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Abstract

This thesis is concerned with Madsen-Tillmann-Weiss spectra and their ho-
motopy groups. Since they are Thom spectra, their homotopy groups admit
interpretations as certain bordism groups. For an arbitrary tangential structure
there is an associated cofibre sequence of spectra, and after interpretting the in-
duced maps on homotopy groups some explicit computations of these groups
are made.

In the particular case where the tangential structure is Orientation, mani-
folds representing elements of these bordism groups are oriented and so their
signatures are defined. This leads to a Signature Problem, which asks “what are
the possible signatures of elements of these groups?” This problem is solved
for certain small degrees.

This thesis also gathers basic results about the Euler class in the Appendix
and proves a result which uses the Euler class to determine whether two stably
isomorphic vector bundles are isomorphic or not.
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Introduction

The Madsen-Tillmann-Weiss spectrum MT θd associated to a tangential struc-
ture θd : B → BO(d) was introduced in [7] in order to provide an infinite loop
space model for the classifying space of the cobordism category ofθd-manifolds,
Cθd

. Namely they provided a weak homotopy equivalence

BCθd
→ Ω∞−1MT θd

Previously, in the special case of Orientation BSO(2) → BO(2), Madsen and
Weiss [21] had used the spectrum MTSO(2) (under a different name) to prove
Mumford’s Conjecture by appealing to a result of Tillmann [35] which related
Segal’s conformal cobordism category with the classifying space of the stable
mapping class group (for a thorough discussion, see Tillmann’s survey arti-
cle [36]). In higher dimensions, Galatius and Randal-Williams [8] generalized
Mumford’s Conjecture by proving a homological stability result for diffeomor-
phism groups of high-dimensional manifolds by using MT θ for a tangential
structure θwhich depends on the manifold. Although these results are of great
importance and are a motivation for studying Madsen-Tillmann-Weiss spectra
in their own right, this thesis will not discuss them further.

Much of this thesis is concerned primarily with the homotopy groups of the
spectrum MTSO(d). They can be described as bordism groups of manifolds
with special structure (see Section 1.2). In particular it is concerened with con-
structing concrete manifold representatives for elements of these groups and
in determining these groups in some cases.

For any (k, d) ∈ Z ×N there is a natural signature homomorphism which
factors through the usual signature defined on the oriented bordism group:

πkMTSO(d) Z

Ωk+d

σk,d

σ

If k + d is divisible by 4 then this homomorphism is potentially non-zero, and
can be used to detect non-zero, torsion-free elements ofπkMTSO(d). Moreover,
we can ask if representing an element of πkMTSO(d) induces some restriction
on the signatue.

The Signature Problem. What is the image of σk,d?

There are some trivial cases. For one, if k + d is not divisible by 4 then any
manifold of that dimension has signature 0, by definition. Secondly if k+d = 0
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then a compact, oriented (k + d)-manifold is a finite set of signed points, and
the signature is the sum of these signs; it follows that σ−d,d is surjective for
each d. Some results are obtained for certain small values of d and k:

Theorem 2.0.10+2.0.11. Suppose (k, d) ∈ Z×N with k+ d positive and divisible
by 4. Then:

If d = 0 or 1, then σk,d = 0.

If k 6 0, then Im(σk,d) = Z.

If k = 1, then Im(σk,d) = 2Z.

If k = 2, then Im(σk,d) = 4Z.

If k = 3 and k+ d > 8, then Im(σk,d) = 8Z.

If k = 4 and k+ d > 8, then Im(σk,d) = 16Z.

If k = 5 and k + d = 12, then Im(σk,d) ⊃ 32Z. It is not known whether 16 is
realizable or not in this case.

If k = 5 or 6 and k+ d > 16, then Im(σk,d) = 16Z.

In all cases above, except for d ∈ {0, 1} and possibly (k, d) = (5, 7), the image of
σk,d is as large as possible.

By “as large as possible” what is meant is that Corollary 2.1.13 provides a
lower bound for the index of Im(σk,d) inZ in terms of k, and in these cases this
lower bound is attained.

Parts of this theorem are proven by elementary means in Section 2.2, with
basic examples constructed for (k, d) = (1, 3) and (2, 2), and other examples
constructed using an external product structure on the groups πkMTSO(d) as
k and d vary (see Definition 1.2.9). For the final case where k ∈ {5, 6} and
k+d > 16, a non-trivial result of Bökstedt, Dupont, and Svane [4, Theorem 1.2]
is used to construct an element of π6MTSO(10) with signature 16 in Section 2.4.

Computing πkMTSO(d) for arbitrary k and d is highly non-trivial: MTSO(1)

has the homotopy type of S−1 and so is exactly as complicated as the stable
homotopy groups of spheres. For d = 2 Rognes [27, Theorem 2.13] computed
the 2-primary parts of πkMTSO(2) for k 6 20, but complete determination of
these groups is still mostly unknown. However, the above theorem provides
some torsion-free elements of πkMTSO(d) for low values of k, and in Sec-
tion 3.3 of this thesis the groups πkMTSO(2) are fully computed for k 6 4, and
πkMTSO(3) is obtained for k 6 1.

Theorem 3.0.8. The values of πkMTSO(2) for k 6 4 are given by

k 6 −3 −2 −1 0 1 2 3 4

πkMTSO(2) 0 Z 0 Z 0 Z Z/24 Z

The values of πkMTSO(3) for k 6 1 are

k 6 −4 −3 −2 −1 0 1

πkMTSO(3) 0 Z 0 0 0 Z

Moreover, π1MTSO(3) is generated by a class with signature 2 and π2MTSO(2)

is generated by a class with signature 4.
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The values of πkMTSO(2) for k 6 3 had been known (cf. [20, Corollary 4.4]),
but the details had not been published. The values for k < 0 and k = 0 follow
from general principles (Corollary 1.2.5 and Proposition 1.2.7, respectively),
so the interesting computations are when k > 1. In order to perform these
computations, we derive in Section 3.1 a cofibre sequence of spectra of the form

Σ−1MT θd−1 → MT θd → Σ∞B(d)+ → MT θd−1

for a fibration θd : B(d) → BO(d) and its restriction θd−1 to BO(d − 1). This
cofibre sequence was given in [7] when θd is the identity BO(d) → BO(d) or
the universal covering BSO(d) → BO(d). Full details are given in Section 3.1
because they don’t appear in the literature, and moreover the explicit descrip-
tions given are used in Section 3.2 to provide bordism-level interpretations of
the induced maps on homotopy groups. The resulting descriptions of these
homomorphisms are then used to perform the computations of Section 3.3.

Finally, the appendix provides a result about oriented vector bundles which
was not found in the literature and which is needed for the above proofs.
Namely:

Theorem A2. Let n be even, let X be CW complex of dimension n, and let V0, V1 be
two oriented rank n vector bundles over X. If V0 is stably isomorphic to V1 and they
have the same Euler class, then V0 � V1.

The appendix presents standard properties of the Euler class for comple-
tion, and proves a basic lemma about homotopy fibres (Lemma A.2.1). These
ingredients are used in the proof of Theorem A2, and are also used to prove
the more standard fact Theorem A1, which asserts that the Euler class is the
principle obstruction to finding a non-zero section of an oriented vector bundle.
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Chapter 1

Preliminaries

1.1 Fundamental Notions

This section does not present anything new, but gathers some necessary results
and sets conventions. As such, the material does not attempt to follow a
coherent narrative.

1.1.1 Homotopy

A decent source for the material in the subsection is Hatcher [11].
We will say that X is an n-connected space if πi(X) = 0 for all i 6 n. We

will say that f is an n-connected map if πi(f) is an isomorphism for all i < n
and a surjection for i = n; f is n-coconnected if πn(f) is an injection and πi(f)
is an isomorphism for all i > n.

Let f : (X, x0) → (Y, y0) be a continuous function between pointed spaces.
The homotopy fibre of f is defined as

hofib(f) := {(x, γ) ∈ X× YI | γ(0) = f(x) and γ(1) = y0}

This space is pointed by (x0, y0) where y0 denotes the constant path at y0.
Let f : X → Y be a continuous function between path-connected, pointed

spaces. A Moore-Postnikov tower for f (see [11, Section 4.3]) is a commutative
diagram of the form

...

Z3

Z2

X Z1 Y

z3

z2

g3

z1

g2

f1

f2

f3

g1

so that for each n > 1

1
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1. gn ◦ fn ∼ f,

2. fn : X→ Zn is n-connected,

3. gn : Zn → Y is n-coconnected,

4. zn : Zn+1 → Zn is a fibration, with fibre K(πn hofib(f), n).

The composition gn ◦ fn : X → Zn → Y will be called the n-th Moore-
Postnikov stage or decomposition of f. Then a map between connected CW
complexes has a Moore-Postnikov tower [11, Theorem 4.71] , which is unique
up to homotopy equivalence; moreover the fibrations zn can be chosen as
principal fibrations if π1(X) acts trivially on πn(Cyl(f), X) for all n.

A map f : Y → X is an n-connected cover (cf [11, Example 4.20]) if Y is
n-connected and πi(f) is an isomorphism for all i > n, i.e. f is n-coconnected
since 0 certainly injects into πnX. In other words, an n-connected cover is the
n-th Moore-Postnikov stage of a map ∗ → X. If X is a connected CW complex
then an n-connected cover exists and is unique up to homotopy, and we will
denote any model by X〈n〉.

1.1.2 Bundles

Relevant sources for bundle theory are Steenrod [31] and Husemoller [13].
If E→ X is a fibre bundle, a typical element will be denoted by (x; e) where

x ∈ X and e is in the fibre over x. The information to the left of the semi-colon
is redundant, but it helps conceptually.

The trivial vector bundle X × Rn will usually be denoted by εn, without
reference to the base-space.

If E → X is a bundle and f : Y → X a continuous map, then the canonical
map from the pull-back to V will be denoted f̃ : f∗V → V .

Vector bundles E and F of the same rank are said to be stably isomorphic if
there is a k > 0 and an isomorphism ψ : E ⊕ εk � F ⊕ εk. ψ is called a stable
isomorphism, and the relation will be denoted by E �s F. If E and F are not
of the same rank, we can write E �s F ⊕ ε

r where r = rank(E) − rank(F) ∈ Z;
if r < 0 what is really meant is that E ⊕ ε−r �s F, but for some purposes it is
convenient to have a consistent notation.

If E is a vector bundle, the Thom space Th(E) can be described by one-
point compactifying each fibre and then identifying all of the compactification
points; if the base space is already compact, this is the same as the one-point
compactification of the total space. If E has a metric, this is homeomorphic to
D(E)/S(E), the disk-bundle of E modulo the sphere-bundle. If ϕ : E → F is a
bundle map, it induces a map Th(ϕ) : Th(E) → Th(F) between Thom spaces.

Lemma 1.1.1. If E→ X is a vector bundle of rank r > 2 then π1 Th(E) = 0.

Proof. Let x0 ∈ X and s0 ∈ S(E) be basepoints so that p : S(E) → X is a pointed
map. Expressing the Thom space as a pushout results in a pushout of funda-
mental groups by the Seifert-van Kampen theorem:

S(E) C(S(E)) π1S(E) 0

D(E) Th(E) π1X π1 Th(E)
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Then π1 Th(E) = 0 iff π1S(E) → π1X is surjective. But given a loop γ : I → X

at x0, the path lifting property gives a lift γ̃ : I → S(E) such that γ̃(0) = s0 and
γ̃(1) ∈ p−1(x0). But so long as r > 2 the fibre over x0 will be path connected,
establishing surjectivity. �

Lemma 1.1.2. Let V → Y be a vector bundle of rank r > 2 with Y connected and let
f : X→ Y be anm-connected continuous function. Then the map

Th(f̃) : Th(f∗V) → Th(V)

is (r+m)-connected.

In the particular case that V is trivial we see that Σrf : ΣrX+ → ΣrY+ is
(r+m)-connected for anym-connected map f : X→ Y.

Proof. Since f is m-connected, f∗ : Hk(X; f∗A) → Hk(Y;A) is an isomorphism
for any coefficient system A on Y and k < m, and is surjective for k = m. The
bundle V → Y induces an orientation character ω : π1Y → Z/2 and coefficient
system Zω; the pullback f∗V has orientation character f∗ω and coefficient
systemZf

∗ω
� f∗(Zω) for X. Then using the Thom isomorphism with twisted

coefficients (e.g. [19, Theorem 3.31]) there is the commutative diagram:

H̃k(Th(f∗V);Z) H̃k(Th(V);Z)

Hk−r(X; f∗Zω) Hk−r(Y;Zω)

Th(f̃)∗

� �

f∗

The lower map is an isomorphism for all k < r+m and surjective for k = r+m,
and so the same holds for the upper map. If r > 2 then the Thom spaces are
simply-connected and therefore Th(f̃) is (r + m)-connected by [33, Theorem
10.28]. �

We will also use the following fact about normal bundles:

Lemma 1.1.3 ( [16, IV.1.4]). Let f : X → Y be a smooth map of manifolds, and Z a
submanifold of Y such that f t Z; letM = f−1(Z). Then

νXM � (f∗νYZ)|M

In particular, dim(M) = dim(X) + dim(Z) − dim(Y) assuming this number is
non-negative, andM is empty otherwise.

In the special case that X is the total space of a vector bundle ξ : X → Y,
and Z is the zero-section, then νXM � f∗ξ|M and it follows that dim(M) =

dim(X) − rank(ξ).

1.1.3 Stiefel and Grassmann Manifolds

A lot of our constructions will involve Grassmannians so it pays to have
some familiarity. For a reference on Stiefel and Grassmanian manifolds, see
Husemoller [13, Chapter 7].
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In order to prove Lemma 3.1.6 we will need to know the connectivities of
two families of maps; Corollary 1.1.6 and Lemma 1.1.7 provide these connec-
tivities, and are presented here to help the readability of Section 3.1.

Let sh+ : Rn → Rn+1 be the map sending the vector
∑
i aiei to

∑
i aiei+1; on

the orthogonal complement of e1 this map has an inverse sh− : 〈e2, . . . , en+1〉 →
Rn.

For any n > d > 0 denote by Std(R
n) the Stiefel manifold of orthonormal

d-frames in Rn, pointed by (e1, . . . , ed) and topologized as the homogenous
space O(n)/O(n− d) ′, where O(n− d) ′ is the subgroup of matrices which are
concentrated in the lower right (n−d)×(n−d)block. Note that Std(R

d) = O(d)

and St1(R
n) = Sn−1.

There are two “stabilization” maps we want to have: one which increases
the ambient dimension, and one which increases ambient dimension as well as
the dimension of the planes. If we demand that both the maps be pointed, the
natural choice for

an : Std(R
n) → Std(R

n+1)

sends a d-frame in Rn to itself, as a subset of Rn+1. The other stabilization
map is trickier to define: one does not simply concatenate en+1 to the end of
any d-frame in Rn because this map is not pointed. Instead define the pointed
map

sn : Std(R
n) → Std+1(R

n+1)

by sending (v1, . . . , vd) to (e1, sh+(v1), . . . , sh+(vd)).
Aside: if we had chosen to use (en−d+1, . . . , en) as the basepoint of Std(R

n)

then we could have defined sn by concatenating with en+1, but we still would
have had to use sh+ in order to make an pointed. A convention must be chosen
and we chose the above one.

Lemma 1.1.4. sn is (n− 1)-connected

Proof. The map Std+1(R
n+1) → St1(R

n+1) sending (v1, . . . , vd+1) to v1 is a fibre
bundle (follows from [13, Theorem 7.3.8]). The fibre over the basepoint e1 is the
set of all (e1, v2, . . . , vd+1) where (v2, . . . , vd+1) is a d-frame in 〈e2, . . . , ed+1〉.
Thus the map sh− identifies the fibre and its inclusion map with Std(R

n) and
sn. The connectivity follows from the long exact sequence for this fibre bundle
and the fact that St1(R

n+1) � Sn. �

In particular the map O(d) → O(d+ 1) sending a matrix A to

(
1 0

0 A

)
is

(d− 1)-connected.
The manifold Std(R

n) has a free O(d) action: if a d-frame is considered as
an n× dmatrix, then d× dmatrices can multiply from the right. The quotient
manifold is Grd(R

n), the Grassmannian of d-dimensional subspaces of Rn.
That is, the map

〈−〉 : Std(R
n) → Grd(R

n)

sending a d-frame to the subspace it spans is a principal O(d) bundle, and
Grd(R

n) is identified with O(n)/
(
O(d)×O(n− d)

)
. Define

ψn : Grd(R
n) → Grd+1(R

n+1)

by ψn(P) = 〈e1〉 ⊕ sh+(P).



1.1. FUNDAMENTAL NOTIONS 5

Lemma 1.1.5. ψn is (d− 1)-connected.

Proof. There is a map of fibre-bundles

O(d) Std(R
n) Grd(R

n)

O(d+ 1) Std+1(R
n+1) Grd+1(R

n+1)

sn ψn

The mapO(d) → O(d+1) is (d−1)-connected and sn is (n−1) connected, and
n > d so in particular sn is also (d−1) connected. Then the long exact sequences
of these bundles and the Five-lemma yield the desired connectivity. �

There is an inclusion map ιn : Grd(R
n) → Grd(R

n+1) induced by the stan-
dard inclusion Rn ⊂ Rn+1. The colimit over these inclusion maps is naturally
homeomorphic to Grd(R

∞), the Grassmannian of d-dimensional subspaces of⊕∞
i=0R.

Corollary 1.1.6. ιn is (n − d − 1)-connected. In particular the map into the colimit
Grd(R

n) → Grd(R
∞) is (n− d− 1)-connected.

Proof. The map⊥ : Grd(R
n) → Grn−d(R

n), sending ad-plane to its orthogonal
complement, is a diffeomorphism. Then the map ιn is equivalent to

−⊕ 〈en+1〉 : Grn−d(R
n) → Grn−d+1(R

n+1)

which is shown to be (n−d−1)-connected by using the argument in Lemma 1.1.5
with different basepoints. �

Grd(R
∞) is a model for BO(d), with tautological vector bundle γd; let

Ud,n be the restriction of γd to Grd(R
n). Since n is finite, Ud,n has a finite-

dimensional orthogonal complement U⊥
d,n, an (n − d)-plane bundle. It is

immediate that ι∗nUd,n+1 is canonically isomorphic to Ud,n and that the map

φn : U
⊥
d,n ⊕ ε � ι∗nU

⊥
d,n+1

defined by φn(P;w, t) = (P;w+ ten+1) is also an isomorphism.
The pull back ψ∗

nU
⊥
d+1,n+1 is the set of (P, (P ′;w)) ∈ Grd(R

n) × U⊥
d+1,n+1

such that P ′ = 〈e1〉 ⊕ sh+(P). Since w ⊥ P ′, w is in the domain of sh− and
sh−(w) ⊥ P. Hence there is an isomorphism

ψ∗
nU

⊥
d+1,n+1 � U

⊥
d,n

sending (P, (P ′;w)) to (P; sh−(w)).

Lemma 1.1.7. The map fn : Grd(R
n) → S(Ud+1,n+1) sending P to (ψn(P); e1) is

(n− 1)-connected.

Proof. The sphere bundle can be described using the Borel construction as
follows:

S(Ud+1,n+1) � Std+1(R
n+1)×O(d+1) S

d

� O(n+ 1)/O(n− d) ′ ×O(d+1) O(d+ 1)/O(d)

� O(n+ 1)/(O(d)×O(n− d)) ′
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Then the map of the lemma can be identified with

O(n)

O(d)×O(n− d)
→

O(n+ 1)

O(d)×O(n− d)

so there is a fibre bundle

Grd(R
n) → S(Ud+1,n+1) → O(n+ 1)/O(n) � Sn

Now apply the long exact sequence of homotopy groups. �

1.1.4 The Vertical Tangent Bundle of a Vector Bundle

This is another result which will be used in exactly one place (Lemma 3.2.4) but
whose proof would further clutter the section where it appears. It is also sort
of interesting on its own.

Let π : E → X be a fibre bundle where the fibres are modelled by a smooth
manifold M and the structure group is Diff(M). Let P denote the underlying
principal Diff(M) bundle.

Definition 1.1.8. Define the vertical tangent bundle of E as

TvE := P ×Diff(M) TM

If X is a smooth manifold and π is differentiable, then TvE � ker Tπ.
Consider the specific case where the model fibre is the smooth manifold

Rn and the structure group is O(n), i.e. E is a vector bundle with metric. Let
p : S(E) → X denote the projection of the sphere bundle, an Sn−1 bundle with
structure groupO(n). Then the bundle p∗E admits a canonical non-zero section
σ : S(E) → p∗E defined by

σ(x;u) = (x, u;u)

and which induces a decomposition p∗E = 〈σ〉⊥ ⊕ 〈σ〉.

Proposition 1.1.9. If E → X is a vector bundle with metric and p : S(E) → X is
the sphere bundle, then there is a bundle-isometry TvS(E) � 〈σ〉⊥, and hence an
isomorphism

p∗E � TvS(E)⊕ ε

of bundles over S(E).

The proof goes as follows: for (x; v) ∈ E there is a canonical identification
i : T(x,v)Ex � Ex since Ex is a vector space, and hence an embedding

I :
⋃

x

Ex × Ex �
⋃

x

T(Ex) → TE

Say that a smooth path γ : R → E is vertical if γ̇0 ∈ Im I; it follows that TvE is
isomorphic to the bundle of equivalence classes of vertical paths in TE.
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If we have a vertical path γ which is based at (x; v) then γ̇0 ∈ Ex, hence we
can define an evaluation map

ev : TvE→π∗E

[γ] →(γ0; γ̇0)

This map is a bundle isomorphism, and if the vector bundle E is given a metric
it induces a metric on TvE so that ev is an isometry.

If we restrict the picture to S(E) we get an isomorphism

ev |S(E) : (TvE)|S(E) � p
∗E

TvS(E) embeds into (TvE)|S(E) as a subbundle; denote by ν its orthogonal com-
plement. The bundle p∗E has a canonical section σ(x;u) = (x, u;u) as above,
with image in S(p∗E).

Lemma 1.1.10. ev |S(E)(ν) = 〈σ〉

Proof. Let (x;u) ∈ S(E), and define γu : R → E by γu(t) = (1 + t) · u. Then
γu is a vertical path since it is entirely contained in Ex, and γ̇u(0) ⊥ S(Ex) so
[γu] ∈ ν. Since ν is one-dimensional we have ν|(x;u) = 〈[γu]〉. But

ev([γu]) = (γu(0); γ̇u(0)) = (x, u;u) = σ(x;u)

�

Then since ev is an isometry, it restricts to an isomorphism

ev |S(E) : TvS(E) � 〈σ〉⊥

proving the proposition.

1.1.5 The Signature

In this section we recall the definition of the signature of a closed, oriented
manifold, and state Hirzebruch’s Signature Formula.

LetM be a closed, oriented manifold of dimension n = 4k. Since it is closed
and oriented, it has a fundamental class [M] ∈ Hn(M;Z). Recall its interestion
form

I(−,−): H2k(M;Z)×H2k(M;Z) → Z

is given by I(α,β) = 〈α ∪ β, [M]〉. Then I is a symetric, unimodular bilinear
form, and as such can be diagonalized overQ: let b+ be the number of positive
entries on the diagonal, and b− the number of nagative entries. The numbers
b+ and b− do not depend on the diagonalization.

Definition 1.1.11. LetM be a closed, oriented manifold of dimension n.
If n ∈ 4N then the signature ofM, denoted σ(M), is defined to be b+ − b−.
Otherwise, σ(M) is defined to be 0.

Hirzebruch’s Signature formula (see for example [24, 19.4]) relates the sig-
nature of a manifold to its Pontryagin classes. Very roughly it can be stated as
follows:
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Theorem 1.1.12 (Hirzebruch). Let x1, x2, x3, . . . be a set of variables where xi has
degree i. Then for each k > 0 there is a rational polynomial Lk ∈ Q[x1, . . . , xk] which
is homogeneous of degree k so that for any closed, smooth, oriented manifoldM4k

〈Lk
(
p1(TM), . . . , pk(TM)

)
, [M]〉 = σ(M)

The first two polynomials are given by

L1(x1) =
1

3
x1

L2(x1, x2) =
1

45
(7x2 − x

2
1)

An immediate corollary of this theorem is that if M is stably parallelizable
then σ(M) = 0. We will not need the explicit formulas for any other Lk.

1.2 The Spectrum MT θd

This section recalls the definition of the central objects of interest for this thesis:
namely for each integerd > 0 and any “tangential structure”θd : B(d) → BO(d)

there is an associated Madsen-Tillmann-Weiss spectrum MT θd.
The homotopy groups of these spectra admit interpretations as bordism

groups (see Proposition 1.2.3) with objects of the form (M,E,ϕ), where M is a
closed manifold, E is a bundle over M with “θd-structure”, and ϕ is a stable
isomorphism between TM and E; this will be made precise in Subsection 1.2.2.
This bordism interpretation is a starting point for the Signature Problem of
Chapter 2, and is fundamental to the computations of Chapter 3.

1.2.1 Definition of Madsen-Tillmann-Weiss Spectra

The notion of stable vector bundle is covered in [29, IV.5.12], where they are
refered to as “stable F-objects”. For our purposes, a stable vector bundle V

will mean a sequence of spaces

Xk Xk+1 Xk+2 . . .
ik ik+1 ik+2

for some k ∈ Z, with a set of vector bundles {pn : Vn → Xn}n>k, and for each
n an isomorphism φn : Vn ⊕ ε � i∗nVn+1. The isomorphism φn ensures that
rank(Vn+1) = rank(Vn) + 1 and so rank(V) := rank(Vn) − n ∈ Z is well-
defined. The data of a stable vector bundle is precisely enough to produce a
Thom spectrum Th(V), whose n-th space is Th(Vn) and whose n-th structure
map is induced by Th(φn). Then the spectrum Th(V) is (rank(V)−1)-connected.

The bundles U⊥
d,n → Grd(R

n), along with the maps ιn and φn, form a
stable vector bundle of rank −d, denoted here by −γd.

Definition 1.2.1. The unstructured Madsen-Tillmann-Weiss spectrum MTO(d)

is defined as the Thom spectrum Th(−γd).

One typically wants to consider bundles with extra structure, for example
an orientation. For this purpose a d-dimensional tangential structure is sim-
ply a fibration θd : B → BO(d); for a rank d vector bundle V : X → BO(d) a
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θd-structure is a bundle map l : V → θ∗dγd. The prototypical examples are
BSO(d), BSpin(d), and other connected covers BO(d)〈n〉 → BO(d) (indeed
BSO(d) = BO(d)〈1〉 and BSpin(d) = BO(d)〈2〉).

A stable tangential structure is a fibration θ : B→ BO, and a stable tangen-
tial structure can be restricted

θd : B(d) := θ
−1(BO(d)) → BO(d)

to a d-dimensional tangential structure along the map into the colimit BO(d) →
BO. Note that if θ is a pointed map then any trivial bundle, classified by the
constant map to BO(d), has a preferred θd-structure.

Suppose θd : B(d) → BO(d) is a d-dimensional tangential structure, and
let θd−1 : B(d − 1) → BO(d − 1) be the pullback along sd−1 : BO(d − 1) →
BO(d). Now suppose E is a θd−1-bundle over a space X classified by a map
f : X→ B(d− 1), that is E � f∗θ∗d−1γd−1; then the bundle ε⊕ E naturally has a
θd-structure by commutativity of

X B(d− 1) B(d)

BO(d− 1) BO(d)

f s̃d−1

θd−1 θd

sd−1

In particular, if θ : B → BO is stable then the stabilization of any finite-rank
θ-bundle has a natural θ-structure.

Given a tangential structure θd : B → BO(d), a stable vector bundle is
constructed analogously to −γd as follows: BO(d) is filtered by the finite-
dimensional Grassmannians ιn : Grd(R

n) ⊂ Grd(R
n+1), so B is also filtered

by Bn = θ−1d Grd(R
n); let θd,n denote the restriction θd|Bn

. Then the inclusion
λn : Bn → Bn+1 covering ιn is itself covered by a bundle isomorphism/map

θ∗d,nU
⊥
d,n ⊕R � λ∗nθ

∗
d,n+1U

⊥
d,n+1 θ∗d,n+1U

⊥
d,n+1

Bn Bn+1

λ̃n◦θ∗

d,nφn

λn

Thus the set {θ∗d,nU
⊥
d,n} forms a stable vector bundle over {Bn}, denoted

θ∗d(−γd). For brevity, let Uθd,n = θ∗d,nUd,n and Uθ,⊥d,n = θ∗d,nU
⊥
d,n.

Definition 1.2.2. The Madsen-Tillmann-Weiss spectrum with d-dimensional
tangential structure θd is defined as MT θd = Th(θ∗d(−γd)).
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1.2.2 Bordism Interpretation of Homotopy Groups

Since MT θd is a Thom spectrum, its homotopy groups can be described using
the Pontryagin-Thom correspondence (see for example [32, Chapter 2]).

Proposition 1.2.3. Let θd : B → BO(d) be a tangential structure. Then the group
πkMT θ is isomorphic to the bordism group of triples [M,E,ϕ] where

• M is a closed, smooth manifold of dimension k+ d,

• E is a rank d vector bundle overM with θd-structure,

• ϕ is a stable isomorphism TM �s E⊕ εk.

A triple is null-bordant if there is a (k+ d+ 1)-manifoldW, a rank d θ-bundle F and
a stable isomorphism ψ : TW �s F ⊕ ε

k+1 which restricts to the given data on the
boundary.

Proof sketch. Here we will give an indication of where this data comes from; for
more complete details see [32].

By definition πkMT θd = colimn πn+k Th(Uθ,⊥d,n), so choose a pointed map

Φ : Sn+k → Th(Uθ,⊥d,n)

for n� d. Without loss of generality the composition ofΦwith
Th(θ̃) : Th(Uθ,⊥d,n) → Th(U⊥

d,n) is transverse to the zero section Grd(R
n). Let

M = (Φ ◦ Th(θ̃))−1(Grd(R
n)) ⊂ Rn+k

and let f be the restriction of this composition toM. ThenM is a closed manifold

of dimension n + k − (n − d) = k + d, and νS
n+k

M � f∗U⊥
d,n. Then since M is a

proper subset of Sn+k we have

εn+k � TSn+k|M � TM⊕ f∗U⊥
d,n

By adding f∗Ud,n to both sides we get an isomorphism

ϕ : TM⊕ εn � εn+k ⊕ f∗Ud,n

Note that since the bundle map Uθd,n → Ud,n is an isomorphism in each fibre,
f in fact factors through Bn so f∗Ud,n comes with a θd-structure. �

Note that if k < 0 then dim(M) < rank(E), and so E � TM ⊕ ε−k by
obstruction theory.

Definition 1.2.4. For a tangential structure θd : B(d) → BO(d) and a natural
number n 6 d, define the n-th θd bordism groupΩθd

n as the bordism group of closed
n-manifoldsM with a θd structure on TM⊕ εd−n.

Corollary 1.2.5. If k < 0 then πkMT θd � Ω
θd

d+k

Now let k = 0, and consider a connected, stable tangential structure

θ : B→ BSO → BO

factoring through Orientation; then the restriction θd : B(d) → BO(d), for any
d > 0, also factors through BSO(d).
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Definition 1.2.6. Let Eulθn ⊂ Z be the set of all 〈e(V), [M]〉 such that M is a
closed n-dimensional manifold, and V →M is a rank n vector bundle which is stably
isomorphic to TM and which admits a θn structure.

Denote by Euln the set corresponding to B = BSO and θ the identity.

It follows that Euln is the set of all χ(M) where M is an oriented closed
manifold. As stated in [6], Euln is given by

Euln =






0 if n is odd

Z if n ≡ 0 mod 4

2Z if n ≡ 2 mod 4

In general, it will follow from Lemma 3.2.3 that Eulθn is a subgroup of Z.

Proposition 1.2.7. Let θ : B→ BSO be a stable tangential structure, and let θd, θd+1
be its restriction to BSO(d) and BSO(d + 1) respectively, and suppose B(d + 1) =

θ−1 BSO(d+ 1) is connected. Then there is a short-exact sequence

0→ Z/Eulθd+1 → π0MT θd → Ω
θd+1

d → 0

Moreover this sequence is split, except possibly for the case where d + 1 ∈ 4N. If
B = BSO and θ is the identity then it always splits.

Proof. A proof for B(d+ 1) = BSO(d+ 1) is given in Appendix A of [6], and the
proof given in this thesis is essentially the same. Since the proof will require
the interpretations of Section 3.2, it will be presented there. �

Higher homotopy groups are harder to describe explicitly.

By taking the bordism interpretation of these groups, one can attempt to de-
fine an external product. Given a stable tangential structure θ : B → BO and
elements [M,E,ϕ] ∈ πkMT θd and [N, F,ψ] ∈ πlMT θe, the tuple

(M×N,E× F,ϕ×ψ)

defines an element of πk+lMT θd+e provided that E × F is equipped with a
θd+e structure. E and F being θ bundles means there are lifts λE : M → B(d)

and λF : N→ B(e) of their classifying maps, giving a diagram

B(d)× B(e) B(d+ e)

M×N BO(d)× BO(e) BO(d+ e)

µ

E×F

λE×λF

B⊕

where ⊕ : O(d) × O(e) → O(d + e) is the block-sum. If there were a map µ
covering B⊕, then µ ◦ (λE × λF) would be a θd+e structure on E× F.

Definition 1.2.8. A stable tangential structure θ : B→ BO is multiplicative if there
is given, for all d, e > 0, a map µd,e : B(d)× B(e) → B(d+ e) covering B⊕.

Examples are BSO, BSpin; more generally if h : H → BO is an H-space
homomorphism then h is a multiplicative tangential structure.
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Definition 1.2.9. If θ : B → BO is a multiplicative tangential structure, then define
the product

πkMT θd × πlMT θe → πk+lMT θd+e

by taking the product coordinate-wise, and using the map µk,d to put a θ structure on
the product of bundles.



Chapter 2

The Signature Problem

Consider an element
[M,E,ϕ] ∈ πkMTSO(d)

for some d > 0 and k ∈ Z i.e. the bordism class of a triple whereM is closed and
(k + d)-dimensional, E is an oriented rank d-bundle over M, and ϕ : TM �s

E ⊕ εk is a stable isomorphism. Note that the orientation on E induces one
on TM via ϕ. In the particular case that k + d ∈ 4N the signature σ(M)

becomes a meaningful topological invariant, and moreover it is an invariant of
the MTSO(d)-bordism class. This induces a homomorphism

σk,d : πkMTSO(d) → Ωk+d → Z

which factors through the usual oriented bordism group of (k+ d)-manifolds
via the map which forgets E and ϕ.

If k > 1 and k+d = 4n then this forgetful map is never surjective. Indeed the

bordism class of CP2n cannot be in the image: since
(
2n+1
2n

)
= 2n+ 1 is always

odd it follows that w2n(TCP
2n) , 0, so if M is oriented-bordant to CP2n then

w2n(TM) , 0 as well because Stiefel-Whitney numbers are bordism invariants;
now by the Whitney product formula it follows that M cannot represent an
element of πkMTSO(d) for any k > 1. We might then expect the composition
σk,d to not be surjective either, and ask the following:

Question (The Signature Problem). For (k, d) ∈ Z ×N, which integers can be
realized as the signature of an element of πkMTSO(d)?

Equivalently, what is the subgroup Im(σk,d) ⊂ Z?

The purpose of this chapter is to provide partial solutions to the Signature
Problem, by finding theoretical lower bounds and constructing examples which
either attain or are close to these bounds.

In Section 2.2 we obtain results for very small values of k and d using ele-
mentary methods, and in particular all cases where k + d = 4. Two basic
examples are constructed, and are later used for computations in Section 3.3:
an element g2 ∈ π1MTSO(3) with signature 2 is given in Proposition 2.2.1, and
an element g4 ∈ π2MTSO(2) with signature 4 is given in Theorem 2.2.3. The
outcome is as follows:

13
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Theorem 2.0.10. Suppose (k, d) ∈ Z ×N with k + d positive and divisible by 4.
Then:

If d = 0 or 1, then Im(σk,d) = 0.
If k 6 0, then Im(σk,d) = Z.
If k = 1, then Im(σk,d) = 2Z.
If k = 2, then Im(σk,d) = 4Z.

The methods used in Section 2.2 break down in higher dimensions when
k > 3, so we have to appeal to pre-existing theory. If we further restrict the stable
isomorphism condition to the case where there is an unstable isomorphism
ϕ ′ : TM � E ⊕ εk, this is the same as asking for k linearly independent vector
fields (we will define the “span” of a manifold M is the largest k so that M
admits k linearly independent vector fields). This is already a classical and
heavily studied problem, the so-called “Vector Field Problem”; a very brief
survey of the Vector Field problem is given in Section 2.3. In particular, there
are already general divisibility results for the signature of a manifold with span
k. Namely there is the following:

Theorem (Atiyah, Mayer, Frank). IfM admits k linearly independent vector fields
then its signature is divisible by a number rk, which is characterized by the following
table

k 1 2 3 4 5 6 7 8
rk 2 4 8 16 16 16 16 32

plus the relation rk+8 = 16rk

The number rk (which is related to the rank of irreducible Clifford modules)
and this Theorem are used as black-boxes.

In Section 2.1 the Signature Problem for manifolds with a stable isomorphism
TM �s E ⊕ εk is reduced to the case where the manifold admits an unstable
isomorphism TM � E ⊕ εk, in other words to the context of the Vector Field
Problem, via the following useful result:

Proposition 2.1.1. Let [M,E,φ] ∈ πkMTSO(d), where k > 1, and where k + d is
even and at least 4. Then there is a stably parallelizable manifold N such that M#N
admits k linearly independent vector fields.

Then sinceσ(N) = 0, Corollary 2.1.13 concludes that if [M,E,φ] ∈ πkMTSO(d)

then rk divides σ(M), establishing a lower bound for our Signature Problem.
(It should be remarked that Section 2.1 appears first mainly because Propo-

sition 2.1.1 is also used to construct the example g2 in Section 2.2.)

Section 2.4 continues the program of trying to realize rk as the signature of
an element of πkMTSO(d) for some d by using known results from Section 2.3,
and obtains some results for k 6 6. The “hand-made” examples g2 and g4
from Section 2.2 can be used with the product structure from Definition 1.2.9
to produce a few examples, but their signatures are only optimal if k 6 4: for
example one can check by case analysis that any combination of g2 and g4 in
π5MTSO(d) will have signature at least 32, but r5 = 16. Further examples are
given using the obstruction results of [4] as discussed in Section 2.1; however
in order to apply their results one must add the assumption that k < d. The
summary of results is:
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Theorem 2.0.11. Suppose (k, d) ∈ Z ×N with k + d positive and divisible by 4.
Then:

If k = 3 and d > 8, then Im(σk,d) = 8Z.
If k = 4 and d > 8, then Im(σk,d) = 16Z.
If k = 5 and d = 12, then Im(σk,d) ⊃ 32Z. It is not known wether 16 is realizable

or not in this case.
If k = 5 or 6 and d > 16, then Im(σk,d) = 16Z.

It is important to emphasize that in all cases listed, except for possibly
(k, d) = (5, 12), the subgroup Im(σk,d) in Z is generated by the number rk.

One set of cases which is not considered at all in this thesis is when 2 6 d < k.
It is likely that further restrictions would be added to the signature, due to the
fact that if d < k then Pontryagin classes begin to disappear, with the extreme
case being d = 0, 1 where all manifolds have vanishing signature. Some of the
values of πkMTSO(2) are given by Theorem 3.0.8, but the only k where the
group has interesting signatures is k = 2.

2.1 Stable Span Versus Span

In this section, the problem of determining the minimal signature of elements
of πkMTSO(d) is reduced to determining the minimal signature of manifolds
with “span” k. After presenting the notions of span and “stable span”, the
following is proven:

Proposition 2.1.1. Let [M,E,φ] ∈ πkMTSO(d), and suppose that k > 1, that
k + d > 4 and is even, and that M is connected. Then there is a stably parallelizable
manifold N such thatM#N admits k linearly independent vector fields.

Therefore an element of πkMTSO(d) cannot achieve a smaller signature
than a manifold whose tangent bundle unstably reduces to a rank d vector
bundle.

Before proving this, first some definitions and basic properties of span and
stable span:

Definition 2.1.2. Let E→ X be a vector bundle.
Define the span of E, denoted span(E), to be the maximum number of linearly

independent sections of E.
Define the stable span, s̃pan(E), to be the maximum of span(E ⊕ εn) − n over

all n > 0.
For M a smooth manifold, span(M) and s̃pan(M) will denote the respective

functions applied to TM.

Then s̃pan(M) > k iff M represents an element of πkMTO(dim(M) − k),
and if M is also oriented then s̃pan(M) > k iff M represents an element of
πkMTSO(dim(M) − k).

The first observation is that s̃pan(E) > span(E). Furthermore, span behaves
very poorly with respect to stabilization: span(S2n) = 0 since χ(S2n) , 0, but
span(TS2n ⊕ ε) = 2n + 1, and in fact s̃pan(S2n) = 2n. However, it is indeed
the case that for any vector bundle s̃pan(E⊕ ε) = s̃pan(E) + 1.
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Lemma 2.1.3. Let E → X be a rank r vector bundle over a finite CW complex of
dimension n.

If r > n then s̃pan(E) = span(E) > r− n.
If r 6 n then s̃pan(E) = span(E⊕ εn−r+1) − (n− r+ 1)

Proof. This is a well-known result and standard exercise in obstruction theory
(cf. Exercise II.6.10 of [15]). �

Corollary 2.1.4. If E and E ′ are vector bundles over X which are stably isomorphic,
then s̃pan(E) = s̃pan(E ′). In other words, stable span is a stable isomorphism
invariant.

Proof. Add enough trivial bundles so that they become isomorphic and the
rank exceeds the dimension of the base space. �

The following is apparent:

Lemma 2.1.5. If E→ X and E ′ → X ′ are bundles, then

span(E× E ′) > span(E) + span(E ′)

If X = X ′ then moreover span(E⊕ E ′) > span(E) + span(E ′).

To prove Proposition 2.1.1 we will have to consider the span/stable span
of the connected sum of two vector bundles. For M and N two connected
manifolds of the same dimension n and E→M, F→ N two vector bundles of
the same rank r, we will define the bundle E#fF→M#N, the connected sum of
E and F clutched by a function f : Sn−1 → O(r).

First, we recall an explicit construction for the connected sum of two smooth
manifolds. Let M and N be connected, closed smooth manifolds of dimension
n, and let

φM : Dn →M φN : Dn → N

be smooth embeddings of the standard disk. Let

M0 =M− φM(0) N0 = N− φN(0) D0 = D
n − (Sn−1 ∪ 0)

Define a smooth automorphism α : D0 → D0 by α(x) = (1 − ||x||) · x. Then the
smooth manifoldM#N is defined to be the pushout

D0 M0

N0 M#N

φM

φN◦α ιM

ιN

The tangent bundle of M#N is also a pushout. Since φM and φN were
smooth they induce trivializations

TφM : Dn ×Rn → TM TφN : Dn ×Rn → TN

and we get the following pushout diagram:

D0 ×R
n TM0

TN0 T(M#N)

TφM

T(φN◦α) TιM

TιN
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In terms of orientations, notice that α is orientation reversing, and so to induce
an orientation on T(M#N) from given orientations on TM and TN it is required
that φM and φN have different orientation parities.

Now suppose E → M and F → N are arbitrary vector bundles of rank m.
Now the smooth charts φM and φN no longer induce trivializations, and we
have to choose

ψE : D
n ×Rn → E ψF : D

n ×Rn → F

covering them. Moreover, we are also not bound to use Tα as the bundle map
covering α anymore. Instead, choose any continuous function

f : Sn−1 → O(m)

and use the same symbol for the map f : D0 → O(m) which is f pre-composed
with the the norm map D0 → Sn−1. Then define αf : D

n ×Rn → Dn ×Rn by

αf(x, v) = (α(x), fx(v))

(note that fx = fα(x)).

Definition 2.1.6. The bundle E#fF, called the connected sum of E and F, clutched
by f, is defined as the pushout

D0 ×R
n E|M0

F|N0
E#fF

ψE

ψF◦αf ιE

ιF

Denote by E#∗F the connected sum clutched by a constant map.

If E and F are oriented, to get an orientation on E#fF you could either choose
orientation-preserving trivializations and a map f : Sn−1 → SO(m), or choose
f : Sn−1 → A · SO(m) for det(A) = −1 and take trivializations with different
orientation parity. We will take the first convention.

The map Tα is a mapD0×R
n → D0×R

n whose second coordinate doesn’t
depend on the norm of the first coordinate, so it can be considered as a map

Tα : Sn−1 → O(n)

Note that the image of Tα is in A · SO(n); let Tα+(x) = A−1 · Tα(x).

Lemma 2.1.7. T(M#N) � TM#Tα+TN

It is easy to see explicitly that Tα+ is stably null-homotopic. Moreover Tα+

clutches the tangent bundle of Sn, so since the correspondances

πn−1SO(m) � πn BSO(m) (for everym)

send a stabilized clutching function to the stabilized bundle, this abstractly
shows Tα+ is stably null-homotopic.

Lemma 2.1.8. If f ∼ g then E#fF � E#gF.
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Lemma 2.1.9. (E#fF)⊕ V � (E⊕ V)#f⊕IdV
(F⊕ V).

Corollary 2.1.10. T(M#N) �s TM#∗TN.

Having set up the relevant basics, the proof of Proposition 2.1.1, as suggested
to the author by Oscar Randal-Williams, primarily consists of the following two
Lemmata:

Lemma 2.1.11. Let M be a connected oriented manifold of even dimension n, let
k > 1, and suppose χ(M) = 0. Then s̃pan(M) > k implies span(M) > k.

Proof. If s̃pan(M) > k then s̃pan(TM ⊕ ε) > k + 1, so by Lemma 2.1.3 in fact
span(TM ⊕ ε) > k + 1, so there is a rank n − k bundle E over M so that
TM ⊕ ε � E ⊕ εk+1. Moreover e(TM) = 0 by assumption and e(E ⊕ εk) = 0

since k > 1, so TM � E⊕ εk by Theorem A2. �

Lemma 2.1.12. Let M be a connected, oriented manifold of even dimension n > 4,
and suppose χ(M) is even. Then there is a stably parallelizable manifold N such that
χ(M#N) = 0.

Proof. Note that χ(M1#M2) = χ(M1) + χ(M2) − 2when dim(Mi) is even. Let
m = 1

2
n and c = 1

2
χ(M). Then the manifold

N =






Sn if χ(M) = 0

#cSm × Sm if χ(M) > 0 andm odd, or χ(M) < 0 andm even

#cSm−1 × Sm+1 otherwise

has the desired property. �

Proof of Proposition 2.1.1. Let [M,E,ϕ] ∈ πkMTSO(d), with k > 1 and k + d

even. Since k > 1 then wk+d(M) = 0 so χ(M) is even, so we find a stably
parallelizable N such that χ(M#N) = 0. Then

T(M#N)⊕ ε � (TM#Tα+TN)⊕ ε � (TM⊕ ε)#Tα+⊕1(TN⊕ ε)

and this is isomorphic to

(E⊕ εk+1)#∗ε
n+1
� (E#∗ε

n−k)⊕ εk+1

i.e. s̃pan(M#N) > k. Since its Euler characteristic vanishes, it follows that
span(M#N) > k. �

We will typically denote M#N by M0. As a corollary of this and Theo-
rem 2.3.5, we have

Corollary 2.1.13. SupposeM represents an element of πkMTSO(d). Then rk divides
σ(M).

Proof. σ(N) = 0 for any stably parallelizable N. �
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2.2 The Hands-On Cases

Some immediate observations about πkMTSO(d) can be made for small values
of k and d. If d = 0 or 1 then any element of πkMTSO(d) will be stably
parallelizable, and hence σk,d = 0; thus the interesting case is when d > 2.

As for the variable k, if k 6 0 then any signature is possible: letting M =

CP
k+d

2 , take the element [M,TM, Id]. Therefore we will tend to restrict to the
case k > 1.

Proposition 2.2.1. For all n > 1 there is an element of π1MTSO(4n − 1) with
signature 2, and this is the minimum positive signature.

Proof. If k is equal to 1, an element [M,E,ϕ] ∈ π1MTSO(4n − 1) will have
w4n(TM) = 0which means that χ(M) ≡ 0 mod 2. Since σ(M) and χ(M) have
the same parity, then the signature must also be even. For 4n ∈ 4Z an element of

signature 2 can be described as follows. Begin with the manifold #2CP2n: since
this manifold has even dimension and Euler characteristic, Proposition 2.1.1
produces a stably parallelizable manifold N so that

(#2CP2n)0 := (#2CP2n)#N

has vanishing Euler characteristic and signature 2. Then, by the classical

Poincare-Hopf theorem, T(#2CP2n)0 admits a non-zero section s and hence
a decomposition as 〈s〉 ⊕ 〈s〉⊥. Therefore

[(#2CP2n)0, 〈s〉
⊥, Id] ∈ π1MTSO(4n− 1)

�

Definition 2.2.2. Let g2 = [(#2CP2)0, 〈s〉
⊥, Id] ∈ π1MTSO(3)

The rest of the section will prove the following:

Theorem 2.2.3. There is an element g4 ∈ π2MTSO(2) with signature 4, and this is
the minimum positive signature.

This is proven with fairly elementary methods, exploiting the close relation-
ship between the intersection form of a 4-manifold and its characteristic classes.

First recall Wu classes (see [24]). LetM be a closed manifold of any dimension
n, let [M] ∈ Hn(M;Z/2) be its mod 2 fundamental class, and for 0 6 i 6 n let

Ii(−,−): Hi(M;Z/2)×Hn−i(M;Z/2) → Z/2

be its mod 2 cup-pairing, i.e. Ii(x, y) = 〈x ∪ y, [M]〉Z/2 where 〈−,−〉Z/2 is the
mod 2 Kronecker pairing. Then Ii(−,−) is non-degenerate, which implies
that for each i there is a unique class vi ∈ Hi(M;Z/2) such that for all x ∈
Hn−i(M;Z/2)

〈x ∪ vi, [M]〉Z/2 = 〈Sqi x, [M]〉Z/2

where Sqi is the i-th mod 2 Steenrod operation. The classes vi are called the
Wu classes. In particular v0 = 1 and vi = 0 if 2i > n.
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Theorem 2.2.4 (Wu’s Formula). LetM be a closed manifold, letV = 1+v1+v2+. . .

be its total Wu class, W = 1 + w1 + w2 + . . . its total Stiefel-Whitney class, and
Sq = 1+ Sq1+ Sq2+ . . . the total Steenrod square. Then

W = SqV

A surprising corollary of this theorem is that, sinceV and Sq only depend on
the cup-product structure of the cohomology ofM, the Stiefel-Whitney classes
of M’s tangent bundle are invariant under homotopy equivalences. However
we will only use a much simpler corollary:

Corollary 2.2.5. If M is a closed manifold then v1 = w1, and if M is orientable then
v2 = w2.

Proof. Immediately from Wu’s formula we have v1 = w1 for any manifold, so
v1 = 0 if it is orientable. Then

w2 = v2 + Sq1 v1 + Sq2 1 = v2

�

Now we recall some basic things about bilinear forms. Let A be a finitely-
generated abelian group. For a bilinear form q : A × A → Z over A, say that
c ∈ A is a characteristic element of q if for all x ∈ A

q(x, c) ≡ q(x, x) mod 2

Immediately from the definition we see that if M is a closed manifold of di-
mension 2n then a characteristic element of its intersection form is the same as
an integral lift of vn. If q is also unimodular, then the following holds:

Lemma 2.2.6 (van der Blij). Let q : A×A→ Z be a symmetric unimodular bilinear
form. Then q has a (not necessarily unique) characteristic element c, and

q(c, c) ≡ sign(q) mod 8

Proof. Originally derived in [38] by an argument using Gaussian sums, though
it has a more algebraic proof as Lemma II.5.2 in [25]. �

Now we can easily prove the following:

Proposition 2.2.7. If [M,E,φ] ∈ π2MTSO(2) then σ(M) is divisible by 4.

Proof. Suppose that [M,E,φ] ∈ π2MTSO(2), and let I(−,−) denote its inter-
section form. Since M is orientable, by the above corollary we have w2(M) =

v2(M) and so a characteristic element of I is any integral lift of w2(M). The
stable isomorphism TM �s E⊕ε

2 impliesw2(M) = w2(E), hence the class e(E)
is characteristic for the intersection form ofM, so by van der Blij’s Lemma

I(e(E), e(E)) = 〈e(E)2, [M]〉 ≡ σ(M) mod 8

But e(E)2 = p1(E) = p1(M), and so by Hirzebruch’s signature formula3σ(M) =

p1[M] ≡ σ(M) mod 8, and therefore 2σ(M) is divisible by 8. �
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Since 4 is a lower bound, the ideal example would have signature 4. Let

M4 = #4CP2 be the connected sum of 4 copies of CP2 with the canonical ori-
entation, so that σ(M4) = 4. For notation’s sake, let [M4] ∈ H4(M4;Z) denote
the fundamental class induced by the orientation, and let µ4 ∈ H4(M4;Z) be
its dual. Let τ4 be the tangent bundle ofM4.

In order for M4 to represent an element of π2MTSO(2), recall that this
requires an oriented rank 2 bundle E over M4 and a stable isomorphism τ4 �s
E⊕ ε2. Since oriented rank 2 bundles are parametrized by H2(M4;Z) because
BSO(2) ' K(Z, 2), producing candidates for E is easy; therefore it is pertinent
to have a way of detecting wether two given bundles over M4 are stably
isomorphic. For this we employ K-theory (see for example [17]).

Lemma 2.2.8. Let X be a 7-dimensional CW complex withH3(X;Z/2) = 0. If V and
W are oriented bundles over X with w2(V) = w2(W) and p1(V) = p1(W), then V
andW are stably isomorphic.

Proof. Consider V andW as pointed maps X→ BO, which factor through BSO
since they are orientable. The proof is by obstruction theory and employs the
following two facts:

1. π2 BSO � Z/2 andw2 : BSO → K(Z/2, 2) induces an isomorphism on π2.

2. π4 BSO � Z and p1 : BSO → K(Z, 4) induces multiplication by ±2 on π4.

The identification of the groups π2 BSO and π4 BSO is part of Bott periodicity in
the real case [17, I.9.21]. That w2 is an isomorphism on π2 follows from Corol-
lary A.3.2 and the fact that S1 is parallelizable, alternatively, the tautological

complex line bundle L→ CP1 � S2 hasw2 , 0when considered as an oriented
2-plane bundle.

To show that p1 induces multiplication by ±2, first note that by definition it
is the composition of two maps:

BSO K(Z, 4)

BU

p1

κ −c2

where κ is induced by complexification SO(n) → U(2n), and c2 represents the
second Chern class. Recall that, for spheres, the reduced Chern character

ch : K̃U(S2n) � π2n BU → H2n(S2n;Q)

factors through an isomorphism onto H2n(S2n;Z) � π2nK(Z, 2n) for all n [15,
V.3.25]. When n = 2, c1 always vanishes and the Chern character reduces to
the second component ch2 = 1

2
(−2c2 + c

2
1) = −c2 [26, IV.4.18], therefore −c2

induces an isomorphism on π4. As for κ, there is a long exact sequence of KO
and KU groups [1]:

. . . KO−3 KO−4 KU−4 KO−2 KO−3 . . .
×η κ ρ◦b−1 ×η

where b : KU−n
� KU−n−2 is the Bott isomorphism, η ∈ KO−1 is the generator,

and ρ : KU−n → KO−n is realification. Now, KO−3 = 0, KO−2
� Z/2 and

KO−4
� Z � KU−4, so by exactness κ is multiplication by ±2.
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For the sake of notation let K = K(Z/2, 2) × K(Z, 4), and let f : BSO → K

be the product w2 × p1. By assumption, the compositions f ◦ V and f ◦W
are homotopic as pointed maps X → K, so to show the bundles are stably
isomorphic we want to lift the homotopy to BSO. The problem of lifting the
homotopy to BSO is described by the following diagram

({0, 1}× X) ∪ ([0, 1]× x0) //

��

BSO

f

��
[0, 1]× X //

66

K

where x0 is the basepoint of X. The obstruction groups are then H̃r(X;πrF)
where F is the homotopy fibre of f. From the long exact sequence of homotopy
groups for F → BSO → K it follows that πkF = 0 for k 6 7 and , 3, and
π3F = Z/2. Since X has dimension 7 and H3(X;Z/2) = 0 by assumption, all of
the obstruction groups vanish and therefore V �s W. �

Now we construct a bundle with the same w2 and p1 asM4:

Lemma 2.2.9. There is an oriented rank 2 real vector bundle V →M4 with
w2(V) = w2(τ4) and p1(V) = p1(τ4).

Proof. As stated above, isomorphism classes of oriented rank 2 vector bundles
overM4 are in bijective correspondance with H2(M4;Z) � Z4, where a vector
bundle V corresponds to its Euler class e(V). Moreover, for such a bundle V we
have p1(V) = e(V)

2 andw2(V) = ρ2e(V) where ρ2 : H
∗(−;Z) → H∗(−;Z/2) is

reduction modulo 2.
By the formula w2i(CP

n) = ρ2(
(
n
i

)
ui), where u is the standard generator

of H2(CPn;Z), one obtains w2(τ4) = (1, 1, 1, 1) ∈ H2(M4;Z/2) � (Z/2)4, and
by Hirzebruch’s signature formula p1(τ4) = 12µ4, where µ4 was dual to the
fundamental class ofM4.

Now let V be the bundle with Euler class (3, 1, 1, 1). Then V has w2(V) =
ρ2e(V) = (1, 1, 1, 1), and because the intersection form of M4 is the standard
scalar product on Z4 we have p1(V) = (3, 1, 1, 1)2 = 12µ4. �

Corollary 2.2.10. There is an oriented rank 2 real vector bundle V4 →M4 such that
V4 �s τ4.

Proof. Take the bundle V4 corresponding to (3, 1, 1, 1) as above. Then sincew2,
p1 agree on V4 and τ4 it follows that there is a stable isomorphismϕ4 : τ4⊕ ε �
V4 ⊕ ε

3. �

Hence (#4CP2, V4, ϕ4) represents an element g4 ∈ π2MTSO(2). Moreover,
it has the minimal positive signature by the above Lemma, so it is an indivisible
element. This element will be used in Proposition 3.3.13 to show π2MTSO(2) �

Z, and is in fact a generator.
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2.3 Span Versus Signature

Much of the basic material discussed in this section can be found in Emery
Thomas’ extensive expository paper [34]. Other results cited here are found in
Atiyah-Dupont [2], Bökstedt-Dupont-Svane [4], and Lawson-Michelsohn [17].

This section discusses some known results about the span of an oriented
smooth manifold. Fix Mn a smooth, compact, oriented manifold with metric,
and let k be a positive integer. k will be the number of linearly independent
vector fields we want be able to find.

The criteria for determining if span(M) > 1 is a classical result of Hopf. Con-
sidering TM as a manifold of dimension 2n, by transversality a generic section
s will intersect the zero-section at finitely many points {x1, . . . xm}. By choos-
ing small disks Di around each xi and trivializations TM|Di

� Di × R
n, s

determines a non-zero section of

TM|⊔
i ∂Di

�

⊔

i

Sn−1 ×Rn

Normalizing s over this union of spheres by using the metric onM, sdetermines
an element

Ind(s) :=
m∑

i=0

s|∂Di
∈ πn−1S

n−1
� Z

called the index of s. Then, if M is connected, s can be replaced by a non-zero
vector field iff Ind(s) = 0 (see the proof of Theorem 2.10 in [12]).

Many choices were made in the definition of Ind(s), but the remarkable
result is that they didn’t matter for the reason that the index is actually equal
to a topological invariant of the manifold:

Theorem 2.3.1 (Poincare-Hopf). In the situation outlined above, Ind(s) = χ(M).

Corollary 2.3.2. IfM is connected then span(M) > 1 iff χ(M) = 0.

In particular span(S2n) = 0 since χ(S2n) = 2, and span(M) > 1 for every
odd-dimensional manifold. Furthermore, if span(M) > 1 then σ(M) is even,
since σ(M) ≡ χ(M) mod 2.

The case k > 1 is drastically more delicate. Even if M admits non-zero vector
fields, if they are transverse then the set of points where they fail to be linearly
independent may be a submanifold of positive dimension. In order to imple-
ment a similar strategy to the one above, one can impose an extra assumption
on the manifolds under consideration.

Definition 2.3.3. A set of vector fields s = {s1, . . . , sk} ∈ ΓM
k has finite singulari-

ties if they are only linearly dependent at a finite set of points. Such a set will be called
a finitely-singular k-field.

For example, spin a globe and take the velocity vector field: this is a section
s = {s1} with finite singularities since it only has two zeros. If all vectors in
this field are rotated southward by an angle 0 < θ < π this produces another
section which is linearly independent from the first everywhere except for the
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same two zeros. Thus, S2 admits two vector fields with finite singularites, even
though it doesn’t admit a single non-zero vector field.

In general, the assumption that M admits a finitely-singular k-field is non-
trivial, but there is a convenient necessary condition:

Proposition 2.3.4 ( [34]). M admits a finitely singular 2-field, except possibly when
n ≡ 1 mod 4 and wn−1(M) , 0.

For general k, supposeM is (k−2)-connected, and eitherwn−k+1(M) = 0 ifn−k
is odd, or βwn−k(M) = 0 if n − k is even, where β is the Bockstein homomorphism
for the sequence Z→ Z→ Z/2. ThenM admits a finitely-singular k-field.

In the case M does admit a finitely-singular k-field s = {s1, . . . , sk}, the
definition of Ind(s) generalizes from the case k = 1. Say s is linearly dependent
at the points x1, . . . xm, and trivialize the tangent bundle of M over disjoint
oriented disks Di around the singular points. Since M was assumed to have
a metric, the Gram-Schmidt procedure naturally orthogonalizes s over the
complement of the singular points, so in particular s defines an element

Ind(s) =
m∑

i=1

s|∂Di
∈ πn−1 Stk(R

n)

where Stk(V) is the Stiefel manifold of k-frames in V for any inner-product
space V . Then, again,M admits k linearly independent sections iff Ind(s) = 0.

In contrast to the k = 1 case, Ind(s) can sometimes depend on s and so as
an element of πn−1 Stk(R

n) it can’t always be interpreted as an invariant of the
manifold. It was not until much later, with the advent of Index Theory in the
1960s, that further progress was made in this direction.

One of the earliest applications of Index Theory to the vector field problem
provided a necessary condition for span(M) > k in terms of a topological
invariant ofM. Recall from [17, IV.2] the number 2ak, defined as the rank of an
irreducible Z/2-graded Cl(Rk) module. A complete description of the values
of ak is given by the first eight values

k 1 2 3 4 5 6 7 8
ak 1 2 4 4 8 8 8 8

and the relation ak+8 = 16ak. For notation’s sake, define rk = 2ak when k is
not divisible by 4, and r4l = 4a4l.

Theorem 2.3.5 ( [17, IV.2.7]). Let M be a smooth, closed, orientable manifold. If
span(M) > k then rk|σ(M).

This theorem is usually attributed to Mayer [22], though the result above
is not explicitly stated in the referenced paper. Atiyah [3] around the same
time proved slightly simpler statements using more elementary methods, but
nonetheless still Index Theoretic in nature.

Note that the divisibility in Theorem 2.3.5 only depends on the number
of linearly independent vector fields, and not on the dimension of M. In his
expository paper from 1969, Thomas made the following conjecture:

Conjecture 1 ( [34, Conjecture 4]). If n ∈ 4Z and n > 4, and M is a connected
n-manifold admitting a finitely singular k-field, then span(M) > k iff χ(M) = 0 and
rk|σ(M).
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Shortly after, this conjecture was verified for k = 2 and 3 by Atiyah and
Dupont [2] via a different application of index theory. They produced a natural
homomorphism fromπn−1 Stk(R

n) to a certainKRgroup, and then interpretted
the image of Ind(s) as an invariant ofMusing the Index Theorem forKR-Theory.
Their result is the following

Theorem 2.3.6. Suppose Mn admits a finitely-singular k-field s, where k = 2, 3.
Then Ind(s) can be interpreted as:

n mod 4 Ind(s)

0 χ(M)⊕ 1
2
(χ(M) + σ(M)) ∈ Z⊕Z/bk

1 Kerv(M) ∈ Z/2
2 χ(M) ∈ Z
3 0

where bk happens to be rk
2

, and

Kerv(M) =

bn
2 c∑

i=0

(−1)i rankZ/2H
i(M;Z/2)

is the Kervaire semi-characteristic.

Corollary 2.3.7. Suppose n ∈ 4Z. Then span(M) > 2 iff χ(M) = 0 and 4|σ(M). If
M admits a finitely singular 3-field then span(M) > 3 iff χ(M) = 0 and 8|σ(M).

Interpretations of Ind(s) for higher values of k didn’t arrive until very
recently, in a 2014 publication by Böckstedt, Dupont, and Svane [4], using
a construction involving Madsen-Tillman-Weiss spectra and a very involved
Adams spectral sequence computation. They were able to interpret the index
in nice cases when k = 4, 5, or 6. In particular, they proved the following:

Theorem 2.3.8. Suppose n is even, k < n
2

and k = 4, 5, or 6. Suppose M admits
finitely-singular k-field s.

If n ≡ 2 mod 4 then Ind(s) = χ(M) ∈ Z.

If n ≡ 0 mod 4 then Ind(s) = χ(M)⊕ 1
2
(χ(M) + σ(M)) ∈ Z⊕Z/8.

Corollary 2.3.9. Suppose M admits k vector fields with finite singularities, with
n ∈ 4Z. If

k = 4, 5 and n > 12, or

k = 6 and n > 16

then span(M) > k iff χ(M) = 0 and 16|σ(M).

Note that again 16 = r4 = r5 = r6. This suggets that the following conjecture
may be more likely to be true than Conjecture 1:

Conjecture 2. Suppose Mn admits k sections with finite singularities, where 2k <
n ∈ 4Z. Then span(M) > k iff χ(M) = 0 and rk|σ(M).
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2.4 Examples and Results

The aim of this section is to produce, for a given k > 0, closed manifolds
M4n for any n > 0 with s̃pan(M) = k and σ(M) = rk, using the results from
the previous sections. All examples here have k 6 2n and in many cases k < 2n.

In Proposition 2.2.1 an element g2 = [(#2CP2)0, 〈s〉
⊥, Id] ∈ π1MTSO(3) with

signature 2 was given, and in Proposition 3.3.13 it will be shown to be a gen-
erator. Furthermore, taking products with complex projective spaces produces
elements in π1MTSO(3+ 4n) for every n > 1 as well. Specifically:

Lemma 2.4.1. Suppose k + d is divisible by 4, and suppose there is an element
[M] := [M,E,ϕ] ∈ πkMTSO(d) with signature σ , 0. Then for every n > 0 there
are at least π(n) linearly independant elements of πkMTSO(d + 4n) with signature
σ, where π(n) is the number of partitions of n.

What this Lemma means for this problem is that if the Signature Problem
has been solved for some k and d, then it has also been solved for that same k
and all higher values of d.

Proof. Let I = (a1, . . . , al) be a partition of n > 1. Then for each 1 6 i 6 l

the manifold CP2ai determines an element [CP2ai ] := [CP2ai , TCP2ai , Id] ∈
π0MTSO(4ai). Now let

[CP2I] := ×li=1[CP
2ai ] ∈ π0MTSO(4n)

Then for each I the element [M]× [CP2I] is an element of πkMTSO(d+ 4n)

with signature σ. In order to see that these are linearly independent as I varies
over partitions of n, consider their image under the homomorphism

πkMTSO(d+ 4n) → Ωk+d+4n

Since σ(M) , 0, [M] remains non-zero after projecting to the torsion-free part.
But the torsion-free part of the oriented cobordism ring is a polynomial algebra

generated by the complex projective spaces {CP2m}, so the elements [M] ×

[CP2I], as I varies over all partitions of n, become linearly independent in
Ωk+d+4n. Therefore they are also independent in πkMTSO(d+ 4n). �

In fact Proposition 2.2.1 gave for everyn > 1 an element of π1MTSO(4n−1)

with signature 2 = r1. In light of the above Lemma, we could have just taken
the generator g2 ∈ π1MTSO(3) and taken products with complex projective
spaces to produce more elements.

For k = 2, Theorem 2.2.3 gave the element g4 generating π2MTSO(2) with

σ(g4) = 4 = r2. Again, taking products with [CP2I] as I ranges over partitions
of n gives linearly independent elements of π2MTSO(4n+ 2) for all n > 1. I.e.

Proposition 2.4.2. There are at least π(n) linearly independent elements of
π2MTSO(2+ 4n) with signature 4 = r2 for any n > 0.

In the case of k = 3, since MTSO(1) ' S−1 it follows that π3MTSO(1) = 0,
so the search begins with 8-manifolds. The product g2×g4 is indeed an element
of π3MTSO(5) and its signature is 8 = r3. Thus
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Proposition 2.4.3. There are at least π(n) linearly independent elements of
π3MTSO(5+ 4n) with signature 8 = r3 for any n > 0.

For k = 4 again an example can be constructed with the external product,
namely g4 × g4 ∈ π4MTSO(4), having signature 16 = r4.

Proposition 2.4.4. There are at least π(n) linearly independent elements of
π4MTSO(4+ 4n) with signature 16 = r4 for any n > 0.

For the casek = 5however, products fail to produce an element ofπ5MTSO(7)

with signature 16 = r5, though the element g2 × g
2
4 has signature 32. We do

have the following:

Proposition 2.4.5. There are possibly two different elements of π5MTSO(7) with
signature 32 = 2r5.

There are at least π(n) linearly independent elements of π5MTSO(11+ 4n) with
signature 16 = r5 for any n > 0.

Proof. As stated above, g2 × g
2
4 is an element of π5MTSO(7) with signature

32. Another example can be constructed using the obstruction of Böckstedt-
Dupont-Svane by producing a 12-manifold which is 3-connected, has w8 = 0,
χ = 0, and has signature divisible by 16; such a manifold will then have
span > 5.

Begin with K = K3 × (HP2#HP2), where K3 is one of the spin, signature
16 complex surfaces named for Kähler, Kodaira, and Kummer, all of which are
diffeomorphic (see for example [30, II.3.3]). Then since K is spin any embedded
1-, 2-, or 3-sphere will have trivial normal bundle, so it can be surgered into a 3-
connected manifoldK ′ [23]. After doing these surgeries, constructK ′

0 by adding
copies of S5×S7 to eliminate the Euler characteristic, as per Lemma 2.1.12; then
K ′
0 is 3-connected by construction. Now,w8(HP

2) , 0 butw8(HP
2#HP2) = 0,

and it follows that w8(TK
′
0) = 0 so K ′

0 admits a finitely singular 5-field by
Proposition 2.3.4. Then since σ(K ′

0) = 32 is divisible by 16 and χ(K ′
0) = 0 this

manifold admits 5 linearly independent vector fields by Corollary 2.3.9. This is
not ideal since the signature of K ′

0 is 2r5, but having two copies ofHP2 in the
construction ensures that w8 = 0 so that we can apply the necessary condition
for the existence of a finitely singular 5-field.

For higher dimensions, consider the manifold (#16OP2)0. Then this mani-
fold is 6-connected since copies of S7 × S9 were added to eliminate the Euler
characteristic, w10 = 0, and its signature is 16. Then the results of [4] tell us

again that span((#16OP2)0) > 6, so in particular it is at least 5. �

Corollary 2.4.6. There are at leastπ(n) linearly independent elements ofπ6MTSO(10+

4n) with signature 16 = r6 for any n > 0.

At the time of writing an element of π5MTSO(7) with signature 16 remains
elusive, and π5MTSO(3) remains unconsidered.
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Chapter 3

A Cofibre Sequence and Some
Computations

In the landmark four-author paper by Galatius, Madsen, Tillmann, and Weiss
[7], one of their smaller propositions, Proposition 3.1, provides a cofibre se-
quence of spectra

Σ−1MTO(d− 1) → MTO(d) → Σ∞BO(d)+ → MTO(d− 1)

as well as the analogue for SO(d). The details of the proof were sparse to say
the least. Section 3.1 provides extensive details for a generalization to arbitrary
tangential structures; namely it proves the following:

Proposition 3.0.7. Let θd : B(d) → BO(d) be a d-dimensional tangential structure
for d > 1, and let θd−1 be its restriction to BO(d− 1). Then there are maps (described
in Section 3.1) giving a cofibre sequence of spectra

Σ−1MT θd−1 MT θd Σ∞B(d)+ MT θd−1
p̃ i PT

Specifically, we will construct a cofiber sequence of spectra of the form

P→ MT θd → G→ S1 ∧ P

as well as homotopy equivalences G→ Σ∞B(d)+ and Σ−1MT θd−1 → P.
The chapter culminates by using these basic results to prove the following:

Theorem 3.0.8. The first four positive homotopy groups of MTSO(2) are given by

k 1 2 3 4
πkMTSO(2) 0 Z Z/24 Z

The group π2MTSO(2) is generated by a class with signature 4.
Furthermore, the group π1MTSO(3) is isomorphic toZ and is generated by a class

with signature 2.

The values of the first three homotopy groups of MTSO(2) were remarked
in Corollary 4.4 of [20] (where, at the time, MTSO(2) was referred to as CP∞

−1)

29
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and the idea they had in mind likely parallels the proof given here. However
they do not state a result for π4MTSO(2) or π1MTSO(3), and at the time of
writing this thesis computations of these groups are not found in the literature.
The computations given here use the cofibre sequence of Proposition 3.0.7 and
the interpretation of homotopy groups given in Proposition 1.2.3, and are con-
tained in Section 3.3.

The first two homotopy groups of MTSO(2) can also be computed via highly
non-trivial means by appealing to the Madsen-Weiss theorem [21] and homo-
logical stability for mapping class groups (cf [10], [14], [5]). If M is a manifold,
let Diff∂(M) denote the topological group of diffeomorphisms which fix (a col-
lar of) ∂M. If Σg,b denotes a genus g surface with b boundary components,
then the mapping class group of Σg,b is defined as

Γg,b := π0Diff∂(Σg,b)

For the purposes of this discussion fix b = 1. LetH be the 2-torus with two disks
removed and boundary components labelled B− and B+, and let Σg+1,1 be the
result of attachingH toΣg,1 alongB−. Then there is an induced homomorphism
Γg,1 → Γg+1,1 which extends a given diffeomorphism by IdH; in particular it
induces a map on homology

H∗(Γg,1) → H∗(Γg+1,1)

The results that Harer derived in [10] show that this map (which is really a

composition of two more basic maps) is an isomorphism for 2 6 ∗ 6
g+2
3

, and
if ∗ = 1 it is an isomorphism given that g > 3. (Ivanov [14] improved the

homological-stability range to ∗ 6
g−1
2

, and Boldsen [5] further improved this

to ∗ 6
2g−2
3

.) Therefore if we continue the process of attaching H to Σg+n,1
along B−, the homology of the mapping class groups Γg+n,1 stabilizes to the
homology of the stable mapping class group Γ∞ := colimn Γg+n,1. Then the
homology of MTSO(2) comes into play using the homology equivalence

Z× BΓ∞ → Ω∞ MTSO(2)

given by the Madsen-Weiss theorem [21, Theorem 1.1]. If g > 3 then Γg,1
is perfect, so H1(Ω

∞ MTSO(2)) � H1(Γ∞) = 0; but infinite loop spaces have
abelian fundamental group, so π1MTSO(2) � π1(Ω

∞ MTSO(2)) = 0. In an
earlier paper [9] Harer also computed that H2(Γg,1) � Z for g > 5, so using the
Hurewicz theorem we can deduce that π2MTSO(2) � Z.

The methods used in this thesis are somewhat more elementary. Section 3.2
studies the maps in the cofibre sequence of Proposition 3.0.7, namely it inter-
prets their induced homomorphisms at the level of bordism groups. Section 3.3
uses these interpretations to help compute the groups in Theorem 3.0.8, and
gives explicit generators g2 ∈ π1MTSO(3) and g4 ∈ π2MTSO(2).

3.1 The Cofibre Sequence

Let X be a compact topological space, and let E and F be finite-dimensional
vector bundles with metric over X. Let p : S(F) → X be the projection of the
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sphere bundle of F to X. If E is pulled back to S(F) along p then there is a
tautological bundle map

p̃ : p∗E→ E

Furthermore, E naturally imbeds into F⊕ E; let

j : E � 0⊕ E ⊂ F⊕ E

denote this embedding. As they are bundle maps, p̃ and j induce maps Th(p̃),
Th(j) on Thom spaces.

The total space of ε ⊕ p∗E can be embedded as an open subspace of F ⊕ E:
for x ∈ X, u a unit vector of Fx, r ∈ R and w ∈ Ex, the embedding is given by
((x, u); r,w) 7→ (x; er ·u,w). In fact ε⊕p∗E is isomorphic to the normal bundle
of S(F) in F⊕ E. Define

PT : Th(F⊕ E) → Th(ε⊕ p∗E)

by PT(∞) = ∞ and for an element (x; v,w) ∈ F⊕ E it is given by

PT(x; v,w) =

{
∞ v = 0(
(x, v

||v||
); ln ||v|| , w

)
otherwise

(3.1.1)

Then PT could be though of as the Pontryagin-Thom collapse map of the
embedding S(F) → F⊕ E.

Lemma 3.1.1. The situation described above produces a cofiber sequence of spaces:

Th(p∗E) Th(E) Th(F⊕ E) Th(ε⊕ p∗E)
Th(p̃) Th(j) PT

Proof. Th(j) is a closed embedding with image (0 ⊕ E)+. PT is a topological
embedding outside of the subspace PT−1(∞) = Im Th(j). It follows that

Th(ε⊕ p∗E) � Th(F⊕ E)/ Im Th(j) ' Cone(Th(j))

Hence the last three spaces form a cofiber sequence.

In order to show that the first three spaces form a cofiber sequence, replace
Th(E) with the mapping cylinder, and consider the mapping cone. Explicitly,
let Cone(Th(p̃)) be the space

(Th(p∗E)× I)
⋃

Th(E)

modulo the subspace Th(p∗E) × 0 and the relation (b, u; v, 1) ∼ (b; v) for b ∈
X, u ∈ S(Fx), and v ∈ Ex. Then we can define a homeomorphism

Cone(Th(p̃)) →
D(F)⊕D(E)

(D(F)⊕ S(E)) ∪ (S(F)⊕D(E))

by sending (b; v) ∈ Th(E) to (b; 0, v), and sending (b, u; v, t) ∈ Th(p∗E) × I to
(b; (1− t)u, v). Then this is indeed well-defined, a bijection, and continuous in
both directions. Finally, the space on the right is homeomorphic to Th(F⊕E). �
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Consider the situation where

Xn = B(d)n, En = θ∗d,nU
⊥
d,n, Fn = θ∗d,nUd,n

and label the projection map pn : S(Fn) → Xn. For the sake of notation let
Uθd,n = θ∗d,nUd,n and Uθ,⊥d,n = θ∗d,nU

⊥
d,n. Then for each n Lemma 3.1.1 gives a

cofiber sequence

Th(p∗nU
θ,⊥
d,n) Th(Uθ,⊥d,n) Th(Uθd,n ⊕Uθ,⊥d,n) Th(ε⊕ p∗nU

θ,⊥
d,n)

Th(p̃n) Th(in) PTn

Although Uθd,n ⊕ Uθ,⊥d,n � ε
n, it helps to use this orthogonal decomposition to

define bundle maps.
Recall that as n varies, the bundlesUθ,⊥d,n form a stable vector bundle, whose

Thom spectrum is MT θd.

Lemma 3.1.2. The sets {Uθd,n⊕U
θ,⊥
d,n → B(d)n}n>d and {p∗nU

θ,⊥
d,n → S(Uθd,n)}n>d

form stable vector bundles, and the sets {p̃n}n>d and {in}n>d are maps of stable vector
bundles.

Proof. Remember that for each b ∈ B(d)n, θ(b) is a plane in Grd(R
n). Given

b ∈ B(d)n, v ∈ θ(b), w ⊥ θ(b) and t ∈ R, define a bundle map

βn : U
θ
d,n ⊕Uθ,⊥d,n ⊕ ε→ Uθd,n+1 ⊕U

θ,⊥
d,n+1 (3.1.2)

by βn(b; v,w, t) = (b; v,w + ten+1). Then this map covers the inclusion map
λn : B(d)n → B(d)n+1 and is an isomorphism in each fibre, so induces the
required isomorphism for a stable vector bundle.

An element of S(Uθd,n) has the form (b, u) where b ∈ B(d)n and u ∈
θ(b) is a unit vector; an element of p∗nU

θ,⊥
d,n then has the form ((b, u);w) for

(b, u) ∈ S(Uθd,n) andw ⊥ θ(b). The inclusionRn → Rn+1 induces an inclusion
λ̃n : S(U

θ
d,n) → S(Uθd,n+1) which covers λn:

S(Uθd,n) S(Uθd,n+1)

B(d)n B(d)n+1

λ̃n

pn pn+1

λn

Then θ∗d,nφn : U
θ,⊥
d,n ⊕ ε � λ∗nU

θ,⊥
d,n+1, where φn was the isomorphism

U⊥
d,⊕ε � ι

∗
nU

⊥
d,n+1, induces an isomorphism/bundle map

p∗nθ
∗
d,nφn : p

∗
nU

θ,⊥
d,n ⊕ ε � p∗nλ

∗
nU

θ,⊥
d,n+1 = λ̃

∗
np

∗
n+1U

θ,⊥
d,n+1 → p∗n+1U

θ,⊥
d,n+1

(3.1.3)
sending ((b, u);w, t) to ((b, u);w+ ten+1), and covering λ̃.

{p̃n} and {in} induce maps of stable vector bundles because the following dia-
gram commutes:

p∗nU
θ,⊥
d,n ⊕ ε Uθ,⊥d,n ⊕ ε Uθd,n ⊕Uθ,⊥d,n ⊕ ε

p∗n+1U
θ,⊥
d,n+1 Uθ,⊥d,n+1 Uθd,n+1 ⊕U

θ,⊥
d,n+1

p̃n⊕Id

p∗
nθ(d)

∗
nφn θ(d)∗nφn

in⊕Idε

βn

p̃n+1 in+1

�
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Now we can define the spectra G and P alluded to in the introduction:

Definition 3.1.3. Let P be the Thom spectrum of the stable vector bundle {p∗nU
θ,⊥
d,n},

and let G be the Thom spectrum of the stable vector bundle {Uθd,n ⊕Uθ,⊥d,n}.

It should be remarked that as n varies the bundle isomorphisms
Uθd,n ⊕ Uθ,⊥d,n �n B(d)n ×Rn induce homeomorphisms G(n) � (B(d)n)+ ∧ Sn

making the following diagram commute:

Th(Uθd,n ⊕Uθ,⊥d,n)∧ S
1 (B(d)n)+ ∧ Sn ∧ S1

Th(Uθd,n+1 ⊕U
θ,⊥
d,n+1) (B(d)n+1)+ ∧ Sn+1

Th(βn)

�n∧ Id

λn∧hn

�n+1

where hn is the standard homeomorphism Sn ∧ S1 � Sn+1. However, we will
continue using theUθd,n⊕U

θ,⊥
d,n description so that there are less identifications

to keep track of.

Lemma 3.1.4. The collections of maps {p̃n}, {in} and {PTn} induce maps of spectra.

p̃ : P→ MT θd, i : MT θd → G and PT : G→ S1 ∧ P

Proof. By Lemma 3.1.2, the sets {p̃n}, {in} are maps of stable vector bundles.
Applying the Thom space functor induces maps p̃ := Th({p̃n}) and i := Th({in}).

The maps {PTn} are not given by a bundle maps, so showing they induce a
spectrum map needs to be done explicitly. Recall that the n-th structure map of
S1 ∧ P is IdS1 ∧Th(p∗nθ(d)

∗
nφn); then the following diagram must commute:

Th(Uθd,n ⊕Uθ,⊥d,n ⊕ ε) Th(ε⊕ p∗nU
θ,⊥
d,n ⊕ ε)

Th(Uθd,n+1 ⊕U
θ,⊥
d,n+1) Th(ε⊕ p∗n+1U

θ,⊥
d,n+1)

PTn ∧ Id
S1

Th(βn) Id
S1 ∧Th(p∗

nθ(d)
∗
nφn)

PTn+1

Let b ∈ B(d)n, v ∈ θ(b), w ⊥ θ(b), and t ∈ R. If v = 0 then both compositions
send (b; v,w, t) to ∞, and if v , 0 then

(IdS1 ∧Th(p∗nθ(d)
∗
nφn)) ◦ (PTn∧ IdS1)(b; v,w, t) =

IdS1 ∧Th(p∗nθ(d)
∗
nφn)

(
(b,

v

||v||
); ln ||v|| , w, t

)
=

(
(b,

v

||v||
); ln ||v|| , w+ ten+1

)

(3.1.4)

and

PTn+1 ◦Th(βn)(b; v,w, t) = PTn+1(b; v,w+ten+1) =

(
(b,

v

||v||
); ln ||v|| , w+ ten+1

)

�

Corollary 3.1.5. P MT θd G S1 ∧ P
p̃ i PT

is a cofiber sequence

of spectra.
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Proof. By Lemma 3.1.1 this sequence is a level-wise cofibre sequence. �

Therefore we have identified some cofibre sequence of spectra, but the spec-
tra P and G aren’t precisely the spectra Σ−1MT θd−1 and Σ∞B(d)+ that we
want. Thankfully they are of the same homotopy type.

Lemma 3.1.6. There are weak homotopy equivalences of Thom specra

ι : G→ Σ∞B(d)+, ψ : Σ−1MT θd−1 → P

Proof. The maps in question here are induced by pulling back stable vector
bundles.

For each n, B(d)n ⊂ B(d) and the trivial bundle pulls back to Uθd,n ⊕Uθ,⊥d,n
in a way which is compatible with stabilization, so there is a map from the
stable vector bundle underlying G to the one whose n-th space is B(d) × Rn,
inducing a map of Thom spectra ι : G → Σ∞B(d)+. The connectivity of the
map B(d)n → B(d) is the same as the map Grd(R

n) → Grd(R
∞), which is

(n−d−1)-connected by Corollary 1.1.6. Then the mapΣn(B(d)n)+ → ΣnB(d)+
is (2n − d − 1) connected by Lemma 1.1.2, i.e. it induces an isomorphism on
πn+k as long as n > k+ d+ 1. Therefore the induced map of spectra is a weak
homotopy equivalence.

There are bundle maps

U⊥
d−1,n−1 p∗nU

⊥
d,n U⊥

d,n

Grd−1(R
n−1) S(Ud,n) Grd(R

n)
fn−1 pn

where fn−1(P) = (〈e1〉 ⊕ shP; e1). In other words, the stable vector bundle
whose Thom spectrum is Σ−1MTO(d − 1) is the pullback of {p∗nU

⊥
d,n} along

{fn−1}. Then map fn−1 is (n− 2)-connected by Lemma 1.1.7.
Moreover, we can define gn−1 : B(d−1)n−1 → S(Uθd,n) by gn−1(b) = (b; e1)

since θd(b) = 〈e1〉 ⊕ θd−1(b). With tangential structure included, there is the
diagram

p∗nU
θ,⊥
d,n Uθ,⊥d,n = θ∗d,nU

⊥
d,n

B(d− 1)n−1 S(Uθd,n) B(d)n

Grd−1(R
n−1) S(Ud,n) Grd(R

n)

gn−1

θd−1,n−1

pn

θd,n

fn−1

Then by commutativity of this diagram, g∗n−1p
∗
nU

θ,⊥
d,n � θ

∗
d−1,n−1U

⊥
d−1,n−1,

and so there is an induced map ψ : Σ−1MT θd−1 → P.
The map gn−1 : B(d− 1)n−1 → S(Uθd,n) has the same connectivity as fn−1.

Then, so long as n− d > 2, the induced map on Thom spaces has connectivity
(2n−d−1) by Lemma 1.1.2, so again it induces an isomorphism on πn+k when
n > k+ d+ 1, hence ψ is a weak-homotopy equavalence.

�
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All of the above is summarized in the following, which proves Proposi-
tion 3.0.7:

Corollary 3.1.7. There is the following diagram of spectra, where the horizontal
sequence is a cofibration and the vertical arrows are homotopy equivalences:

P MT θd G S1 ∧ P

Σ−1MT θd−1 Σ∞B(d)+ S1 ∧ (Σ−1MT θd−1)

MT θd−1

p̃ i

ι

PT

ψ Id∧ψ

'

3.2 Interpretting Induced Maps on Homotopy Groups

In light of Proposition 1.2.3, the maps between spectra in the cofibre sequence
of Proposition 3.0.7 induce maps of bordism groups, whose interpretations are
given here.

The basic template is as follows: suppose E and E ′ are Thom spectra with
n-th spaces Th(Vn) and Th(V ′

n) respectfully, where both Vn and V ′
n are smooth

bundles over manifolds, and let f : E → E ′ be any map. Given a map
Φ : Sn+k → Th(Vn) representing an element of πkE, we arrange (by replac-
ing with homotopic maps) that Φ and f ◦Φ are transverse to the zero sections
of Vn and V ′

n. Then, via the Pontryagin-Thom correspondence, Φ produces
a manifold M with some bundle data D, f ◦Φ produces (M ′, D ′) in a similar
way, and

πk(f)[M,D] = [M ′, D ′]

Then, a procedure is given which explicitly turns the data (M,D) into some-
thing bordant to (M ′, D ′). As long as this procedure is bordism invariant it will
give an explicit formula for πk(f), since any element of πkE can be represented
in this way.

In practice, a bundle Vn will be over something like B(d)n which is not a
smooth manifold, but it will be pulled-back from a bundle Un over something
like Grd(R

n). Then composingΦwith the map Th(Vn) → Th(Un) can be made
transverse to Grd(R

n) to give the manifold and bundle data as above, and the
“lift” Φ|M : M→ B(d)n gives the tangential structure.

Since P ' Σ−1MT θd−1 we can describe its homotopy groups using Propo-
sition 1.2.3, as bordism classes of triples (M,E,ϕ) where M has dimension
(k + 1) + (d − 1) = k + d and E is a θd−1-bundle. However we will use the P
model of this spectrum in the proof of the following.

Lemma 3.2.1. The homomorphism πk(p̃) : πk+1MT θd−1 → πkMT θd sends the
class [M,E,ϕ] to [M,ε⊕ E,ϕ], where ε⊕ E has the natural θd-structure.

Proof. Use the model P for Σ−1MT θd−1. Let qn : S(U
⊥
d,n) → Grd(R

n),
pn : S(U

θ
d,n) → B(d)n, and let θ̃ : S(Uθd,n) → S(Ud,n) be the obvious map

covering θ.
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Take a map Φ : Sn+k → Th(p∗nU
θ,⊥
d,n) so that the composition with

Sn+k Th(p∗nU
θ,⊥
d,n) Th(q∗nU

⊥
d,n)

Φ Th(θ̃)

is transverse to the zero-section S(Ud,n); let M = (Th(θ̃) ◦ Φ)−1(S(Ud,n))

and f̄ = (Th(θ̃) ◦Φ)|M. Note that f̄ factors through a map f : M→ Th(p∗nU
θ,⊥
d,n)

because θ̃ is an isomorphism in each fibre. Then indeedM has dimension k+d,

and the embedding M ⊂ Sn+k induces an isomorphism TM ⊕ νS
n+k

M � εn+k.

Since νS
n+k

M � f∗p∗nU
θ,⊥
d,n, adding f∗p∗nU

θ
d,n to both sides gives an isomorphism

ϕ : TM⊕ εn � εn+k ⊕ f∗p∗nU
θ
d,n

UnlikeUθd,n the bundlep∗nU
θ
d,n → S(Uθd,n)has a canonical non-zero section,

namely σ(b;u) = (b, u;u), which induces an isomorphism p∗nU
θ
d,n � ε⊕ 〈σ〉⊥.

Then Φ defines the element [M, f∗〈σ〉⊥, ϕ] ∈ πkP.
Now consider the composition

Th(p̃n) ◦Φ : Sn+k → Th(p∗nU
θ,⊥
d,n) → Th(Uθ,⊥d,n)

Then composition of this map with the one to Th(U⊥
d,n) is transverse to Grd(R

n).
If M ′ = (Th(p̃n) ◦Φ)−1(Grd(R

n)) and f ′ = Th(p̃n) ◦Φ|M′ , then just as above
there is an induced isomorphism

ϕ ′ : TM ′ ⊕ εn � εn+k ⊕ f ′∗Uθd,n

Then Th(p̃n) ◦Φ defines the element [M ′, f ′∗Uθd,n, ϕ
′] ∈ πkMT θd and

πk(p̃)([M, f
∗〈σ〉⊥, ϕ]) = [M ′, f ′∗Uθd,n, ϕ

′]

However M ′ = (Th(p̃n) ◦ Φ)−1(Grd(R
n)) = Φ−1(S(Uθd,n)) = M. Thus

f ′ = p̃n ◦ f so f ′∗Uθd,n = ε⊕ f∗〈σ〉⊥ and ϕ ′ = ϕ. �

Now consider the spectrum G ' Σ∞B(d)+. An element of πkG is repre-
sented by a map

Γ : Sn+k → Th(Uθd,n ⊕Uθ,⊥d,n)

such that Th(θ̃) ◦ Γ t Grd(R
n); let N = (Th(θ̃) ◦ Γ)−1(Grd(R

n)) and g =

(Th(θ̃) ◦ Γ)|N. Then νS
n+k

N � g∗εn and hence we get an isomorphism

ψ : TN⊕ εn � TSn+k|N � ε
n+k

We also naturally have a θd-bundle over N, namely g∗Uθd,n.

Lemma 3.2.2. πkG is the bordism group of triples [N,ψ, E] where (N,ψ) is a framed
manifold and E is a map N→ B(d).

This can also be seen by noting that Σ∞B(d)+ ' B(d)+ ∧ S, so its k-th
homotopy group is the (un-reduced) k-th homology group associated to the
spectrum S applied to B(d), that isΩfrk (B(d)).

Now we interpret the homomorphism πk(i) : πkMT θd → πkΣ
∞B(d)+.

Suppose [M,E,ϕ] is an element of πkMT θd. Let s be a section of E trans-
verse to the zero-section, and let S = s−1(0), a smooth manifold of dimension k
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with normal bundle νMS � E|S. Denote by j : S ↪→M the inclusion. If we choose
some complement E⊥ of rank r, then the map ϕ̃ defined by

ϕ̃ : TS⊕ E|S ⊕ ε
n ⊕ E|⊥S εd+n+k+r

TM|S ⊕ ε
n ⊕ E|⊥S E|S ⊕ ε

n+k ⊕ E|⊥S

�

ϕ|S⊕Id
E⊥

�

is a stable framing of S.

Lemma 3.2.3. The map πk(i) : πkMT θd → πkΣ
∞B(d)+ is given by

πk(i)[M,E,ϕ] = [S, ϕ̃, E|S]

Proof. Let s̄ be a section of Ud,n, transverse to the zero-section; this induces a
section s : B(d)n → Uθd,n because Uθd,n a pull-back of Ud,n. Note that the map

s⊕ Id : Uθ,⊥d,n → Uθd,n ⊕Uθ,⊥d,n

defined by (s⊕ Id)(b;w) = (b; s(b), w) is not a bundle map so the Thom space
functor doesn’t apply, but it still induces a map (s ⊕ Id)+ on the one-point
compactifications. Since s ⊕ Id ∼ 0 ⊕ Id, the map πk(i) can be described by
composing with (s⊕ Id)+ ∼ Th(0⊕ Id).

Now let Φ : Sn+k → Th(Uθ,⊥d,n) so that Th(θ̃) ◦ Φ t Grd(R
n), and let Γ =

(s⊕ Id)+ ◦Φ. Then the composition

Sn+k Th(Uθ,⊥d,n) Th(Uθd,n ⊕Uθ,⊥d,n) Th(Ud,n ⊕U⊥
d,n)

Φ (s⊕Id)+ Th θ̃

is again transverse to Grd(R
n). Then Φ and Γ simultaneously define triples

(Mk+d, E,ϕ) and (N,ψ, E ′) respectively, whereE = Φ|∗MU
θ
d,n andE ′ = Γ |∗NU

θ
d,n,

and
πk(i)[M,E,ϕ] = [N,ψ, E ′]

Let f = Φ|M, g = Γ |N. Note that s ◦ f defines a section of f∗Uθd,n which is
transverse toM. Then

(s ◦ f)−1(M) = {x ∈M | sf(x) = (f(x); 0)} = Th(θ̃) ◦ Γ−1(Grd(R
n))

That is N is the manifold S described before the statement of the Lemma.
Moreover g∗Uθd,n � f

∗Uθd,n|N, again since s ∼ 0, i.e. E ′ = E|N.
Finally, the framing ofN given by the above is of the formψ : N⊕εn � εn+k,

but the framing ϕ̃ can be interpreted asψ⊕ Idεd+r , and these two framings are
equivalent under the bordism relation. I.e.

(N,ψ, E ′) ∼ (S, ϕ̃, E|S)

�

We want to now describe πk PT : πkΣ
∞B(d)+ → πkMT θd−1, so consider an

element [N,ψ, E] ∈ πkΣ
∞B(d)+. The total space of the sphere bundlep : S(E) →

N is a closed manifold of dimensionk+d−1, and choosing a metric onE induces
an isomorphism δ : TS(E) � TvS(E)⊕ p

∗TN. Then let ψ̃ be the composition

(Id⊕ψ) ◦ (δ⊕ Id) : TS(E)⊕ ε � TvS(E)⊕ p
∗TN⊕ ε � TvS(E)⊕ ε

k+1
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Note that TvS(E) is a rankd−1 bundle over S(E). By Proposition 1.1.9, ε⊕TvS(E)
is naturally isomorphic to p∗E where p : E → N is the bundle projection, and
p∗E does have a θ(d) structure, say λ : S(E) → B(d). Then the decomposition
p∗E � 〈σ〉⊥ ⊕ ε induces a homotopy of its classifying map into BO(d − 1) ↪→
BO(d), which lifts to a homotopy of λ into B(d − 1) ↪→ B(d) by the homotopy
lifting property; this induces a θd−1 structure on TvS(E).

Lemma 3.2.4. The map πk PT : πkΣ
∞B(d)+ → πkMT θd−1 is given by

πk PT[N,ψ, E] = [S(E), TvS(E), φ]

where φ is described in the proof.

Proof. We continue to use the S1 ∧ Pmodel for MT θd− 1.
Let Φ : Sn+k → Th(Uθd,n ⊕ Uθ,⊥d,n) be continuous, let Th(θ̃) denote the map

Th(Uθd,n⊕Uθ,⊥d,n) → Th(Ud,n⊕U⊥
d,n) induced by pulling-back along θ, and let

Φ̃ = Th(θ̃) ◦Φ. LetM = Φ̃−1(S(Ud,n ⊕ 0)), f = Φ̃|M. A diagram might help:

Sn+k

Th(Uθd,n ⊕Uθ,⊥d,n) Th(Ud,n ⊕U⊥
d,n)

Th(ε⊕ p∗nU
θ,⊥
d,n) Th(ε⊕ q∗nU

⊥
d,n)

B(d)n Grd(R
n)

S(Uθd,n) S(Ud,n)

Φ
Φ̃

PTn

Th(θ̃)

P̃Tn

Th(θ̃′)

θd,n

0

0

0

0

LetD = 2 ·D(Ud,n⊕U
⊥
d,n) ⊂ Th(Ud,n⊕U

⊥
d,n). Wlog Φ̃−1(D) is a tubular nhd

of M ⊂ Sn+k, say τ. Then in particular, Φ̃ is transverse to the submanifolds
Grd(R

n), S(Ud,n ⊕ 0), and D(Ud,n ⊕ 0). Let W = Φ̃−1(D(Ud,n ⊕ 0)), let
F = Φ̃|W , let N = Φ̃−1(Grd(R

n)) and f = Φ̃|N: then W is a d-disk bundle over
N with projection π, say, and M is its sphere bundle with projection p = π|M.
Moreover the normal bundle of N inW is isomorphic to f∗Ud,n.

Note that the normal bundle ofD(Ud,n ⊕ 0) in Ud,n ⊕U⊥
d,n is the pullback

of U⊥
d,n along the projection to Grd(R

n); then the normal bundle ofW in Sn+k

is π∗f∗U⊥
d,n since the following commutes

W Ud,n ⊕ 0

N Grd(R
n)

F

π

f

Then there is an isomorphism

ξ : εn+k = TSn+k|W � TW ⊕ π∗f∗U⊥
d,n � π

∗TN⊕ π∗f∗Ud,n ⊕ π∗f∗U⊥
d,n



3.3. SOME COMPUTATIONS 39

Restricting this to N gives the usual isomorphism

ψ : TN⊕ εn � TN⊕ f∗Ud,n ⊕ f∗U⊥
d,n � TS

n+k|N � ε
n+k

Therefore Φ̃ defines the element [N,ψ, f∗Ud,n] ∈ πkΣ
∞BO(d)+. By definition

F factors through Th(Uθd,n⊕Uθ,⊥d,n) viaΦ|W , mappingW toD(Uθd,n⊕ 0) andN
to B(d)n; in particular f∗Ud,n comes with a θ(d)-structure. Thus Φ (without a
tilde) defines an element [N,ψ, f∗Ud,n] ∈ πkΣ

∞B(d)+. Abbreviate E = f∗Ud,n.

Now consider Φ composed with PTn : Th(Uθd,n ⊕ Uθ,⊥d,n) → Th(ε ⊕ p∗nU
θ,⊥
d,n).

Then the care taken to arrange Φ ensures that Th(θ̃ ′) ◦ PTn ◦Φ is transverse to
the zero-section S(Ud,n) of ε⊕ p∗nU

⊥
d,n. Then

(Th(θ̃ ′) ◦ PTn ◦Φ)−1(S(Ud,n)) = Φ
−1(S(Uθd,n ⊕ 0)) =M

If g = (Th(θ̃ ′) ◦ PTn ◦Φ)|M we get εn+k � TS|M � TM⊕ ε⊕ g∗q∗nU
⊥
d,n and in

particular

ϕ : TM⊕ εn+1 � εn+k+1 ⊕ g∗p∗nUd,n � ε
n+k+2 ⊕ g∗〈σ〉⊥

Regarding M as a sphere bundle over N, g is a map of sphere bundles and

〈σ〉⊥ � TvUd,n so g∗〈σ〉⊥ � TvM. Therefore P̃Tn ◦ Φ̃ determines the element
[S(E), TvS(E), ϕ] ∈ πkMTO(d− 1), which we wish to upgrade to an element of
πkMT θ(d) by showing that TvS(f

∗Ud,n) has a natural θ(d−1)-structure. Then

πk PT[N,ψ, E] = [S(E), TvS(E), ϕ]

It remains to describe the relation between ψ and ϕ. If the isomorphism ξ is
restricted toM = S(E) it becomes

εn+k � p∗TN⊕ p∗f∗Ud,n ⊕ p∗f∗U⊥
d,n � p

∗TN⊕ ε⊕ TvS(E)⊕ p
∗f∗U⊥

d,n

Adding p∗f∗Ud,n to both sides results in ϕ, and it is seen from this that ϕ =

(Id⊕ψ) ◦ (δ ⊕ Id). Intuitively the point is that ξ is supposed to interpolate
between ϕ and ψ.

�

3.3 Some Computations

Using the above interpretations, some computations can be made for small
values of k and d. First, we will finally give a proof of

Proposition 1.2.7. Let θ : B→ BSO be a stable tangential structure, and let θd, θd+1
be its restriction to BSO(d) and BSO(d + 1) respectively, and suppose B(d + 1) =

θ−1 BSO(d+ 1) is connected. Then there is a short-exact sequence

0→ Z/Eulθd+1 → π0MT θd → Ω
θd+1

d → 0

Moreover, this sequence is split except possibly for the case where d + 1 ∈ 4N. If
B = BSO and θ is the identity then it always splits.
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Note that by Lemma 3.2.3, Eulθd+1 = Im(π0i : π0MT θd → π0Σ
∞B(d+ 1)+)

so Eulθd+1 is indeed a subgroup of Z.
Recall that

Euln =






0 if n is odd

Z if n ≡ 0 mod 4

2Z if n ≡ 2 mod 4

Lemma 3.3.1. If n . 0 mod 4 then Eulθn = Euln for any θ : B→ BSO.

Proof. If n ≡ 1 or 3 mod 4 then 〈e(V), [M]〉 = 0 for any rank n bundle, since
the Euler class of an odd-rank bundle is 2-torsion and a stable isomorphism

V �s TMwould meanM is orientable. Therefore Eulθn = Euln = 0.
Since θn : B(n) → BSO(n) is pulled back from a tangential structure over

BSO(n + 1), it follows from Lemma 5.6 of [8] that in particular TSn admits a
θn structure, and if n is even then 〈e(TSn), [Sn]〉 = χ(Sn) = 2: it follows that
Eulθn ⊃ 2Z when n is even. When n ≡ 2 mod 4 then Euln = 2Z as above,
and since the bundle V is required to be stably isomorphic to TM these bundles
have the same wn and hence their Euler numbers have the same parity, i.e.

〈e(V), [M]〉 cannot be odd and so Eulθn = 2Z = Euln. �

Note that when n ≡ 0 mod 4 then there is a disparity: a classical theorem
of Rohlin [28] states that ifM is a smooth, closed, spin 4-manifold then σ(M) is
divisible by 16, and since the signature and Euler characteristic of a manifold

are congruent modulo 2 it follows that Eulspin4 , Z; however Eul4 = Z since

χ(CP2#(S1 × S3)) = 1.

Proof of Proposition 1.2.7. The tangential structure θd+1 : B(d+1) → BSO(d+1)

leads to a cofibre sequence of spectra, as in Proposition 3.0.7:

MT θd+1 Σ∞B(d+ 1)+ MT θd
i PT

Focusing on the π0 region yields

π0MT θd+1 π0Σ
∞B(d+ 1)+ π0MT θd π−1MT θd+1 0

π0(i) π0PT

According to Lemma 3.2.3, the map π0(i) takes a tuple [Md+1, Ed+1, φ] to

〈e(E), [M]〉, and it follows that Imπ0(i) = Eulθd+1. Then the identifications

π−1MT θd+1 � Ω
θd+1

d and π0Σ
∞B(d+ 1)+ � Z yeild the short exact sequence

0→ Z/Eulθd+1 → π0MT θd → Ω
θd+1

d → 0

The homomorphism π0PT : π0Σ
∞B(d+ 1)+ → π0MT θd takes a framed 0-

manifold with rank d + 1 θd+1-bundle [M,ψ, E] to [S(E), TvS(E), ϕ] for a par-
ticular stable isomorphism ϕ, but since M is a compact 0-manifold the sphere
bundle S(E) is really a finite disjoint union of spheres, TvS(E) = TS(E), and φ
can be taken to be the identity. In particular, a generator of π0Σ

∞B(d+ 1)+ is
given by g = [∗,Rd+1, ∗] where Rd+1 is given a θd+1 structure covering the
usual orientation, and

π0PT(g) = [Sd, TSd, Id]
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Therefore, to give the splittings sd : π0MT θd → Z/Eulθd+1 it suffices to give a
homomorphism taking the class [Sd, TSd, Id] to 1. These are easy to describe
using familiar topological invariants, and take the same form as the splittings
given in Appendix A of [6]. Of course, the splitting depends on the residue
class of d mod 4.

If d ≡ 0 mod 4, then Z/Eulθd+1 = Z and for any oriented d-manifold
M it holds that σ(M) ≡ χ(M) mod 2. Then the splitting can be given by
[M,E,ϕ] 7→ 1

2
(χ(M) − σ(M)), and indeed sd[S

d, TSd, Id] = 1.

If d ≡ 2 mod 4, then again Z/Eulθd+1 = Z, and χ(M) is always even and
for any rank d bundle E → M with E �s TM it follows that its Euler number
is even as well. Then the splitting can be given by sd[M,E,ϕ] =

1
2
〈e(E), [M]〉,

and again sd[S
d, TSd, Id] = 1.

If d ≡ 1 mod 4 then Z/Eulθd+1 = Z/2 and the splitting can be given by
M 7→ Kerv(M), where Kerv(M) is the Kervaire semi-characteristic.

If d ≡ 3 mod 4 then Eulθd+1 isn’t known for arbitrary θ, but for the case of
orientation Z/Euld+1 = 0 so there is nothing to split and π0MTSO(4k − 1) �

Ω4k−1.

Note that there is a non-trivial issue of whether 〈e(E), [M]〉 and Kerv(M) are
well-defined with respect to the bordism relation in π0MT θd. However, in
Appendix A of [6] it is shown that this is the case for π0MTSO(d), and since
there is a natural forgetful homomorphism π0MT θd → π0MTSO(d) it follows
that these invariants are well-defined for π0MT θd as well. �

Now we restrict to the case of the tangential structure BSO(d) → BO(d) and
d = 2. The terms in the cofiber sequence given in Proposition 3.0.7 are then
MTSO(2), Σ∞BSO(2)+, and MTSO(1) ' S−1.

Much is known about the homotopy groups of S, especially in low degrees.
In particular

Lemma 3.3.2. For all k, πkS � Ω
fr
k , the k-th framed bordism group.

Moreover (see for example [27, p.15])

1. π0S � Z.

2. π1S � Z/2, generated by η = [T,L], where T is the circle-group and L is its
Lie-group framing. The trivialization L is same as the trivialization induced by
being an oriented 1-manifold.

3. π2S � Z/2, generated by η2.

4. π3S = Z/24, generated by ν = [S3,L3] where L3 is the Lie group framing on
S3, and η3 , 0 (in particular it is the unique element of order 2).

5. π4S = π5S = 0.

6. Finally, π6S � Z/2, where the non-trivial element is ν2.

As for Σ∞BSO(2)+, note that for any pointed space X there is a natural
splitting πkΣ

∞X+ � πkΣ
∞X⊕ πkS. Liulevicius [18] proved the following:
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Lemma 3.3.3. For k 6 8 the values of πkΣ
∞ BSO(2) are given by

k 1 2 3 4 5 6 7 8
πkΣ

∞ BSO(2) 0 Z 0 Z Z/2 Z Z/2 Z⊕Z/2

An element [M,L,ϕ] ∈ πkMTSO(1) is a (k + 1)-manifold M, an oriented
line bundle L, and an isomorphismφ : TM⊕ ε � L⊕ εk+1. The orientation on L
induces a trivialization, sayω, and so TM is stably framed via the isomorphism
(ω⊕ Id) ◦ϕ. In order to help with computations we will want the following:

Lemma 3.3.4. The isomorphism πkMTSO(1) � πkS
−1
� Ωfrk+1 sends the tuple

[M,L,ϕ] to [M, (ω⊕ Id) ◦ϕ].

Then we get

Corollary 3.3.5. On the subgroup 0⊕Ωfrk ⊂ πkΣ
∞BSO(2)+, the map

πk PT : 0⊕Ωfrk → πkMTSO(1) � Ωfrk+1

agrees with (−)× η.

Proof. An element in this subgroup has the form x = [N,ϕ, ε2], so πk PT(x) =
[N× S1, φ×ω] = x× [S1,ω]. Depending on orientation conventions,ω agrees
with L up to sign, and it follows that [S1,ω] = η. �

Finally recall from Proposition 1.2.7 that π0MTSO(2) � Ω2 ⊕Z � Z.

Now apply the long exact sequence of homotopy groups to the cofibre se-
quence of spectra given by Proposition 3.0.7. The portion of the sequence
which is relevant to k = 1 and 2 is then:

0 π2MTSO(2) π2Σ
∞BSO(2)+ π2MTSO(1)

π1MTSO(2) π1Σ
∞BSO(2)+ π1MTSO(1) π0MTSO(2)

π2(i) π2(PT)

∂2

π1(i)

π1(PT) ∂1

where the isomorphism πiMTSO(1) � πi−1Σ
−1MTSO(1) identifies the bound-

ary map ∂i with πi−1(p̃). Substituting the known values of these groups yields:

0 π2MTSO(2) Z⊕Z/2 Z/24

π1MTSO(2) Z/2 Z/2 Z

π2(i) π2(PT)

∂

Immediately it is seen that π2MTSO(2) is a subgroup of Z ⊕ Z/2. By The-

orem 2.2.3 the manifold #4CP2 represents an element of π2MTSO(2) with
non-zero signature, so since the signature is a homomorphism to Z it follows
that π2MTSO(2) � Z or Z⊕Z/2.

Proposition 3.3.6. π2MTSO(2) � Z, generated by g4 = [#4CP2, V(3,1,1,1), ϕ4].
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Proof. Suppose π2MTSO(2) � Z⊕Z/2, and consider

π2(i) : Z⊕Z/2 ↪→ Z⊕Z/2

There is a unique element of Z⊕Z/2 of order 2, namely (0, 1), and so it must
be the case that π2(i)(0, 1) = (0, η2). Then by exactness π2(PT)(0, η2) would be
0; however π2 PT(0, η2) = η3 , 0 by Corollary 3.3.5.
g4 is a generator since it has signature 4 and by Proposition 2.2.7 all elements

of π2MTSO(2) have signature divisible by 4. �

From the right side of the above sequence it follows by exactness that the
map π1MTSO(2) → Z/2 is 0, and so π1MTSO(2) = 0 iff π2(PT) is surjective.

Lemma 3.3.7. The kernel of π2 PT is generated by (12, 1).

Proof. Since π2MTSO(2) = 〈g4〉 is suffices to show

π2(i)(g4) = (12, 1)

Consider the homomorphism

e : π2Σ
∞BSO(2)+ →Z

[N, f, E] 7→〈e(E), [N]〉

This is split-surjective: send the integer 1 to the triple [S2, ψ, γ1] where ψ is the

stable framing of S2 and γ1 is the tautological line bundle over S2 � CP1. Then
indeed 〈e(γ1), [S

2]〉 = 1.
For any [M,E,ϕ] ∈ π2MTSO(2), let S be the zero-locus of a section which

is transverse to the zero-section of E, and j : S ↪→ M its inclusion. Then by
Lemma 3.2.3 we have

e◦π2(i)[M,E,ϕ] = 〈e(E|S), [S]〉 = 〈e(E), j∗[S]〉 = 〈e(E), e(E)∩[M]〉 = 〈e(E)2, [M]〉

where the second-to-last equality uses the fact that j∗[S] is Poincare-dual to
e(E), and the last equality uses the duality between cup- and cap- product. In
particular

e ◦ π2(i)(g4) = 〈(3, 1, 1, 1)2, [#4CP4]〉 = 12

and hence π2(i)(g4) = (12, x) for some x ∈ Z/2. If x = 0 then Coker(π2(i)) �
Z/12 ⊕ Z/2, which cannot inject into Z/24 because it contains too many ele-
ments of order 2; therefore x = 1. �

Proposition 3.3.8. π1MTSO(2) = 0.

Proof. Consider (1, 0) ∈ π2Σ
∞BSO(d)+. Since the kernel of π2(PT) is generated

by (12, 1) the class n · (1, 0) is in the kernel iff 24 divides n. Hence π2(PT)(1, 0)
has order 24, so π2(PT) is surjective. �

One extra outcome of this computation is two families of representatives for
elements ofΩfr3 . If Σg denotes the oriented surface of genus g, then Σg with the
stable framing induced by embedding into R3 represents the trivial element of
Ωfr2 . Because we have a surjection

κ : Z→Ωfr3 � Z/24

n 7→π2(PT)(n, 0)

in particular we have
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Corollary 3.3.9. Let γS = κ(1) ∈ Ωfr3 . Then n · γS is represented by the circle
bundle Sn → Σg of Euler number n, framed with the orientation of TvSn and taking
the trivial stable framing of Σg. In particular every element of Ωfr3 can be represented
by a circle bundle over Σg for any g.

Observe that γS is represented by the manifold S3 (by setting g = 0), framed
by viewing it as the total space of the Hopf fibration and framing its tangent
bundle with the orientation on the vertical tangent bundle and taking the trivial
stable framing on S2. I’m not sure if this is the same (up to framed bordism) as
the Lie group framing. More generally, κ(n) is a generator for any n coprime
to 24.

Note that since ker(π2 PT) is generated by (12, 1) we have

π2 PT(n, x) = π2 PT(n+ 12, x+ 1)

for any n ∈ Z and x ∈ Z/2. In particular every class inΩfr3 can be represented
by a circle bundle over (T2,L2), since κ(n) = π2 PT(n+ 12, 1).

One more weird corollary along this vein:

Corollary 3.3.10. Consider the circle bundle S12 → Σg of Euler number 12, and
framed as above. Then this is framed bordant to (T3,L3).

Proof. π2 PT(12, 0) = π2 PT(24, 1) = π2 PT(0, 1) = η3. �

Return attention to MTSO(2). Using the result of Liulevicius we can attempt
to continue climbing the long exact sequence.

Proposition 3.3.11. π3MTSO(2) � Z/24.

Proof. Consider the portion

π4MTSO(1) → π3MTSO(2) → π3Σ
∞BSO(2)+ → π3MTSO(1)

Since π4S = π5S = 0 then π3MTSO(2) � πst3 BSO(2)⊕ π3S � Z/24. �

Proposition 3.3.12. π4MTSO(2) � Z.

Proof. Consider

π5Σ
∞BSO(2)+ → π5MTSO(1) → π4MTSO(2) → π4Σ

∞BSO(2)+ → π4MTSO(1)

The last term is 0 and π4Σ
∞BSO(2)+ � Z so π4MTSO(2) surjects onto Z, and

the first two terms are both Z/2. Hence the proposition is equivalent to the
claim that

π5 PT : π5Σ
∞BSO(2)+ → π5MTSO(1) � Ωfr6

is an isomorphism. The non-trivial element of Ωfr6 is [S3 × S3,L3 × L3], so we
seek a pre-image.

Consider the element [S3 × S2,L3 ×ψ2, 0× γ1] ∈ π5Σ
∞BSO(2)+ where ψ2

is the usual framing of S2 and p : γ1 → S2 is the tautological line bundle. Note
0× γ1 is isomorphic to the pull-back of γ1 along the projection to S2:

0× γ1 γ1

S3 × S2 S2

p̄ p

pr
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Then applying π5 PT results in [S(0× γ1), TvS(0× γ1), Id⊕p̄∗(L3 ×ψ2)]. Note
that S(0 × γ1) is diffeomorphic to S3 × S3 and the vertical tangent bundle has
the form 0× TvS(γ1). The framing is coming from

TS(0× γ1) � TvS(0× γ1)⊕ p̄
∗T(S3 × S2) �s TvS(0× γ1)⊕ ε

5

and with respect to these identifications it takes the form

L3 × (Id⊕p∗ψ2) : TS
3 × TS3 � ε3 × (TvS(γ1)⊕ ε

2)

Therefore as a framed manifold it is equal toW := (S3×S3,L3×ω◦(Id⊕p∗ψ2))
where ω is the trivialization of TvS(γ1) induced by being an oriented line
bundle.

It now only remains to show thatW is in the same class as (S3×S3,L3×L3).
The collection of framed bordism groups forms a graded ring and in particular
there is a surjective homomorphism

[S3,L3]× (−) : Ωfr3 → Ωfr6 � Z/2

It follows that every odd multiple of [S3,L3] is mapped to the non-zero el-
ement, and since [S3,ω ◦ (Id⊕p∗ψ2)] = π2 PT(1, 0) is a generator of Ωfr3 by
Corollary 3.3.9 it follows that [W] = [S3 × S3,L3 × L3]. Therefore π5 PT is an
isomorphism and π4MTSO(2) � Z. �

Finally, consider MTSO(3). In Proposition 2.2.1 we constructed an element

g2 ∈ π1MTSO(3) which was represented by (CP2#CP2)0.

Proposition 3.3.13. The group π1MTSO(3) is isomorphic to Z, generated by the
element g2. Moreover, π1p̃(g4) = 2g2, since they have the same signature.

Proof. Using the cofibre sequence with d = 3we see

π2MTSO(2) π1MTSO(3) π1Σ
∞BSO(3)+ π1MTSO(2)

π1p̃

From the above computation we have π1MTSO(2) = 0 and π2MTSO(2) =

〈g4〉; π
st
1 BSO(3) vanishes since the space BSO(3) is simply connected, so the

third term in this sequence isΩfr1 � Z/2.
The homomorphism π1p̃ preserves the signature so π1p̃(g4) , 0, hence this

homomorphism is injective. Therefore π1MTSO(3) is a Z extension of Z/2.

Proposition 2.2.1 gives an element g2 = [#2CP2, 〈s〉⊥, Id] ∈ π1MTSO(3) which
is indivisible and non-torsion, but since σ1,3(g2) = 2 it cannot be in the image
of π1p̃, so the extension takes the form Z→ Z→ Z/2. �
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Appendix A

The Euler Class

The purpose of this Appendix is to provide a proof of the following Theorem:

Theorem A2. Letn be even, letX be finite CW complex of dimensionn, and letV0, V1
be two oriented rank n vector bundles over X. If V0⊕ ε � V1⊕ ε and e(V0) = e(V1),
then V0 � V1.

This theorem is apparently well-known, though the author of this thesis
could not find a reference in the literature. Observe that Theorem A2 is false
when n is odd: all spheres are stably parallelizable and all odd-dimensional
spheres have vanishing Euler class, but most odd-dimensional spheres are not
parallelizable.

This Appendix will derive basic properties of the Euler class by elementary
means. The proof of Theorem A2 will employ a lemma about homotopy fibres,
Lemma A.2.1, which produces a Z ×Z array of exact sequences of homotopy
groups out of a commutative square of pointed spaces. As an other application
of this lemma, we will prove

Theorem A1. Let X be a finite CW complex of any dimension n > 0, and let V → X

be an oriented rank n vector bundle. Then V admits a non-zero section iff e(V) = 0.

This theorem is certainly well-known, and we present a proof for the sake
of completion.

A.1 Basics

It will be tacitly assumed that all spaces are CW complexes in order to have a
nice theory of bundles.

Recall that an orientation class (or Thom class) of a rank n vector bundle
V → B is a cohomology class u ∈ Hn(V, V0;Z) such that for each fibre (R,R−

0) � (F, F − 0) ↪→ (V, V0) the restriction of u to (F, F − 0) is a generator of
Hn(Rn,Rn−0;Z) � Z. V is defined to be orientable if it admits and orientation
class, and (V, u) is called an oriented bundle (u is often omitted from the
notation).

If (V, u) and (V ′, u ′) are two oriented bundles of the same rank (possibly
over different spaces), say a bundle map φ : V → V ′ is orientation preserving
if φ∗u ′ = u, and orientation reversing otherwise. Since a bundle map is an
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isomorphism when restricted to each fibre over the domain, it follows that over
each component it either preserves or reverses orientation.

Definition A.1.1. Let (V, u) be an oriented bundle of rank n over B, with zero section
z : (B, ∅) → (V, V0). The Euler class is defined as

e(V) = z∗u ∈ Hn(B;Z)

Immediately it follows that ifφ : V → V ′ is an orientation preserving bundle
map covering f : B→ B ′ then f∗e(V ′) = e(V), so in particular it is natural with
respect to pullbacks. Hence if

e = en ∈ Hn(BSO(n);Z)

denotes the Euler class of the universal oriented n-plane bundle, then for any
oriented bundle (V, u) and classifying map f : B → BSO(n), it is the case that
e(V) = f∗e. Let en : BSO(n) → K(Z, n) represent the cohomology class.

Lemma A.1.2. If V admits a non-zero section, then e(V) = 0. Hence the composition
en ◦ sn−1 : BSO(n− 1) → BSO(n) → K(Z, n) is null-homotopic.

Proof. Let s : (B, ∅) → (V, V0) be a non-zero section. Then s factors through
(V0, V0) so there is the commutative diagram

Hn(V, V0) Hn(B)

Hn(V0, V0) = 0

s∗

hence s∗ = 0. But all sections are homotopic (as maps of pairs (B, ∅) → (V, V0))
so z∗ = s∗ and in particular e(V) = 0.

The second assertion follows from the fact that if X is a CW complex and
f : X → K(G,n) is a map inducing 0 on all homotopy groups, then f is null-
homotopic. Since a rank n bundle admits a non-zero section iff its classifying
map lifts to BSO(n − 1), the first part of the lemma implies that for all CW
complexes B the map

(ensn−1)∗ : [B,BSO(n− 1)] → [B,K(Z, n)]

is the 0 map, so in particular it vanishes for homotopy groups. �

Using Grassmannian models for classifying spaces the standard stabiliza-
tion maps are cofibrations, so using the homotopy extension property en can
be homotoped so that ensn−1 is constant.

In the particular case that V is the tangent bundle of an oriented manifold
(M, [M]), the Euler class can be computed in terms of ranks of homology groups,
or by counting cells in a cell structure:

Lemma A.1.3. χ(M) = 〈e(M), [M]〉

Proof. This is proven in [24, Corollary 11.12] using mostly algebraic computa-
tions in cohomology. �
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For example 〈e(Sn), [Sn]〉 = χ(Sn) = 2 if n is even and 0 if n is odd, since
Sn has a CW structure with one 0-cell and one n-cell. If µn is the dual of [Sn]
then it follows that e(S2n) = 2µ2n and e(S2n+1) = 0.

Lemma A.1.4. For all n there is a fibration Sn → BSO(n) → BSO(n+ 1).

Proof. SO(n + 1) acts smoothly on Sn by (A, v) 7→ Av. The isotropy subgroup
of en+1 is SO(n)⊕ [1], and so the map SO(n+ 1) → Sn sendingA toAen+1 is a
fibre bundle with fibre SO(n). In particular Sn � SO(n + 1)/SO(n). Then, for
any topological group G and subgroup H there is a fibration

G/H→ BG→ BH

�

Corollary A.1.5. The stabilization map sn : BSO(n) → BSO(n+ 1) is n-connected.
I.e. πi(sn) is an isomorphism for i < n and surjective when i = n.

Proposition A.1.6. The maps in the long exact sequence associated to this fibration
are interpretted as follows:

1. For every k the map πk BSO(n) → πk BSO(n + 1) takes a rank n bundle
E→ Sk to E⊕ ε.

2. The map πnS
n → πn BSO(n) takes the homotopy class of IdSn to the isomor-

phism class of TSn.

3. The boundary map πn+1 BSO(n + 1) → πnS
n takes a bundle to its Euler

number.

Proof. The first item is clear. For the second item it is traditional to cite Steenrod
[31, Section 23].

For the third item, the case where n is odd is covered in the proof of Propo-
sition A.3.1. When n is even, every rank n + 1 bundle over Sn+1 has trivial
Euler number, since the cohomology of Sn+1 contains no 2-torsion. Moreover
TSn is non-trivial since χ(Sn) = 2 , 0, so the next map is injective: therefore
the boundary map is null in this case. �

Corollary A.1.7. πnS
n → πn BSO(n) is injective when n is even.

Proof. This map sends [Idn−1S ] to TSn−1. To show TSn−1 is not torsion, note
that

e∗ : πn−1 BSO(n− 1) → πn−1K(Z, n− 1) � Hn−1(Sn−1;Z)

is a homomorphism, so e(k · TSn−1) = k · e(TSn−1) = 2kµn−1 is non-zero for
k , 0, and hence k · TSn−1 is non-zero for all non-zero k. �

Aside: this map is not injective for n odd, because in that case πn BSO(n)

is in fact 2-torsion. The question of whether this map is 0 or not is famously
known to be answered by “Yes if n = 1, 2, 3 and No otherwise” but the proof is
not possible by elementary means so it is not discussed here.

Corollary A.1.8. If n > 1 is odd then every rank n vector bundle over Sn admits a
non-zero section.
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Proof. In other words, the lemma asserts that πn BSO(n − 1) → πn BSO(n) is
surjective when n is odd. Consider the long exact sequence

· · · → πn BSO(n− 1) → πn BSO(n) → πn−1S
n−1 → πn−1 BSO(n− 1) → . . .

To prove the lemma it suffices to know that πn−1S
n−1 → πn−1 BSO(n − 1) is

injective, which follows since n− 1 is even. �

A.2 Lemma About Homotopy Fibres

The following fact is very useful.

Lemma A.2.1. Assume we are given a commutative diagram of pointed spaces:

C
h1 // D

A
h0 //

v0

OO

B

v1

OO

Then, after taking the standard homotopy fibres of all the maps, there are obvious
continuous functions between homotopy fibres

hofib(h1) // C // D

hofib(h0)

v

OO

// A //

OO

B

OO

hofib(v0)

OO

h // hofib(v1)

OO

and a natural homeomorphism hofib(h) � hofib(v).

Proof. Explicitly, define:

hofib(h0) = {(a, ρ) ∈ A× BI | ρ(0) = h0(a) and ρ(1) = b0}

hofib(h1) = {(c, γ) ∈ C×DI | γ(0) = h1(c) and γ(1) = d0}

hofib(v0) = {(a, ν) ∈ A× CI | ν(0) = v0(a) and ν(1) = c0}

hofib(v1) = {(b, γ) ∈ B×DI | γ(0) = v1(a) and γ(1) = d0}

Each of these homotopy fibres are given the subspace topology, and are
naturally pointed with the base point of the domain and the constant path at
the base point in the codomain. (Here constant paths will be denoted by their
value.)

Then define the pointed mapsh : hofib(v0) → hofib(v1) and v : hofib(h0) →
hofib(h1) by

h(a, ν) = (h0(a), h1 ◦ ν) and v(a, ρ) = (v0(a), v1 ◦ ρ)

h and v have the correct range since the initial maps are strictly commutative
and pointed: explicitly, h1ν is a path inD from v1h0(a) to d0 because h1ν(0) =
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h1v0(a) = v1h0(a) and h1ν(1) = h1(c0) = d0; analogously for v. They are
continuous because they are coordinate-wise continuous.

Then write

hofib(h) = {
(
(a, ν), η

)
∈ hofib(v0)×hofib(v1)

I |η(0) = h(a, ν) and η(1) = (b0, d0)}

hofib(v) = {
(
(a, ρ), δ

)
∈ hofib(h0)×hofib(h1)

I |δ(0) = v(a, ρ) and δ(1) = (c0, d0)}

Since (X × Y)Z � XZ × YZ, η decomposes as (ηB, ηD) where ηB ∈ BI and
ηD ∈ (DI)I; anologously write δ = (δC, δD). Let s : I2 � I2 swap the two
coordinates. Now define f : hofib(v) → hofib(h) by

f
(
(a, ρ), (δC, δD)

)
=

(
(a, δC), (ρ, δDs)

)

It must be verified that f has the correct codomain. First, (a, δC) ∈ hofib(v0)
because by definition δC(0) = v0(a) and δC(1) = c0. Next, (ρ, δDs) ∈ hofib(v1)

I

because for all s the function δDs( , s) = δD(s, ), which is a path from v1ρ(s)

to d0. Lastly, (ρ, δDs) is a path from (h0(a), h1 ◦ δC) to (b0, d0), because
for each s the function δD( , s) is a path from h1δC(s) to d0, so in particular
δDs(s, 0) = δD(0, s) = h1δC(s).
f is continuous because again all of its coordinates are. Finally, f is a home-

omorphism because its continuous inverse is given by the formula

f−1
(
(a, ν), (ηB, ηD)

)
=

(
(a, ηB), (ν, ηDs)

)

�

A.3 Proof of Theorem A1

Theorem A1 is proven by showing that the n-th Moore-Postnikov stage of the
stabilization map sn−1 : BSO(n− 1) → BSO(n) is given by the homotopy fibre
of the map e : BSO(n) → K(Z, n). For suppose Fn is the n-th stage and is
classified by e.

Since the map sn−1 : BSO(n − 1) → BSO(n) is already (n − 1)-connected,
BSO(n) is already the i-th Moore-Postnikov stage for i < n and sn−1 is its own
lift, so Fn would be the first non-trivial stage. Fn → BSO(n) is a principal
K(Z, n − 1) fibration classified by e, hence for any map V : X → BSO(n) the
cohomology class e(V) is the obstruction to liftingV to Fn. IfX isn-dimensional
then there are no higher obstructions, so the Euler class is the obstruction to
lifting V all the way up the Moore-Postnikov tower, and hence to BSO(n− 1).

Let Fn = hofib(e : BSO(n) → K(Z, n)). Then Fn → BSO(n) is the pull-back of
the path-loop fibration of K(Z, n), so is a principal K(Z, n− 1) fibration classi-
fied by e. Since e ◦ sn−1 can be made constant by Lemma A.1.2, sn−1 admits a
lift

Fn ∗

BSO(n− 1) BSO(n) K(Z, n)

f
g

sn−1 e

Proposition A.3.1. For all n, Fn is the n-th Moore-Postnikov stage of sn−1.
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Proof. Specifically, the following must be proven:

1. πi(g) is an isomorphism for i < n and surjective for i = n, and

2. πi(f) is an isomorphism for i > n and injective for i = n.

The second item follows immediately from the long exact sequence for Fn →
BSO(n) → K(Z, n).

Consider in general a continuous map i : A → X, and let F(i) be the homo-
topy fibre. Suppose Sk−1 and Dk are based at the vector ek. Given a pointed
map of pairs

Sk−1 A

Dk X

f̃

f

one can construct a kind of adjoint

Sk−1 P•X

∗ X

f̂

where P•X is the space of paths in X ending at the basepoint, by

f̂x(t) = f
(
(1− t)x+ tek

)

In fact, for all x ∈ Sk−1, f̂x(0) = i ◦ f̃(x) and f̂x(1) = ∗, so f̂ can also describe a
map Sk−1 → F(i) by

f̂(x) =
(
f̃(x),

[
t 7→ f

(
(1− t)x+ tek

)])

This construction defines a well-defined isomorphism

ψ : πk(X,A) → πk−1F(i)

by [37, 6.1.3]. Moreoever, ifA = ∗ then this map agrees with the boundary map
∂ : πkX � πk−1ΩX from the long exact sequence of the path-loop fibration of X.

Now consider an oriented rank n vector bundle π : V → B with metric.
Then there is a Thom class τ ∈ Hn(DV, SV ;Z), with the property that for any
point b ∈ B the restriction τb := τ|b is a generator of Hn(DVb, SVb) � Z. The
Thom class can be represented by a map of pairs

SV ∗

DV K(Z, n)
e

where e represents the Euler class under the homotopy equivalence DV '
B. Choosing a point b ∈ B and a basepoint b ′ ∈ SVb, we apply the above
construction to get
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ΩK(Z, n)

SVb SV ∗

b DV K(Z, n)
e

The the claim is that the map SVb → ΩK(Z, n) is n-connected; for this it
suffices to show it is an isomorphism on πn−1. This follows because this map
is ψ(τ|b), and by definition τb is a generator of Hn(DVb, SVb;Z) � πnK(Z, n),
and furthermore ψ is an isomorphism.

Now apply this to the universal bundle γn → BSO(n). It follows from
Lemma 1.1.7 that there is a homotopy equivalence S(γn) ' BSO(n − 1), and
the universal Thom class is identified with the universal “relative Euler class”

BSO(n− 1) ∗

BSO(n) K(Z, n)
e

Then applying Lemma A.2.1 we get the square of homotopy fibre sequences:

Gn Sn−1 K(Z, n− 1)

BSO(n− 1) BSO(n− 1) ∗

Fn BSO(n) K(Z, n)
e

Then the map Sn−1 → K(Z, n − 1) is n-connected, and hence the map Gn →
Sn−1 is a model for the (n − 1)-connected cover. It then follows that the map
BSO(n− 1) → Fn is n-connected, completing the proof. �

Some corollaries can be derived from this. Consider the diagram

πn−1 BSO(n− 1)

πn−1S
n−1

�

φ //

cn−1

OO

πn−1K(Z, n− 1)

πn BSO(n)

∂

OO

e∗ // πnK(Z, n)

�

OO

First, sinceφ is an isomorphism it follows that for every oriented rankn bundle
V over Sn, ∂(V) = ±e(V). Then, since cn−1([Id]) = TS

n−1 by Proposition A.1.6
it follows moreover that there is an oriented rank n bundle over Sn with Euler
number ±1 iff Sn−1 is paralellizable.
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If we discussed Stiefel-Whitney classes and the relation e(Vn) � wn mod 2
when we would get the following corollary:

Corollary A.3.2. Consider the map wn : BSO → K(Z/2, n). Then πn(wn) is
surjective iff Sn−1 is parallelizable.

Proof. There are the following commutative diagrams, the first inducing the
second:

BSO(n) K(Z, n)

BSO K(Z/2, n)

e

s
w̃n

r2

wn

πn BSO(n) πnK(Z, n)

πn BSO πnK(Z/2, n)

πne

πns
πnw̃n

πnr2

πnwn

where w̃n represents the class wn ∈ Hn(BSO(n);Z/2). It follows that πn(wn)
is surjective iff πn(e) is.

�

A.4 Proof of Theorem A2

The proof of Theorem A2 is more involved. In the following it will be always
be assumed that n is even.

For brevity, let s∗ : πn BSO(n) → πn BSO(n+ 1) denote the homomorphism
induced by sn, and let e∗ : πn BSO(n) → Hn(Sn;Z) send a bundle V to its Euler
class.

Note that the set [Sn, K(Z, n)] has two group operations: one coming
from point-wise multiplication using an H-space structure on K(Z, n), giv-
ingHn(Sn;Z); and the other coming from the co-group structure on Sn, giving
πnK(Z, n). These two operations satisfy the interchange law and so by the
general Eckmann-Hilton principle they agree.

Lemma A.4.1. The function e∗ is a homomorphism.

Proof. Explicitly, the function e∗ takes a homotopy class [f] ∈ πn BSO(n) and
returns [e ◦ f] ∈ πnK(Z, n) � H

n(Sn;Z). Given continuous maps f, g : Sn →
BSO(n), the element e∗([f] + [g]) is represented by

Sn Sn ∨ Sn BSO(n) K(Z, n)
pinch f∨g e

Then the equation e∗([f] + [g]) = e∗([f]) + e∗([g]) corresponds to the equation
e ◦ (f∨ g) = (e ◦ f)∨ (e ◦ g).

For a class [f] ∈ πnX for any X, we have −[f] = [f ◦ r] where r : Sn → Sn is
any map of degree −1. Thus for [f] ∈ πn BSO(n) we have e∗(−[f]) = [e ◦ f ◦ r] =
−e∗([f]) by associativity of function composition. �

Let wn : BSO(n + k) → K(Z/2, n) for k > 0 represent the n-th Stiefel-
Whitney class; let wn also denote πn(wn). Let r2 : K(Z, n) → K(Z/2, n) repre-
sent the surjective homomorphism r2 : Z→ Z/2.
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Lemma A.4.2. The diagram

BSO(n) BSO(n+ 1)

K(Z, n) K(Z/2, n)

sn

wn
e wn

r2

commutes up to homotopy.

Proof sketch. The upper triangle is due to the Whitney sum formula; the bottom
is expressing the relation e ≡ w2 mod 2. �

Lemma A.4.3. For n even the following sequence is exact:

0 πn BSO(n) πn BSO(n+ 1)⊕Z Z/2 0
s∗⊕e∗ wn−r2

Proof. First we show injectivity of s∗⊕e∗. Proposition A.1.6 gives us a fibration
Sn → BSO(n) → BSO(n+ 1) so examine its long exact sequence:

πn+1 BSO(n+ 1) // πnSn
cn // πn BSO(n)

s∗ // πn BSO(n+ 1) // 0

We know that cn sends [Id] to TSn and e(TSn) , 0 for n even (Proposition A.1.6
and Lemma A.1.3, respectively); since Hn(Sn;Z) is torsion-free and e∗ is a
homomorphism it follows that k · TSn is non-trivial for every non-zero k, so
cn is injective. By exactness ker(s∗) = Im(cn) = 〈TSn〉, in other words if
V ∈ πn BSO(n) is stably-trivial then V = #kTSn for some k and so e(V) = 2k.
We see that the kernel of the homomorphism s∗ ⊕ e∗ only contains the trivial
bundle.

Lemma A.4.2 implies Im(s∗ ⊕ e∗) ⊂ ker(wn − r2). To show the opposite in-
clusion, let (V, k) ∈ πn BSO(n+1)⊕Zwith k ≡ wn(V) mod 2. The map s isn-
connected so in particular s∗ is surjective, so choose V ′ ∈ s−1∗ (V). Lemma A.4.2
then says e(V ′) ≡ wn(V

′) = wn(V) ≡ k mod 2; say k = e(V ′) + 2l. Now let
V ′′ = V ′#(l ·TSn), so that s∗(V

′′) = V and e(V ′′) = k. Therefore (s∗⊕e∗)(V
′′) =

(V, k).
To see wn − r2 is surjective, take V ∈ πn BSO(n + 1) and let k ∈ Z be

incongruent to wn(V) modulo 2.
�

Having shown that the homomorphism

s∗ ⊕ e∗ : πn BSO(n) → πn BSO(n+ 1)⊕Hn(Sn;Z)

sending V to (V⊕ε, e(V)) is injective, Theorem A2 has been verified forX = Sn.
The general case is more difficult because of course [X,BSO(n)] is in general
just a set. In the proof of Theorem A1 we managed to give an n-factorization of
the map sn−1; knowing the relation e(Vn−1 ⊕ ε) = 0 we tried considering the
homotopy fibre of e, and we were lucky enough that it suited our purpose. In
this case, we need to use a relation between sn and e, and in light of Lemma A.4.3
we consider the homotopy fibre

F BSO(n+ 1)× K(Z, n) K(Z/2, n)
ι wn−r2
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where “wn−r2” is defined using the infinite loop-space structure onK(Z/2, n).
Lemma A.4.2 implies that (wn − r2) ◦ (s × e) is null-homotopic, so if s × e

is replaced with a cofibration then wn − r2 can be homotoped to make the
composition constant. Then there is a lift of s× e along ι, denoted

se : BSO(n) → F

Proposition A.4.4. πi(ι) is an isomorphism if i , n and injective if i = n.
πi(se) is an isomorphism if i < n+ 1 and surjective if i = n+ 1.

Proof. Apply Lemma A.2.1 to the commutative square.

BSO(n+ 1)× K(Z, n) K(Z/2, n)

BSO(n) ∗

wn−r2

s×e

to obtain

F BSO(n+ 1)× K(Z, n) K(Z/2, n)

BSO(n) BSO(n) ∗

G H K(Z/2, n− 1)

ι wn−r2

se

=

s×e

Taking long exact sequences of homotopy groups gives a commutative diagram
of groups indexed by Z × Z, a “fundamental domain” of which is shown in
Figure A.1 on page 58 (some of the periodicity has been emphasized). Some
obvious deductions about injectivity and surjectivity have already been made;
moreover πn+1(s) : πn+1 BSO(n) → πn+1 BSO(n + 1) is surjective by Corol-
lary A.1.8, and Lemma A.4.3 says that e∗ ⊕ s∗ is injective and that πn(wn − r2)

is surjective. This is enough to deduce the first assertion of the Proposition.
To obtain the second, begin analysis of Figure A.1 at the bottom. πi(s) and

πi(ι) are isomorphisms for i 6 n − 1 and hence πi(se) is an isomorphism for
i 6 n − 1; it follows that πn−2G = 0 and πn−1H surjects onto Z/2. Since
πn−1(s) is in particular injective, it follows that πn−1H � Coker(s∗⊕ e∗) � Z/2
thus πn−1G = 0. Therefore πn(se) is surjective, and it is also injective because
it is the first map in an injective composition. Finally, πn+1(se) is surjective
because πn+1(s) is. �

Corollary A.4.5. ι ◦ se is the n-th and (n+ 1)-st Moore-Postnikov stages of s× e.

Proof. Observe that πi(s × e) is an isomorphism for i < n but not surjective
when i = n, so Id ◦(s × e) is the (n − 1)-st factorization. By definition ι : F →
BSO(n + 1) × K(Z, n) is a principal fibration classified by the map wn − r2.
Proposition A.4.4 gives the relevant homotopical information. �

Proof of Theorem A2. Suppose we are given two bundles V = V0 tV1 : X×∂I→
BSO(n) with the same stable class and Euler class; that is, suppose (s × e) ◦ V
extends to X× I. We want to show the composition

X× I BSO(n+ 1)× K(Z, n) K(Z/2, n)
V̄ wn−r2



A.4. PROOF OF THEOREM A2 57

is null-homotopic, so that we get a lift

F

X× I BSO(n+ 1)× K(Z, n)

ι

V̄

Ṽ

We know that (wn − r2) ◦ (s × e) ◦ V0 is null-homotopic, so choose a null-
homotopy H. Now define a null-homotopy H̄ : X × I × I → K(Z/2, n) of
(wn − r2) ◦ V̄ by

H̄(x, t, s) =

{
(wn − r2) ◦ V̄(x, t(1− 2s)) if s ∈ [0, 1

2
];

H(x, 2s− 1) if s ∈ [1
2
, 1].

Hence there is no obstruction to extending the map se ◦ V . Now consider
the obstructions to extending the map V to X × I; they live in the groups
Hr(X;πr BSO(n)). Since se is (n+ 1)-connected it induces isomorphisms

Hr(X;πr BSO(n)) � Hr(X;πrF)

for r 6 n and we know that the obstruction to extending se ◦V vanishes. Since
X is at most n-dimensional and since F is also the (n + 1)-st Moore-Postnikov
stage it follows that are no higher obstructions. Hence V can be extended to
X× I and so V0 � V1. �
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...
...

0 πn+2F πn+2 BSO(n+ 1) 0

0 πn+1G πn+1H 0

0 πn+1 BSO(n) πn+1 BSO(n) 0

0 πn+1F πn+1 BSO(n+ 1) 0

0 πnG πnH 0

0 πn BSO(n) πn BSO(n) 0

0 πnF πn BSO(n+ 1)⊕Z Z/2 . . .

0 πn−1G πn−1H Z/2 . . .

0 πn−1 BSO(n) πn−1 BSO(n) 0

πn BSO(n+ 1)⊕Z Z/2 πn−1F πn−1 BSO(n+ 1) 0

πn−1H Z/2 πn−2G πn−2H 0

0 πn−2 BSO(n) πn−2 BSO(n) 0

0 πn−2F πn−2 BSO(n+ 1) 0

...
...

πn+2(ι)

πn+1(se) πn+1(s)

πn+1(ι)

πn(se) s∗⊕e∗

πn(ι) wn−r2

�

πn−1(se) πn−1(s)

wn−r2

�

πn−1(ι)

πn−2(se) πn−2(s)

πn−2(ι)

Figure A.1: The diagram to be chased.



Notation

This is a collection of essential notions used in this thesis with their meaning
and the page where they are defined. This list is not complete but tries to cover
the most common notations. If there is no page entry it is because the definition
doesn’t appear in this thesis.

Symbol Meaning Page number

Rn
the standard n-dimensional vector space with
standard basis {e1, . . . , en}

sh+ the linear “shifting” map Rn → Rn+1 4

S the sphere spectrum

X〈n〉 the n-connected cover of a space X 2

σ(M) the signature of an oriented manifold 7

χ(X) the euler characteristic of a finite CW complex

εn
the tivial rank n real vector bundle over any
non-empty space

�s stable isomorphism relation 2

Th(V) the Thom space of a vector bundle V → X 2

TvE
the vertical tangent bundle of a bundle of smooth
manifolds

6

Std(V)
the Stiefel manifold of d-frames in V , for V an
inner-product space

4

Grd(V)
the Grassmannian manifold of d-dimensional
subspaces of V , for V a vector space

4

ιn the stabilization map Grd(R
n) → Grd(R

n+1) 5

Ud,n, U⊥
d,n

the tautological d-plane bundle over Grd(R
n) and its

orthogonal complement
5

φn a bundle isomorphism U⊥
d,n ⊕ ε � ι∗nU

⊥
d,n+1 5

BO(d), γd
the classifying space of rank d bundles, and the
universal rank d bundle

5

θ, θd
a tangential structure B→ BO or B(d) → BO(d),
respectively

8

B(d)n, θd,n θ−1d (Grd(R
n)) and θd|B(d)n , respectively 9

λn the inclusion map B(d)n → B(d)n+1 9
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Symbol Meaning Page number

Uθd,n, Uθ,⊥d,n
Ud,n, respectively U⊥

d,n, pulled back along
θd.n : B(d)n → Grd(R

n)
9

MTO(d), MT θ
the Thom spectrum of {U⊥

d,n}n>d and {Uθ,⊥d,n}n>d,
respectively

8, 9

Ωd, Ω
θ
d

the oriented bordism group of smooth d-manifolds,
and the bordism group of smooth d-manifolds with
θ-structure

10

Euln
the subset of Z consiting of all Euler characteristics of
closed, oriented n-dimensional manifolds

48

σk,d the signature homomorphism πkMTSO(d) → Z 13

span(E), s̃pan(E) the span and stable-span of a vector bundle 15

E#fF
the connected sum of two vector bundles, clutched by
the function f

17

M0

the result of eliminating an even-dimensional, closed,
connected, oriented manidold’s Euler characteristic via
connected sum with a stably paralellizable manifold

18

g2 the generator of π1MTSO(3) with signature 2 19

g4 the generator of π2MTSO(2) with signature 4 22

Ind(s) the index of a finitely-singular k-field 24

ak half the rank of an irreducibleZ/2-graded C lk module 24

rk 2ak if 4 does not divide k, and 4ak if it does 24

Kerv(M) the Kervaire semi-characteristic 25

P, G alternate models of Σ−1MT θd−1 and Σ∞B(d)+ 33

p̃, i, PT
maps in the cofibre sequence of spectra in
Proposition 3.0.7

33

η, ν
the non-trivial element of of π1S represented by the
circle with its Lie-group framing, and the generator of
π3S represented by S3 with its Lie-group framing

41

ω
a trivialization of an orientable line bundle induced by
a chosen orientation

41

e(V), en
the Euler class of a vector bundle, and the universal
Euler class

48

wk(V), pk(V)
Stiefel-Whitney and Pontryagin classes of a vector
bundle



Bibliography

[1] M. F. Atiyah. K-theory and reality. Quart. J. Math. Oxford Ser. (2), 17:367–
386, 1966.

[2] MF Atiyah and JL Dupont. Vector fields with finite singularities. Acta
mathematica, 128(1):1–40, 1972.

[3] Michael F Atiyah. Vector fields on manifolds. Springer, 1970.

[4] Marcel Bökstedt, Johan Dupont, and Anne Marie Svane. Cobordism ob-
structions to independent vector fields. The Quarterly Journal of Mathemat-
ics, pages 1–49, 2014.

[5] Søren K Boldsen. Improved homological stability for the mapping class
group with integral or twisted coefficients. Mathematische Zeitschrift, 270(1-
2):297–329, 2012.

[6] Johannes Ebert. A vanishing theorem for characteristic classes of odd-
dimensional manifold bundles. Journal für die reine und angewandte Mathe-
matik (Crelles Journal), 2013(684):1–29, 2013.

[7] Søren Galatius, Ib Madsen, Ulrike Tillmann, and Michael Weiss. The
homotopy type of the cobordism category. Acta mathematica, 202(2):195–
239, 2009.

[8] Søren Galatius and Oscar Randal-Williams. Stable moduli spaces of high-
dimensional manifolds. Acta Mathematica, 212(2):257–377, 2014.

[9] John Harer. The second homology group of the mapping class group of
an orientable surface. Inventiones Mathematicae, 72(2):221–239, 1983.

[10] John L Harer. Stability of the homology of the mapping class groups of
orientable surfaces. Annals of Mathematics, 121(2):215–249, 1985.

[11] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge,
2002.

[12] Morris W Hirsch. Differential topology, volume 33. Springer Science &
Business Media, 2012.

[13] Dale Husemoller. Fibre bundles. Springer, 1966.

[14] Nikolai V. Ivanov. Mapping class groups. In Handbook of geometric topology,
pages 523–633. North-Holland, Amsterdam, 2002.

61



62 BIBLIOGRAPHY

[15] Max Karoubi. K-theory: An introduction, volume 226. Springer Science &
Business Media, 2008.

[16] Antoni A Kosinski. Differential manifolds. Courier Corporation, 2007.

[17] H Blaine Lawson and Marie-Louise Michelsohn. Spin geometry, volume 1.
Oxford Univ Press, 1989.

[18] Arunas Liulevicius. A theorem in homological algebra and stable homo-
topy of projective spaces. Transactions of the American Mathematical Society,
109(3):540–552, 1963.

[19] Wolfgang Lück. A basic introduction to surgery theory. Topology of high-
dimensional manifolds, (1):2, 2004.

[20] Ib Madsen and Ulrike Tillmann. The stable mapping class group and
Q(CP∞+ ). Invent. Math., 145(3):509–544, 2001.

[21] Ib Madsen and Michael Weiss. The stable moduli space of riemann sur-
faces: Mumford’s conjecture. Annals of mathematics, pages 843–941, 2007.

[22] Karl Heinz Mayer. Elliptische Differentialoperatoren und Ganz-
zahligkeitssätze für charakteristische Zahlen. Topology, 4(3):295–313, 1965.

[23] John Milnor. A procedure for killing homotopy groups of differentiable
manifolds. In Proc. Sympos. Pure Math., Vol. III, pages 39–55. American
Mathematical Society, Providence, R.I, 1961.

[24] John Milnor and James D Stasheff. Characteristic Classes.(AM-76), vol-
ume 76. Princeton university press, 2016.

[25] John Willard Milnor and Dale Husemoller. Symmetric bilinear forms, vol-
ume 60. Springer, 1973.

[26] Mamoru Mimura and Hiroshi Toda. Topology of Lie groups, I and II, vol-
ume 91. American Mathematical Soc., 1991.

[27] John Rognes. Two-primary algebraic K-theory of pointed spaces. Topology,
41(5):873–926, 2002.

[28] V. A. Rohlin. New results in the theory of four-dimensional manifolds.
Doklady Akad. Nauk SSSR (N.S.), 84:221–224, 1952.

[29] Yu B Rudyak. On Thom spectra, orientability, and cobordism. Springer Science
& Business Media, 1998.

[30] Alexandru Scorpan. The wild world of 4-manifolds. American Mathematical
Soc., 2005.

[31] Norman Earl Steenrod. The topology of fibre bundles, volume 14. Princeton
University Press, 1951.

[32] Robert E Stong. Notes on cobordism theory. Princeton University Press, 2015.

[33] Robert M Switzer. Algebraic topology: homotopy and homology. 1975.



BIBLIOGRAPHY 63

[34] Emery Thomas. Vector fields on manifolds. Bulletin of the American Math-
ematical Society, 75(4):643–683, 1969.

[35] Ulrike Tillmann. On the homotopy of the stable mapping class group.
Inventiones mathematicae, 130(2):257–275, 1997.

[36] Ulrike Tillmann. Mumford’s conjecture-a topological outlook. Handbook
of moduli, 3:399–429, 2013.

[37] Tammo tom Dieck. Algebraic topology. European Mathematical Society,
2008.

[38] F Van der Blij. An invariant of quadratic forms mod 8. In Indagationes
Mathematicae (Proceedings), volume 62, pages 291–293. Elsevier, 1959.




