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Lecture O

About these lectures

These are the notes for a topics course I taught at Cornell in the Spring of
2020.

The course had two halves: The first was a survey on the methods and
foundational results in the theory of algebraic stacks. The second half covered
some recent developments extending the results of geometric invariant theory
to algebraic stacks. The main motivating example throughout was the moduli
of vector bundles (and principal G-bundles) on a smooth curve.

With modern search engines, message boards, etc., it is not hard to access
mathematical knowledge. Furthermore, algebraic geometry is notable for a
tradition of rigourous, thorough exposition. This means that in most cases
one need not look further than the research literature for clear and complete
proofs.

Therefore, the guiding philosophy of these notes differs from that of some
mathematical textbooks. Rather than building the foundations from the
ground up, I have summarized the main results, along with the key concepts
behind them, across a broad cross-section of the field, and referred to the
original sources for details. The aim of each lecture is to present a topic
with enough detail to apply the ideas in practice, yet succintly enough to be
easier to digest than the original.

Goals for Part I

The main value of the first half of these notes is to curate the vast literature
on the topic of algebraic stacks. The first several lectures serve as a tasting
menu for the authoritative references [LMB, S5], as well as the introductory
textbook [O1]. The topics covered include:



1. Definitions and basic notions for algebraic stacks and spaces
2. Quasi-coherent sheaves on algebraic stacks

3. Detailed analysis of quotient stacks, and stratification by quotient
stacks

4. Deformation theory

5. Artin’s criteria

6. Tannaka duality

7. Local structure of algebraic stacks

Our approach differs at times from the standard treatments in the
algebraic geometry literature. In Chapter 3 we borrow ideas from de-
rived /homotopical algebraic geometry in developing the theory of descent,
and in Chapter 6 we borrow ideas from the literature on differentiable stacks.
We also include some recent foundational results — Tannaka duality in Chap-
ter 11 and local structure theorems in Chapter 13 — which to my knowledge
have not received an expository treatment.

One notable omission is that I use descent to define the category quasi-
coherent sheaves on a stack directly from the category of modules over a
ring. The reason for this is to circumvent the general theory of sheaves on
the lisse-étale site, to help the reader get to the main results in the second
half of the course as quickly and painlessly as possible.

Goals for Part I1

There is an algebraic stack Bun(C') parametrizing vector bundles on a
smooth projective curve C'. This stack is an important object in geometric
representation theory and mathematical physics. For our purposes, it is a
great illustration of the pathologies which arise in practice: it is highly non-
separated, and it cannot be covered by a finite collection of affine schemes. To
remedy this, Bun(C) has a special stratification by locally closed substacks
(due to Harder, Narasimhan, and Shatz). The dense open stratum, which
parameterizes “semistable bundles,” has a projective good moduli space.’
A general method for producing this structure — a special stratification
and existence of moduli spaces for semistable objects — has been developed

1A good moduli space is a formal mathematical notion, introduced in [A2]. For now,
just take it to mean there’s a projective scheme which parameterizes all semistable vector
bundles up to a manageable equivalence relation, called S-equivalence.



recently in my work and the work of others. I've referred to it as O-stability
and the theory of ©-stratifications. This theory also generalizes geometric
invariant theory [MFK]. The main foundations of the theory of ©-stability
are in place, and it is beginning to have applications in different areas of
algebraic geometry.

The goal of Part II is to try to give an accessible overview of these recent
developments: the definition, properties, and construction of good moduli
spaces and O-stratifications.

0.1 Notation and background

I have tried to keep the background limited to the material from Chapters 2
and 3 of [H3], and some basic category theory. The notions from category
theory that I will assume some familiarity with are:

1. categories, functors, and natural transformations

2. limits and colimits (of sets)

3. filtered category (often used as the indexing category for a colimit)
4. adjunction between functors, unit and counit

5. abelian categories, and symmetric monoidal categories

If Y - Y and X x Y are morphisms of schemes, I will sometimes use
the notation Xy~ for the fiber product X xy Y’. If Y' = Spec(A) is affine, I
will also sometimes denote this X 4.



Lecture 1

Introduction to moduli
problems

Lecl
References: [V], [F]
Date: 1/22/2020
Exercises: 8

1.1 What is a moduli problem?

There is a guiding meta-problem in mathematics: the classification of math-
ematical objects. A famous example is simple Lie algebras over C, which are
classified by a Dynkin diagram of type A,,, By, Cy, Dy, Eg, E7, Es, Fy, or Ga.
However, many geometric objects do not admit a discrete classiﬁcationE.‘M

Example 1.1. There is a space M, parameterizing all smooth Riemann
surfaces of genus g > 1. There is a quick construction from the perspective
of differential geometry: If S is a smooth surface of genus g > 1, define the
Teichmiiller space T'(.S) to be the quotient space H(S)/Diffy, where H(S) is
the space of Riemannian metrics of constant curvature —1 and Diffj is the
group of diffeomorphisms isotopic to the identity map. This quotient space
can be identified with R6¥=1 and it has a canonical complex structure.
Moreover, if we let MCG = Diff/Diffy be the mapping class group of S,
then T'(S)/MCG can be identified with M, where My is the set of Riemann
surface structures on S, up to holomorphic isomorphism. One can show
that M, inherits a topology, and is homeomorphic to a quasi-projective
variety over C. This understanding of M, is very useful because questions



about metrics on S can be translated into questions about a quasi-projective
variety.

This is historically the first moduli problem studied. The term “mod-
uli problem” is somewhat informal, and generally refers to studying the
classification of geometric objects of a certain kind, especially when these
objects admit continuous deformations. In algebraic geometry, continuous
deformations are studied by considering “families of objects” over a base
scheme, where the meaning of “family” depends on context.

For many algebro-geometric objects of interest, the isomorphisms classes
are determined

1. first by some discrete data (e.g., genus), along with

2. a point on a finite dimensional space of continuous parameters (e.g.,
My), and this space has the structure of a variety.

Our first goal for the course is to give a formal framework for studying moduli
problems and thereby give a precise meaning to the statement above that
the moduli space “has the structure of an algebraic variety.”

1.2 Every scheme is a moduli space

One way to give a topological space X the structure of an algebraic variety
over C is to specify, for any algebraic variety 7', which continuous maps
T — X are algebraic. The data T' — Map,, (T, X) C Map(T, X) can be
organized into a functor b : {Varieties} — Fun({Varieties}°?,Set). The
Yoneda lemma says that this is a fully faithful embedding, i.e., the structure
of an algebraic variety on X is uniquely determined by its functor of points.

Lemma 1.2 (Yoneda). For any category C, let h : € — Fun(C°P, Set) be the
functor taking X € € to Mape(—, X ). Then for any F € Fun(C°P, Set),

F(X) = Ma‘pFun(GOP,Set)(bXa F)

This perspective is so fundamental that we sometimes identify X with
its functor of points, and write X (7") = Map(T, X) for the set of T-points.
Given an algebraic map ¢ : T' — X, if we can can regard the assignment
t €T — ¢(t) € X as an algebraically varying family of points in X. This
tautology, that X parameterizes families of points in X, is the entry point
into moduli theory.

The same discussion applies to arbitrary schemes, although the set of
maps of schemes T' — X is no longer a subset of the set of continuous maps.



We will denote the category of schemes as Sch, and the category of rings
as Ring. Given a category C, the functor category &?(€) = Fun(C, Set) is
referred to as the category of presheaves on C.

Replacing a scheme with its functor of points might seem like a lot of
extra data, but in practice it is often easy to specify the functor of points.
You are probably already familiar with these examples:

— X
Ezample 1.3. Map(Spec(R),G,,) = R E:defn CLn

Example 1.4. Map(Spec(R), GL,,) = {Automorphisms of the free module R"}.
This is actually a group scheme, i.e., a group object in the category of schemes.

Example 1.5. A finite type affine scheme S = Spec(Z[x1, ..., zn]/(f1,- -, fm))
represents the functor R — {ry,...,r, € R|0 = fi(r1,...,m), Vi}.

Exercise 1.1. Recall the functor of points for projective space P".

1.2.1 First encounter with descent

You may notice that I have only specified the functor of maps Spec(R) — X
for each of the schemes above. It turns out that this is enough, i.e. the
fully faithful embedding Spec : Ring — Sch? defines a restriction functor
Fun(Sch®, Set) — Fun(Ring, Set). It turns out that the composition

Sch 2 Fun(Sch?, Set) — Fun(Ring, Set)
is fully faithful.

Exercise 1.2. Show that the restriction Fun(Sch®, Set) — Fun(Ring, Set)
1s not fully faithful.

The fully-faithfulness of the functor Sch — Fun(Ring, Set) is a special
instance, and our first encounter with, the theory of descent. It follows from
the fact that for any map 7' — X of schemes, one can cover T" by affine open
subschemes, and one can identify maps T'— X with compatible families of

maps from these affine open subschemes. In other words, it follows from
L:subcanonical

Lemma 1.6. For any schemes T and X, the assignment U C T +— Map(U, X)
s a sheaf of sets on T.

Exercise 1.3. Prove this lemma, and use it to show that the functor Sch —
Fun(Ring, Set) is fully faithful.
This is a general principal that applies for any moduli problem:
P:locality_principle
Principle 1.7. A family of objects over a scheme 1" should be determined
by its restriction to a collection of open sets which cover T'.

10



1.3 Our first stack: B GL,

We have seen that any scheme parameterizes families of points in X, but
there are many functors parameterizing families of objects that are not
representable by any scheme (i.e., not in the essential image of b.)

We will focus on the moduli of families of vector spaces of rank n.
Whatever a family of vector spaces over a scheme T" should be, it should at the
very least assign a vector space Vj,y) of rank n over the residue field k(t) to any
point ¢ € T. From this perspective, a natural definition of a family of vector
spaces over 1 would be a vector space object V' € W(Ring/T) >~ Z(Ring)/br,
i.e., it has maps

+: VXV = V,0:pt—=V,and (=) (—): A xV =V

satisfying the usual axioms of a vector space, and for any point t € T, V (k(t))
is an n-dimensional vector space over k(t).

In general this notion contains rather wild objects, but you can narrow
it down quite a bit by requiring that V is representable by a scheme and
finitely presented over T'. It turns out that if T is a reduced scheme over
a field of characteristic 0, then any such object is an n-dimensional vector
bundle, i.e.,

V = Vp(€) := Specy(Sym(€))
for some locally free sheaf € of Op-modules. The same is true for arbitrary

T in characteristic 0 under the hypothesis that V — T is flat. We will be
able to prove this using the techniques we will develop later in the course.

Exercise 1.4. Prove that for any category C and T € C, the canonical
functor is an equivalence of categories P(C/r) = P(€) jp,..!

Note that over an affine scheme, locally free sheaves correspond to pro-
jective modules, so the natural functor of points F € Fun(Ring, Set) parame-
terizing families of n-dimensional vector spaces would be (showing both F
and its restriction to Fun(Ring, Set)):

F(X) := {isomorphism classes of locally free sheaves of rank n on X}
F(R) := {isomorphism classes of projective R-modules of rank n}

Unfortunately, this violates Principle 1.7. By definition every locally free
sheaf is locally isomorphic to the constant sheaf, but there are certainly
non-constant locally free sheaves, such as Opn (1) over P™.

'For any category € and object T € €, recall the definition of the slice category, € /T
objects are morphisms X — T in €, and morphisms in €,7 are morphisms X — Y in C
such that the composition X — Y — T is the same as the given map X — T'.

11



Exercise 1.5. Show that the functor F above is not representable by a
scheme.

A locally free sheaf € over T is determined, of course, by its restriction to
an open cover {U;} of T', but you also have to to remember the isomorphisms
over U;; := U; N U; by which the sheaf is glued together. So instead, we
define (again showing F and its restriction to rings):

F(X) := {locally free sheaves on X }iscmorphisms {E:def_BEfIﬁI
F(R) := {projective R-modules of rank p }isomorphisms (1.2)

where the superscript “isomorphisms” indicates the largest subcategory
which is a groupoid, i.e., the largest subcategory in which all morphisms
are isomorphisms.? Note that the category Set embeds in the category of
groupoids, which we denote Gpd, by regarding a set as a category whose
only morphisms are identity morphisms. In that sense we are enlarging our
previous notion of presheaf.

The subtleties involved in this definition

The definition of F(X) leaves ambiguous the following important question:
how does one give F the structure of a functor Sch? — Gpd? It is more
concrete to think about the restriction of F to rings.

Given a homomorphism ¢g : R — Ro the induced map (¢o)* : F(R) —
F(Rp) should map a projective R-module M to Ry ®r M. But given a
second ring map ¢1 : Ry — Ry, the modules (¢1¢0)s(M) and (¢1)s(¢0)s(M)
are not the same, but only isomorphic. This is related to the fact that
Gpd is actually a 2-category, where two morphisms of groupoids can be
identified via a natural isomorphism, so it is a bit awkward to demand that
(0100)s = (¢1)s(¢0)s on the nose.

You could try to give F the structure of a lax 2-functor, that is you fix
isomorphisms:

1. eg: R®p (—) ¥ id as functors F(R) — F(R), for any R € Ring, and

2. g, g0 (01)5(P0)s(—) = (d100)s(—) as functors F(R) — F(Ry), for any
pair of homomorphisms R Fo, Ry LN R;.

2F(X) is not a small category (class of objects is not a set), so this raises potential
issues, but this can be handled using the theory of Grothendieck universes. F(X) is also
essentially small (equivalent to a small groupoid), so it behaves like a small category. In
any event, we will safely ignore these set-theoretic issues.

12



The issue you run into is that for a sequence of many homomorphisms
R — Ry - R - Ry — -+ — Ry, there are many ways to realize the
N-fold composition as a sequence of binary compositions. So there are some
compatibility conditions required so « can really be regarded as a “canonical”
equivalence. Formulating gluing here becomes a bit of a mess...

Exercise 1.6. Formulate these compatibility conditions (see [V, Def. 3.10] ).

Another approach would be to try to “strictify” in some sense, that is,
to eliminate the redundancy implicit in the definition of F(R) by choosing
a single representative M, of every isomorphism class, and choosing an
isomorphism of each M with one of these representatives M,. This approach
also involves some care, but it can be made to work [V, Theorem 3.45], but
the choices involved make it impractical...

The most elegant solution is to encode F in an entirely different structure
which, rather than defining the pullback operation ¢y = R' @g (—) : F(R) —
F(R') explicitly, characterizes R’ @ p M implicitly by its universal property.

We let € denote the category of pairs (R, M) with R € Ring and M
is a projective R-module of rank n. A morphism (R, M) — (R',M’) in C
is a ring homomorphism ¢ : R — R’ and a homomorphism of R-modules
Y : M — M’ satisfying the condition that for any R’-module N, composition
with v induces an isomorphism

E: i
Hom g (M', N) = Homp(M, N). {E:cartesipn)

Then the forgetful functor 7 : € — Ring mapping (R, M) — R encodes the
functor F in the following sense:

e The objects of F(R) are pairs whose underlying ring is (literally) R,
and the morphisms are those which map to the identity arrow in Ring.

e For any ring map ¢; : R — R’ and projective R-module M of rank
n, the object ¢y(M) is the object in F(R') satisfying the universal
property (1.3).

Note that ¢4(M) is only defined up to canonical isomorphism, but one can
upgrade ¢4 to an actual functor F(R) — F(R') using the Yoneda embedding.
The morphism 7 : € — Ring is an example of a cocartesian fibration, and
more specifically a category fibered in groupoids over Ring (because each fiber
F(R) is a groupoid).

Note that the additional structure required to give F the structure of a
functor directly has been replaced by the condition (1.3), which is somewhat
easier to handle. We will also see that there are elegant ways to formulate
Principle 1.7 for the functor 7 : ¢ — Ring.

13



The bottom line

In practice, people will often specify a moduli problem with an expression
such as Equation (1.1), but they implicitly mean a category fibered in
groupoids over Ring. In order to work in this subject, it is important to get
comfortable going back and forth between the two.

A concrete approach

There is another approach to thinking about F(R), which is really a different
approach to thinking about what a locally free sheaf really is, which makes
Principle 1.7 manifest. For any locally free sheaf E on a scheme X, there
is a Zariski open cover of X by open subschemes U, such that E|y, is
trivializable for all . Let a : Vj :=| |, Uy — X, and choose a trivialization
s: 0 = a*(E). Let V| := |_|a7éﬁ U, N Ug, along with its two natural
projections dy, d; : V7 — Vi whose compositions with a agree. Then we have
an automorphism
* *(o—1
o+ 0% L dia(B)) = dia*(B)) L o,

which we interpret as a map of schemes Vi — GL,, (see Example 1.4). ¢
satisfies a cocycle condition on the triple intersections U, N Ug N U, which
make use of the group structure on GL,. Thus a locally free sheaf consists of
an open cover of X and a cocycle on this open cover with values in the group
scheme GL,. We will see that in general moduli problem one can given a
similarly concrete description of families over any scheme, but instead of
cocycles taking values in the group scheme GL,,, they will take values in a
more general object known as a groupoid scheme.

14



Lecture 2

Stacks 1

Lec2
References: [V], [F]
Date: 1/28/2020
Exercises: 4

Last time we discussed the example of the moduli functor of families of
vector spaces of rank n. In the following two lectures, we will take a step
back and discuss the general formalism of sheaves of groupoids, of which the
previous construction was an example.

Remark 2.1. We will make mild use of the concept of a 2-category, by
which we mean a strict 2-category. A 2-category is a category enriched over
Cat, i.e., for any two objects X,Y € €, Mape(X,Y) is a category, called
the category of 1-morphisms, and the composition functors Mape(X,Y) x
Mape(Y, Z) — Mape(X,Y) are strictly associative. There are also functors
{*} — Mape(X, X) which play the role of identities. The set of 2-morphisms
between two 1-morphisms is the set of morphisms in Mape(X,Y). The
standard example of a 2-category is Cat, where 1-morphisms are functors, and
2-morphisms are natural transformations of functors. Another is Gpd C Cat,
in which all 2-morphisms are automatically invertible. For further discussion,
see [M1, XII.2].

2.1 Topologies

First we have to discuss notions of coverings which are “finer” than that
of a Zariski covering. This is forced on us by basic examples: The moduli
functor F of locally free sheaves is associated to the group scheme GL,, so it

15



is natural to ask for an analog for other group schemes, e.g. Oy, SL,,.... It
turns out the right notion here is a principal G-bundle (do not worry if you
have not seen this notion before, we will provide the formal definition when
we need it later). The problem is that a principal G-bundle is not necessarily
locally trivial:

Exercise 2.1. When G is finite, a principal G-bundle over a complex variety
X is just a covering space Y — X in the analytic topology with group of deck
transformations G acting transitively on each fiber. When X is a complex
curve, any surjection w1 (X)) — G defines such a cover. Show that these
coverings are locally trivial in the analytic topology, but mot trivializable
Zariski-locally.

The fix is the following notion:

Definition 2.2. A Grothendieck topology on a category C that has fiber
products is a collection of sets of arrows {U; — U };er, called a covering of
U, such that

1. an isomorphism {U’ — U} is a covering,
2. coverings are closed under base change,
3. coverings are closed under composition.

A site is a category that has fiber products' together with a Grothendieck
topology.

Ezample 2.3. In the Zariski topology, a covering of U is a collection of Zariski
open subsets U; C U such that | |;.;U; — U is a surjective morphism of
schemes.

There are many different topologies on the category of schemes [S5, Tag
020K]. The most important for us are the étale topology and smooth topology,
so we will recall some important facts about smooth and étale morphisms of
schemes.

Definition 2.4. A map of rings A — B is smooth if it is of finite presentation,
flat, and has regular geometric fibers. A — B is étale if it is smooth of
relative dimension 0. A map of schemes 7 : X — Y is smooth (resp. étale) if
for any open affine U C Y, 771 (U) can be covered by affine opens for which
the corresponding ring homomorphisms are smooth (resp. étale).

Tt is not necessary to assume this [?777], but all of our sites will have fiber products,
so we take this as part of the definition.

16
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There are many equivalent definitions of smooth and étale morphisms,
and I encourage you to spend some time looking over them, if you are not
already familiar. The stacks project definition [S5, Tag 00T2] is that a ring
map R — S is smooth (resp. étale) if it is of finite presentation, and for any

presentation 0 — I — R[x1,...,x,] Y SN 0, the two term complex

N]L(a) — [I/IQ i> S ®R[$17m’$n] Q}%[ {EZIgiVe_COtangFé]:ﬁjsl

xl?"'vx’rl]/

has homology which is a projective S-module in degree 0 and 0 otherwise
(resp. NL(«) is acyclic). NL(«) does not depend, up to quasi-isomorphism,
on the choice of presentation [S5, Tag 00S1].

One advantage of this (equivalent) definition is that it allows easy
proofs of local structure results for smooth morphisms: a ring morphism
R — S is standard smooth if there is a presentation of the form S =
Rlz1,...,xn)/(f1,..., fe) with ¢ < n such that

det [({Ui] es
Ox; i,j=1,....c

is a unit. A ring map R — S is smooth if and only if Spec(S) admits an
open cover by standard affines D(g) such that R — S, is standard smooth
[S5, Tag 00TA]. Similarly R — S is étale if and only if ¢ = n in the local
standard smooth presentations.

Lemma 2.5 (Weak implicit function theorem). [S5, Tag 054L] Consider a
smooth morphism of schemes X — Y. Then Zariski-locally on X andY, the
morphism admits a factorization U — Afl/ — V' in which the first map is
étale.

Proof. This can be reduced to the case of a standard smooth morphism
by the above remarks, in which case this is just the observation that R —
Rixy1,...,xn)/(f1,-.., fc) factors as R — R[Xcq1, ..., Tn] = Rlz1, ... 20]/(f1, -0, fe)s
and the second ring map is standard smooth with equal numbers of generators
and relations, hence étale. ]

Corollary 2.6. If X — Y is a smooth morphism of schemes, then there is
a surjective étale morphism U — 'Y which factors through o lift U — X, i.e.,
the base change X xy U — U admits a section.

Exercise 2.2. Show that if X — Y is an étale morphism of smooth varieties
over C, then every point of X has a neighborhood in the analytic topology
which is a homeomorphism onto its image.
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One can give a slightly stronger local structure statement for étale mor-
phisms: a morphism of schemes X — S is étale if and only if Zariski-locally
it is induced by a standard étale ring map R — R[x];/(g), i.e., g is monic
and ¢ is a unit in R[x],/(g) [S5, Tag 00UE].

Definition 2.7. An étale (resp. smooth) covering of a scheme U is a set of
morphisms { f; : U; — U }ier such that every f; is étale (resp. smooth) and
| |Ui; — U is surjective.

We say that a collection of arrows {V; — U}jcy is a refinement of a
collection {U; — U }icy if each V; — U factors through some U; — U.

Exercise 2.3. Show that any smooth cover of a quasi-compact scheme U
admits a refinement by a finite cover {V; — U}i:17..,7N where each V; is étale
and affine (or even standard étale) over an affine open subset of U.

2.2 Presheaves of categories

Let p : F — C be a functor between two categories.

Definition 2.8. An arrow ¢ : £ — n in F is p-cartesian if for any object
¢ € F, the canonical map

Mapg(¢, &) — Maps(C, 1) XMape (p(¢).p(m)) Mape(p(€), p(£)),

which maps 0 — (¢ 0 0,p(0)), is bijective. If ¢ is cartesian, we say that &
is a pullback of n along the map p(§) — p(n). The functor p is a cartesian
fibration (also known as a fibered category), if for any arrow f : X — p(n),
there is a cartesian arrow ¢ : £ — n with p(¢) = f, i.e., pullbacks along any
morphism exist.

A cleavage is defined to be a class K C Mor(F) consisting of one cartesian
arrow ¢y lifting each arrow f : X — p(¢) for every X € Cand £ € F. As
remarked in Lecture 1, a fibered category with a cleavage defines a lax
2-functor from C°P to the 2-category of categories, C°? — Cat, which we
denote F(—). For X € €, F(X) is the subcategory of F consisting of arrows
which map to idx. Given a morphism f : X — Y, the induced functor
¥ F(Y) - F(X) maps £ € F(X) to the source of the unique cartesian
arrow ¢y € K lifting f. Given another morphism g : Y — Z, the two functors
f*(g*(—)) and (g o f)*(—) are not equal, but only canonically isomorphic
as functors. We will not spell out precisely what this means, as we will not
need it. See [V, Sect. 3.1]
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E:fibered_cat_qcoh_op
Ezample 2.9. Let € = Sch/g be the category of schemes over a fixed base
scheme. The fibered category p : QCOhC/)g — Sch g has objects consisting of
pairs (X € Sch/g, £ € QCoh(X)), where the fiber functor p maps (X, E) to
X. A morphism (X, E) — (Y, F) is a map of schemes f : X — Y and a map
F — f.(E). Note that given a composition

xLytzg

the composition g«(f«(E)) = (g o f)«(E) on the nose, so we can define the
composition of morphisms (X, F) — (Y, F) — (Z,G) in QCoh(/)g to be the
composed map go f: X — Z along with the composed homomorphism of

quasi-coherent sheaves on Z, G — g.(F) — g.(f«(E)) = (g o f)«(E).

Exercise 2.4. Use the adjunction between f* and f. to show that QCoh/S 18
a fibered category over Sch/S, and an arrow (X, E) — (Y, F) is cartesian if

and only if the homomorphism F — f.(E) induces an isomorphism f*(F) =
E. Show that the fiber of QCohOp over X € Schyg is the opposite category

QCoh(X)°

Given a fibered category p : F — €, one can construct another fibered
category as follows: objects of F™V are objects of F, and morphisms are
defined by

Mapgrev (§,7) = {diagrams £+ ¢ = 77‘ p(@g - (721)8 c?gtfizgr; anl(;p(g }

where two diagrams are equivalent if they fit into a commutative diagram in
F

l

f//

which is necessarily unique if it exists. Given two arrows a = (n < 7' — Xx)
and B = (£ + & — n) in F* one can choose a cartesian arrow £’ — 7’ over
p(§’ — n) and use the universal property of ¢’ — 7 to deduce the existence
and uniqueness of a dotted arrow over id,¢) that makes the following diagram
commute

/5//
glk/ \77/
5/ \)77‘/ \X
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We then define oo 8 to be the outer compositions of this diagram a o § =
(& «+ & — x). ™ is a fibered category as well, in which a cartesian
arrow is a diagram (£ + & — n) for which & — ¢ is an isomorphism. The
fiber 37°V(X) is canonically isomorphic to F(X)°P. If we replace F with an
equivalent fibered category which admits a splitting and hence corresponds
to a strict functor F : C°? — Cat, then ™V corresponds to the functor
F™¥(X) = (F(X))°P. Note also that if F'* C F denotes the subcategory
consisting of all cartesian arrows of F, then the assignment

€L L) (goftic—n

defines an equivalence of categories fibered in groupoids, gffrevd)cart &~ greart,

E:fibered_cat_qcoh_op
Ezample 2.10 (Quasi-coherent sheaves). We apply this construction to the
fibered category QCoh(/)g over Sch/g to obtain a fibered category

QCoh g := (QCOh?g)re", {E:define_q{:i%l

which call the fibered category of quasi-coherent sheaves. The fiber over
X € Schyg is isomorphic to QCoh(X), and the pullback functors correspond
to the usual pullback of quasi-coherent sheaves. An alternate construction
of QCoh /g, which involves choosing a clevage for QCoh;’g, is discussed in
[V, Sect. 3.2.1].

The class of fibered categories over € has the structure of a 2-category,
Cat?%rt. A morphism of fibered categories ¥ — F’ is a functor of categories
over C which preserves cartesian arrows. A 2-morphism between base-
preserving functors f,g: F — F' is a base-preserving natural transformation,
i.e., a natural transformation n : f = g such that for any £ € J, the
homorphism 7 : f(§) — g(£§) maps to the identity morphism of p'(f(§)) =
G

One can show that a morphism of fibered categories F — F is fully
faithful or an equivalence if and only if the same is true for the functor
F(X) = F(X) for any X € C [V, Prop. 3.36]. Another useful fact is that a
composition of cartesian fibrations F — F — C is again a cartesian fibration
[V, Prop. 3.7]

Definition 2.11. A fibered category p : F — C is a category fibered in
groupoids if every fiber F(X) is a groupoid, i.e., all arrows in ¥ mapping to
an identity arrow are invertible. This is equivalent to the condition that all
arrows in F are p-cartesian by [V, Prop. 3.22]. We let Catt;"gt’g C C.‘;Lt‘/:‘rgt
denote the full 2-subcategory of categories fibered in groupoids over C.
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For categories fibered in groupoids, base-preserving functors are auto-
matically morphisms of fibered categories, and all natural transformations
are equivalences, i.e., the category Mapcat%rt(ff ,F') is a groupoid.

E:representable_fibered_cat
Example 2.12. An important example is given an object X € C, the forgetful
functor from the slice category €,x — C is a category fibered in groupoids.
In fact, the fibers are sets. There is an equivalence of categories between cat-
egories fibered in sets and functors € — Set, under which €,x corresponds
to the representable functor hx(—) = Mape(—, X).

Lemma 2.13 (2-Yoneda lemma). Given F € Catjaért and X € C, the functor
hdap(jat?‘é‘rt (G/Xa 9:1) — ?(X)>

which takes a morphism of fibered categories F' : C/x — F to the object
F(idx) € F(X), is an equivalence of categories. [V, Sect. 3.6.2]

Proof. To construct the inverse functor, we choose a cleavage K of &, which
allows one to define pullback functors f*: F(Y) — F(X) forany f: X - Y
in €. Forany f: X — Y and £ € F(Y), we let ¢p¢ : f*(§) — £ denote the
unique arrow in K lifting f.

For any § € F(X), we let F¢ : C/x — JF be the functor which takes
(a:U— X) €€/x toa*(§) € F(U). Fy maps a morphism in €y, given by
a commutative diagram

v—7"r v,
X
to the unique arrow a*(§) — B*(&) corresponding to the element (f, ¢q.¢)
in Map(U, V') Xnap(v,x) Map(a®(§),§). We refer to [V, Sect. 3.6.2] to show

that F¢ is a morphism of fibered categories, and £ — F¢ and F — F(idx)
are mutually inverse functors. O

2.3 Straightening and unstraightening.

Let ¥ — € be a fibered category, and let K C Mor(F) be a cleavage of F. If
K contains the identity morphisms and is closed under composition, then
we say K is a splitting. In this case the lax 2-functor corresponding to &F
is actually a strict functor F' : C%? — Cat, where F(X) = F(X) and any
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morphism f: X — Y induces a pullback functor f*: F(Y) — F(X) via the
splitting.

On the other hand, given a strict functor F': C°? — Cat, we can define a
fibered category Une(F') — €, which we call the unstraightening of F'. The
objects of Une(F) are pairs (X € C,¢ € F(X)), and a morphism (X,&) —
(Y,n) is a morphism f: X — Y in € along with a morphism £ — f*(n) in
F(X). Note that Une(F') admits a canonical splitting, consisting of arrows
of the form (f : X — Y,id: f*(n) — f*(n)).

We equip Fun(C?, Cat) with the structure of a 2-category as follows:

e A l-morphism ¢ : F — G in Fun(C°, Cat) is an assignment of functors
¢x : F(X) — G(X),VX € Csuch that for any f : X — Y the following
diagram of functors strictly commutes

FIY) 25 ay) .
f* f
F(X) 255 a(X)

e A 2-morphism a : ¢1 = @2 between two morphisms ¢1,¢o : F' — G is
an assignment for every X € € a natural transformation ax : (¢1)x =
(¢2)x of functors F(X) — G(X), satisfying the condition that for any
morphism f: X — Y, ax o f* = f*oay as a natural transformations
after identifying (¢1)x o f* = f* o (¢1)y and (¢2)x o f* = f* o (¢2)y,

i.e. the two diagrams are equal:

(¢1)x0f* fro(d1)x
m /\
FY) T Qaef GX) | = | FOO) T dremn G(X)
e ~
(p2)xof* [ro(d2)x

L:fully_faithful
Lemma 2.14. Une admits the structure of a functor of 2-categories, which is
bijective on 2-morphisms and identifies 1-morphisms F' — G with morphisms
of fibered categories Une(F) — Une(G) which map arrows in the canonical
splitting of Une(F') to arrows in the canonical splitting of Une(G).

Proof. Given a l-morphism ¢ : F' — G in Fun(C°, Cat), the correspond-
ing fiber functor Une(¢) : Une(F) — Une(G) maps (X,§ € F(X)) —
(X, ¢x(§) € G(X)), and for morphisms (X, &) — (Y,n) in Une(F) it maps

(@Qi?%)H(mwwgé:?mm»»
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where we have used the fact that ¢x f* = f*¢y. This functor evidently
preserves arrows in the canonical splittings. To show that this functor
preserves cartesian arrows, we observe that every arrow in Une(%F) can be

factored uniquely as an arrow in the splitting K followed by a morphism in
a fiber:

( f: X=>Y >:(idX:X—>X>O< f X%Yactor)zatgfl};sl
u:&— f*(n) u:&— f*(n) id s f*(n) = f*(

We leave it to the reader to use this factorization to show that a functor of
fibered categories Une(F') — Une(G) which preserves the canonical splittings
is of the form Une(¢) for a unique ¢.

On the level of 2-morphisms, one can explicitly describe a natural transfor-
mation a : Une(¢1) = Une(¢2) as follows: For every pair (X € €,¢ € F(X)),
a assigns a morphism ax () : (¢1)x(§) = (¢¥2)x(§) in G(X) such that for
any morphism f: X — Y in €, any n € F(Y'), and morphism v : £ — f*(n)
in F'(X), the following diagram commutes

(61)x(€) (¢2)X(§ {E:natural_squéizﬁ
l(d’l)x(U) (#2)x
P60y ] FF ¢2)Y(77

If we restrict (2.3) only to morphisms in the fiber over X € C, it is just
the condition that ax : (¢1)x — (¢2)x is a natural transformation. If we
restrict (2.3) to morphisms in the canonical splitting, it is the condition that
ffoay = ax o f*. Conversely, one can use the fact that any morphism
in Une(F') admits a unique factorization o Conclude that any collection of
natural transformations {a X% Xeg satistf; 1n§ these compatibility conditions

1
also satisfying the condition for an%fr?norp fm in Une(F). O

ax (&)
—

For any 2-category €, we let Ho(C) denote the 1-category whose objects
are the same, and whose morphisms are 2-isomorphism classes of 1-morphisms
in €. We say that a functor F': € — D between 2-categories is an equivalence
if Mape(X,Y) — Mapy(F(X), F(Y)) is an equivalence of categories for any
X,Y € €, and Ho(C) — Ho(D) is essentially surjective.

Our main justification for working with fibered categories rather than

strict presheaves of categories, or even lax presheaves, is the following:
T:straightening

Theorem 2.15. The unstraightening functor

Ung : Fun(@%, Cat) — Catiaért {E:unStralghten&%ﬁl
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s an equivalence of 2-categories, i.e., it induces an equivalence on mapping
categories for any pair of objects, and it is essentially surjective.

Proof. In light of Lemma 2.14, this is a consequence of two facts: Every
fibered category is canonically equivalent to a split fibered category [V,
Thm. 3.45]; and any functor of fibered categories Une(F) — Une(G) is
2-isomorphic to one which preserves the splitting. We leave the latter as an
exercise for the reader. O
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Lecture 3

Stacks 11

Lect:stacks_2
References: [S5, Tag 0238], [V], [F], [O1, Chap. 4]
Date: 1/30/2020
Exercises: 18

I could not find references that were both accessible to beginning algebraic
geometers and covered the material from the perspective I wanted to take
(suggestions welcome!), so I ended up writing up proofs in a bit more detail,
and much more detail than I covered in the actual lecture.

I have tried to present the theory of descent in a manner parallel to the
theory of descent in co-categories, at least as developed in [L2]. Developing
a robust theory of descent in a homotopical context was arguably one of
the main motivations for developing the theory of co-categories, and one
of the reasons these methods have been so useful recently. Below I have
formulated and proved many of the ideas from oco-categorical context, such
as constructing limits of categories as categories of cartesian sections and
cofinal co-functors, using only 1-category theory. The proofs are simpler, and
I hope this introduction to descent will subtely prepare students to study
the oo-categorical generalization.

3.1 Descent

S:descent
Consider the category € = Sch,g with its étale topology. Let p : & — Sch/g
be a fibered category. A diagram of schemes over S is a category J and a
functor D : J — Sch,g. We refer to J as the indexing category, and typically
J will be small.
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Example 3.1. One can consider the category A! with two objects and one
non identity arrow between them. Then a commutative square of schemes is
a functor Al x Al — Schyg.

D:cartesian_section
Definition 3.2. A cartesian section of p over D :J — Schg is a functor
o :J — F such that poo = D, and every arrow in D maps to a p-cartesian
arrow of F. The class of cartesian sections admits the structure of a category
which we denote I'§"* (D, ), where morphisms are natural transformations
1 : 01 = o2 such that pon: D = D is the identity transformation.

Exercise 3.1. If 5 = QCoh,g — Schs and D is a diagram consisting of
two schemes and two non-identity arrows f,g: X — Y, then the category of
cartesian sections of F over D is equivalent to the category of quasi-coherent

sheaves E overY along with an isomorphism f*(E) = g*(E).
EX:terminal

Exercise 3.2. Show that if the indexing category J has a terminal object x,
i.e., there is a unique morphism X — x for any X € J, then restricting any
diagram D : J — C to % defines an equivalence TG (D, F) = F(D(x)). (Hint:
first restrict to the subcategory consisting of all objects but only the unique
arrow from each X to x).

Given a covering U = {U, — U}qser, we will be particularly inter-
ested in the diagram Dy consisting of schemes U,, Uypg := Uy Xy Ug, and
Uagy = UaxyUgxyU, for all a, 8, € I, and arrows consisting of the canon-
ical projection maps (satisfying the evident relations). More precisely, the
indexing category J; of Dy consists of non-empty ordered lists of length < 3,
[a], [, B] and [«, 3,7] and a morphism for every deletion [«, 5,v] — [«, 5],
[, B,7] = [a, 7], ete...

Definition 3.3. The category of descent data for F on the cover U is defined
to be the category of cartesian sections Descy(U) := TP ( Dy, F).

Exercise 3.3. Show that given a cleavage K for F, so that we may define
f*(€) for any f: X — Y in Sch,g and any & € F(Y'), the category of descent
data on {Uy — U}aer is equivalent to the category of collections ({&a}, {das})
of objects {n € F(Uy) and isomorphisms ¢ap : pri(€s) = pri(€a) in F(Uap)
such that for any o, 3, € I we have an equality of morphisms in F(Uag-)

pr82(¢a7) = pr$1(¢a5) o pri2(¢,@7) : pr§(§v> — pro(&a)-

where pr,; is the projection onto the a and b factors, and pr,, is the projection
onto the a factor. (This is the definition of descent data in [V, Def. 4.2].)
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Given a cover U = {Uy — Ulqer, let I denote the category obtained
from J; by adding a terminal object corresponding to the empty list, (). Note
that Dy : I — Sch/g extends canonically to a diagram D&' : J}F — Schyg,
such that Dar maps ) € J? to U. We refer to D;f as the augmented descent

diagram for U.
D:stack

Definition 3.4. A fibered category F/C is a stack with respect to the
topology on € if for every covering U = {U, — U}qer, the canonical
restriction functor

S:(U) ~ F%art(Da_, ?> s F%art (Du, 97) {E:descggfﬁl

is an equivalence of categories, i.e., F(U) is equivalent to the category of
descent data. The first equivalence in (3.1) is given by restriction to @) € 37,
see Exercise 3.2, and holds for any JF.

Remark 3.5. This is equivalent to other formulations of descent, such as
[V, Def. 4.6] (which makes use of a cleavage) or [V, Cor. 4.13] (which makes use
of sieves), but this formulation breaks the descent condition into two pieces.
The main piece, the fact that restriction is an equivalence F‘éart(DfL' ,F) —
F%art(Du, F) actually implies that restriction is an isomorphism, not just an
equivalence. In other words, any cartesian section of F over Dy extends
uniquely to a cartesian section over Dar . One is only forced to say “equivalence
of categories” when one identifies sections over Dy with F(U).

One can show that the functor (3.1) is fully faithful if and only if for any

X € Cand {,n € F(X), the functor
. (0P
MapX(g,n) : G/X — Set

which assigns f : " — X to Mapg(q)(f*(£), f*(n)) is a sheaf (of sets) for the
inherited topology on the slice category €, x [V, Prop. 4.7] or [S5, Tag 06NT].
So a fibered category is a stack if and only if the mapping presheaves are
sheaves and every descent datum is “effective,” meaning it is isomorphic to
the pullback of an object of F(U). Note also that the property of a fibered
category being a stack is invariant under equivalence, because categories of

cartesian sections are invariant under equivalence. .
E:setoids

FEzample 3.6. Specifying a category fibered in sets is equivalent to specifying
a presheaf of sets [V, Sect. 3.4]. In fact under Theorem 2.15, the category of
presheaves of sets, regarded as a 2-category with only identity 2-morphisms,

is equivalent to the full sub 2-category of Ca‘c%rt consisting of categories
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fibered in setoids, i.e. fibered categories such that objects in F(X') have no
automorphisms. A category fibered in sets (or setoids) is a stack if and only

if the corresponding presheaf of sets is a sheaf.
EX:descent_composition

Exercise 3.4. We have noted that a composition of cartesian fibrations
F — F — € is again a cartesian fibration. Given a Grothendieck topology
on €, we can define a Grothendieck topology on F whose coverings consist
of families of cartesian arrows {&§ — &}ier such that {p(&) — p(§) }ier is a
covering in C, where p : F — C is the fiber functor [S5, Tag 06NT]. (Note
that fiber products of cartesian morphisms automatically exist in F.) Show
that if F is a stack in groupoids over C, and F' is a stack over F with this
inherited topology, then F' is a stack over C.

There is a more “canonical” way to express the descent condition using
sieves. By definition, for any covering U = {U; — U} we let by C hy denote
the subfunctor of morphisms to U which factor through one of the maps U; —
U in the cover. Subfunctor 8 C by is called a covering sieve[V, Def. 2.41] for

the topology on € if there is some covering U = {U; — U} such that by C S.
EX:covering_sieve_descent

Exercise 3.5. Show that a category F fibered in groupoids over a site C
is a stack if and only if for every covering sieve S C by the restriction
map Le(hy,F) — Te(8,F) is an equivalence of categories. (Hint: see [V,
Prop. 4.14].)

3.2 Morphisms that preserve cartesian sections

In this section we will discuss a bit of category theory which will lead to a
better conceptual understanding of the descent condition. The main idea is
that, under the unstraightening equivalence Theorem 2.15, we can identify
a fibered category ¥ — C as a diagram of categories indexed by C°P. From
this perspective, the category I'&"(F) should be regarded as the limit of this
diagram, i.e., the category consisting of assignments of objects {x € F(X)
for each X € € which are compatible with pullback along morphisms in €.
This is formalized in Example 3.14.

The main result of the section is Proposition 3.19, which gives a criterion
under which you can replace a diagram of categories with a sub-diagram
without changing the limit. We have already seen an example of this in
Exercise 3.2. The criterion is a higher-categorical analog of the fact in
1-category theory that if a subcategory € C D is final then one can restrict
any diagram of sets over D to C°P without affecting the limit.
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3.2.1 Pullback of fibered categories
D:pullback

Definition 3.7 (Pullback). Given functors ¥ — D and f : € — D, let
f~H(F) denote the following category over C: objects consist of pairs (X €
C,& € F(f(X))), and a morphism from (X, &) to (Y,n) is a morphism X — Y
and a morphism & — 7 in F lying above the morphism f(X — Y), i.e.,

Map p—1(5) (X, €), (Y, 1)) = Mape(X,Y) Xntapy, (1(x),£(v)) Maps (€, 7).

This definition is written in a non-symmetric notation, because in practice
we are regarding F as a presheaf of categories over D and f~1(F) as the
pullback presheaf, but in fact f~(F) is just the (strict!) fiber product of
categories € xp F. This is consistent with our earlier notation: if we consider
a fibered category F — € and regard an object U € € as the inclusion of the
one-point category {idy} C €, then F(U) = p~!(U) is the preimage of this
subcategory.

EX:pullback
Exercise 3.6. Show that if f : C — D is a functor and F is a fibered category
over D, then f~Y(F) is a fibered category over C, where an arrow is cartesian
if and only if the corresponding arrow in F is cartesian.

Note given a fibered category over € and a diagram in € corresponding
to a functor D : J — C, we have defined

I'&(D,F) =I5 (idg, D~'F).

We will sometimes simplify notation by denoting I'{*"*(idy, D~'F) by ['$**(D~1F)
or I'*™*(D~1F), when the base is understood. In particular if you have a
small diagram D in €, the category of cartesian sections of a fibered category
F over D is just the category of “cartesian global sections” of the pullback
D17

Warning 3.8. In many of our applications we will consider fibered categories
over a site €, and in this case what we are calling f~!(F) is more typically
denoted f.(F) in the topos literature (see for instance [O1, Sect. 2.2]). For
example, if ¢ : X — Y is a map of topological spaces, then the functor
on sites of open subsets f : Op(Y) — Op(X) maps U — ¢~ 1(U). Given a
presheaf or sheaf F'(—) on Op(X), the presheaf F'(f(—)) on Op(Y') is ¢« (F).
We are using the notation f~! because it is more natural from the perspective
of cartesian fibrations, and because we are reserving the notation f, for a
different construction.
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3.2.2 Pushforward along a cocartesian morphism

Given a functor ¢ : Gy — €1, and fibered categories F; over C; for i = 0,1
along with an equivalence T = ¢~!(F1), we can pullback sections to obtain
two categories and a functor T§™(J1) — TE"(Jo). More generally, one might
ask if given a (covariant) diagram of categories D : D — Cat, and a collection
of fibered categories over each D(X) which is sufficiently compatible with
pullback, if there is a natural way to define a fibered category over D whose
fiber over each X is I'p(x)(Fx). In this section we give such a construction.

Definition 3.9. Let f: ¢ — D be a functor. We say that an arrow in C is
cocartesian if and only if the corresponding arrow in C°P is cartesian relative
to D°P. A morphism f: C — D is a cocartesian fibration if fOoP : C°P — DOP
is a cartesian fibration.

f-cocartesian morphisms in € satisfy a universal property which is dual
to the one for cartesian morphisms ?7. Under the straightening theorem
Theorem 2.15, we can identify a cocartesian fibration € — D with a functor
D — Cat.

D:pushforward
Definition 3.10 (Pushforward). Given a fibered category p : ¥ — €, and
given a cocartesian fibration f : ¢ — D, we will define a fibered category
f«(F) over D. The set of objects over X € D is the set of cartesian sections
P&t (f=1(X),F). If Al denotes the category with two objects [0], [1] and a
single non-identity morphism [0] — [1], we regard any arrow v : X — Y in
D as a functor ¢ : A’ — D taking [0] — X and [1] = Y. Then a morphism
in f.(F) lying over « is a not necessarily cartesian section in Te(¢p™1(€),F)
whose restriction to f~1(X) and f~!(Y) are cartesian. Here we are regarding
the category ¢~ !(€) of Definition 3.7 as a diagram ¢~ (€) — € in €.

Let A? be the category with objects [0],[1], [2], two non-identity arrows
[0] — [1] and [1] — [2] and their composition [0] — [2]. Specifying a functor
v : A2 = D is equivalent to specifying a pair of composable arrows in
D. In order to show that f.(F) is actually a category, we have to show
that composable morphisms, as defined in Definition 3.10, have a unique

composition. This is a consequence of the following:
L:pushforward_is_category

Lemma 3.11. Consider a fibered category F — C, a cocartesian fibration f :
C — D, and a functor p : A2 — D. If CqUECy C ¢ 1(C) (respectively C;UCy)
denotes the full subcategory with objects lying over [0],[1] € A? (respectively
[1],[2]), then a pair of sections sp1 € I'e(Co1,F) and si12 € T'e(Ci2,F) which
agree over C1 extend uniquely to a section in Te(o1(C), F).
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Proof. The functor p : ¢~ 1(€) — A? is a cocartesian fibration. Choose a
cocartesian arrow X — Y over (0) — (1) for every X € p~1(0) and likewise
for (1) — (2), and let K C Mor(p (€)) denote these arrows and their
compositions, which is a splitting for p. Then any arrow in ¢~ !(€) can be
written uniquely as a composition 5o «, where o« € K and ( lies in a fiber
of p. This implies that giving a section s : ¢~!}(€) — F is equivalent to
giving an assignment of arrows s(«) for o € K lying over either (0) — (1) or
(1) — (2) and s(B) for f in a fiber of p satisfying some relations. Any o € K
over (0) — (2) can be factored uniquely as as o oy with a; over (0) — (1)
and ay over (1) — (2), and the resulting sections assigns s(a) = s(az)os(aq).
The relations the assignment s(«) and s(/3) must satisfy are: i) s must be a
functor restricted to each p~1(i), and ii) for any a1, a9 € K over (i) — (5)
with (i,5) = (0,1) or (1,2), 81 € p~'(i), and By € p~'(j) satisfying the
equality ag o f1 = [ o ag, we have s(ay) o s(81) = s(f2) o s(az). These
relations are equivalent to saying that s restricted to Cg U C; and C; U Co

defines a section. O
L:pushforward_cartesian

Lemma 3.12. Given a cocartesian fibration f : © — D and a fibered category
F over C, the category f.(F) of Definition 3.10 is a fibered category over C,
in which the cartesian morphisms over an arrow vy : A' — D are precisely
the cartesian sections of F over the diagram v~ 1(C) — C.

Proof. To show that a cartesian section of F over y~1(€) — € is cartesian as
a morphism of f.(F), we consider an arbitrary functor ¢ : A2 — D mapping
(1) — (2) to . We use the same description of ¢~ !(€) as in the proof of
??,ie., p 1(€) — A? admits a splitting K C Mor(¢~1(€)), and every arrow
factors uniquely as an arrow in this splitting followed by an arrow in a fiber.
It suffices to show that for any sections s15 of F over C; U Cy and sg2 over
Co U Cg such that sqo is cartesian, soile, is cartesian, and si2le, = So2|e,,
there is a section over € extending sp2 and s12. For any a € K over (0) — (1),
if o is the unique arrow in K over (1) — (2) whose source is the target of
«, then the universal property for cartesian arrows in F over € guarantees
that there is a unique arrow s(a) over o whose composition with sja(a’) is
s02(c o ). The uniqueness of s(a) allows one to check the relations needed
to verify that this combined with s;2 and sp; extends uniquely to a section.

So, every cartesian section of F over y~!(€) is cartesian as a morphism in
f«(F), and it remains to show that there are enough of these. In other words,
we need to show that given a functor v : A! — D and a cartesian section s;
of F over €; C v71(€C), we can extend this to a cartesian section over y~1(€).
We first choose a splitting K for the cocartesian fibration y~!(€) — €. Then
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we choose a cartesian lift s(a) : £ = s1(Y) in F of every arrow o : X — Y in
K. Using this we will construct a unique cartesian section s € I'e(y~1(€C), F)
with this assignment of s(a) for a € K and s(8) = s1(8) for g € €;. To
define s(B) for : X — Y in Gy, consider the unique a: Y — Z in K over
(0) — (1). Then we have ao 8 = ' o @ for a unique o : X — W in K and
B W — Z in C;. The fact that s(«) is cartesian implies that there is a
unique arrow ¢ in F over 8 such that s(a) o ¢ = s(8') o s(a’), and the fact
that s(f’) o s(a) is cartesian implies that ¢ is an isomorphism. We define
s(B) = ¢. We leave it to the reader to check that this assignment s(8) is
compatible with composition of morphisms in €y and morphisms lying over
(0) — (1).

Finally, the fact that any section in T'e(y~1(€),F) that is cartesian as a
morphism in f,(F) is actually a cartesian section follows from the fact that
any two cartesian arrows in f.(F) over v : Al — D with the same target
differ by pre-composition with an isomorphism. O

Given a cocartesian fibration f : € — D, these constructions define

2-functors fy : Cat?"ért — Cat;%t and f~1: Cat‘;%t — Cat‘}%rt.

Exercise 3.7. Show that in Definition 3.10, the fiber category of f.(F)(U)
for any U € D is isomorphic to the category TE(f~H(U),F) as defined in
Definition 3.2. (The class of objects is the same, so the question is to identify
their morphisms as well.)

3.2.3 An “adjunction”

Our motivation for the notation f~! and f, is the following lemma, which
suggests that these are “adjoint” 2-functors between 2-categories. We will

not worry about formalizing this notion.
L:stack_adjunction

Lemma 3.13. If f : € — D is a cocartesian fibration, € is a fibered category
over D, and F is a fibered category over C, then there is a natural equivalence

MapCat?"gt (f_l (8)7 9:) = MapCaté%é{)gvs%E&‘jﬁ?d_adj unCtaé)-%|

Proof. What we will show is that there are unit and counit functors

e : €= fo(fTHE)) and e = fTH(f(T)) = F
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which are natural in € and F respectively,! and such that both compositions

)f(

e FY LS %ﬁ—e(gi&nfflti@‘;_addntltltifﬁsl

Fu(F) 2Dy g (7 (f*( D) ZED f ()

are (naturally equivalent to) the identity functor of fibered categories. This
implies that the functors

NS Mapcm;fgt(f_l(g)a F) = fe(@) ome € Mapcm%t(& f«(F)), and
¥ € Mapcasy (€. £o(9)) > e0 1) € Mapyuons (F4(€), )

are mutually inverse equivalences of categories, just as in the case of 1-
categories the counit and unit identities imply these maps are mutually
inverse bijections of sets.

The functor 1 : € — fi(f~1(€)) takes an object £ € E(Y) to the constant
section

s¢ € T (fTHY), fTH(Y) x E(Y))

defined by s¢(X) = € and s¢(X — X') = id¢, where we have identified the
restriction of f~1(&) to the subcategory f~(Y) C € with the constant fibered
category f1(Y) x &(Y) with fiber €(Y'). Similarly, a morphism & — &' in €
over a morphism Y — Y corresponding to a functor v : A — D defines a
constant section of F over v~1(€) which assigns id¢ to every morphism in
the fiber over (0), idgs to every morphism in the fiber over (1), and the given
morphism ¢ — ¢ to every morphism over (0) — (1) in Al

For the functor € : f~1(f«(F)) — F, we identify the fiber of f=1(f.(F))
over X € C with the fiber of f.(F) over f(X), i.e.,

FHE@NX) =TE (1 (f(X)), F)

Then on objects the functor e takes a section s to its value s(X) € F(X).
To define € on morphisms, observe that an arrow in f~!(f.(F)) lying over
an arrow X — X’ corresponding to a functor v : A — € is by definition
an arrow in f,(JF) lying over f o, i.e., a section s € Te((f o 7)~1(@),F).
Evaluating s(X — X') gives a morphism s(X) — s(X’) in F over X — X’
in C.

It is straightforward to check that ne and 5 as defined above are mor-
phisms of fibered categories, that they are natural in €& and &, and that

!By this we mean that given two fibered categories F,F over C, the two functors
Map(F,5") — Map(f~(f.(F)),T’) given by (—) o e5 and 5/ o (—) are isomorphic, and
an analogous statement holds for the unit.
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compositions (3.3) are isomorphic to the identity. We leave these verifications

to the reader. O
E:1limit_of_categories

Ezample 3.14. Under the straightening theorem, Theorem 2.15, one can
regard a fibered category p : F — J°P as diagram of categories D : J — Cat.
Note also that if f : J — pt is the unique functor, then f,(F) is isomorphic to
[$(F). Lemma 3.13 then shows that T§**(F) is the 2-categorical limit of
the diagram of categories D, i.e., for any category €, the category of functors
C — T(F) is equivalent to the category of 1-morphisms in Fun(J, Cat)

from the constant diagram with value € to the diagram D. E:composition

Ezxzample 3.15. Given cocartesian fibrations f; : ¢ — G2 and f5 : G5 — Cg,
one has a canonical equivalence (f2)«((f1)«(€)) = (f2 o f1)«(€) for any
fibered category over C;. This follows from Lemma 3.13 and the obvious
isomorphism of pullbacks f;*(f; (F)) = (f2 0 f1)"*(F). A special case
of this, which we will use in ??, involves computing sections of a fibered
category F over a product of categories € x D. In this case both projection
functors p1 : € x D — € and ps : € x D — D are cocartesian fibrations. The
compatibility of the pushforward with composition implies that

LE¥D(F) 2 TE™ ((p1)+(F) = TF ((p2)+(9)),
so we can compute teh cartesian sections first along € or first along D and

et the same answer.
& EX:fiber_product

Exercise 3.8. Consider the category C with three objects and two non-
identity arrows

X.

|

Y«+— 7

A fibered category over C consists of three categories and two functors F :
F(X)—=F(Z) and G : F(Y) — F(Z). The limit of this diagram of categories
is the 2-categorical fiber product, denoted F(X) Xg(zy F(Y). Show that
F(X) xg(2) F(Y) is equivalent to the category of triples
EeF(X)neF(Y),¢: F()=Gn).

Give an explicit description of Fun(€’, F(X) x gz F(Y)) for any category €.
Remark 3.16. Note that this is another reason why given two functors
f:C— D and F — D, we are using the notation f~!(F) instead of € xp F.
It is standard in the algebraic geometry literature for the latter to refer to

the 2-categorical fiber product of Exercise 3.8, also called the homotopy fiber
product.
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3.2.4 Criterion for preserving cartesian sections

Let us say that a category € has contractible nerve if it is non-empty and
for any groupoid G, composition with the unique functor € — pt to the
trivial category pt, which has one object with its identity arrow, induces an
equivalence of categories?

9 = Fun(pt, §) — Fun(C, 9).

An equivalent way to say this is that if one considers the groupoid €’ obtained
from € by freely adjoining an inverse arrow f~!:Y — X foreach f: X =Y
and modding out by all relations generated by f~!f =idx and ff~' =idy,
then € = pt.

Example 3.17. Any filtered category?, such as a category with a terminal
object, has contractible nerve. The same holds for cofiltered categories, i.e.,
categories € for which C° is filtered.

Remark 3.18. The construction of € above actually defines a functor Frac :
Cat — Gpd which is left adjoint to the fully-faithful embedding Gpd C Cat,
in the sense that composition with the canonical embedding € C Frac(C)
induces an isomorphism of categories Fun(Frac(C), §) = Fun(C, §) for any
groupoid 9.

The following is our main result, which builds on and generalizes Exer-

cise 3.2.
P:final_infinity_functor

Proposition 3.19. Let ¢ : C = D be a functor such that for any Y € D
the comma category (Y /@), which by definition consists of pairs (X € C,« :
Y — ¢(X)) and morphisms induced by those in C, has contractible nerve. If
F is a fibered category over D, then the restriction functor

Per(D, 5) - Tt (€, 97 (3))
s an equivalence of categories.

We will need the following lemma.

2The explanation for this somewhat strange terminology is that this categorical criterion
is equivalent to contractibility of the nerve of €, which is a topological “classifying space”
for a category defined in [?777].

3Recall that a category is said to be filtered if 1) it is non-empty, 2) for any pair of
objects X,Y, there is a Z with arrows X — Z « Y, and 3) for any two morphisms
f,9: X =Y, thereisan h: Y — Z such that ho f =hog.
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L:pushforward_contractible_fiber
Lemma 3.20. Let f: C — D be a cartesian fibration such that for every
D € D the fiber f~1(D) has contractible nerve. Then for any fibered category
F over D, the canonical pullback functor TS (F) — TS f~H(F)) is an
equivalence of categories.

Proof. TE™(f~1(F)) is the category of functors € — F over D which take
every arrow of C to a cartesian arrow of F. In particular we may replace F
with ¥ the subcategory consisting of only cartesian arrows, and therefore
we may assume that F is fibered in groupoids over D. What we wish to
show is that the unique functor € — D, where the latter is regarded as the
terminal fibered category over D, induces an equivalence of categories

Mapcat?%rt (D, 9") — Mapcatv;z(gt (e, St) .

We can replace € with an equivalent fibered category which admits a
splitting and thus corresponds to a functor C' : D°P — Cat, by Theorem 2.15.
Then we let € denote the fibered category corresponding to the composition
Fraco C : D°P — Gpd. We have a canonical morphism of fibered categories
€ — €’ which on every fiber can be identified with the canonical embedding
C(X) C Frac(€(X)). Using this one can show that every morphism to a
category fibered in groupoids ¢ — F factors uniquely through the functor
C — € and in fact that the embedding induces an equivalence of categories

Mapcat?%t ((‘3/, 3:) — Mapcat?aﬁt (@, 3:)

If one considers the unique morphism € — D, where we regard D as the
terminal fibered category over itself, then the hypothesis implies that €' — D
is an equivalence of categories on each fiber, and thus an equivalence of
fibered categories [V, Prop. 3.36]. The claim follows. O

Proof of Proposition 3.19. Note that because by definition Tt (F) = Teart(geart),
we can replace F with its subcategory of cartesian arrows. We may therefore
assume that F is a category fibered in groupoids over C.

Consider the comma category (D/¢), which consists of (X € €Y €
D,v:Y — ¢(X)) and morphisms induced by pairs of morphisms in € and
D which commute with the arrows . Then we have three functors

. (D/w) rp(Y — (X)) =Y, .
p// Pro where ﬁr?(Y - Sf(if %: gwf_constructgﬁ];l
L D o(X) = (id : (X) = (X))
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such that o is fully faithful with left adjoint pre, preoo = o, and prpoo = ¢.
The last identity shows that it suffices to prove the claim separately for o
and pro.

The morphism pro is the cartesian fibration corresponding to the strict
functor D°P — Cat mapping Y — (Y/¢). The hypothesis of the proposition
is that the fibers of prp have contractible nerve, so the claim for pro follows
from Lemma 3.20.

The morphism pre is the cocartesian fibration corresponding to the strict
functor ¢ — Cat mapping X — (D/p(X)). To show that

L{5/p)(F) = Le(o™(F))

is an equivalence for any fibered category F over (D/y), it suffices to show
that the canonical morphism?* (pre)«(F) — o~ 1(F) is an equivalence of
fibered categories over C. For this it suffices to check that the induced
functor on fibers is an equivalence. On fibers, this functor is simply the
restriction of cartesian sections of F over prg 1(X) to the fiber of F over
o(X). Note that o(X) is a terminal object in pry'(X), so this restriction
functor is an equivalence by Exercise 3.2. O

Remark 3.21. The condition in Proposition 3.19 is a little bit stronger
than the condition that ¢ is cofinal in the sense of category theory, which
implies that limits of sets over D°P can be computed after restricting to C°P.
As discussed above, Proposition 3.19 should be interpreted as a condition
which guarantees the same for limits of categories. In fact, the condition is
just the condition that ¢ is cofinal in the sense of co-category theory, and
Proposition 3.19 is inspired by the analogous result for co-categories, which
is due to Joyal (see ??*Thm. 4.1.3.1).

Exercise 3.9. Use Proposition 3.19 to show that if f : € — D is a functor
which admits a left adjoint, then TS (F) — TE(f~1(F)) is an equiva-
lence. In particular, any equivalence of categories induces an equivalence on
cartesian sections.

3.3 Techniques for studying descent

One common simplification when studying descent is to focus on coverings
consisting of a single morphism {U’ — U}. This is justified by the following:

“For any morphism f with section o, we have a canonical morphism f.(F) = ¢~ *(F)
which comes from applying f. to the counit of adjunction ¥ — .o~ (F) from Lemma 3.13,
followed by the observation that f.o. = id.
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EX:simplify_descent
Exercise 3.10. Let F be a fibered category over Sch,g such that for any
set of schemes {U;}icr, the canonical morphism F( ], Us) — [[; F(U;) is an
equivalence of categories. Show that F satisfies descent with respect to a
covering {U; — U }Yier if and only if it satisfies descent with respect to the
covering {U" := | |;c; Ui — U}. Use this to show that a fibered category F
over Schyg is a stack if and only if F(—) maps disjoint unions of schemes to
products of categories, and F satisfies descent with respect to all coverings
U —U.

3.3.1 Brief discussion of simplicial objects
S:simplicial_methods

For a covering {Uy — U}, we will simplify notation by denoting the aug-
mented descent diagram from Section 3.1 by D,J}D _y- It consists of four
schemes U, Uo, U1 = Uo XU Uo, and UQ = Uo XU UO XU Uo:

d2
dl
i RN dg
Uz —_— U1 Uo —U 5
d3 i

where d; denotes the map projecting away from the ith factor of Uy. The
indexing category for this diagram is most naturally understood in the
context of simplicial methods. Because we will use these methods later, we
take a small digression to introduce some notation.

We let A, denote the augment simplex category. The objects are the
totally ordered sets [n] = {0 < --- < n} for n > —1, where by convention
[—1] denotes the empty set. The morphisms are order preserving maps
f : [m] — [n], which can be conveniently represented by increasing sequences
(o < -+ < i), where i; := f(j). The category is generated by injective
morphisms 6™ : [n — 1] — [n] for i = 0,...,n, which skip the i** element,
and the surjective morphisms o™ : [n + 1] — [n] for 4 = 0,...,n which hits
i twice. Note that [—1] € A is initial.

We let A C Ay be the full subcategory containing all objects except
[—1]. A simplicial object in a category € is a functor X, : A°® — C,
and an augmented simplicial object is a functor A" — €. Concretely, a
simplicial object X, is given by a sequence of objects X,, € € for n > 0
along with face maps d,,; : X, — Xp—1 induced by 6™ and degeneracy maps
Sni : Xn — Xp41 induced by o™ that satisfy the evident relations.

We will more often use the subcategory Ay + C AL consisting of all
objects and injective order preserving maps [m| — [n]. This category is
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generated by the 6™, and the only relations are §™7§"~1¢ = gnign=li=1 for
all 0 <7 < j < n. Likewise we let Aj,; C Ajpj,+ denote the full subcategory
on all objects except [—1]. A morphism [m] — [n] in Aj,j corresponds
to a strictly increasing sequence (ig < -+ < i,y). Functors Aph — € are
sometimes called semisimplicial objects in C.

The augmented descent diagram D;O _,y s truncated augmented simpli-
cial object, i.e. a functor

D AS?

Up—U : ( inj,+)0p — SCh/Sa

<2
where Ainj’

[—1] € Ai;_ is initial, so Exercise 3.2 implies that Fcart(Dﬁo_ﬂ], F)— FU)
is an equivalence for any fibered category ¥ — Sch,g. The nonaugmented

+ C Ajyj+ denotes the full subcategory on objects [n] with n < 2.

descent diagram Dyj,_,r7 is the restriction of DJUF0 _,p to the full subcategory

AIEJQ C Aif , that contains all objects except [—1].

We will also discuss split simplicial and semisimplicial objects. We let A |
denote the category with the same objects as A but with different morphisms.
If [m] U {oco} denotes the totally ordered set obtained by adjoining a new
maximal element co, then a morphism [m] — [n] in A is defined to be an
order preserving maps f : [m] U {co} — [n] U {oo} which maps oo — co.

We let Aj,;, 1 denote the same category but with only those morphisms
f:[m]U{oo} — [n] U {oc} such that for any j < oo in [n], f~1(j) consists
of at most one element of [m]. A morphism f : [m] — [n] in Ay, | can be
represented by an increasing sequence

n—k-+1 times
. . P —
(g <+ <ip<0o=---=00).

for some £ < m and i, < n. We identify Ay, C Ajpj, 1 as the subcategory
consisting of morphisms for which f~!(c0) = 0o, and we call such a morphism
non-degenerate. We define a “degeneracy” morphism o” : [n + 1] — [n]
corresponding to the ordered list (0 < --- < n < 00 = 00). Any morphism
f:[m] — [n] in Ay 1 can be uniquely factored as f = f'o% .- o™~1 where
f" : [k] — [n] is non-degenerate. It follows that Aj,j | is generated by
morphisms in Ajyj+ along with the relations o~ 1§%" = idj;_y) and oty =
§higt=1 for 0 < j <i. A split augmented semi-simplicial object in a category
€ is a functor (Ajpj,1)°® — C.

3.3.2 First results on descent .
L:descent_section

Lemma 3.22. If f: X — Y is any morphism which admits a section, i.e.,
a morphism s : Y — X such that f os = idy, then any fibered category
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F — Schg satisfies descent with respect to {f : X — Y}, regardless of
whether f is a covering map in our topology.

Proof. We observe that if f: X — Y admits a section, then the augmented
descent diagram D} _,y extends to a split augmented truncated simplicial
diagram

<2
Dg_(—ﬂf : (Af

inij)0p — Schyg.

The only additional data needed to define D)L( _,y from D} _,y are maps

X 1=V 5 X=X Xxy X5 X xy X xy X

corresponding to the arrows o~ !,0% and o' that satisfy the identities

di,isi—l = idUi_1 for i = 0,1,2 and di+1,j3i = Si_ld@j for 0 < j < ) < 1.
We define Dx - by assigning s_1 to be the section s, so(x) = (z,s(f(x))),
and s1(x1,x2) = (1,22, 8(f(x2))). We leave it to the reader to verify the
necessary relations.

Exercise 3.2 implies that for both I'®*(Ds ., F) and (D% ., F),
restriction to [—1] induces an equivalence with F(Y'). It follows that the
restriction functor

1 =

is an equivalence as well. Therefore, to prove the claim, it suffices to show
that the inclusion of categories (AEI?)OP C (Afj | )°P satisfies the criterion of
Proposition 3.19. We leave this as an exercise to the reader. ]
Exercise 3.11. Complete the proof of Lemma 3.22 by showing that the
inclusion ¢ : (A%)Op C (AEI%J_)OP, which identifies the former as the
subcategory of objects [0],[1], [2] and non-degenerate morphisms, satisfies the
criterion of Proposition 3.19. (Hint: If a category C has contractible nerve
and C C € is a full subcategory, then to show that C' has contractible nerve,
it suffices to show that for any composition of arrows in Frac(C’) \ Frac(@)
such that the source of the first arrow and target of the last arrow are objects
of C, then that composition must also lie in Frac(C). One can use this to
show that the category ([n]/¢) has contractible nerve, by first showing that
the full subcategory Co C ([n]/p) consisting of objects for which the morphism
o([m]) — [n] in Ai%jQ,L is non-degenerate has contractible nerve, and then
extending this to an ascending union of full subcategories of ([n]/yp) all of
which have contractible nerve.)

Remark 3.23. For a more direct, but less conceptual, proof of Lemma 3.22,
see [O1, Prop. 4.2.10].
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Note that while a Zariski cover X — Y rarely has a section, smooth

covers, such as Ay — Y, can have many sections.
L:bisimplicial

Lemma 3.24. If X =Y and X' — Y are morphisms in Schg, we let X;
fori=0,1,2 denote the schemes in the diagram Dx_,y, and likewise for X.
If F satisfies descent with respect to X; xy X' — X; and X xy X[ — X! for
1=0,1,2, then F satisfies descent along X' —'Y if and only if it satisfies
descent along X — Y.

Proof. This is a very common argument. If we let X/ for i = 0,1,2 denote
the schemes in the diagram Dx/_,y, and we let W;; := X; xy X;, then we
have a diagram in Sch g

Was EE Wig —= Wog —— X}
Wl
Mﬁl Wﬂliimﬂ1—>)ﬁ
_Wz()EEWlo:iWoo%Xo
N
X2§X1:§X0*>Y

Notice that every row and every column of this diagram is an augmented
descent diagram.
F(Wae.e) is a fibered category over AS? x AS? and F(X,) and F(X]) are

1nJ mj’
fibered categories over A . Ifpo,p1: Ai;lj X A;JQ — Ai;j are the projections
onto the two factors, then the hypothesis that F satisfies descent along the
first three rows and first three columns implies that the canonical morphisms
F(Xe) = (p1)+(F(Wee)) and F(X]) — (p2)«(F(Wse)) are equivalences.
Applying ' to these equivalences, we see that the canonical morphisms
Do, (X)) = T (p1)u (F(Wae))) = T2, L, (F(Wia), and

inj inj 0 Y
CUL(TO) 2 T <a(F(We)

inj mJ inj

are equivalences. The canonical morphism F(Y) — I'®*(F (W, ,)) factors
through both I'@"(F(X,)) and I'***(F(X])). This implies the claim. O

Definition 3.25. Let ¥ — Sch/g be a fibered category. We say that &
satisfies universal descent along X — Y if for any map of schemes T" — Y,
JF satisfies descent along T' xy X — T
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C:descent_refinement
Corollary 3.26 (Refinement of covers). If J is a fibered category over Sch g
that satisfies universal descent along a morphism arising as a composition
X' — X =Y, then it satisfies universal descent along X — Y.

Proof. Apply Lemma 3.24 to the morphisms X — Y and X’ — Y. Note that
by hypothesis F satisfies descent along all of the morphisms X; xy X' — X;.
All of the morphisms X! xy X — X/ admit a section, so Lemma 3.22 implies
that & satisfies descent along these morphisms. O

Exercise 3.12. Use Corollary 3.26 to show that a fibered category over
Sch/g is a stack for the étale topology if and only if it is a stack for the
smooth topology. Hence the 2-category of étale stacks is equivalent to the
2-category of smooth stacks. The topos associated to a site is defined to be
the category of sheaves associated to that site, so this shows that the étale

site and the smooth site define the same topos.
EX:etale_descent_criterion

Exercise 3.13. Use the results of this section to show that a fibered category
over Schg is a stack for the étale topology if and only if it is a stack for
the Zariski topology and F satisfies descent along étale standard smooth
morphisms Spec(R[z1,...,xn|/(f1,..., fn)) — Spec(R). This reflects the
idea that the étale topology is “generated” by Zariski covers and maps of this
form. The technique of finding a small class of morphisms which generate a
topology in this sense is a common method for dealing with other topologies.
(See [MV, Sect. 3.1] for an example of this.)

EX:sheaves_determined_by_affines
Exercise 3.14. Let § — Sch/g be a stack with respect to the étale topology.
Show that F is determined by its values on affine schemes in the following

sense: For any separated scheme X, let Sch‘;“;l;’et denote the category of affine
schemes along with an étale morphism Spec(A) — X. Regard the functor
which forgets the morphism to X as a diagram Dx : Schjf)ff’et — Schyg. Then
there is a canonical equivalence Fg%flt/s(DX,ff) >~ F(X).
EX:descent_locality
Exercise 3.15 (Locality). Use Proposition 3.19 to show that for any fibered
category over (AEI?)OP X (A;?)Op, the category of cartesion sections can
be computed after restricting along the diagonal embedding (Ai?)‘)p —
(A;?)Op X (A;?)Op. Then, use an argument similar to the proof of Lemma 3.2/
to show the following locality principal: If X, X' — Y are two morphisms
and F — Schyg is a fibered category that satisfies universal descent along
X =Y and X' xy X — X, then it satisfies universal descent along X' —Y .

(Hint: first show that F satisfies universal descent along X xy X' —Y.)
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EX:descent_composition
Exercise 3.16 (Composition). Use Ezxercise 3.15 to show that if a fibered
category F — Schg satisfies universal descent along morphisms X —- X
and X —'Y, then it satisfies universal descent along X' —Y .

3.3.3 The relationship with simplicial descent

Our formulation of descent is inspired by the oo-categorical analog [L2,
Sect. 6.1.3]. The main difference is that in the setting of co-categories, the
descent diagram Dy is replaced with a simplicial diagram in schemes, i.e. a
functor Xe : A°P — Sch/s.

Ezample 3.27. For a covering U = {f : X — Y}, one can associate a
simplicial scheme Cech(f), called the Cech nerve, whose n? level is the fiber
product of n + 1 copies of X, X,, := X Xy --- Xy X. Cech(f) canonically
extends to an augmented simplicial scheme Cech(f) : A — Sch /s that
assigns X_1 =Y.

Given a fibered category F — Sch,g and a simplicial scheme X, : A% —
Sch/g, there is a commonly used notation

Tot{F(Xe)} = TR ((Xe) 7 (F) = Te™ (X, F).

We say that a fibered category & — Sch g satisfies descent along f: X — YV
if the restriction functor

L (Cech(f)4, F) — T (Cech(f), F)

is an equivalence of categories. Because the empty set [—1] € Aip is terminal,
restriction to [—1] defines an equivalence T®*(Cech(f)+,F) = F(Y).
This simplicial definition of descent is equivalent to Definition 3.4 because

of the following;:
L:simplicial_descent

Lemma 3.28. Let F be a fibered category over Sch,g, and let X —'Y be a
covering morphism. Then the descent diagram Dx_y : (A%)Op — Schg

is the restriction of Cech(f) along the canonical embedding (Aiijz)‘)p C A°P,
and restriction defines an equivalence

Tot{F(X.)} = TEH  (Dx v, F).

Exercise 3.17. Prove Lemma 3.28. By Theorem 2.15 you may assume that
F admits a splitting. See [S5, Tag 023H] and [S5, Tag 0D7I] for ezamples of
the argument for specific F. (The embedding (Ai%?)‘)p C A°P does not satisfy
the criterion of Proposition 3.19, so that is not an effective strategy.)
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The results analogous to Lemma 3.22, Lemma 3.24, and Corollary 3.26
hold in the simplicial context. The proofs are mostly the same, but with A°P
and A replacing the descent diagrams AEIJ?’OP and Aii’j_p respectively. In
fact, the proof of Lemma 3.22 is even easier in the simplicial context, by the

following;:

Exercise 3.18. Show that the inclusion A C A} taking f : [m] — [n] to the
extension f : [m]U{oco} — [n] U{oo} mapping co — co admits a left adjoint.
Use this to conclude that if a fibered category F over A°P extends to a fibered
category over Acip, then there is a canonical equivalence T (AP F) =
F([—1]). This can be summarized by the slogan “any coaugmented cosimplicial
diagram that extends to a split coaugmented cosimplicial diagram is a limit
diagram,” where in this case the coaugmented cosimplicial diagram is the
functor Ay — Cat classified by the extension of F to AT,
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Lecture 4

Examples of stacks

References: [V], [F]
Date: 2/4/2020
Exercises: 3

4.1 Examples of stacks

Let S be a scheme, and let p : QCoh,g — Sch/g be the fibered category
of 77, and let QCoh,g C QCoh,g denote the subcategory consisting of all

p-cartesian arrows.
T:fpqc_descent

Theorem 4.1. p: QCoh,g — Schyg is a stack for the smooth topology.

Proof. Because the descent condition only involves cartesian arrows, it suffices
to show that (QCoh g)*"* = (QCohc/)g)Cart is a stack, so we will work with
the latter. We know that QCoh(/)g satisfies Zariski descent, so by Exercise 3.13
it suffices to show that QCoh?g satisfies descent along a standard smooth
surjective morphism of affine schemes Spec(A) — Spec(R), i.e., it suffices to
show descent of modules along a faithfully flat ring map R — A.' The key
idea is that for any morphism Spec(A) — Spec(R), if Spec(R') — Spec(R)
is faithfully flat and QCohc/)g has descent along Spec(A ®p R') — Spec(R'),
then it has descent along Spec(A) — Spec(R) as well. We show this in
Lemma 4.2 below. If R — A is faithfully flat, we can apply the lemma to

'We are not using smoothness in this proof. What we actually show is that QCoh /s
satisfies Zariski descent and descent along faithfully flat maps of affine schemes. This
shows that QCoh ¢ is a stack for the “fpqc” topology, a much stronger condition [?777].
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the case where R’ = A, so it suffices to show QCohc/)g satisfies descent along
Spec(A ®r A) — Spec(A). This map admits a section, induced by the ring
homomorphism a ® b +— ab, so any fibered category satisfies descent along

this morphism by Lemma 3.22. (See also [S5, Tag 023N]). O
L:fpqc_descent

Lemma 4.2. Let R — A be a ring map, and let R — R’ be a faithfully flat
ring map. If the fibered category of modules satisfies descent along the map
R — A" := R' ®g A, then it satisfies descent along the map R — A as well.

Proof. A descent datum, after translating into algebraic terms, consists of
an N € A-Mod along with an isomorphism of A ® p A-modules

p: NRrA— A®r N
satisfying the cocycle condition that the following diagram commutes

A®RN®RA ,
$o1 P12

N®RA®RA 03 A@RA(X)RN
where the subscript on ¢ indicates which tensor factors it is acting on.
A homomorphism of descent data (N,¢) — (N',¢') is a homomorphism
f: N — N’in A-Mod which intertwines the cocycles ¢ and ¢’ after tensoring
with A.
We denote the category of descent data Desc(A/R). The pullback functor

F : R-Mod — Desc(A/R)

maps M to A ®gr M with its canonical cocycle ¢pcanon : (A @r M) @ A =
(A®rA) ®r M = A®r (A®pr M). One can show that F' admits a right
adjoint G : Desc(A/R) — R-Mod which maps

G:(N,¢)n—>ker<NM>A®RN).

It thus follows that F' is an equivalence if and only if the unit M — G(F(M))
is an isomorphism for all M € R-Mod, and the counit F'(G(N, ¢)) — (N, ¢)
is an isomorphism for all (N, ¢) € Desc(A/R).

We have canonical base change functors R’ @ (—) : R-Mod — R’-Mod
and R’ ®@p (—) : Desc(A/R) — Desc(A’/R’), where the latter maps (N, ¢) to
N ®r R' € A’-Mod with its induced cocycle

N @p A"~ (N®gA) @r R’ LaN (A9r N)®r R =2 A ®p (R ®r N).
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One can show that if R — R’ is flat, then R’ ® gz (—) commutes with F' and
G in a manner which preserves the adjunction, and thus preserve the unit
and counit of adjunction.

Recall that R — R’ being faithfully flat means that R'®@g(—) : R-Mod —
R’'-Mod is an exact functor of abelian categories, and a module M € R-Mod
is zero if and only if R' @ M is 0. It follows by considering the kernel and
cokernel that a homomorphism f : M — M’ in R-Mod is an isomorphism if
and only R’ ®pg f is. In particular the canonical equivalence

R @r(M — GF(M)) 2R @r M — G(F(R ®r M))

shows that the unit of adjunction being an isomorphism for A’/ R’ implies the
same for A/R. Similary, Desc(A/R) is an abelian category, where kernels and
cokernels are just the kernels and cokernels of the underlying A-modules along
with canonical cocycles which they inherit. Because A — A’ is faithfully flat,
a morphism in Desc(A/R) is an isomorphism if and only if its pullback to
Desc(A’/R’) is faithfully flat. So the canonical equivalence

R &g (F(G(N,¢)) = (N,¢)) = F(G(R' ®r (N, ¢))) = R’ ®r (N, ¢).

implies that the counit of adjunction being an isomorphism for A’/ R’ implies
the same for A/R. Therefore if modules descend along R’ — A’, the same is
true for R — A. O

Remark 4.3. This argument has a more abstract formulation known as
the Beck’s monadicity theorem [M1, Chap. 6]. The adjunction between
the pullback functor F' : R-Mod — A-Mod and its right adjoint G give a
natural transformation 7 : F(G(—)) = id which has a structure known as a
“comonad.” Because F reflects isomorphisms (faithfulness) and preserves finite
limits (flatness), the Barr-Beck theorem implies that F' induces an equivalence
between R-Mod and “coalgebras over the comonad” F(G(—)) = id. To
derive descent from this theorem, one must identify the structure of a
coalgebra for the comonad on N € A-Mod with descent data on N.

Theorem 4.1 allows one to construct many other examples. The following,
in the special case where X is a smooth projective curve, will be our main

example for the second half of the course.
EX:descent_bun

Exercise 4.1. Let X — S be a scheme over a base scheme S, and let Bun(X)
denote the category of pairs (T, E), where T is an S-scheme and E is a locally
free sheaf on T xg X, and a morphism (T, E) — (T', E') is a morphism of
schemes f: T — T along with a homomorphism of quasi-coherent sheaves
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E' — (f xidx)«(E) on T" xg X which induces an isomorphism f*(E') = E.
Show that this is a category fibered in groupoids over Sch,g without appealing

to [V, Prop. 3.22]. Show that it is a stack for the étale topology.
EX:descent_qcoh_algebras

Exercise 4.2. Let Alg(QCoh,g) denote the fibered category whose fiber
over a scheme T is the category of quasi-coherent Or-algebras. Show that
Alg(QCoh/S) is a stack for the étale topology on Sch,g. Show that the same
holds for the fibered category of graded quasi-coherent algebras Alg® (QCoh /g).
(Hint: one way is to consider the composition Alg(QCoh,g) — QCoh /g —
Sch/g and use Ezercise 3.16.)

EX:projective_morphisms
Ezample 4.4. Let F — Sch g be the fibered category which assigns T' — S to
the category of flat, proper morphisms X — T along with a relatively ample
invertible sheaf L on X. A morphism (X, L) — (X', L’) is an isomorphism
f: X — X' over T, along with an isomorphism f*(L') = L. Using the
previous exercises one can show that F is a stack in groupoids over Sch g.
Zariski descent is straightforward, so it suffices to show descent along a
smooth morphism of affine schemes (see ??). In this case you can use
Exercise 4.2 to show that given a descent datum for &, the homogeneous
coordinate rings define a descent datum for a graded quasi-coherent algebra,
which is effective by Exercise 4.2. Taking Proj shows that the original descent
datum was effective.

The following is the algebraic version of our first example of a moduli
problem Example 1.1:

EX:moduli_of_curves
Ezample 4.5. Let My — Sch g be the fibered category which assigns to any
scheme T' — S the category of smooth, proper morphisms X — 7T with
connected geometric fibers which are smooth curves of genus g. M, is a stack
in groupoids. In fact M, has a canonical “compactification” as a stack, ﬂg,
which is an important object in many subjects [DM1].

Example 4.6. If ¥ — Sch,g denotes the fibered category which assigns
T — S to the groupoid of flat, proper morphisms X — T, the F is not
a stack [V, Sect. 4.4.2]. The problem is there are descent data along a
morphism 7" — T which define a proper algebraic space over T', rather than
a scheme. We will discuss algebraic spaces below.

4.2 Representable morphisms

Recall from Example 2.12 and ?? that the functor X — Sch,x defines a fully
faithful embedding Sch,g < Cat®% | where Sch,y is fibered over Sch,g
/ /Schyg / /
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via the functor that maps 7" — X to the composition T'— X — 5. We will
often abuse notation by writing X for the fibered category Schx.

Definition 4.7. A category fibered in groupoids over Sch/g is representable
by a scheme if it is isomorphic to Sch,x — Sch/g for some X € Sch/g. A
morphism of categories fibered in groupoids X — Y is representable if for any
morphism of fibered categories Sch,x — ', the 2-categorical fiber product
Sch/x xy X is representable by a scheme (see Exercise 3.8).

D:representable_properties
Definition 4.8. Let P be a property of a morphism of schemes which is
stable under base change and local for the étale topology over the base
(examples: affine, quasi-affine, separated, proper, finitely presented, open
immersion, closed immersion, smooth, étale, surjective). If f : X — Y is a
morphism of stacks in groupoids which is representable by schemes, then we
say f has property P if for any morphism from a scheme T' = Y, T'xy X — T'
satisfies property P.

Exercise 4.3. Consider a pair of morphisms

xSty 9,9

Show that 1) if f and g are representable, then so is go f, and 2) if g and
go [ are representable, then so is f.
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Lecture 5

Algebraic spaces and stacks

References: [O1], [F]
Date: 2/6/2020
Exercises: 3

5.1 Definition and first properties

Definition 5.1. A stack X over Schg is an algebraic space if
1. the fibers of X are setoids
2. the diagonal morphism X — X x X is representable by schemes

3. there exists a morphism from a scheme U — X which is surjective
étale.

In order for the third condition to make sense, we need the fact that the
morphism U — X is representable. This is the result of the following:

Exercise 5.1. Show that if X is a stack such that the diagonal morphism
X — X x X is representable by schemes (resp. algebraic spaces), then any
morphism from a scheme'Y — X is representable by schemes (resp. algebraic
spaces).

For any property P of a morphism of schemes X — T that is étale local
on X, we can say that an algebraic space X — T has property P if for some,
and hence for all, surjective étale morphisms from a scheme U — X, the
composition U — X — T has property P.
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We will discuss algebraic spaces in more detail later. For now, we will just
use this definition as a building block for the definition of an algebraic stack.
Just like before, we can define a morphism X — Y of categories fibered in
groupoids over Schg is representable by algebraic spaces if for any T' € Sch /g

and any morphism 7" — Y, the fiber product 7" xy X is an algebraic space.
D:algebraic_stack

Definition 5.2. A stack in groupoids X over Sch/g is an algebraic (resp.
Deligne-Mumford) stack if

1. the diagonal Ay : X — X x X is representable by algebraic spaces

2. there exists a smooth (resp. étale), surjective morphism from a scheme
U — X (sometimes called an atlas).

Exercise 5.2. Show that any representable morphism X — Y of stacks for
the étale topology on Sch,g which is smooth and surjective in the sense of
Definition 4.8 is a surjective morphism of stacks in the following sense: for
any T € Schg and & € Y(T), there is an étale cover ¢ : T — T such that
¢*(&) € Y(T") lifts to X(T").

One important property of algebraic stacks is that if X — Z and Y — Z
are morphisms of algebraic stacks, then X x4 Y is an algebraic stack [S5, Tag
04TD]. As a consequence, for any morphism f : X — Y of algebraic stacks,
there exists a commutative diagram

—Y

1l

X—Y

fo

in which the top objects are schemes, Y — Y is representable, smooth, and
surjective, and X — X xy Y is representable, smooth, and surjective. For
any property P of a morphism of schemes which is smooth local on the
source and the target, we can say that f has property P if fo does. This is
independent of the choice of lift fj satisfying these conditions. See [S5, Tag
06FL] for further discussion.

Likewise, for any property P of schemes which is local in the smooth
topology, we say that an algebraic stack X has property P if there is an atlas
X — X such that X has that property P. See [S5, Tag 04YH] for a list of
such properties.
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Properties of the diagonal

Many results for algebraic stacks require additional axioms on Ay : X —
X x X, beyond the fact that it is representable by algebraic spaces. These
conditions are called separation axioms. There is also a relative version, where
one considers the diagonal Ay : X — X xy X for a morphism f : X — Y,
which recovers the absolute version when applied to the structure morphism
X — S. In many examples of interest in moduli theory, Ay is representable
by schemes, and in fact by affine schemes. The hypothesis that A is affine
simplifies many proofs.

The minimal separation axiom that is required for most of the results we
will discuss is that f : X — Y is quasi-separated.

Definition 5.3. We say that a morphism f : X — Y of algebraic stacks
is quasi-compact if for any Spec(A) — Y, the fiber product X xy Spec(A)
admits a representable (by algebraic spaces) smooth surjection from an affine
scheme Spec(B) — X xy Spec(A).!

D:quasi-separated
Definition 5.4. A morphism f : X — Y of algebraic stacks is quasi-separated
if the following conditions hold:

1. The double diagonal
AAf X —>X XU xyX Z)C,

which is automatically a representable, separated, locally finite type,
locally quasi-finite, monomorphism by [S5, Tag 04YQ)], is also quasi-
compact.

2. The diagonal Ay : X — X xy X is quasi-compact.

An algebraic stack is quasi-separated if the structure morphism X — S is
so. We will often abbreviate the condition that f is quasi-compact and
quasi-separated as qc.gs..

An example of a non-quasi-separated algebraic stack is provided by the
algebraic space Ab /Z, where we regard 7Z as a discrete group scheme acting
freely by translation. One commonly studied class of stacks which have
well-behaved categories of quasi-coherent sheaves is the following:

1 This is equivalent to the definition in the stacks project, which is formulated using the
topological space |X| of points of an algebraic stack X.
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Definition 5.5. A stack X is noetherian if it is quasi-compact and quasi-
separated (over Z) and admits a smooth surjection from a noetherian affine
scheme Spec(A) — X.

In addition to these mild properties, there is a notion of separatedness
and properness for morphisms that are representable by algebraic spaces:

Definition 5.6. A representable morphism of algebraic stacks f: X — Y is
separated if the diagonal Ay : X — X xy X is a closed immersion, and it is
proper if it is separated, finite type, and universally closed.

Many of the commonly used results for proper morphisms of scheme
generalizes to proper representable morphisms of stacks. For instance, the
valuative criterion for properness holds verbatim for maps between algebraic
spaces, and there is also a version of Chow’s lemma.

More generally, we have
D:separated

Definition 5.7. A (not necessarily representable) morphism of algebraic
stacks f : X — Y is separated if the diagonal Ay : X — X xy X, which is
automatically representable, is proper. f is proper if it is separated, finite
type, and universally closed.

The condition that f is separated is stronger for stacks than for algebraic
spaces, because it implies that the automorphism groups of any point are
proper group schemes. For many moduli problems which arise in practice,
automorphism groups of points are positive dimensional and affine, and
therefore the resulting stacks are not separated. We will therefore make little
use of Definition 5.7. We will comment, however, that there is a version of the
valuative criterion for properness for a morphism of algebraic stacks, but it
differs in that one must allow extensions of the valuation ring [LMB, Chap. 7].

5.2 Example: BGL,

We first show that the stack B GL, parameterizing locally free sheaves of
rank n defined in Equation (1.1) is an algebraic stack. To give a more
precise definition, we let B GL,, C QCoh(/)g denote the subcategory (see
Example 2.10) of pairs (X, E) where E € QCoh(X) is locally free of rank n,
and which only includes cartesian morphisms. One can deduce that B GL,
is a stack from the fact that QCoh"% is a stack (Theorem 4.1) and the fact
that a quasi-coherent sheaf on a scheme if locally free of rank n if and only

if it is so after restricting along a flat surjective morphism X’ — X.
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We first consider the diagonal B GL,, — B GL, xB GL,. For any T €
Schg, the groupoid of maps T' — B GL;, x B GL,, is the groupoid of pairs
(E, E’") of locally free sheaves of rank n, where a morphism is a pair of
isomorphisms. Let X =T XpgaL, xBGL, B GL;, be the fiber product, and we
regard it as a fibered category over Sch,r. By definition, for any f : T — T,
we have

X(T') = {f} XBGL.(1")xB GLn (") B GLn(T")
= {F € BGL,(T") + isomorphisms (o, 1) : (f*(E), f*(E")) = (F,F)}

The last expression is a groupoid, where a morphism of this data is an
isomorphism ¢ : F' — F’ of locally free sheaves on T” such that (¢,¢) o
(¢0, 1) = (#h, ¢;). The map which takes (o, ¢1) to the composition ¢ g
defines an equivalence of groupoids

X(T") = {isomorphisms ¢ : f*(E) = f*(E')} = Isomp (f*(E), f*(E")).

The latter is a setoid, i.e. X corresponds to a presheaf of sets on Sch,p. If
E and E’ were trivializable, then after choosing trivializations one could
regard the data of an isomorphism f*(E) = f*(E’) as a morphism 7" — GL,,.
Therefore, in this case, X would be representable by the T-scheme GL,, xT.
In general one can find a Zariski open cover U, of T such that F and E’ are
trivializable over each U,. The previous discussion allows one to realize X as
copies of the T-schemes U, x GL,, glued along open immersions, hence X is
representable by a scheme, which is in fact affine over T'!

Now consider the morphism pt = Sch/g — B GL,, classifying O%. For
any T'— B GL,, corresponding to a locally free sheaf E of rank n on 7', one
can verify as above that X = T xpqg1, pt, regarded as a fibered category
over Schp is the sheaf of sets

(f : T — T) — Isomp (0%, f*(E)).

We have already seen that this sheaf is representable by a scheme which
isomorphic to T x GL,, locally over T'. Hence the morphism to 7" is smooth
and surjective, i.e., pt — B GL, is a smooth surjective morphism. This
verifies that B GL,, is an algebraic stack.
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5.3 Principal G-bundles

5.3.1 Group schemes and group actions

Definition 5.8. A group scheme over S is a scheme G along with a lift of
the corresponding functor hg along the forgetful functor

Group .

A
Ve
e
Ve

7
Sehh % Set
Equivalently, G has an identity section e : pt — G and a multiplication map
i1 G x G — G satisfying the associativity, identity, and invertibility axioms
defining a group.

A left action of G on X € Sch/g is an action of the sheaf of sets g on
the sheaf hy, i.e., and action of G(T') on X(T') for all T' € Sch,5 which is
functorial in T'. This is equivalent to an action morphism o : G x X — X
such that the following diagrams commute

/.LXidX exidx

GxGE@xX—GExX X —GxX.

X
id x x o
ax Ul JO’ ldX J/

GxX—2 X X

The definition of a right action is analogous.

5.3.2 Principal bundles and the stack BG

Definition 5.9. Let G be a smooth affine group scheme over S, let T' € Sch g,
and let P be an S-scheme equipped with a right G action o : P x G — P
and a projection 7 : P — T which is smooth and G-invariant, meaning the
two compositions agree

PxG—=P-—"-T.
pr1
Then P is a principal G-bundle if the morphism P x G — P xp P that is given
on T" points by (p,g) — (p,p- g) is an isomorphism and 7 is surjective. P is
also called a G-torsor. Morphisms of principal G-bundles are G-equivariant
maps relative to 7. We call the resulting category BG(T).
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This is saying that the G-action on P is free and transitive relative to T'.
The action of G on P along with the invariant map 7 is equivalent to the
data of an action of the base-changed group Gt on P relative to T'. Using
this the torsor condition is that P xp G — P X7 P, i.e. the G action on
P is free and transitive in the category Sch .

Example 5.10. The simplest example is the trivial principal G-bundle Gp =
T x G — T, with its right G action. The set Map g 1) (Gr, P) is naturally
in bijection with the set of sections of the map P — T. Given a section
s : T — P, the corresponding equivariant map is T x G — P mapping
(t,g) — s(t) - g, and given an equivariant morphism 7' x G — P, the section
is the restriction to 7' x {1}. It follows that the sheaf of sets Isomy(Gr, P)
over Schy which maps f : T" — T to Isomp/ (G, f~H(P)).

Exercise 5.3. Show that any morphism between principal G-bundles over
T is an isomorphism.

Note that because 7 : P — T is smooth and surjective, it admits a section
étale locally. Hence locally P is isomorphic to 7" x G — T'. Because G is
affine, this implies that 7 : P — T is also affine, because the fact that the
canonical map P — Specy(m(Op)) is an isomorphism can be checked étale
locally over T.

Ezample 5.11. If E is a locally free sheaf on T of rank n, then the scheme
Isom7 (07, E) is a principal GL,-bundle. This induces an equivalence of
categories between principal GL,-bundles and locally free sheaves. To go
from a prinicpal GL,, bundle P back to a locally free sheaf, one chooses an
étale cover 7" — T such that P|g is trivializable. Then we consider the
descent diagram s,t : T xp T = T’, and the descent datum defining P
from P|pv is an isomorphism ¢ : s*(P|p) — t*(P|pv) satisfying a cocycle
condition on 7”7 x7 T" xp T'. If we fix a trivialization P|p = (GLy)7v, then
this allows us to identify ¢ with an automorphism of the trivial GL,-bundle
on T’. The key observation is that the automorphism group scheme of a
trivial GL,-bundle is canonically isomorphic to the automorphism group
scheme of the trivial locally free sheaf, so the cocycle defining P gives us a
cocycle defining a locally free sheaf E.

The assignment 7'+ BG(T') defines a stack on Sch/g. We can prove
that BG is an algebraic stack in much the same way as for GL,,. Consider
the map pt = Sch /g — BG classifying the trivial G-bundle on S. Then for
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any T — BG, classifying a G-bundle P over T', we have a cartesian diagram

P = Isomp(Gr, P) —— pt .

| |

T — BG

In particular pt — BG is representable by schemes and smooth. Furthermore
because P — T is smooth and surjective, it admits a section étale locally
over T'. Hence étale locally over T, Isomp(Gr, P)

Likewise, for a morphism T — BG x BG classifying a pair of G-bundles
(Py, P3), we have a cartesian diagram

ISOmT(Pl, PQ) — BG

| |

T— BG x BG

Because P; and P, are trivializable étale locally over T', this map is repre-
sentable by affine schemes. Hence we can associate to any smooth affine
group scheme G an algebraic stack BG, which has an affine diagonal and
admits a smooth surjection pt = Sch,g — BG.

On the other hand, let X be an algebraic stack over Sch,g which admits
an atlas from the terminal object Xo = pt = Sch/g. Let G := X3 = pt xx pt.
Because Xo(T) = {*} for any T' € Sch/g, G(T) is a group instead of a
groupoid. If X has affine diagonal, then G is a smooth affine group scheme.

If one applies this construction to pt — BG, one gets the group G back.
It turns out that the same is true in the other direction: any algebraic stack
with affine diagonal which admits a surjection pt — X is isomorphic to BG
for the smooth affine group scheme pt xy pt.

5.4 Points and residual gerbes

Definition 5.12. [S5, Tag 04XE] Let X be an algebraic stack over a base
scheme S. The set of points of X, denoted |X|, is the set of maps & :
Spec(k) — X for some field k, modulo the smallest equivalence relation
that identifies 2-isomorphic maps and identifies £ : Spec(k) — X with the
composition & : Spec(k’) — Spec(k) — X for any field extension k C £’

In the case of a scheme, this definition agrees with the usual definition of
the set of points. If U — X is a smooth surjective morphism from a scheme
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U, then the image of the map |U xx U| — |U| x |U| is an equivalence relation,
and |X| is the quotient of |U| by this equivalence relation. We thus equip |X|
with the quotient topology, in which a subset S C |X| is open if and only if
its preimage in |U]| is open.

D:residual_gerbe
Definition 5.13. Let X be a quasi-separated algebraic stack, and let = € |X|
be a point. Then by [S5, Tag 06RD] there is a unique full substack G, C X
such that G, is a reduced locally noetherian algebraic stack and |G,| is a
single point that maps to x € |X|. G, is called the residual gerbe of X at x.
There exists a unique field & and a morphism G, — Spec(k) that is bijective
after base change to the algebraic closure k, and we call k the residue field.

Unlike in the case of schemes, a point = € |X| with residue field k£ does not
need to be represented by a map Spec(k) — X. This happens if and only if the
residual gerbe G, = BG for some k-group scheme G. In general, G, will admit
a k'-point for some extension field k C &', and G, Xgpec(r) Spec(k’) = BG
for some k’-group scheme G'.

The morphism G, — Spec(k) is an example of a gerbe. We will discuss
this notion more generally in Definition 8.22.
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Lecture 6

Groupoid algebraic spaces

Lect:groupoid_spaces
References: [BX, Sect. 2] [O1]
Date: 2/18/2020
Exercises: 6

Our goal for this lecture is to construct a correspondence between algebraic
stacks and groupoid objects in the category of algebraic spaces, up to a
certain notion of equivalence.

6.1 Baby case: algebraic spaces and étale equiva-
lence relations

An equivalence relation in Sch/g is a morphism of S-schemes R — U x U
such that for any 7' € Sch,g, R(T) — U(T) x U(T) is injective and defines
an equivalence relation on U(T'), where = ~ y if and only if (z,y) € R(T).
We say that R — U x U is an étale equivalence relation if each projection
s,t: R— U is étale.

Lemma 6.1. [O1, Prop. 5.2.5] If R — U x U is an étale equivalence relation
on Sch,g, then 1) the sheafification of the presheaf T — U(T)/R(T) in the
étale topology, which we call U/R, is an algebraic space, 2) the canonical
morphism U — U/R is étale and surjective, and 3) the canonical map
R — U xy/r U is an isomorphism.

So we see that an étale equivalence relation determines a space. In the
other direction, given an algebraic space X and a surjective étale morphism
U — X, the scheme R = U xx U defines an étale equivalence relation, but
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given any surjective étale map U’ — U, one let R’ be the preimage of R
under U’ x U' — U x U, and U'/R' — U/R is an equivalence. For any two
surjective étale morphisms U, U’ — X, the fiber product U xy U’ — X is a
surjective étale morphism lying above U and U’. This shows that there is
a bijection between algebraic spaces and étale equivalence relations up to
pullback along a further étale covering map.

In fact, something stronger is true. If R — U x U is an equivalence
relation in schemes such that the projections R — U are flat and finitely
presented, then the sheafification of U/R in the flat and finitely presented
(fppf) topology is an algebraic space [S5, Tag 04S6]. This is a non-trivial fact,
because it requires one to construct a surjective étale morphism U’ — U/R

from thin air. E:free_quotients

Ezxample 6.2. We say that a group scheme G acts freely on a scheme X
if G(T) acts freely on X(T') for any T' € Sch/g. This is equivalent to the
induced map G x X — X x X being a monomorphism, in which case it is
an equivalence relation. The previous discussion implies that if G is a flat
and finitely presented group scheme over S, and G acts freely on X € Schg,
then X/G, the fppf sheafification of T'— X (T")/G(T), is an algebraic space.

The fact that an fppf equivalence relation defines an algebraic space
implies that algebraic spaces are a more natural class of objects from the
perspective of descent:

Corollary 6.3 (descent for algebraic spaces). The category fibered in groupoids
over Sch g whose fiber over T is the category of algebraic spaces X — T and
isomorphisms relative to T' satisfies smooth (and even fppf) descent.

Exercise 6.1. Prove this corollary.

6.2 Groupoid space from an algebraic stack

Consider an algebraic stack X over Sch/g, and let f : Xo — X be an atlas.
Assume for simplicity that the diagonal Ay : X — X x X is representable
by schemes. Then the fiber product X7 := Xy xy Xy is representable by a
scheme, and by definition for any 7" € Sch g, its set of T-points is

X1(T) = {triples (z,y € Xo(T), ¢ : f(z) = f(y) in X(T)}.

We observe that X;(7') is naturally the set of arrows in a groupoid whose
objects are Xo(T'). There are natural maps s,t : X1 — X which on T-points
maps any arrow to its source and target. There is also an “identity” section
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e : Xo — X1 which on T-points maps x — (z,z,id;). In order to encode the
structure of a groupoid on X (7)) diagramatically, we consider the scheme
of composable arrows X1 x5 x,,+ X1 = Xo xx Xo Xx Xo, which is a scheme
whose T-points are

{(x,y,2 € Xo(T) + two arrows f(z) 2 f(y) 25 f(2) in X(T))}.

Then the groupoid structure on X;(7") is encoded by the “composition”
morphism ¢ : X7 X, x, X1 — X7 which acts on T-points as (g, ¢1) — @10¢0.
Putting this all together, we have a diagram of schemes

e

T~ ) ~
X1 Xs.x0t X1 —— X1 %ﬁ Xo . {E'groupfé'ﬁ]jl
/X

N S
mnuv

These arrows satisfy some axioms:

e correct sources and targets: soc=sopry,toc=topry, soe=idx,,
toe:idxo.

e identity: idx, =co (e X iXm) : X1 =Xo X Xo,s X1 — Xy
[ identity: iXm =Co (iXm X 6) : X1 = X1 Xt,Xo XO — X1
e associative : co(cxidy,) = co(idx, x¢) : X1 X¢ x5 X1 X¢t,x,s X1 = X1

e right inverses: the map Xi x,x,: X1 — X1 Xy x,: X1 mapping
(0, ©1) = (1,1 0 o) is an isomorphism

o left inverses: the map XX x,+X1 — X1 X, x,,sX1 mapping (00, 1) =
(0, ¢1 © o) is an isomorphism

These are exactly the axioms that equip X1(7') = Xo(T") with the structure
of a groupoid for any T' € Sch/g. Note that the two axioms on inverses are
together equivalent to the existence of an “inverse” map i : X1 — X, taking
every arrow to its inverse, which we have illustrated in (6.1) with a dotted
arrow, but this map is not strictly part of the data.

In general the diagonal of X is only assumed to be representable by
algebraic spaces, so the sheaf of sets X is an algebraic space. The discussion
above holds verbatim in this case.

Definition 6.4. A groupoid scheme (or algebraic space) is a diagram (6.1)
of schemes (algebraic spaces) satisfying the axioms above. Equivalently, it is
a strict functor Sch /g — Gpd such that the set of objects functor and set of
morphisms functor are both representable by schemes (algebraic spaces).
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Our shorthand notation for a groupoid algebraic space is X1 = Xy, or
even more compactly X,. The fact that Xqg — X is smooth implies that
both the source and target maps s,t : X7 — Xy are smooth, so we refer to
X1 = Xy as a smooth groupoid. If X were a Deligne-Mumford stack, one
can choose Xg — X étale, in which case s,t are étale, and we say X1 = X
is an étale groupoid.

Ezample 6.5. An fppf equivalence relation is the same as an fppf groupoid
such that the map (s,t) : X1 — X x Xg is a monomorphism.

6.3 Morita equivalence of groupoid schemes

First we generalize the notion of equivalence between étale equivalence
relations above.

Note that groupoid algebraic spaces form a 2-category, in which a mor-
phism X, — Y, is a pair of morphisms X¢ — Yy and X; — Y7 which commute
with the structure maps for the groupoids. A 2-morphism 7 between functors
fo, 00 : Xo — Y, is a lift

Y, {E: natural_isomorph(lbsl%l

P
L l(s,w

X, /(fo,go)yo X Y,

which induces a natural transformation of functors of 7" points fo(T') = ge(T).

Definition 6.6. A morita morphism is a functor of groupoid spaces f, :
Xo — Y, such that Xo — Yp is smooth and surjective, and X1 — Xo X, v;,s
Y1 Xtvp,f, Xo is an isomorphism (i.e. fo(7') is fully faithful for all T').

We say that two groupoid algebraic spaces X and Y, are Morita equivalent
if there is a third groupoid space Z, with Morita morphisms Z, — Y, and
Lo — Xe-

Lemma 6.7. Let X be an algebraic stack. Then the groupoid algebraic space
associated to any two atlases of X are Morita equivalent.

Proof. Let Xg — X and X} — X be two smooth surjective morphisms. Then
X{ = Xo xx X}, — X is again smooth and surjective. It therefore suffices to
check that if Uy — U — X is a composition of smooth surjective morphisms,
then one naturally has an induced Morita morphism between the associated
groupoids U, — U], and we leave this to the reader. ]
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6.4 The stackification of a smooth groupoid space

For any presheaf F' on a site €, F' admits a sheafification, which is a sheaf F'¢
and a morphism F' — F'* which is universal for maps from F' to a presheaf,
i.e., for any sheaf G on €, composition with F' — F'® gives a bijection

Map(F*,G) — Map(F, G).

There is an analogous construction for stacks. For any fibered category F
over a site C, there is a morphism of fibered categories to a stack o : F — F¢
such that for any stack G, composition with a gives an equivalence of
categories

Map(F*,G) — Map(7, §).

We refer to [O1, Thm. 4.6.5] for the case of categories fibered in groupoids,
and [S5, Tag 02ZM] for the general case. F* is characterized by two properties:
1) for any &, € F(U), the map

Mapg iy (§,n) — Mapga (g (a(§), a(n))

identifies the right side with the sheafification of the left side, and 2) for any
& € F*U), there is a cover {U; — U} such that the restriction of £ to each
U; lies in the essential image of F(U;) — F4(Uj;).

Although the general construction of F* is not too hard, we have opted to
take a more direct route to associating a stack to a smooth groupoid space.

Definition 6.8. Give a smooth groupoid algebraic space Xo = (X7 = X)
over S an X,-space over T is a functor of groupoid algebraic spaces 7 : Py —
(Xo)r, where (Xo)7 := Xo x T denotes the groupoid space (X1)r = (Xo)7,
such that the diagram

3 s P, {E: cartesian_actilén‘lgsl

T
(X1)r —— (Xo)r

is cartesian. A morphism of X,-spaces is a morphism of S-schemes T" — T”
and a commutative diagram of groupoids

Pp—— P!

L]

(Xo)7 — (Xo)1

This defines a fibered category Xo -Spc over Sch /g whose fiber is the category
of Xe-spaces over T.
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Another way to think of this is that Py — X x T is really two maps, a
“structure” map 7 : Py — T and an “anchor” map a : Py — Xy. For any test
scheme U € Sch/g, one can think of p € Py(U) as an arrow whose source
is m(p) € T(U) and whose target is a(p) € Xo(U). The fact that (6.3) is
cartesian allows one to identify P; = Py X4 x,,s X1, and we can regard the
target map t : P; — Py as an “action” map which composes the “arrow” from
m(p) to a(p) with an arrow v € X;(U) with s(y) = a(p). This composition
law obeys the natural axioms for the action of the category Xo(U) on the
set Py(U).

Exercise 6.2. Check that the morphisms between two Xe-spaces form a set,
rather than a groupoid, and in fact it is naturally identified with the subset
of morphisms Py — P} over T — T’ that commute with the action of the
category Xo in an appropriate sense. One should think of this as saying that
a morphism Xe-spaces is simply an equivariant morphism Py — P}.

Exercise 6.3. Show that when Xo = (G = pt) is a group scheme over S,
then the category of Xe-spaces over T is equivalent to the usual category
whose objects are algebraic spaces with a G-action relative to T and whose

morphisms are G-equivariant morphisms. )
D:groupoid_torsor

Definition 6.9. If X, is a smooth groupoid space, we say that a P, €
Xo-Spc(T) is an X,-torsor if the structure map Py — T is smooth and
surjective, and the canonical map (s,t) : P — Py X7 Pp is an isomorphism.

Definition 6.10. If X, is a smooth groupoid algebraic space, we let BX,
denote the category of X,e-torsors on S-schemes, regarded as a fibered category

over Schg.
EX:torsor_stack_1

Exercise 6.4. Show that for any smooth groupoid algebraic space Xo, BXo
is a stack for the étale topology on Schg.

Example 6.11. There is a trivial X, torsor over Xy, which we denote Triv
whose structure map is s : X7 — Xy and anchor map is ¢ : X7 — Xy. Given
a morphism f : T — X, one give an explicit description of the pullback
Py = f~Y(Triv): Py = T X s x,,s X1, where the structure map is the projection
7 : Py — T onto the left factor, and the anchor map a : Py — X induced by
projection onto the right factor, followed by the target map X; — Xy. The
two maps
Po Xa,x0,s X1 =T X5 x4,s X1 Xt,x0,s X1 = Po

consist of projection onto the first factor and the composition law in X,
respectively. We refer to f~1(Triv) as the trivial torsor associated to the
map f: T — Xp.
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Another way to think of this: the trivial torsor on Xy defines a morphism
Xo — BX,. Then for any f: T — X, the torsor f~!(Triv) corresponds to
the composition T' — Xg — BX,.

It is not hard to show that an arrow f — g in the category X1(T") = Xo(T)
defines a morphism f~!(Triv) — ¢g~1(Triv) in the fiber BX,(T). Thus we
get a canonical map of fibered categories

Triv : Xo — BX., {Ererivial torgon}
where X, denotes the fibered category whose fiber over T' € Sch g is X1(T) =
Xo(T).

EX:torsor_stack_2
Exercise 6.5. Show that the compositions

X, 5 Xy — BX, and X1 5 Xy — BX,

are canonically isomorphic, and the induced map X1 — Xo Xpx, Xo s an
isomorphism. In other words, a pair of maps f,g: T — Xq, and isomorphism
between the composition of these maps with the map Xo — BX, is precisely
the same data as a map v : T — X1 with s(v) = f and t(vy) = g.

We may summarize the previous discussion with the following:
P:groupoid_presentation

Proposition 6.12. For any smooth groupoid space Xo, BX,e is an algebraic
stack, and the canonical map (6.4) exhibits BXe as the stackification of
X, i.e., for any stack F, composition with Triv induces an equivalence of
categories

{E: sta(f%if ication_tors %35
Mapcatcart (BX., 3') — Mapcatcart Y #3 . Fg |
/Sch/s /Sch/s

If Xo is the groupoid space induced by an algebraic stack X and a smooth
surjective morphism Xg — X, then the canonical morphism BX, — X
induced by the tautological morphism Xe — X is an equivalence.

The key idea is the following:
L:local_isomorphism_for_stacks

Lemma 6.13. Let C be a site, and let ¢ : X — Y be a morphism of categories
fibered in groupoids over C such that for any U € C

1. oy : X(U) = Y(U) is fully faithful, and

2. oy s locally surjective in the sense that V¢ € Y(U), there is a cover
{U; — U}ier such that €|y, lies in the essential image of vy, : X(U;) —
Y(U;) for alli € 1.
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Then for any stack in groupoids Z over €, composition with ¢ gives an
equivalence of categories

Mapcat;%rt (H, Z) i) Mapcatj%rt (x, Z;)
Proof. Note that if py : X — C is the fiber functor, then

MapCat%” (xv Z‘) = F(:X:?p;cl(z’))v

Note also that py 1(2) is a stack for the inherited topology on X [S5, Tag
06NT]. It therefore suffices to regard X and Y as sites, and to show that
for any continuous morphism of sites ¢ : X — Y, i.e., a functor which
takes coverings to coverings and preserves fiber products, and any stack in
groupoids JF on Y, the canonical restriction functor

T(Y,F) - T(X, g0_1{(1-;};)g)c?al_section_equivaletlé:.%jsl

is an equivalence under the following hypotheses: 1) ¢ is fully faithful; 2)
every object admits a cover by something in the essential image of ¢; and 3)
if there is a morphism 7 — (&) for any £ € X and n € Y, then 7 lies in the
essential image of .

The key idea here is that showing that (6.6) is an equivalence can be
reduced by a formal argument, which we explain below, to showing that
objects in F(Y') are uniquely determined by the restriction of F to X C Y.
More precisely, it suffices to show that for any Y € Y, if we let (X/Y") denote
the comma category whose objects are morphisms (U — Y) with U € X,
then the canonical restriction functor

F(V) 2 Ty((Y/Y), F) — Ty((X/ ¥ eve-emivalepse)

is an equivalence of categories. As presheaves of sets over Y, (Y/Y) cor-
responds to the representable functor by, and (X/Y) corresponds to the
subfunctor & C by of maps which factor through an object of X. The hy-
potheses on X imply that 8 is a covering sieve for the topology on Y, so (6.7)
is an equivalence by Exercise 3.5.

Showing that (6.6) is an equivalence if (6.7) is an equivalence for allY € Y:

Fully faithfulness and Proposition 3.19 implies that we may replace
X with its image in Y, i.e., we may assume ¢ is the inclusion of a full
subcategory. Consider the comma category (X/Y), whose objects are triples
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(XeX,YeY, X —=Y), and let pry : (X/Y) — X denote the projection map
taking (X — Y) — X. We have a commutative diagram

(X/Y) (v/id) (Y/Y) pra y |

lpﬁ J(ph

Yx—% y

Consider the projection pry : (X/Y) — X. If we fix X € X, then the
comma category (X/pri) has an initial object ((id : X — X) € (X/Y),id :
X — X), which implies that (X/pr;) has contractible nerve. It follows from
Proposition 3.19 that the canonical map Iy (¢~ (F)) — T(xy) (pri (071 (9)))
is an equivalence. Applying this to (Y/Y) as well, it suffices to prove the
claim of the lemma for the stack in groupoids pri*(F) over (Y/Y) and the
full subcategory (X/Y) C (Y/Y).

Let § = pri 1 (F) over (Y/Y), so concretely §(X — Y) = F(X), and let
G’ denote the restriction of G to (X/Y). We need to show that the restriction
map ['y/y)(3) — T(xyy)(§’) is an equivalence of categories. For this it
suffices to show that the canonical map pra(G) — pro(9’) is an equivalence
of categories, and it suffices to verify this on the fiber over each Y € Y. Note
that the fiber pry ' (Y) C (Y/Y) is the category of morphisms (Y/ — Y).
Under projection onto the first object, we may regard this as a category
fibered in setoids over Y, in which case it is just the representable fibered
category hy. On the other hand pry ' (Y) N (X/Y), regarded as a fibered
category over Y, is the subfunctor S C by consisting of morphisms (U — Y))
with U C X. So the claim boils down to showing that (6.7) is an equivalence
of categories, as mentioned above. O

Proof of Proposition 6.12. Exercise 6.4 shows that BX, is a stack, and Ex-
ercise 6.5 shows that X, — BX, is a fully faithful morphism of fibered
categories. The claim then follows from Lemma 6.13. ]

Remark 6.14. As in the case of algebraic spaces, there is a strengthening
of Proposition 6.12. Consider a groupoid algebraic space X, for which the
structure maps s : X1 — Xg and t : X7 — X are fppf rather than smooth,
and the diagonal (s,t) : X1 — X x X is quasi-compact and separated. We
then modify Definition 6.9 to say that an X,e-torsor over 7' is an Xe-space P,
over T such that the structure map Py — T is fppf (rather than smooth and
surjective), and we let BX, denote the fibered category of X,-torsors over
Sch/g. Then BX, is the fppf stackification of the presheaf of groupoids X, -

67



the arguments above hold verbatim — and in fact it is an algebraic stack, i.e.,

it admits a smooth surjection from a scheme [LMB, Thm. 10.1].
EX:stack_vs_space

Exercise 6.6. Using the correspondence between stacks and smooth groupoid
spaces, show that an algebraic stack X whose diagonal X — X x X is repre-
sentable by schemes is an algebraic space if and only if the automorphism
group of any & € X is triwial, which is equivlent to X — Sch ;g being fibered
in setoids. In fact, the same conclusion holds without the condition on the
diagonal of X [S5, Tag 04SZ]. Use this to show that a morphism of algebraic
stacks f: X — Y is representable if and only if for any & € X, the induced
group homomorphism Aut(§) — Aut(f(£)) is injective.

6.4.1 Morphisms as descent data

Let (X1 == Xo) be a presentation for an algebraic stack X. One can use
Proposition 6.12 to show that for any stack Y, Mapcat;grth (Xe,Y) is canoni-
ch /g

cally equivalent to the category of descent data, i.e., cartesian sections, for Y
over the descent diagram

pro
— t
i LN
X1 Xt,x0,s X1 — X1 . Xo
- s

pri

which we interpret as a diagram (AEIJ?)OP — Schyg.

Concretely, this means that a morphism f : X — Y is determined by
a & € Y(Xp) and an isomorphism ¢ : s*(£) o t*(£) in Y(X;) that satisfies
a cocycle condition on X; xx, Xi. A 2-morphism (§,¢) — (¢,¢') is a

morphism 7 : £ — £ such that t*(n) o ¢ = ¢’ 0 s*(n) in Y(X7).

6.5 Morphisms of groupoids vs stacks

Let fo : Xo — Yo be a morphism of smooth groupoid spaces. Then the com-
position X, — Y, — BY, factors essentially uniquely through a morphism
BX, — BY,, which we call B(f,). In other words, applying the equivalence
(6.5) when F = BY,, allows us to define the dotted arrow in the following
diagram

hdap(lgj(.7Eﬁ?fyduced_morphéi%ﬁ
o

B _
- =
-
—
—
—

MapS—Gpd(X-» Yo) — Mapcat%ﬁfh/s (X, BY,)
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L:groupoid_vs_stack_morphisms
Lemma 6.15. For any pair of smooth groupoid algebraic spaces Xo,Ye, the
functor B in (6.8) is fully faithful, and its essential image consists of those
morphisms BXe — BY, for which there exists a morphism Xg — Yy making
the following diagram 2-commute

Xo---2Y,
BX,— BY,

Proof. 1t is equivalent to prove the same claim, but with the fibered category
X, in place of BX,. It is clear that for any morphism X, — BY, induced
by a functor X, — Y,, the composition Xg — X, — BY, admits a lift
fo : Xo — Yy. Conversely, given such a lift, the two compositions X; —
Xy — Yy — BY, induced by s,t : X; — Xg are canonically isomorphic, which
defines a morphism X; — Y;. Together, fo: Xg — Ygand f; : X1 — Y1
define a functor of groupoid spaces fo : Xo — Yo which induces the original
morphism X, — BY,.

To show fully faithfulness, consider two functors f,,ge : Xe — Y, re-
garded as morphisms of fibered categories. We must show that any 2-
isomorphism of the compositions with Triv : Y — BY, is induced by a
unique 2-isomorphism of 7 : fo = ge, Which is equivalent to the data of a
natural transformation (6.2). The objects of X(7') is the set of points Xo(7'),
so a natural isomorphism Triv o fq = Triv o ge is just a function mapping
x € Xo(T) to the set of isomorphisms between the Y,-torsors over T classified
by fo(z) € Yo(T) and go(z) € Yo(T') respectively. But by Exercise 6.5, two
T-points of Y and an isomorphism between their image in BY, is equivalent
to the data of a T-point of Y7 whose source is fo(z) and whose target is go(z).
This equivalence is compatible with pullback along a morphism 77 — T. To
complete the proof, one must show that the resulting map of algebraic spaces
Xo — Y7 over Yy x Yj is actually a natural transformation. We leave this to
the reader. O

E:induced_principal_bundle
Example 6.16. Let G and H be smooth group schemes, and let G4 and H,
denote the corresponding groupoid spaces, where Xy = pt. In this case
a morphism of groupoid spaces fo : Go¢ — H, is just a map f; : G — H
which is a homomorphism of group schemes. We can describe the induced
morphism B(f,) : BG — BH more explicitly:
If P — T is a principal G-bundle, then P x H admits a left G action by
the formula g - (p, h) = (pg~!, fi(g)h). This G action is free, because the G
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action on P is free. It follows from Example 6.2 that P’ = (P x H)/G is an
algebraic space over T. Choose an étale cover T — T for which there exists
a G-equivariant isomorphism Pr = G relative to T’. One can check that
this induces an H-equivariant isomorphism P), = Hps over T”, which shows
that P’ — T was a principal H-bundle. This functor from G-bundles over T'
to H-bundles over T is the induced morphism B(f,) : BG — BH.
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Lecture 7

Quotient stacks and
quasi-coherent sheaves: I

References: [LMB], [O1]
Date: 3/5/2020
Exercises: 7

7.1 Quotient stacks

We have already discussed the general notion of a group-scheme over S,
which we defined to be a group object in Sch/g, as well as the notion a
(left) action of G on an algebraic space X over S. If G is smooth over S,
then from this data we can define the quotient stack X/G. By definition
X/G is the fibered category whose fiber over T' € Sch/g is the category
of pairs (P,u), where P — T is a principal G-bundle, and v : P — X
is a G-equivariant map, i.e., u(p-g) = g~ ! - u(p) on T'-points for any
T' € Sch y7- Note that by convention G acts on P on the right and on
X on the left, so this formula is compatible with the multiplication law
u(p-gh) =u((p-g)-h)=h""-ulp-g)=h""g7 -ulp) = (gh)~" -u(p). A
map in the category X/G is a map of principal G-bundles which commutes
with the map to X.

Exercise 7.1. Given a principal G-bundle P — T and a G-space X, we can
define P x% X := (P x X)/G, where G acts by g- (p,x) = (pg~*, gz). By ??
this is an algebraic space. Show that an equivariant map P — X is the same
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thing as a section of the projection P x¢ X — T. This gives an alternative
description of X/G.

Exercise 7.2. There is a canonical morphism X/G — BG which forgets
the equivariant map u. There is also a canonical morphism X — X /G which
maps a T-point ¢ : T — X to the trivial G-bundle G — T along with the
unique equivariant map u : Gp — X whose restriction to {1} x T is ¢, i.e.,
u(g,t) = g- &(t). Show that if pt — BG classifies the trivial G-bundle, then
the diagram of stacks

X — X/G

| ]

pt —— BG
s cartesian, i.e., a fiber product square.

Exercise 7.3. Show that for any morphism T — X /G, classifying a principal
G-bundle P and a map u : P — X, the fiber product T x x,qg X = P over
T, and under this isomorphism u corresponds to projection to the second
factor. Show that X /G is an algebraic stack, and X — X /G is representable,
smooth, and surjective.

The morphism X — X/G classifies the trivial G-bundle G x X along
with the map u : G x X — X which maps (g,z) — ¢ -z. The previous
exercise then shows that X x yx/q X = G x X, and furthermore that X/G is
the stack associated to the groupoid

Gx X=X

where on T-points for any T € Sch/g the source map is the forgetful map
(g,x) — x and the target map is the composition (g, x) — gx. The composi-

tion of the arrow (g, z) with (h, gx) is the arrow (hg, x).
EX:quotients

Exercise 7.4. Show that X/G — BG is representable, and in fact any
representable morphism X — BG is of the form X/G for the algebraic space
X := X xgg pt. In fact, show that for any two representable morphisms
X,Y — BG, any morphism f: X — Y of fibered categories over BG has no
non-trivial 2-automorphisms, and that the category of representable stacks in
groupoids over BG is equivalent to the category G -Spc.

Remark 7.1. We make the following definition: a G-action on a stack X is
a morphism of stacks Y — BG along with an isomorphism X =2 pt xpg Y.
Exercise 7.4 shows that this is consistent with our previous definition of an
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action of G on an algebraic space X. One could try to define an action more
concretely as a morphism of stacks G x X — X satisfying associativity and
identity conditions. However, the associativity and identity conditions will
only hold up to 2-isomorphism, and the coherence conditions between these
2-isomorphisms becomes complicated.

Consider two group schemes G and H and a homomorphism between
them ¢ : G — H. Given algebraic spaces X € G-Spc and Y € H -Spc, we
say that a map of spaces f : X = Y is equivariant with respect to ¢ if it is
equivariant when we regard Y as G-space via the homomorphism ¢. On T
points for T' € Sch g, this means f(g-z) = ¢(g) - f(x). ¢ and f together
induce a morphism of groupoid spaces

(GxX=X)>(HxY=3Y),

where (g,z) — (6(g), f(x)). This induces a morphism of algebraic stacks
X/G — Y/G by the universal property of the stackification (see (6.8)).

We can describe the induced morphism X/G — Y/H more explicitly as
the map on T-points for any T" € Sch/g

G-bundle P - T n H-bundle P x¢ H - T
andu: P —> X and v : PxC H =Y ’

where Px© H is the induced H-bundle of Example 6.16, and v’ : Px“H —Y
is the map induced on T-points by the map (p, h) — h~ - f(u(p)), which is
G(T)-invariant because (p-g~!, #(g)h) maps to

((g)h) " flulpg™) =h~ o(g™h) - flg-ulp)) =h™" flulp)).

7.1.1 Inertia and stabilizers ) )
D:inertia

Definition 7.2. Let X be an algebraic stack. The inertia stack Iy is the
fiber product X Xyyyx X, where both maps are the diagonal X — X x X.
Regarded as a stack over X by the left projection Iy — X is representable
by group algebraic spaces over X. By definition, the fiber of I (T") — X(T)
over a point £ € X(T') is the group of automorphisms of & in X(7T').

The inertia stack plays an important role. For instance, Exercise 6.6
shows that an algebraic stack is an algebraic space if and only if Iy — X is
an isomorphism. Note also that for any T-point £ : T" — X,

Auty(§) :=T x Ix
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is a group algebraic space over T'. In practice, we will be mostly interested in
stacks with affine diagonal, so Auty(£) will be an affine group scheme over 7T'.
This can be very useful: if you have an object which you know corresponds
to a k-point in an algebraic stack, then the automorphism group of that
object is canonically the group of k points of some group scheme over k.

Remark 7.3. There is also a relative version of Definition 7.2 associated to
a morphism f : X — Y. By definition Iy := X Xxx,x xX, where the fiber
product is with respect to the diagonal morphism Ay : X — X xy X. Again
Iy — X is a group algebraic space over X, and it is representable and affine
over X if Ay is affine. The formation of Iy is compatible with base change
along a map Y — Y, and it follows that f is representable by algebraic spaces
if and only if Iy — X is an isomorphism.

This construction has a more concrete incarnation for quotient stacks.
For any f : T — X, we define stabilizer of f to be the algebraic space over
T,

Stab(;(f) =T XTxX (T X G),

where the map T" — T x X is (idp, f) and the map T'x G — T x X is
(t,g) — (t,gf(t)). Stabg(f) is a group algebraic space over T', and it is not
hard to see from the functor of points that Stabg(f) is a sub-group-scheme
of the constant group scheme G x T over T.

StabG(f) E— IX/G

|

T—— 5 X/G

is cartesian, where ' — X /G is the composition of f with the canonical map
X — X/G.

Exercise 7.5. Compute describe the stabilizer of the canonical morphism
p: X — X/G as a sub-group-scheme of X x G over X. If we let G act on
X x G by the given action on X and the adjoint action on G, show that
Stabg(p) = X x G is G-equivariant. Use this and smooth descent to show
that Ix,q = Stabg(p)/G over X/G.

EX:representable_maps_quotients
Exercise 7.6. Use Ezercise 6.6 to show that if X € G-Spc and Y € H -Spc,
and f: X — Y is a morphism of spaces which is equivariant with respect
to a group homomorphism ¢ : G — H, then the induced map of stacks
X/G — Y/H is representable if and only if for any ¢ : T — X, the induced
homomorphism Stabg(p) — Staby (f o @) is injective.
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It follows from Exercise 7.6 that if ¢ : G — H is an injective homomor-
phism, then any morphism f : X — Y which is equivariant with respect to
¢ is representable. This is clearest when ¢ =id : G — G. In this case we al-
ready saw in Exercise 7.4 that the category of stacks which are representable
over BG is equivalent to the category of G-spaces. The fiber of X/G — Y/G
over a T-point 7' — Y/G that corresponds to principal G-bundle P and a
G-equivariant morphism u : P — Y is the fiber product P xy X.

In the general case, where G C H is a subgroup, we can get an explicit
description as follows: consider the space H x“ X, where G(T) acts on
T-points of H x X by g- (h,z) = (hg™!,g-z). H x% X is an algebraic space
because the G-action is free (see Example 6.2). The morphism f: X — Y,
which is equivariant with respect to ¢ : G — H, factors as the ¢-equivariant
morphism X — H x& X taking z — (1,z) followed by the H-equivariant
morphism H x& X — Y mapping (h,z) — h- f(x).

L:schur
Lemma 7.4 (Schur’s lemma). For any G-space X, the ¢-equivariant mor-
phism X — H x% X induces an isomorphism of stacks X/G — (H x% X)/H.

This shows that for the ¢-equivariant morphism f : X — Y, the induced
morphism of stacks factors as an equivalence followed by an H-equivariant
map X/G = H x% X/H — Y/H.

Schur’s lemma has many applications. Generally, it implies that G-
equivariant geometric structures on X are equivalent to H-equivariant ge-
ometric structures on H x¢ X. For instance, it implies that the category
of G-equivariant quasi-coherent sheaves on X is equivalent to the category
of H-equivariant quasi-coherent sheaves on H x& X (see [?E:schur_qcoh]
below).

7.2 Quasi-coherent sheaves

D:quasi-coherent_sheaves
Definition 7.5. Let X be an algebraic stack over Sch/g. We define the
category of quasi-coherent sheaves on X to be the category

QCoh(X) = T'§y (X, QCoh,g) = Mapcgzart (X, QCohy ),

where we are regarding X — Sch/g as a diagram on the left side. (These
categories are equivalent because every morphism in X is cartesian.) In other
words, a quasi-coherent sheaf F is an assignment of a quasi-coherent sheaf
Ee € QCoh(T') to any € X lying over T' € Sch /g in a way that is compatible
with pullbacks for any morphism & — £ in X.
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This is a “large” definition of what a quasi-coherent sheaf is, but if X4 is
a groupoid algebraic space presenting X, then we can regard X, as a diagram
(6.1) in schemes that consists of just three schemes. Then Proposition 6.12
implies that the restriction functor

Fggf/s (X, QCOh/S) - FSCh/s (X, QCOh/S)

is an equivalence of categories. In particular, one could alternatively define
QCoh(X) to be QCoh(X,) for some groupoid presentation of X, and then
show that any morita morphism of groupoids X, — Y, induces an equivalence
of categories QCoh(Y,) — QCoh(X,).

Exercise 7.7. Show that the assignment Xo — QCoh(X,) is Morita invari-
ant directly, using the method of proof of Lemma 3.24. In other words, show
that given a Morita morphism of groupoid spaces Xo — Yo, the pullback
functor QCoh(Y,) — QCoh(X,) is an equivalence of catgories.

Ezample 7.6. The category QCoh(G x X = X) is the correct notion of a
