, β∈ A , the existence of at least one map 〈 β 〉 A�@ 〈 α 〉 in

#L is equivalent to the condition kβk⊂ kαk .

Let α∈ A and let f∈ kαk . Any representation of α in the form of (2), with suitable α’ ,

etc., is called a decomposition of α at f .

(6) Lemma. Assume f∈ kαk . There is at least one decomposition of α at

f .

Proof: see Appendix.

α is separated if 〈 α 〉 is a repetition-free tuple: the function 〈 α 〉 :Q 〈 α 〉 RA�@L is

one-to-one. A system (α , α , ..., α ) of terms is separated if each α is separated,1 2 n i
and the ranges kα k are pairwise disjoint sets. Note the obvious fact that if α is separated,i

#β is any term, then there is at most one arrow 〈 β 〉 A@ 〈 α 〉 in L . For f∈ L , the

well-defined term f(α , α , ..., α ) is separated iff the system (f, α , α , ..., α )1 2 k 1 2 n
is separated. By induction on α , we see that αv β is separated iff (α, β) is a separatedq
system; in particular, if αv β is separated, then kαk∩kβk=∅ .q

The following lemma is intuitively obvious.

(7) Lemma. For a separated term α , the decomposition at f∈ kαk (see (2)) is

unique.

Proof: see Appendix.
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Let α, β∈ A , and f∈ L . We declare αW β to be well-defined if and only if α isf
separated, f∈ kαk , and T(f)=T(β) (for T , see (ii) of the theorem); if so, αW β isf
given by the expression (3), that is,

αW β = α’v β(α , ..., α ) ,f q 1 n

where we refer to (2), the (unique) decomposition of α at f (by (6) and (7)). Note that,

instead of a "place" p , we now have a function-symbol f in the subscript position. We still

have to see that the expression defining αW β is well-defined.f

Note that T(f)=T(β) implies that s(f)=s(β) and t(f)=t(β) . The simultaneous

composition β(α , ..., α ) is well-defined since (s(β)(i))=(s(f)(i))=t(α ) ,1 n i
the second equality from the fact that f(α , ..., α ) is well-defined. The composition at1 n
q is well-defined since

(s(α’)(q)) = t(f) = t(β) = t(β(α ,...,α )) ;1 n

the first equality holding since (2) is well-defined.

The first thing we check is that

T(αW β)=T(α) . (8)f

provided αW β is well-defined. Applying d to the expressions (2) and (3), and applying (4)f
repeatedly, we get that

d(α) = d(α’)v d(f)(d(α ), ..., d(α )) ,q 1 n
and

d(αW β) = d(α’)v d(β)(d(α ), ..., d(α )) ;f q 1 n

on the right-hand side, we have simultaneous composition in E . The equality d(f)=d(β)
ensures that d(αW β)=d(α) . We also have that c(αW β)=c(α’)=c(α) . By (4), itf f
follows that (8) holds.
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The definition of αW β gives immediately that we havef

kαW βk=(kαk-{f})∪ kβk . (9)f

Next, we claim

(10) Lemma. Assuming the pair (α, β) is separated and f∈ kαv βk ,r

(αW γ)v β if f∈ kαkf r
(αv β)W γ =r f

αv (βW γ) if f∈ kβkr f

(Note that the same place r appears on the two sides. The upper right-hand occurrence of the

composition v at r is meaningful, since by (8) and (4), s(αW γ)=s(α) .)r f

Proof: see Appendix.

Note that, together with the equality fW β=β (provided fW β is well-defined), (10)f f
determines the value of αW γ in all cases, since the generating arrows f∈ L , together withf
the identities generate A . Of course, (10) cannot be used to define W , directly at least, since

terms can, in general, be written in the form αv β in more than one way.r

The definition of αW β in terms of v , and what we know about separatedness and v ,f C C
makes it clear that if the pair (α, β) is separated, then so is the term αW β (a little lessf
would in fact suffice).

We are ready to state and prove the associative and commutative laws for the separated case;

the proof uses (10).

(11) Lemma. Assume that the triple (α, β, γ) is separated, f∈ kαk ,

g∈ kαW βk=(kαk-{f})∪ kβk , T(β)=T(f) and T(γ)=T(g) . Thenf
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(αW γ)W β if g∈ kαkg f(αW β)W γ =f g αW (βW γ) if g∈ kβk .f g

(Note that the assumption implies that the left-hand side is well-defined. Note also that the

right-hand expressions are well-defined too; if g∈ kβk , we have, by (8),

T(βW γ)=T(β)=T(f) , making αW (βW γ) well-defined.)g f g

Proof: see Appendix.

Assume again that (α, β) is separated, and f∈ kαk , so αW β is well-defined. Letf
p∈ Q 〈 α 〉 R such that 〈 α 〉 (p)=f . As we have noted, the separatedness of αW β ensuresf
there is at most one morphism 〈 α 〉 \pA��@ 〈 αW β 〉 , and at most one 〈 β 〉 A��@ 〈 αW β 〉 .f f
But also, since kαW βk=(kαk-{f})∪ kβk , there are such morphismsf

ψ ϕ〈 α 〉 \pA������@ 〈 αW β 〉 M������N 〈 β 〉 , (15)f
ψ=ψ (α, β, f) , ϕ=ϕ (α, β, f) ;W W

we have defined the amalgamating maps for the composition v =W , partially, for theD
"separated case". Finally, we note that, provided the triple (α, β, γ) is separated, each one

of the diagrams made up of amalgamating maps for the composition v =W , associated withD
either the associative law δ = (αW β)W γ=αW (βW γ) in 1.(xi) or the commutative lawdef f g f g
δ = (αW β)W γ=(αW β)W γ in 1.(xii) as the case may be, is automatically commutative,def f g f g
by the separatedness of the term δ , which implies that into 〈 δ 〉 from any other object of

#L there is at most one morphism.

This completes the work of establishing the multicategory structure in the restricted sense of

applying to the "sufficiently separated" arguments. We now enter the second stage of the proof

of the theorem.


 
 
Let F:(L,C,d)A���@(L,C,d) be a morphism of free multicategories over E . We say


 
 
that F is ample, or that (L,C,d) is an ample expansion of (L,C,d) via F , if for each


 
 
f∈ L there are infinitely many distinct f∈ L such that F(f)=f .
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It is almost obvious that we have

(12) Lemma. Any free multicategory (L,C,d) over E has ample expansions.

Proof: see Appendix.


 
 
Let F:CA@C be an ample expansion . Since F is strict, for any β∈ A=A(C) ,

s (β)=s (F(β)) . We will write s(β) , t(β) for s (β) , t (β) , respectively,
 C 
 
C C C
 
just like in C . We have, for any α∈ A , that

 〈 F(α) 〉 =Fv 〈 α 〉 :

  〈 α 〉 
〈 F(α) 〉 R=Q 〈 α 〉 RA����������@L (13)	 �	 { � 	 �〈 F(α) 〉 	 � Fk +
L


Of course, "separated" terms in C are meant as they were in C .

Here is another "obvious" lemma.


(14) Lemma. F:CA�@C is surjective: For any α∈ L , there is at least one separated


β∈ L such that F(β)=α . In fact, for any α∈ L , and any finite set I , there is at least one


separated β∈ L such that F(β)=α and kβk∩I=∅ .

Proof: see Appendix.

   
  
     
We use the notations c(α)=t
(α) , T(α)=(d(α),c(α)) for α∈ A . SinceC

      
  d(α)=d(Fα) , c(α)=c(Fα) , we have that T(α)=T(α) for α=F(α) .
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Now, we can define αW β for any α, β∈ A=A(C) , and p∈ Q 〈 α 〉 R such that, forp

 
 
f= 〈 α 〉 (p) , T(β)=T(f) . Let α∈ A be separated such that F(α)=α by (14); next, let


 
 
 
 β∈ A be separated such that F(β)=β and kβk∩kαk=∅ by (14) again. Let f= 〈 α 〉 (p) .

 
 
 
 
  
  
By (13), F(f)=f ; we have T(β)=T(f) , and αW β=αW β is well-defined. We definep 
f

 
αW β = F(αW β) .p def 
f

Further, we define the amalgamating maps

ψ ϕ〈 α 〉 \pA������@ 〈 αW β 〉 M������N 〈 β 〉 , (15)p
ψ=ψ (α, β, p) , ϕ=ϕ (α, β, p)W W

as the F-images of the maps


 
 ψ  
 ϕ 
〈 α 〉 \pA������@ 〈 αW β 〉 M������N 〈 β 〉 ,
f

  
 
  
 
ψ=ψ (α, β, f) , ϕ=ϕ (α, β, f) .W W


 
As maps of sets, ψ and ϕ are the same as ψ and ϕ , respectively; by (13) , e.g.,

  
Q 〈 α 〉 \pR=Q 〈 α 〉 \pR , Q 〈 αW β 〉 R=Q 〈 αW β 〉 R , thus, we can definep 
f

 
ψ:Q 〈 α 〉 \pRA�@Q 〈 αW β 〉 R as ψ=ψ ; similarly, ϕ=ϕ ; then by (13) again, ϕ and ψ arep

#maps as in (15). It is also obvious that (ϕ, ψ) are the coprojections of a coproduct in L .

Let us show that this definition is legitimate: that is, the result does not depend on the choice


  
of the ample expansion F:CA@C , and the choice of α,β .


  
 
Let α,β∈ A(C) , p∈ Q 〈 α 〉 R , f= 〈 α 〉 (p) . Let C,α,β and f be as above. Assume

� � � � � �G:C=F(L)A@C is another ample expansion, (α, β) a separated pair of terms in A=A(C)
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� � � �such that G(α)=α , G(β)=β ; let f= 〈 α 〉 (p) ; we want to show that

 
 � �F(αW β)=G(αW β) , (16)
 �f f

and that the amalgamating maps ϕ,ψ also come out to be the same when we use the new

data.


 �We claim that there is a morphism H:LA@L of languages (see above) such that


 H �LA���������@L	 �	 �	 { �F 	 � G (17)k +
L

 � 
 �and such that Hv 〈 α 〉 = 〈 α 〉 , Hv 〈 β 〉 = 〈 β 〉 for the particular α and β given to us.. The

 ⋅ 
 
latter two conditions determine the effect of H on the subset kαk∪ kβk of L ; these

 
  
conditions are possible to fulfill since 〈 α 〉 , 〈 β 〉 are injective functions, and kαk∩kβk=∅ .

 ⋅ 
The restriction of H to kαk∪ kβk so determined will satisfy what it has for (17) to hold. On


the rest of the set L , H can be defined arbitrarily, except for being subject to (17); the


 
 � � � 
ampleness of G ensures that for every g∈ L there is g∈ L such that G(g)=F(g) ; we may


 �put H(g)=g .


 �  
H gives rise to a morphism H:CA��@C for which the transition isomorphisms θ ( g∈ L )g
are all identities. H is the identity on objects. It follows from the strictness of F and G ,

and (17) that H is strict.

 � 
 � �  � �We claim that H(α)=α , H(β)=β . Note that for α =H(α) , β =H(β) , we have1 1
� � � � � �  � �G(α )=G(α) and G(β )=G(β) ; also, 〈 α 〉 = 〈 α 〉 =Hv 〈 α 〉 , 〈 β 〉 = 〈 β 〉 . The1 1 1 1

� � � � �assertion then follows from the following observation: if γ, δ∈ L , G(γ)=G(δ) ,

� � � � � �〈 γ 〉 = 〈 δ 〉 then γ=δ ; this is proved by an induction on the length of G(γ)=G(δ) .
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 � � �The definition of αW β via the structure of C , and that of αW β via the structure of C
 �f f
 
 � �  � 
 �tell us that H(αW β)=αW β holds as a consequence of H(α)=α , H(β)=β , the facts that
 �f f

H is a strict morphism, and that H is the identity on objects. For this, one notes, in the first

 
 �place, that the decomposition of α at f is carried by H into the decomposition of α at

�f . Now, (16) follows by (17). The assertion on the amalgamating maps is also clear.

The condition (v) is clearly met by the construction.

We now prove assertion (vi) of the Theorem, even though we have not yet proved that

D[L,C,d] is a multicategory. Assume the data for (vi) as shown. The claim is that in this

case we have

(D ) (D )1 2H(1 ) = 1 (18)f H(f)

1 2H(αW β) = (Hα)W (Hβ) (19)p p

and

ϕ [α, β, p] = ϕ [Hα, Hβ, p] , ψ [α, β, p] = ψ [Hα, Hβ, p] , (20)1 1 1 1W W W W

1 ievery time αW β is well-defined ( W is the composition in D ).p i


(18) is immediate. The proofs of (19) and (20) are also easy: having set up F:CA@C ,1
 F 
 F 1 1  1
α��@α , β��@β as is needed for the definition of αW β as αW β=F(αW β) , we have ap p 
f


  HF 
 HFvalid set-up HF:CA@C , α���@Hα , β���@Hβ for the disambiguated definition of2
2 2  1
  1
(Hα)W (Hβ) as (Hα)W (Hβ)=(HF)(αW β)=(H(F(αW β)) , which shows (19); (20)p p 
 
f f

is similarly seen.

The relation
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T(αW β) = T(α)p

follows instantly from the definition of αW β , the variant (8) of the same law established inp

 
  the "separated case", and applied in C , and by the fact T(α)=T(α) when F(α)=α .

The rest of the required laws for W are also easily established. We treat the associative law.

Suppose α, β, γ∈ A , αW β and βW γ are well-defined, and q=ϕ [α, β, p](q) , to seep q W

 
 
that (αW β)Wγ=αW (βW γ) . Choose an ample F:(L,C,d)A@(L,C, d) and by (14),p q p q

 
  
   
choose arrows α,β,γ∈ A(C) such that α is separated, F(α)=α , β is separated,


  
    
 kβk∩kαk=∅ , F(β)=β , γ is separated, kγk∩(kαk∪ kβk)=∅ , and F(γ)=γ . Then,


   
  
   
 with f= 〈 α 〉 (p) , g= 〈 β 〉 (p) , we have (αW β)Wγ=(αW β)W γ ,p q 
 gf
 
   
   
   
 αW (βW γ)=αW (βW γ) , and (αW β)W γ=αW (βW γ) as (α, β, γ) is a separatedp q 
 g 
 g 
 gf f f
triple, and in the separated case, we know that the associative law holds (see (11)). By (vi)

 
   
 (already proved), F((αW β)Wγ) = (αW β)Wγ and F(αW (βW γ))=αW (βW γ) . Itp q p q p q p q
follows that (αW β)Wγ = αW (βW γ) .p q p q

The commutative law and the commutative diagrams involving the amalgamating maps are

established similarly.

We have left the treatment of the identity arrows for the end.

(D)For f∈ L=O(D) , 1 is defined to be f∈ A itself; since s (f)= 〈 f 〉 , andf D
� (D)t (f)=f=T(f) , the source and the target of 1 are as they should be.D f

To see that the first unit law holds, let us assume first that β∈ A is separated, p∈ Q 〈 β 〉 R ,

f= 〈 β 〉 (p) , to see that βW f=β and for ϕ=ϕ [β, f, p] , ψ=ψ [β, f, p] , we havep W W
ϕ(1)=p and ψ(i)=i for i∈ [1, lh(β)]-{p} . By condition (v) in the Theorem (which

we have proved), it is clear that βW f=β . The separatedness of β ensures that ϕ and ψp

cannot be anything else but the ones described. Turning to the general case, let F:CA@C be


 
 
 
 
an ample expansion, and β∈ A such that F(β)=β . Let f= 〈 β 〉 (p) . Then, by what we
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just saw, βW f=β and for ϕ=ϕ[β, f, p] , ψ=ψ[β, f, p] , we have ϕ(1)=p andp

 
ψ(i)=i for i∈ [1, #h(β)]-{p} . Since W is preserved by F (condition (vi), already

proved), the desired result follows.

The other unit law is similarly seen.

The uniqueness assertion in the Theorem is clear from what we have gone through.
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6. Multitopic sets

An multitopic set S , by definition, consists of data (i) to (iii), subject to conditions (iv) to

(viii):

(i) a sequence 〈 C 〉 of sets [to indicate dependence on S , we mayk k∈ �
write C (S) for C , and similarly for the other ingredients to follow],k k

(ii) sequences 〈 C 〉 , 〈 D 〉 of multicategories,k k∈ � k k∈ �
and

(iii) morphisms d :C A�@D (k∈ �) of multicategoriesk+1 k+1 k

such that

(iv) C has only identity arrows, and O(C )=C ;0 0 0
(v) for k≥1 , C is free on a language L for which O(L )=C ,k k k k-1

L(L )=C ;k k
(vi) D =C ;0 0
(vii) O(D )=C =O(C ) , and d :C A�@D is a strict morphismk k k+1 k+1 k+1 k

which is the identity on upper level objects;

(viii) for k≥1 , D is the multicategory of function-replacement associatedk
dkwith C A����@D (see the previous section).k k-1

The multitopic set S gives rise to the following diagram of sets and functions:

d d dP M������NP M������NP ... P M������NP ...0i � 1i � 2 ki � k+1	d � 	d � 	d �O 	 � O 	 � O O 	 � O� � � � � � � �i� c� 	 i� c� 	 i� i� c� 	 i�� � 	 � � 	 � � � 	 �� + 	 � + 	 � � + 	 �I I IC M������NC M������NC ... C M������NC ...0 c 1 c 2 k c k+1

Here, C is the set of k-cells, and it is given in (i) in the data for S . P =A(C )=A(D ) ;k k k k
its elements are called the k-pasting diagrams of S . We have omitted subscripts from the

maps; each should be understood with the same subscript as its domain; e.g.,

d :P A@P , which is the effect on arrows of the morphism d :C A@D .k+1 k+1 k k+1 k+1 k
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c =t .k+1 Ck+1

In general, d(a) is the domain, c(a) is the codomain of a whatever a is to which the

d or c in question applies. In particular, we talk about domain and codomain of both cells

and pasting diagrams.

i :C A@P is the inclusion of the generating arrows into the free C =F(L ) . d andk k k k k k
c with domain C are the composites d i , c i , respectively.k k k k k k

We have

dd=dc , cd=cc ;

in more detail,

d d =d c , c d =c c : (1)k k+1 k k+1 k k+1 k k+1

d dP M������ P M������NPk-1i � k � k+1	d � �	 � �� �c� 	 c�� 	 �+ 	 +
C M������NCk-1 c k

for all k∈ �-{0} . This is the familiar "globular" aspect of higher-dimensional category

theory: it says that the domain and the codomain of a cell of dimension k+1 greater than 1

are parallel to each other, that is, they agree as far as their domains and codomains are

concerned. Note however that domains and codomains here are very different things; the

domains are pasting diagrams, the codomains are individual cells.

To see (1), let us abbreviate d and c by d and c , respectively. d on upper levelk+1 k+1
objects is the identity id . Recall that, by the definition of D as in (viii) , we have thatC kk
�a , the lower level object corresponding to the upper level object a∈ C , isk
�a = T(a) = (d (a), c (a)) . Remember also that t (β)=T(β)=(d (β), c (β))k k D k kk
( β∈ P ).k
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�On lower level objects, the effect d of d is forced by the required commutativity of

dO(C )A��������@O(D )k+1 id k

� �id� �T ,� { �P P

� �O(C )A��������@O(D )k+1 � kd

�to be d(a)=T(a) . Since d:C A�@D preserves "target", for any α∈ P ,k+1 k k+1
�t (dα))=d(t (α)) , that is T(dα)=T(cα) , which is (1).D Ck k+1

�Note that O(D )=L(L )=C , O(D )=A(D )×O(C )=P ×C , and we havek k k k k-1 k k-1 k-1
A(D )=A(C ) .k k

The fact that d :C A��@D is a strict morphism which is the identity on objectsk+1 k+1 k
implies that s (α)=s (α)= 〈 α 〉 , where 〈 α 〉 is defined as the left-to-right tuple ofC Dk+1 k
function-symbol occurrences in α ; see the previous section.

The fundamental equality is

d(αv β) = (dα)W (dβ) ( p∈ Q 〈 α 〉 R , cβ= 〈 α 〉 (p) ),p p

signifying part of the fact that d=d is a strict morphism of multicategories; herek+1
α, β∈ C , v is the composition in C , W is the composition in D .k+1 k+1 k

It is possible to build an multitopic set recursively. An n-truncated multitopic set is given by

data 〈 C 〉 , 〈 C 〉 , 〈 D 〉 as above in (i), (ii), (iii), butk k∈ [0, n] k k∈ [0, n] k k∈ [0, n-1]
with the index k ranging over the integers 0 to n inclusive in the first two sequences, and

up to n-1 in the last; the conditions (iv) to (viii) are assumed. Every (full) multitopic set S

gives rise to its n-truncation S�n , an n-truncated multitopic set; also, if n≥m , an

n-truncated one, S , gives rise to S�m , an m-truncated one. On the other hand, if for each

n , there is given S , an n-truncated multitopic set , and S �n=S for all n , thenn n+1 n
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there is a unique multitopic set S for which S�n=S for all n .n

With C an arbitrary set (of 0-cells), we let C =F(L ) be the (free) multicategory whose0 0 0
objects are the 0-cells, and whose only arrows are identities ( O(L )=C , L(L )=∅ ). We0 0 0
have P =A(C ) ≅ C . This is all there is to a 0-truncated multitopic set.0 0 0

After having determined C , we let C , the set of 1-cells, be any set, and we let0 1
d :C A@P =C , c :C A@C be arbitrary functions (the domain and codomain1 1 0 0 1 1 0
assignments for 1-cells). We let D =C . The language L has O(L )=C , and0 0 1 1 0

*L(L )=C ; s (f)= 〈 d (f) 〉 ∈ C (singleton tuple) , t (f)=c (f)∈ C . There is1 1 L 1 0 L 1 01 1
nothing to say about the amalgamating functions for C .1

Given an

n-truncated multitopic set S , with notation used above,

an arbitrary set C (of (n+1)-cells);n+1
functions c :C A@C , d :C A@P such thatn+1 n+1 n n+1 n+1 n

d d =d c , c d =c c :n n+1 n n+1 n n+1 n n+1
dP M������ Pn-1i � ni	d � 		 � c 	� 	 d� 	 	� 	 	+ 	 	IC M������ C M������NC ,n-1 c n c n+1


we have a uniquely determined (n+1)-truncated multitopic set S which extends the given


data. To define S , we first let D be the multicategory of function-replacement associatedn
with d :C A@D .n n n-1

Next, we define the language L to have O(L )=C , L(L )=C . Forn+1 n+1 n n+1 n+1
*f∈ C , s (f) = 〈 d (f) 〉 ∈ C ; We let t (f) = c (f)∈ C .n+1 L def n+1 n L def n+1 nn+1 n+1

0We define C (not yet C ) as the free multicategory on L with standardn+1 n+1 n+1
amalgamation.
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0 0 0To define d =d :C A�@D , a morphism of multicategories, we use the freeness ofn+1 n+1 n
0 0C . d is defined on upper level objects as the identity:n+1
0 0 0d :O(C )=C A�@O(D )=C is id . On lower level objects, the effect of d isn+1 n n n Cn

forced by the required commutativity of

00 dO(C )A��������@O(D )n+1 id n

� �id� �T ;� { �P P

� 0 �O(C )A��������@O(D )n+1 n�0d

�0 � 0 �0to be d =T , we put, for a∈ O(C )=C , d (a)=T(a) = (d (a), c (a)) .n+1 n n n

0On a generating arrow f∈ L(L )=C , we put d (f) = d (f) . We need ton+1 n+1 n+1
0 �0have that t (d (f))=d (t (f)) ; but this meansD Ln n+1

T(d (f))=T(c (f)) , which reduces to d (d (f))=d (c (f)) andn+1 n+1 n n+1 n n+1
c (d (f))=c (c (f)) , which are true by the assumptions we have made onn n+1 n n+1
d , c .n+1 n+1

0For f∈ C , s (f)= 〈 d (f) 〉 , and s (d (f))= 〈 d (f) 〉 ; also, then+1 L n+1 D n+1n+1 n
0effect of d on the upper level objects is the identity; therefore, it is legitimate to define the

≅ 0transition isomorphism θ :Qs (f)RA���@Qs (d (f))R (see section 3.) to be thef L Dn+1 n
identity.

0The freeness of C on L ensures the existence and uniqueness ofn+1 n+1
0 0 0d :C A��@D , a morphism of multicategories, extending the determination of dn+1 n

0 0given on L . In particular, d is the identity on the upper level objects. However, d isn+1
not, in general, a strict morphism, since D may have nonstandard amalgamation. We factorn
0d as in
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00 dC A�����������@ Dn+1	 ) n	 �	 ≅ { �Φ 	 �k � dn+1Cn+1

so that Φ is an isomorphism which acts as the identity on objects and arrows (but may be

non-strict), and d is strict (see the end of section 2.). This is the definition of the desiredn+1
0d :C A�@D . Since C ≅ C , by an isomorphism which is the identity onn+1 n+1 n n+1 n+1

objects and arrows, C is also free on L , with possibly nonstandard amalgamation.n+1 n+1

We have completed the definition of S .


Putting S =S , we produce a sequence of truncated multitopic sets S which togerthern+1 n n
define a full multitopic set S . The definition of the S and S is by a non-deterministicn
recursion, with the data on the n-cells and their domains and codomains being parameters that

are to some extent arbitrary.
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7. The category of multitopes

� � � � �Suppose S=(C , C , D , d ) , S=(C , C , D , d ) are multitopic sets. An n n n n∈ � n n n n n∈ �
� �morphism Φ:SA@S of multitopic sets consists of maps Φ :C A@C such thatn n n

Φ and Φ combine to induce a, necessarily unique, strict morphism ofn n+1
�multicategories C A�@C ;n+1 n+1

and

the Φ are compatible with the d's: Φ vd =d vΦ .n n-1 n n n

Because of the definition of D in terms of C and the d's , it follows that the Φ inducen n n
�a strict morphism D A�@D .n n

Under this definition of morphism, we have a category MSet of multitopic sets, with obvious

composition and identities.

We are particularly interested in the terminal multitopic set T . This is obtained if we stipulate

that for each n , there be exactly one n-cell of any possible type; that is, exactly one 0-cell

altogether; exactly one 1-cell altogether; and for each n≥1 , for each pair (β, b)∈ P ×Cn n
such that dβ=db , cβ=cb , there be exactly one a∈ C such that da=β , ca=b ; inn+1
other words that for each n≥1 , the mapping C A�@Q in the diagramn+1

�% P�� ) n	d �� � 	 (d, c)�� � 	�� � 	�� { � kLC G A�����@Q W P ×Cn+1 	 ) n-1 n-1�� { 	 ��� 	 ��� 	 �c �� k � (d, c)�g Cn

induced by the pullback Q=P × C , be an isomorphism. It is easy to see, byn P ×C nn-1 n-1
going through the recursive buildup of any given multitopic set S as given in the previous
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section, that if T is such as described, then there is a unique map SA@T : T is terminal.

On the other hand, the existence of T as described is also assured by the same recursive

procedure. Note that in this case, the non-deterministic element of the recursion, the arbitrary

choice of the (C , d , c ) , is eliminated by the condition given.n+1 n+1 n+1

Let us use the notations C =C (T) , D =D (T) , C =C (T) , P =P (T) ; wen n n n n n n n
continue to use d , c and i without further specifying tags both for T and for other

multitopic sets as they might come up. It will be convenient to have a new element * , and set

P ={*} .-1

Given an arbitrary multitopic set S , we use the notation Φ:SA@T for the terminal map, as

well as for its various components. For any entity a in S , Φ(a) is its type.

≅The first remark is that d:C A���@P ( n≥0 ). This is true when n=0 and n=1 .n n-1
Let n≥2 . We know that

≅C A���@P × C .n n-1 P ×C n-1n-2 n-2

a �������@ (da, ca)

Therefore, it suffices to show that

≅P × C A�����@ Pn-1 P ×C n-1 n-1n-2 n-2

(β, b) ��������@ β .

But for (β, b) as shown,

db=dβ , cb=cβ ; (1)

and, by the definition of T , with any given β∈ P , there is exactly one b∈ Cn-1 n-1
satisfying (1).

What the last-shown fact signifies is that the sets C may be dropped, the sets P may ben n
used for them as well. However, to avoid confusion, we continue to use the C . Whenn
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 -1ρ∈ P , ρ is d (ρ)∈ C .n-1 n

Our aim here is to show that there is a specific category Multitope , the category of

multitopes, such that the multitopic sets are the same as set-valued functors on Multitope :

MultitopeMSet J Set . The objects of Multitope are the elements of the P for alln
⋅n∈ �∪ {-1} (we write P ={*} ); Ob(Multitope)= abc P .-1 n⋅n∈ �∪ {*}

In what follows, S denotes an (arbitrary) multitopic set, with the notation for its ingredients

we used before; Φ:SA@T , Φ(a) is the type of a .

Given any ρ∈ P , including the possibility ρ=*∈ P , C (ρ) is the set of n-cells ofn-1 -1 n
 type ρ : C (ρ)={a∈ C :Φ(a)=ρ} for n≥1 , and C (*)=C for n=-1 . Similarly,n n 0 0

for ρ∈ P , let P (ρ)=(α∈ P :Φ(α)=ρ} .n n n

For emphasis, let us write [ρ] , or even [ρ] (the subscript is n , not n-1 , sincen
[ρ] is the "sort" for n-cells, not (n-1)-cells), for the object of Multitopen

�corresponding to ρ∈ P ( n≥0 ). For the Set-valued functor S:MultitopeA�@Setn-1
� �corresponding to S , we will have S([ρ] )=C (ρ) ; S(*)=C .n n 0

To identify the arrows of Multitope , we have to do more work.

(C )nFor n≥1 , let us call α∈ P proper if α≠1 for any b∈ C , i.e., if Q 〈 α 〉 R≠∅ ;n b n-1
improper otherwise. For n=0 , all α∈ P =C are proper. We use "proper", "improper" for0 0
elements of P in a similar way.n

Note the following fact. To know a proper pasting diagram α∈ P , it suffices to know itsn
type ρ=Φ(α) and the n-cells filling its places; in other words,

(1') supposing that α, β∈ P (ρ) have the same proper type ρ , and for alln
p∈ Q 〈 α 〉 R=Q 〈 β 〉 R=Q 〈 ρ 〉 R , we have 〈 α 〉 (p)= 〈 β 〉 (p) , then α=β .
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This is intuitively clear, and seen very easily by an induction on #h( 〈 ρ 〉 ) . Note, however,

that the assignment p�@ 〈 α 〉 (p) satisfies conditions, due to "links" within α ; therefore, to

determine α we need, beyond its type ρ , a suitably "linked" filling out its places with

n-cells. Next, we give the description of these links.

Let n≥1 , and ρ∈ P . Recall that s (ρ)= 〈 ρ 〉 and s (ρ)= 〈 dρ 〉 ; p∈ Q 〈 ρ 〉 R is an D Cn n
place where a "function-symbol", 〈 ρ 〉 (p) , occurs in ρ ; r∈ Q 〈 dρ 〉 R is a place where a

"variable", 〈 dρ 〉 (r) , occurs in ρ . If ρ=f(ρ , ...ρ ) , 〈 ρ 〉 is the concatenation of1 m
〈 f 〉 and the 〈 ρ 〉 ; we have the injections µ =µ [f,ρ ,...ρ ]: 〈 ρ 〉 A��@ 〈 ρ 〉 ;i i i 1 m i
µ (j)=1+ � #h( 〈 ρ 〉 )+j : 〈 ρ 〉 is the coproduct of 〈 f 〉 and the 〈 ρ 〉 via thei h ih<i
coprojections ν:Q 〈 f 〉 RA�@ρ:1�@1 and the µ .i

Link (ρ) is a set, specified below, of certain triples (p, q, s) , the so-called 1-links of1
ρ , such that p, q∈ Q 〈 ρ 〉 R , and for

� �p= 〈 ρ 〉 (p) , q= 〈 ρ 〉 (q) , (2)

�we have, in particular, s∈ Q 〈 dp 〉 R , and

� �〈 dp 〉 (s) = cq . (3)

Intuitively, (p, q, s)∈ Link (ρ) means that the the function-symbol occurrence of1
〈 ρ 〉 (q) at q in ρ plugs directly into the occurrence of 〈 ρ 〉 (p) at p in ρ at the place

s of the function-symbol 〈 ρ 〉 (p) . To see an exmaple, let X, Y∈ C , a, b, c∈ C ,n-1 n
a: 〈 Y, Y 〉 A@X , b: 〈 X, Y 〉 A@Y , c: 〈 X, Y, Y 〉 A@Y in the multicategory C , and letn

ρ = a(c(X, b(X, Y)), Y), b(a(Y, Y), Y)) ∈ P .n

Then 〈 ρ 〉 = 〈 a, c, b, b, a 〉 , and

Link (ρ)={(1,2,1),(2,3,2),(1,4,2),(4,5,1)} ;1

for instance, (4,5,1)∈ Link (ρ) since the second occurrence of a , which is at place 51
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in ρ , plugs directly into the second occurrence of b , which is at place 4 in ρ , and this

takes place at the 1st place of the function-symbol b .

Here is the formal, recursive, definition. When ρ is improper, Link (ρ)=∅ . Let1
ρ=f(ρ , ...ρ ) . We define1 m

m
Link (ρ) = abc{(µ (p), µ (q), s): (p, q, s)∈ Link (ρ )}1 i i 1 ii=1

∪ {(1, µ (1), i): i∈ [1, m], Q 〈 ρ 〉 Q≠∅ } .i i

The terms of the first union are there because all the 1-links in the ρ give rise to 1-links ini
ρ via the maps µ ; the final term says that the head-occurrence (if any) of ai
function-symbol in ρ , which occurs at µ (1) in ρ , is plugged directly into thei i
head-occurrence of f in ρ , at the argument-place i of f .

(3) (under (2)) is seen immediately for (p, q, s)∈ Link (ρ) .1

Given ρ , let α∈ P (ρ) . For p∈ Q 〈 α 〉 R=Q 〈 ρ 〉 R , let us write p for 〈 α 〉 (p) ; thenn
�   �p= 〈 ρ 〉 (p)=Φ(p) ; we have p∈ C (dp) . Given (p, q, s)∈ Link (ρ) , we haven 1

 〈 dp 〉 (s)=cq ; (3')

this is a consequence of (3). We claim that, conversely,

�(4) given ρ∈ P proper, and for each p∈ Q 〈 ρ 〉 R , a cell a ∈ C (dp)n p n
such that for every (p, q, s)∈ Link (ρ) ,1

〈 da 〉 (s)=ca (∈ C ) ,p q n-1

then there is a unique α∈ P (ρ) such that p = 〈 α 〉 (p)=a ( p∈ Q 〈 ρ 〉 R ).n def p

The proof is a relatively straightforward induction.
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Next, Link (ρ) will denote a set of certain triples (p, r, s) , the 2-links in ρ , such2
� �that, amomg others, p∈ Q 〈 ρ 〉 R , r∈ Q 〈 dρ 〉 R and, for p= 〈 ρ 〉 (p) , s∈ Q 〈 dp 〉 R ,

�〈 dp 〉 (s) = 〈 dρ 〉 (r) . (5)

Intuitively, the 2-links (p, r, s) are those for which the variable-occurrence in ρ at r

plugs directly into the function-symbol occurrence in ρ at p , at the place s of the

function-symbol 〈 ρ 〉 (p) . For instance, let us consider the ρ taken as an example above, and

assume that as far as ρ and its subterms are concerned, the multicategory C has standardn
amalgamation; in particular, s (ρ)= 〈 X, X, Y, Y, Y, Y, Y 〉 , and in fact each i of theCn
seven places 1 to 7 refers to the ith occurrence from the left of an element of C inn-1
ρ . (This assumption is, of course, not automatically true.) In this case, we have

Link (ρ) =2
{((2,1,1),(3,2,1),(3,3,2),(1,4,2),(5,5,1),(5,6,2),(4,7,2)}

Formally, we define Link (ρ) as follows. When ρ is improper, Link (ρ)=∅ . Let2 2
ρ=f(ρ , ..., ρ ) . We have the amalgamating functions ϕ :s (ρ )A��@s (ρ) ,1 m i C i Cn n
that is, ϕ : 〈 dρ 〉 A��@ 〈 dρ 〉 ;i i

m
Link (ρ) = abc{(µ (p), ϕ (r), s): (p, r, s)∈ Link (ρ )}2 i i 2 ii=1

∪ {(1, µ (1), i): i∈ [1, m], Q 〈 ρ 〉 R=∅ } .i i

(5) is immediately seen.

It is easy to see that

(5') if ρ is proper, then for every r∈ Q 〈 dρ 〉 R , there is a unique

(p, r, s)∈ Link (ρ) with second component the given r .2

 �Supposing that α∈ P (ρ) , p∈ Q 〈 ρ 〉 R , p= 〈 ρ 〉 (p)=Φ(p) , and (p, r, s)∈ Link (ρ) ,n 2
we have
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〈 dp 〉 (s) = 〈 dα 〉 (r) , (6)

as a consequence of (5).

We are ready to define the category Multitope . As we said, its objects are [ρ] , onen
for each n∈ � , ρ∈ P . Next, we give generating arrows for Multitope . They aren-1

dρ, p �Multitope[1] [ρ] A������������@[dp] ,n+1 n

�one for each n≥-1 , ρ∈ P and dp=d( 〈 ρ 〉 (p))∈ P ;n n-1

cρMultitope[2] [ρ] A����������@[dρ] ,n+1 n

one for each n≥-1 and ρ∈ P .n

Finally, we give defining relations that the generating arrows are to satisfy. These come in four

groups Multitope[3] to Multitope[6] .

Multitope[3]:

[ρ]n+1J� 	d � 	 dρ, p � 	 ρ, q� 	+ k
� ��[dp] { [dq] , (7)n n	 �	 �d � 	 � c �dp, s 	 � dqk +

[θ]n-1

one for each n≥0 , ρ∈ P , and (p, q, s)∈ Link (ρ) . Note that the codomain ofn 1
�d � is [θ ] for θ = d( 〈 dp 〉 (s)) , and the codomain of c � is [θ ]dp, s 1 n-1 1 dq 2 n-1

� � �for θ =d(dq) ; by the fact that d(dq)=d(cq) , and by (3), we have θ =θ , and so,2 1 2
the diagram (7) makes sense.
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Multitope[4]:

[ρ]n+1J� 	d � 	 cρ, p � 	 ρ� 	+ k
� �[dp] { [dρ] , (8)n n	 �	 �d � 	 � ddp, s 	 � dρ, rk +

[τ]n-1

one for each n≥1 , ρ∈ P , and (p, r, s)∈ Link (ρ) . Note that the codomain ofn 2
�d � is [τ ] for τ =d( 〈 dp 〉 (s)) , and that of d is [τ ] for τ =dp, s 1 n-1 1 dρ.r 2 n-1 2

d( 〈 dρ 〉 (r)) , and by (5), τ =τ , thus, (8) is meaningful.1 2

Multitope[5] :

[ρ]n+1J� 	d � 	 cρ, 1 � 	 ρ� 	+ k
� �[d1] { [dρ] , (9)n n	 �	 �c � 	 � cd1 	 � dρk +

[ξ]n-1

�one for each n≥0 , proper ρ∈ P . Note that 1∈ Q 〈 ρ 〉 R ; 1= 〈 p 〉 (1) . The codomain ofn
� �c � is dd1 , that of c is ddρ . We have c1=cρ as a general, and obvious, rule ford1 dρ

� �all proper ρ . Therefore dd1=dc1=dcρ=ddρ , thus, (9) is meaningful.
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Multitope[6] :

[1 ]g n+1
���c� 1� g�P

[dρ] =[ig] commutes: d vc =c vc ,n n ig, 1 1 ig 1g g
� �d � �cig, 1� � ig� �P P

[dg]n-1

(C )nwhenever g∈ C . Note that 1 =1 ∈ P , ig=i (g)∈ P , Q 〈 ig 〉 R={1} ,n-1 g g n n-1 n-1
〈 ig 〉 (1)=g , dig=dg .

The category Multitope is the one whose arrows are generated by the generating arrows,

under the identification of arrows forced by the defining relations; briefly, the category whose

presentation was given above.

�Given any multitopic set S , we may define S:MultitopeA��@Set as follows. We put

�S([ρ] )=C (ρ) . For the generating arrow in Multitope[1], we note thatn n
� � � �S([dp] )=C (dp) , and if a∈ S([ρ] )=C (ρ) , then α = da∈ P (ρ) ,n-1 n-1 n n def n-1

  �  �and for p= 〈 dα 〉 (p) , Φ(p)=p , and thus p∈ C (dp) ; this means that we can definen-1

� � S(d ):C (ρ)A�@C (dp) : a��@p= 〈 da 〉 (p) .ρ, p n n-1

As for Multitope[2] ,

�S(c ):C (ρ)A��@C (dρ) : a��@ca ;ρ n n-1

note that since dΦ(ca)=dcΦ(a)=ddΦ(a)=dΦ(da)=ddρ , we have Φ(ca)=dρ , and so

ca∈ C (dρ) .n-1
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�The diagrams which are the images under S of the ones in Multitope[3] to

Multitope[6] commute:

Multitope[3]:

aJ 	� 	� 	� 	d � 	 dρ, p � 	 ρ, q� 	+ 	k p q , (10)
	 �	 �d � 	 � c �dp, s 	 � dqk + 〈 dp 〉 (s)=cq

O
( 3 ' )

Multitope[4]:

a� 	� 	� 	� 	� 	d � 	 cρ, p � 	 ρ� 	+ k
p ca , (11)

	 �	 �d � 	 � ddp, s 	 � dρ, rk +〈 dp 〉 (s)= 〈 dα 〉 (r)= 〈 dca 〉 (r)
O

( 5 )

Multitope[5]:

a� 	� 	� 	� 	� 	d � 	 cρ, 1 � 	 ρ� 	+ k
1 ca (12)

	 �	 �c � 	 � cd1 	 � dρk +

c1=cda=cca
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Multitope[6]:

a
���P ; (13)
ca

� �� �� �P P
〈 dca 〉 (1) = cca

the reason for the last equality is that now da=α=1 for some f∈ C , and sof n-1
dda=if∈ P , cca=cda=f , and so 〈 dca 〉 (1)= 〈 dda 〉 (1)=f=cca .n-1

�Therefore, the S:MultitopeA��@Set is well-defined.

It is clear that any arrow Ψ:S A@S in MSet gives rise to a natural transformation1 2
� � � 1 2 1 2Ψ:S A@S , whose components C (ρ)A�@C (ρ) are the restrictions of Ψ:C A�@C .1 2 n n n n

Multitope � �We have a functor Σ:MSetA�@Set :S�@S, Ψ�@Ψ .

I omit the (easy) proof of the fact that Σ is full and faithful.

OpLet us show that Σ is surjective on objects. Let T∈ Set , to construct S∈ MSet for

�which S=T ; we are going to use the standard notation for S ; C =C (S) , etc.k k

We define C = T([*] ) .0def 0

Let n≥0 . Suppose we have constructed the n-truncation (see the previous section) S�n of

S , so that

�����(S�n) = T�n ; (14)

here we are using a self-explanatory notation. S�n involves k-cells and k-pasting diagrams

for all k=-1, 0, ..., n . Multitope�n is the category whose objects are the [ρ] fork
ρ∈ P , and for the same range of k , and whose arrows the arrows generated by thek
generators and relations in Multitope[1] to Multitope[6], with the value of n

appearing in Multitope[1] to Multitope[6] restricted to the range from 0 the
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present n (inclusive). T�n is the Set-valued functor on Multitope�n which is the

restriction of T . For the canonical functor Ξ:Multitope�nA�@Multitope , T�n is

TvΞ . (Incidentally, Ξ is full and faithful.)

Next, we define

(15) C and d :C A�@P , c :C A�@C such that whenn+1 n+1 n+1 n n+1 n+1 n
n≥1 , also d d =d c , c d =c c .n n+1 n n+1 n n+1 n n+1

⋅We put C = abc T([ρ] ) .n+1 def n+1ρ∈ Pn

Let ρ∈ P , a∈ T([ρ] )⊂ C .n n+1 n+1

We let c (a)=ca = T(c )(a) , for the arrow c from Multitope[2]. Sincen+1 def ρ ρ
ca∈ T([dρ] ) , and (9), we have ca∈ C (dρ) .n n
To define ?:α = d (a)=da∈ P , we distinguish two cases. First, assume ρ isdef n+1 n

(C )nimproper; ρ=1 for some g∈ C . The type of α has to be Φα=ρ ; thus,g n-1
(C )nα=1 for a suitable c∈ C for which Φ(c)=g ; moreover, c=cα=cda=cca , andc n-1

(C )nca∈ C (dρ) were determined above. So, let us define da = 1 for c = cca .n def c def

For n≥1 , we need dda=dca , cda=cca .

We have dρ=d(1 )=ig ; for b=ca , we have b∈ C (ig) ; so, db=if for someg n
f∈ C ; f= 〈 db 〉 (1) . Applying Multitope[6] to T (and remembering (9)), we getn-1
that 〈 dca 〉 (1)=cca : read (13) as to imply the equality stated in it. This means that

dca=icca . Also, dda=d(1 )=ic=icca . Therefore, dda=dca is established.c

Since da=1 , cda=c ; cca=c by the definition of c ; cda=cca is established.c

Second, assume ρ is proper. We now apply (4). We let a = T(d )(a)p def ρ, p
(p∈ Q 〈 ρ 〉 R) . The fact that T respects the diagram Multitope[3] (compare (10)) gives

that the condition in (4) is satisfied. Therefore, we have α∈ P (ρ) such thatn
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p= 〈 α 〉 (p)=T(d )(a) for all p∈ Q 〈 ρ 〉 R . We let da = α .ρ, p def

To see that cda=cca , it suffices to invoke the fact that T "satisfies" Multitope[5];

see (12).

We have dda , dca∈ P (dρ) . To show the equality dda=dca , we distinguish twon-1
cases: dρ is proper (Case 1), dρ is improper (Case 2).

Case 1. Let α=da , β=dca . We have that β∈ P (dρ) , and β satisfies the conditionn-1
〈 dp 〉 (s)= 〈 β 〉 (r) for all (p, r, s)∈ Link (ρ) , by Multitope[4] applied to T . By2

(6), and (5'), thus 〈 β 〉 (r)= 〈 dα 〉 (r) for all r∈ Q 〈 dρ 〉 R , which means, by (1'), that

β=dα ; this is what we wanted.

Case 2. Now, n-1≥1 . Any (improper) β∈ P (dρ) is determined by cβ ; ifn-1
β , β ∈ P (dρ) , and cβ =cβ , then β =β . For β =dda , β =dca ,1 2 n-1 1 2 1 2 1 2

cβ =cdda = ccda = ccca = cdca ,1 O O O

1 2 3

where 1 and 3 hold by the law " cd=cc " holding in S�n , 2 by the fact that

cda=cca .

We have completed (15).


By what we have done in the previous section, we now have S=S�(n+1) , the

(n+1)-truncation of the desired S ; by recursion, we have the full S .

�The construction of S clearly ensures that S=T , for the effect on both objects and arrows of

Multitope .

MultitopeThis completes the proof that MSetJSet .

We develop a notation for multitopes.
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In what follows, we work in T , the terminal multitopic set. To have a notation for cells and

pd's, we make the following decisions:

≅(i) We make each of the bijections d :C A�@P ( n≥0 ) equal the identity map.n n n-1
(ii) For elements of the free multicategory F(L) we may use Polish notation. That is,

instead of writing f(α , ..., α ) ( f∈ L(L) , α ∈ A(F(L)) ), we may write1 n i
fα ...α . In particular, if n=0 , then the term is just f . (It is known that there is no1 n
loss of unique readability when we so omit all parentheses and commas. In a complex

expression, the key to decoding is to use the arity of each operation symbol. In our notation,

the arity will be contained in the notation of the operation symbol itself.) Alternatively, we

may use the original parenthesis/comma notation as well.

(iii) The ingredients of the notation of members of A(F(L)) are the elements of

O(L) and those of L(L) . Thus, the ingredients for the elements of P =A(F(L ))n n
( n≥1 ) are the elements of C =P , and those of C =P . Whenn-1 n-2 n n-1
β∈ C =P is used in P , we put β in brackets [ ] ; when α∈ C =P is used inn-1 n-2 n n n-1
P , we put α in curly brackets { } . When n=0 , only the second part applies.n

(iv) We denote the single element of C =P by * (as we already did above).0 -1

The above fixes the notation, with a choice of using Polish notation, or the parenthesis/comma

notation. The Polish normal form for the generating arrow β∈ C =L(L )=P (n≥1) asn n n-1
it appears in P =A(C ) is {β}[γ ]...[γ ] where 〈 β 〉 = 〈 γ ,...,γ 〉 ∈ P . Asn n 1 # 1 # n-2
an abbreviation, we will write {β} for {β}[γ ]...[γ ] . On the other hand, for1 #
γ∈ P , we have [γ]∈ P in proper notation.n-2 n

The single element of C =P is {*} . The elements of C =P are the expressions1 0 2 1
{{*}}{{*}}...{{*}}[*] , with zero or more parts of the form {{*}} . If

α={{*}}{{*}}...{{*}}[*]∈ P =C =L(L )⊂ A(C ) has # occurrences of {{*}} ,1 2 2 2
*then s (α)=s (α)= 〈 dα 〉 = 〈 α 〉 = 〈 {*},{*},...,{*} 〉 ∈ C ( # occurrences), andL C 12 2

t (α)=t (α)={*}∈ C . Consequently, an inductive definition of C =P is asL C 1 3 22 2
follows:

(a) [{*}]∈ P ;2
(b) if {{*}}{{*}}...{{*}}[*]∈ P has # occurrences of {*} , and1

α ,...,α ∈ P , then {{{*}}{{*}}...{{*}}[*]}α ,...,α ∈ P .1 # 2 1 # 2
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Note that, for #=0 , (b) gives {[*]} as an example of a member of P ; of course, it is2
different from the one in (a).

To have an example, consider the 2-pd γ considered in section 1; γ∈ P (S) in some2
multitopic set S that accommodates the cells involved. The type of γ , Φ(γ)∈ P , is as2

follows. Let us write upper bar for "type", x for Φ(x) . Then

  �  �a=c=d=e={{*}}{{*}}[*]=ϕ∈ C =P , and b={{*}}{{*}}{{*}}[*]=η∈ C =P .2 1 2 1

The type of all of the f is {*}∈ C =P . Thus, abbreviating #=[{*}] , ϕ={ϕ} ,i 1 0


η={η} , we have

 
 
 
 
 
γ = ϕ(ϕ(#, ϕ(η(#, #, #), ϕ(#, #))), #)

or, in Polish notation,

 

 

 
γ = ϕϕ#ϕη###ϕ###

or, without abbreviations,

γ = {{{*}}{{*}}[*]}{{{*}}{{*}}[*]}[{*}]{{{*}}{{*}}[*]}

{{{*}}{{*}}{{*}}[*]}[{*}][{*}][{*}]

{{{*}}{{*}}[*]}[{*}][{*}][{*}] .

This is not meant as a particularly intuitive representation; it is a systematic notation

well-suited for mechanical manipulation.

The inductive definition of P and c(α) for α∈ P is this:n n
(a) for any γ∈ P , [γ]∈ P ; and c[γ]={γ}∈ P ;n-2 n n-1

*(b) whenever β∈ P , 〈 β 〉 = 〈 γ ,...,γ 〉 ∈ P , α ∈ P , cα =γ , wen-1 1 # n-2 i n i i
have {β}α ...α ∈ P and c({β}α ...α )=dβ .1 # n 1 #

For d on P , we haven

85



d(α v α ) = (dα )W (dα )1 p 2 1 p 2

whenever p∈ Q 〈 dα 〉 R . Also, d({β})=β and d([γ])={γ} for β∈ P , γ∈ P .1 n-1 n-2


We look at the types of the 3-cells considered in subsection 1.6 of section 1. Let's use ϕ , ϕ ,

 � � �   
  � 
# as above; σ={{*}}[*] , σ={σ} . We have f=h=ϕ , i=g=σ , α=ϕ#σ# , β=ϕσ## ;

���� �  
   � �   also, βW α=βW α=ϕσ#σ# ; α,β,βW α∈ P . For the 3-cells u, v , we have u=α ,1 1 1 2
 �v=β , both elements of C =P . The 3-pd ψ=vv u=v(u(h, i), g) (from 1.6 too),3 2 1

� �  
 
 ψ = {β}{α}[ϕ][σ][σ] = {ϕσ##}{ϕ#σ#}[ϕ][σ][σ] ;

� �  
 dψ = βW α = ϕσ#σ# .1

� 
    �Also, β’=ϕ#σ#=α , v’=β’ , ψ’=v’v u=v’(u(h, i), g) , and1

�   
  
 ψ' = {α}{α}[ϕ][σ][σ] = {ϕ#σ#}{ϕ#σ#}[ϕ][σ][σ] ;

� �  
 dψ = β'W α = ϕ#σσ# .1
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Appendix

We prove the if direction of 3.(1). We use the notation introduced in and before the statement

of 3.(1). On the basis of the data L , C , F defined on L , and 〈 θ 〉 , satisfying thef f∈ L
conditions in the definition of the free multicategory, we have to define F:CA@D , including

〈 θ 〉 .f f∈ A

We write s , t , O , L , A for s =s , t =t , O(C)=O(L) , L(L) , A(C) ,C L C L
� � � �respectively. Let's write O for O(D) , A for A(D) , X for F(X) ( X∈ O ), f for F(f)

�( f∈ A ) . We will write s(β) , t(β) for s (β) , t (β) , respectively, when β∈ A .D D

We define α = F(α) by structural recursion.

�� � � �If α=1 : 〈 X 〉 A@X , we let 1 : 〈 X 〉 A@X .X X

�Assume that f∈ L , Qs(f)R=[1, n] , α , ..., α ∈ A , t(α )=(s(f)(i)) ; thus,1 n � i
�α=f(α)=f(α , ..., α ) is well-defined. Consider1 n

≅ �θ :Fvs(f)A���@s(f) , (1)f

� � -1 and write i for θ (i) , and j for θ (j) ( i, j∈ [1, n] ). Assume that α isf f i
 ����� �defined for all i∈ [1, n] , and t(α )=(t(α )) (induction hypothesis). We leti i

 �    �   α = f(α , α , ..., α ) = f(α /1, α /2, ..., α /n) .� � � � � �1 2 n 1 2 n

We observe that this is well-defined:

������� ����� � � � � � � � �t(α )=(t(α )) =(s(f)(j)) =s(f)(θ (j)) =s(f)(j) ;� � fj j O
*
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here, the equality marked * is the content of (1). Also,

 � ���� � ���� �t(α)=t(f)=(t(f)) =(t(α)) . This completes the definition of the mapping

α�@α=F(α) .

≅ Next, we define θ :Fvs(α)A���@s(α) . For α=1 , there is no choice. Considerα X
��   α=f(α) as above. Let α= 〈 α , ..., α 〉 , and1 n

(C) � ≅ϕ = ϕ [f, α]:s(α )A���@s(α) ,i i i
�� (D) �   ≅ ϕ = ϕ [f, α]:s(α )A���@s(α) ,j j j

# �# �arrows in O , O , respectively. We know that the morphisms ϕ are coprojectionsj
  �#making s(α) a coproduct of the s(α ) in O . Therefore, there is a uniquely determinedj

 �#morphism θ :Fvs(α)A�@s(α) for which the following diagram in O commutes forα
each j∈ [1, n] :

θα Fvs(α)A������������@s(α)
O O� �� ��ϕ � �ϕ (2)�� { � jj� �� �� �

Fvs(α )A�����������@s(α ) ;� θ �j α j�j

it is also clear that θ is an isomorphism. This completes the definition of the θ .α α

We need to verify the requisite properties of F:CA@D defined by the above specifications.

First, we show

����  �F(αv β)=αv β=αv β ; (3)p p p

here, p=θ (p) .α
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We employ a structural induction on α . When α=1 , the assertion is obviously true. LetX
�α=f(α) , with all the accompanying notation used above. Assume that αv β isp

well-defined. There are uniquely determined i∈ [1, n] and q∈ Qs(α )R for whichi
p=ϕ (q) ; the associative law, in the form applying to a simultaneous composition, givesi
that

αv β = f(α , ..., α , α v β, α , ..., α ) . (4)p 1 i-1 i q i+1 n

� � Let j=i ; j=i . According to the definition of γ��@γ , we have

���� �   �����  αv β=f(α /1, ..., α /(j-1), α v β/j, α /j+1, ..., α /n) (5)p � � i q � �1 (j-1) (j+1) n

Let q=θ (q) ; by the induction hypothesis,αi

�����  �α v β = α v β . (6)i q i q

Consider the diagram (2), and chase the element q in the lower left corner. We obtain that

�  ϕ (q)=p . Since we havej

 �   α = f(α /1, α /2, ..., α /n) ,� � �1 2 n

we get, by associativity in D , that

 � �    �  αv β=f(α /1, ..., α /(j-1), α v β/j, α /j+1, ..., α /n) (7) � � i  � �p 1 (j-1) q (j+1) n

which, after a comparison with (5) and (6), gives (3).

It remains to show that the θ satisfy the coherence condition in 2.(v).α
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� �We consider α=f(α) and αv β as before; we write f(α’) to abbreviate the right-handp
�� side of (4), f(α’) for the right-hand side of (5) (equivalently, (7)). We want to prove the

commutativities in

θ �α  (Fvs(α))\pA������������@s(α)\p
� ��ψ� {? �ψ� �� �P θ Pαv βp ����  �Fvs(αv β) A������������@s(αv β)=s(αv β) (8)p p pO O� ��ϕ� {? �ϕ� ��

�Fvs(β) A�������������@ s(β) .θβ

What we have to go on are the following facts. First, as the induction hypothesis, the

commutativities

θ �αi  (Fvs(α ))\qA������������@s(α )\qi i
�� { �
ψ� �ψ� �P θ Pα v βi p �����  �Fvs(α v β) A������������@s(α v β)=s(α v β) (9)i p i q i qO O�� �
ϕ� { �ϕ� ��

�Fvs(β ) A�������������@ s(β)θβ
� � 
 
where we used the notations ψ,ϕ,ψ,ϕ in the obvious senses. Second, we have the coherence

conditions associated with associativity, both in C and D , to wit
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s(α )\q G��t i ��� �� ��ψ �� �� ϕ ��� �� i�� ���� ���� ��W hs(α v β) { �Ds(α)\pi q �� ���� �� (10)1 �� ���� ϕ’ ��� ��i �� ψ�� s(αv β)) ��� � �� p ��ϕ h W� { =�% �� �� s(f(α’))��C� ϕs(β)

s(α ) Gk ������ ϕ� �� k� ��ϕ’� ��k� ��� { h� �Ds(α)\p� ��P �� (k≠i) (11)������� �� ψs(f(α’)) ��W=
s(αv β)p

 s(α )\q G��t i ��
 �� �� �ψ �� �� ϕ ��� �� j�� ���� ���� �� � W h  s(α v β) { �Ds(α)\pi  �� ��q �� �� (12)1 �� � ���� ϕ’ ��� ��j  � ���� s(αv β)) �� �� � ��  �� ψϕ h p W� { =�%� �� ��� � C� � s(f(α’))s(β) ϕ

s(α ) Gk ������ ϕ� �� #� ��ϕ’� ��#� ��� { h  � �Ds(α)\p� ��P �� (k≠i, #=θ (k)) (13)�� f�� �� �� ψ ��s(f(α’)) ��W=  �s(αv β)p
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Further, we have the definition of θ in terms of the diagrams (2), that isα

θ θα  α Fvs(α)A������������@s(α) Fvs(α)A������������@s(α)
O O O O� � � �� �� � ��ϕ � �ϕ ϕ � �ϕ (14)i� { � j k� { � #� � � �� � � �� � � �

 Fvs(α )A�����������@s(α ) Fvs(α )A�����������@s(α )i θ i k θ kα αi k

and the definition of θ =θ � , that isαv β f(α’)p

θ θα  � α  �Fvs(αv β)A������������@s(αv β) Fvs(αv β)A������������@s(αv β)p  p p pO O O O� � � �� �� � ��ϕ’� �ϕ’ ϕ’� �ϕ’ (15)i� { � j k� { � #� � � �� � � �� � � �
 � Fvs(α v β)A�����������@s(α v β) Fvs(α ) A�����������@s(α )i q θ i  k θ kα q αi k

Let us remark that in each of these diagram, we actually have functions on sets, and as

functions of sets, e.g. ϕ :s(α )A�@s(α) and ϕ :Fvs(α )A�@Fvs(α) are the same,i i i i
namely ϕ :Qs(α )QA�@Qs(α)R .i i

Consider the upper commutativity in (8). s(α)\p is the coproduct of s(α )\q andi
s(α ) (k≠i) via the coprojections ϕ � , ϕ ; therefore, the required commutativity isk i k
proved if we can show that it holds when we precompose it with the said coprojections.

We observe (not without a certain amount of experimentation) that using some of the diagrams

above, we can fit together the cube
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A������������@�� 9 ���� ���� 10� 14 �� 12�W � W ��A�������������@ �8 �� � � �� � � �� P � P� A���� A�����@� �� 15 � ��� �� � ��� �� � ��P W P W
A�������������@

in which the front face is (8) upper (the one we want to see commute), the left face is (10)

upper, the right face is (12) upper, the bottom face is (15) left, the top face is (14) left, and the

back face is (9) upper. All of these, except the front face, commute. It follows that the front

face commutes when precomposed by the left upper edge, which is ϕ � ; this is the firsti
thing we want. As far as precomposing with ϕ (k≠i) is concerned, the back face of thek
cube collapses, and we get

A������������@s�� s��� �� � ��� �� 14 � ��� �F � �F� 11 A���� A������@ 12� �� 15 � ��� �� � ��� �� � ��P W P W
A�������������@

here again, the front face is (8) upper, the left face is (11), the right face is (13), the bottom

face is (15) right, the top face is (14) right; thus, we again have the desired conclusion. As we

said, this shows the commutativity of (8) upper.

The proof for (8) lower is left to the reader.

This completes the proof of the existence of the morphism F:CA@D ; the uniqueness of F is

clear from what we have seen.

Next, the proofs of some lemmas in section 4 are provided.
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Proof of 4.(6) Lemma:

We employ induction according to 3.(2).

If α=1 , then Q 〈 α 〉 R is empty; the assertion is vacuously true.X

Let α=g(β , ..., β ) , with g∈ L ; m = #h(s(β )) . There are two cases: p=1 (Case1 m i i
1), p≠1 (Case 2) .

In Case 1 , we have f= 〈 α 〉 (1)=g and n=m ; we put α’=1 where X=t(g) , andX
α =β ( i∈ [1, m] ); (1) is clear.i i

In Case 2, by (1'), there is i∈ [1, m] such that p∈ Q 〈 β 〉 R . By assumption, we havei

β =γv f(α , ...α )i r 1 n

for suitable γ, r, α , ...α . Then for1 n

δ = g(β , ..β , 1 , β , ..., β ) ,def 1 i-1 Y i+1 m
ε = f(α , ...α ) ,def 1 n
s = ϕ [g; β , ..β , 1 , β , ..., β ](1) ∈ Qs(δ)R ,def i 1 i-1 Y i+1 m
α’ = δv γ = g(β , ..β , γ, β , ..., β )def s 1 i-1 i+1 m

[ α’ is well-defined since t(γ)=t(β) ],

q = ϕ[δ, γ, r](r) ,def

we have 4.(2):

α’v f(α , ...α ) = (δv γ)v ε = δv (γv ε) = δv β = α .q 1 n s q s q s i

This completes the proof.
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Proof of 4.(7) Lemma:

For the proof, let us first make a general statement. Given an identity

g(β , ..., β ) = ηv ξ1 m s

with g∈ L , β , ..., β , η, ξ ∈ A , it follows that1 m

either η=1 and g(β , ..., β )=ξ ,X 1 m

 
or for unique i∈ [1, m] , β and t∈ Qs(β)R , we have


 
β =βv ξ and η=g(β , ..., β , β, β , ..., β ) ,i t 1 i-1 i+1 m


and for ϕ =ϕ [g; β , ..., β , β, β , ..., β ] , we have s=ϕ (t) .i i 1 i-1 i+1 m i

This is proved by an induction on η , according to 3.(2); no separatedness is involved.

� � � �Let f∈ L , n= #h(s(f)) , β=(β , ..., β ) , δ=(δ , ..., δ ) , f(β) , f(δ)1 n 1 n
well-defined. Assume

� 
ε=αv f(β)=γv f(δ)p q

� �and ε is separated, to show that α=γ , β=δ and p=q . We do an induction on α .

�Let first α=1 ; X=t(f) necessarily. Then ε=f(β) . If γ=1 , then Y=X=t(f) ,X Y

 �and α=γ . Otherwise, kγk≠∅ , and kγk∩kf(δ)k=∅ , and so f∉ kγk ; but γ=g(γ)

� * 
 � � *for a suitable g∈ L , γ∈ A , and so γv f(δ)=g(η) for a suitable η∈ A ;q
� 
 �ε=f(β)=γv f(δ)=g(η) is impossible; contradiction.q

� � *Next, α=g(α) , g∈ L , α=(α , ..., α )∈ L . Then for a unique i∈ [1, m] , for1 m
�ϕ =ϕ [g, α] , and for a unique r∈ Qs(α )R , we have p=ϕ (r) , and fori i i i
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� �α=α v f(β) , we havei r

� �ε=αv f(β)=g(α , ...α , α, α , ..., α ) .p 1 i-1 i+1 m

Since ε is separated, we have that g≠f .


 �ε=γv f(δ) = g(α , ...α , α, α , ..., α )q 1 i-1 i+1 m

implies that


either γ=1 and ε=f(δ) , a case excluded by f≠g ;X
   
or for some j∈ [1, m]-{i} , α and s∈ Qs(α)R , we have α =αv f(δ) , a casej s

�again excluded since kα k∩kαk=∅ by the separatedness of ε ;j
  �  
or for some α and s∈ Qs(α)R , we have α=αv f(δ) ands

γ=g(α , ...α , α, α , ..., α ) ,1 i-1 i+1 m


  
and for ϕ =ϕ [g; α , ...α , α, α , ..., α ] , we have ϕ (s)=q .i i 1 i-1 i+1 m i

� �  
In this case, we have α=α v f(β)=αv f(δ) . By the induction hypothesis applied toi r s
 � �α , we get α =α , r=s and β=δ . But theni i


 ϕ =ϕ [g; α , ...α , α, α , ..., α ]i i 1 i-1 i+1 m
=ϕ [g; α , ...α , α , α , ..., α ]=ϕ ,i 1 i-1 i i+1 m i


p = ϕ (r)= ϕ (s) = q ,i i

and

α=g(α , ...α , α , α , ..., α )=g(α , ...α , α, α , ..., α )=γ ;1 i-1 i i+1 m 1 i-1 i+1 m
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and the proof is complete.

Proof of 4.(10) Lemma:

�Assume first that f∈ kαk . Write α in the form 4.(2), with α abbreviating α , ..., α :1 n

�α = α’v f(α) ,q

and

�αW γ = α’v γ(α) .f q

We have that s(α) is the coproduct of s(α’) and the s(α ) (i∈ [1, n]) , via thei
amalgamating maps

�ψ = ψ[α’, f(α), q]:s(α’)A@s(α) ,def
� �ϕ = ϕ[α’, f(α), q]:s(f(α))A@s(α) .def

Therefore, we have the two mutually exclusive cases r∈ Im(ψ) (Case 1) , and r∈ Im(ϕ)
�(Case 2). Leaving aside the easier Case 1, we take up Case 2. s(f(α)) is the coproduct of

the s(α ) (i∈ [1, n]) , via the mapsi

� �ϕ =ϕ [f, α]:s(α )A���@s(f(α)) .i i i

We have r = ϕ(s) for a uniquely determined s ; and s=ϕ (t) for uniquely determinedi
i and t . Two applications of the associative law (one of the original form, the other of the

form related to simultaneous composition) give that

� �αv β = (α’v f(α))v β = α’v (f(α)v β) =r q r q s
α’v f(α , ..., α , α v β, α , ..., α ) .q 1 i-1 i t i+1 n
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Therefore,

(αv β)W γ = α’v γ(α , ..., α , α v β, α , ..., α ) . (1)r f q 1 i-1 i t i+1 n

On the other hand,

�αW γ = α’v γ(α) .f q

� �Comparing d(α’v γ(α)) and d(α’v f(α)) , by 4.(4) we see that they are equal,q q
� �because d(γ)=d(f) ; also, ϕ[α’, γ(α), q]=ϕ[α’, f(α), q]=ϕ , and similarly for the

ψ's. Therefore,

� �(αW γ)v β = (α’v γ(α))v β = α’v (γ(α)v β) ,f r q r q s

with the same s as the one determined above. For similar reasons, we have, for the same i

and t as above,

�γ(α)v β = γ(α , ..., α , α v β, α , ..., α ) ,s 1 i-1 i t i+1 n

and so,

(αW γ)v β = α’v γ(α , ..., α , α v β, α , ..., α ) (2)f r q 1 i-1 i t i+1 n

(1) and (2) confirm the desired equality (αv β)W γ = (αW γ)v β .r f f r

We will not consider Case 1, neither the second case in the lemma, f∈ kβk , and take 4.(10)

as having been proved.
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Proof of 4.(11) Lemma:

In the possession of 4.(10), we can perform an induction on α , in the sense of showing the

equalities for α=1 and α∈ L , and assuming them for δ and ε in place of α , with allX
other parameters unconstrained, we prove it for α=δv ε . Since A is the least setr
containing all 1 , L and closed under the operations (δ, ε)��@δv ε , this is a validX r
procedure.

The basis case α=1 is vacuous. Let α=h∈ L . Then g∈ kαk would mean g=h , andX
since f∈ kαk , f=h=g ; however, f∉ kαW βk and g∈ kαW βk , contradiction. Itf f
remains to consider the case g∈ kβk . Since αW β is well-defined, h=f , and αW β=β .f f
Both (αW β)W γ and αW (βW γ) are equal to βW γ .f g f g g

⋅For the induction step, we let α=δv ε , and distinguish, because of kαk=kδk∪ kεk , ther
following six mutually exclusive and jointly exhaustive cases:

[1]: f∈ kδk , g∈ kδk ;

[2]: f∈ kδk , g∈ kεk ;

[3]: f∈ kεk , g∈ kδk ;

[4]: f∈ kεk , g∈ kεk ;

[5]: f∈ kδk , g∈ kβk ;

[6]: f∈ kεk , g∈ kβk .

�����P � ?[1] : we want to show: ((δv ε)W β)W γ = ((δv ε)W γ)W β ;r f g r g f
O ����������

we have:

�����P �
((δv ε)W β)W γ = ((δW β)v ε)W γ = ((δW β)W γ)v εr f g f r g f g r
O ����������

= ((δW γ)W β)v ε = ((δW γ)v ε)W β = ((δv ε)W γ)W β ;g f r g r f r g f*

all equalities except the one marked (*) which is the induction hypothesis for δ , are valid
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instances of 4.(10), sometimes used "backwards".

�����P � ?[2] : ((δv ε)W β)W γ = ((δv ε)W γ)W β :r f g r g f
O �������

�����P �
((δv ε)W β)W γ = ((δW β)v ε)W γ = (δW β)v (εW γ)r f g f r g f r g

O �������
= (δv (εW γ))W β = ((δv ε)W γ)W β ;r g f r g f

in this case, the induction hypothesis is not used.

��P � ?[3]: ((δv ε)W β)W γ = ((δv ε)W γ)W β :r f g r g f
O ����������

��P �
((δv ε)W β)W γ = (δv (εW β))W γ = (δW γ)v (εW β)r f g r f g g r f
O ����������

= ((δW γ)v ε)W β = ((δv ε)W γ)W β .g r f r g f

��P � ?[4]: ((δv ε)W β)W γ = ((δv ε)W γ)W β :r f g r g f
O �������

��P �
((δv ε)W β)W γ = (δv (εW β))W γ = δv ((εW β)W γ)r f g r f g r f g

O �������
= δv ((εW γ)W β) = (δv (εW γ))W β = ((δv ε)W γ)W β .r g f r g f r g f*

�����P � ?[5]: ((δv ε)W β)W γ = (δv ε)W (βW γ) :r f g r f g
O ���
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�����P �
((δv ε)W β)W γ = ((δW β)v ε)W γ = ((δW β)W γ)v εr f g f r g f g r

O ���
= (δW (βW γ))v ε = (δv ε)W (βW γ) .f g r r f g*

��P � ?[6]: ((δv ε)W β)W γ = (δv ε)W (βW γ) :r f g r f g
O ���

��P �
((δv ε)W β)W γ = (δv (εW β))W γ = δv ((εW β)W γ)r f g r f g r f g

O ���

= δv (εW (βW γ)) = (δv ε)W (βW γ) .r f g r f g*

This completes the proof of 4.(11).

Proof of 4.(12) Lemma:

Assume L , L are languages with O(L )=O(L ) . Temporarily, we will mean by an1 2 1 2
morphism H:L A@L of languages a mapping H:A(L )A@A(L ) such that1 2 1 2
s (H(f))=s (f) and t (H(f))=t (f) for all f∈ L(L ) (thus, we do not considerL L L L 12 1 2 1


any action on the objects themselves now). Note that an "ample expansion" F:CA@C restricts


to a morphism LA@L .


 
We first choose a language L with a morphism F:LA@L (as described) such that for every


 
 
 
 � 
f∈ L there are infinitely many f∈ L=L(L) with F(f)=f . Take C=F(L) to be the free


 
multicategory on L , say, with standard amalgamation. Using θ =id for all g∈ L ,g s(g)

we have a uniquely determined morphism F :F(L)A�@C of multicategories for which0

F (g)=F(g) as given to begin with, for each g∈ L , and whose transition isomorphisms, at0
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each g∈ L , are identities. "Twist" F(L) by using the transition isomorphisms of F ; that0
is, use the factorization of F into an isomorphism Φ which is the identity on objects and0
arrows, and a strict morphism as in 2.:

F
 0F(L)A�����������@C	 )	 �	 { �Φ 	 � Fk �

C


C is free as well, since, by the characterization 3.(1), being free is invariant under twisting (or,


 � 
 
 
because C≅ C ). F:CA@C is the desired ample expansion. We define d:CA@E as the


 
composite d=dvF ; d is a strict morphism which is the identity on objects;

Proof of 4.(13) Lemma:

The proof is by induction on α .

If α=1 , β=1 is the necessary choice. Let α=f(α , ...α ) . We apply the inductionX X 1 n

hypothesis successively to α , ..., α ; there is separated β ∈ A with F(β )=α such1 n 1 1 1


that I∩kβ k≠∅ ; there is β ∈ A with F(β )=α and kβ k∩(I∪ kβ k)=∅ ; ... ;1 2 2 2 2 1

there is β ∈ A with F(β )=α and kβ k∩(I∪ kβ k∪ kβ k∪ ...∪ kβ k)=∅ . Now,n n n n 1 2 n-1


let J=I∪ kβ k∪ kβ k∪ ...∪ kβ k . By assumption, there is g∈ L such that g∉ ψ , and1 2 n

F(g)=F(f) . In particular, s(g)=s(f) . Thus, β = g(β , ..., β )∈ A is well-defined,1 n

and since the sets {g} , kβ k , kβ k , ..., kβ k are pairwise disjoint, β is separated.1 2 n
Also, the construction ensures that kβk∩I=∅ . Since F is a morphism,

F(β)=F(g)(F(β ), ..., F(β ))=α . The proof is complete.1 n
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