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Abstract

This thesis is concerned with Madsen-Tillmann-Weiss spectra and their ho-
motopy groups. Since they are Thom spectra, their homotopy groups admit
interpretations as certain bordism groups. For an arbitrary tangential structure
there is an associated cofibre sequence of spectra, and after interpretting the in-
duced maps on homotopy groups some explicit computations of these groups
are made.

In the particular case where the tangential structure is Orientation, mani-
folds representing elements of these bordism groups are oriented and so their
signatures are defined. This leads to a Signature Problem, which asks “what are
the possible signatures of elements of these groups?” This problem is solved
for certain small degrees.

This thesis also gathers basic results about the Euler class in the Appendix
and proves a result which uses the Euler class to determine whether two stably
isomorphic vector bundles are isomorphic or not.
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Introduction

The Madsen-Tillmann-Weiss spectrum MT 04 associated to a tangential struc-
ture 04: B — BO(d) was introduced in [7] in order to provide an infinite loop
space model for the classifying space of the cobordism category of 6 4-manifolds,
Co,. Namely they provided a weak homotopy equivalence

BCg, — Q® 'MT0,4

Previously, in the special case of Orientation BSO(2) — BO(2), Madsen and
Weiss [21] had used the spectrum MTSO(2) (under a different name) to prove
Mumford’s Conjecture by appealing to a result of Tillmann [35] which related
Segal’s conformal cobordism category with the classifying space of the stable
mapping class group (for a thorough discussion, see Tillmann’s survey arti-
cle [36]). In higher dimensions, Galatius and Randal-Williams [8] generalized
Mumford’s Conjecture by proving a homological stability result for diffeomor-
phism groups of high-dimensional manifolds by using MT 0 for a tangential
structure 8 which depends on the manifold. Although these results are of great
importance and are a motivation for studying Madsen-Tillmann-Weiss spectra
in their own right, this thesis will not discuss them further.

Much of this thesis is concerned primarily with the homotopy groups of the
spectrum MTSO(d). They can be described as bordism groups of manifolds
with special structure (see Section 1.2). In particular it is concerened with con-
structing concrete manifold representatives for elements of these groups and
in determining these groups in some cases.

For any (k,d) € Z x N there is a natural signature homomorphism which
factors through the usual signature defined on the oriented bordism group:

m MTSO(d) Zkyd Z

~.

Oyya

If k + d is divisible by 4 then this homomorphism is potentially non-zero, and
can be used to detect non-zero, torsion-free elements of 71, MTSO(d). Moreover,
we can ask if representing an element of m MTSO(d) induces some restriction
on the signatue.

The Signature Problem. What is the image of oy 47
There are some trivial cases. For one, if k 4 d is not divisible by 4 then any

manifold of that dimension has signature 0, by definition. Secondly if k+d =0

\'



then a compact, oriented (k + d)-manifold is a finite set of signed points, and
the signature is the sum of these signs; it follows that 0_4 4 is surjective for
each d. Some results are obtained for certain small values of d and k:

Theorem 2.0.10+2.0.11. Suppose (k,d) € Z x N with k + d positive and divisible
by 4. Then:

Ifd=0o0r1, then oy q =0.

Ifk <0, then Im(oy,q) = Z.

Ifk =1, then Im(crk,d) =2Z.

Ifk =2, then Im(oy q) = 4Z.

Ifk =3andk+d > 8§, then Im(oy q) = 8Z.

Ifk =4andk+d > 8, then Im(oy,q) = 16Z.

Ifk =5and k + d = 12, then Im(oy,q) D 32Z. It is not known whether 16 is
realizable or not in this case.

Ifk=50r6and k+ d > 16, then Im(oy q) = 16Z.

In all cases above, except for d € {0, 1} and possibly (k,d) = (5,7), the image of
Oy, d s as large as possible.

By “as large as possible” what is meant is that Corollary 2.1.13 provides a
lower bound for the index of Im(oy 4) in Z in terms of k, and in these cases this
lower bound is attained.

Parts of this theorem are proven by elementary means in Section 2.2, with
basic examples constructed for (k,d) = (1,3) and (2,2), and other examples
constructed using an external product structure on the groups m, MTSO(d) as
k and d vary (see Definition 1.2.9). For the final case where k € {5,6} and
k+d > 16, a non-trivial result of Bokstedt, Dupont, and Svane [4, Theorem 1.2]
is used to construct an element of ¢ MTSO(10) with signature 16 in Section 2.4.

Computing e MTSO(d) for arbitrary k and d is highly non-trivial: MTSO(1)
has the homotopy type of $~! and so is exactly as complicated as the stable
homotopy groups of spheres. For d = 2 Rognes [27, Theorem 2.13] computed
the 2-primary parts of ¢ MTSO(2) for k < 20, but complete determination of
these groups is still mostly unknown. However, the above theorem provides
some torsion-free elements of 7, MTSO(d) for low values of k, and in Sec-
tion 3.3 of this thesis the groups 1 MTSO(2) are fully computed for k < 4, and
T MTSO(3) is obtained for k < 1.

Theorem 3.0.8. The values of m MTSO(2) for k < 4 are given by

K <3| 2] 1]o[1]2] 3
WMISO2)| 0 | Z |0 |Zz|0|Z]|zZ/2% |z

N

The values of i MTSO(3) for k < 1 are

K < 4] 32101
TmMISO3)| 0 | Z | 0] 00|z

Moreover, 1 MTSO(3) is generated by a class with signature 2 and m; MTSO(2)
is generated by a class with signature 4.

vi



The values of i MTSO(2) for k < 3 had been known (cf. [20, Corollary 4.4]),
but the details had not been published. The values for k < 0 and k = 0 follow
from general principles (Corollary 1.2.5 and Proposition 1.2.7, respectively),
so the interesting computations are when k > 1. In order to perform these
computations, we derive in Section 3.1 a cofibre sequence of spectra of the form

I 'MT 041 - MT 04 — £Z°B(d), — MT 041

for a fibration 04: B(d) — BO(d) and its restriction 04_7 to BO(d — 1). This
cofibre sequence was given in [7] when 04 is the identity BO(d) — BO(d) or
the universal covering BSO(d) — BO(d). Full details are given in Section 3.1
because they don’t appear in the literature, and moreover the explicit descrip-
tions given are used in Section 3.2 to provide bordism-level interpretations of
the induced maps on homotopy groups. The resulting descriptions of these
homomorphisms are then used to perform the computations of Section 3.3.

Finally, the appendix provides a result about oriented vector bundles which
was not found in the literature and which is needed for the above proofs.
Namely:

Theorem A2. Let n be even, let X be CW complex of dimension n, and let Vo, V7 be
two oriented rank n vector bundles over X. If Vy is stably isomorphic to Vq and they
have the same Euler class, then Vo = V3.

The appendix presents standard properties of the Euler class for comple-
tion, and proves a basic lemma about homotopy fibres (Lemma A.2.1). These
ingredients are used in the proof of Theorem A2, and are also used to prove
the more standard fact Theorem A1, which asserts that the Euler class is the
principle obstruction to finding a non-zero section of an oriented vector bundle.
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Chapter 1

Preliminaries

1.1 Fundamental Notions

This section does not present anything new, but gathers some necessary results
and sets conventions. As such, the material does not attempt to follow a
coherent narrative.

1.1.1 Homotopy

A decent source for the material in the subsection is Hatcher [11].

We will say that X is an n-connected space if 71;(X) = 0 for all i < n. We
will say that f is an n-connected map if 7t;(f) is an isomorphism for all i < n
and a surjection for i = n; f is n-coconnected if 7r,, (f) is an injection and 7r; (f)
is an isomorphism for all i > n.

Let f: (X,x0) — (Y,yo) be a continuous function between pointed spaces.
The homotopy fibre of f is defined as

hofib(f) == {(x,v) € X x Y[ y(0) = f(x) and y(1) = yo}

This space is pointed by (xo,yo) where yo denotes the constant path at yo.

Let f: X — Y be a continuous function between path-connected, pointed
spaces. A Moore-Postnikov tower for f (see [11, Section 4.3]) is a commutative
diagram of the form

Z3
£
f3 Z, g3
f2 g2
/ J,m
x —n Z; 9 Y

so that for eachn > 1
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1. gnofn~f,

2. fn: X = Z, is n-connected,

3. gn: Zn — Yis n-coconnected,

4. zn: Zny1 — Ly is a fibration, with fibre K(7t,, hofib(f), n).

The composition gn o fn: X = Z,, — Y will be called the n-th Moore-
Postnikov stage or decomposition of f. Then a map between connected CW
complexes has a Moore-Postnikov tower [11, Theorem 4.71] , which is unique
up to homotopy equivalence; moreover the fibrations z,, can be chosen as
principal fibrations if 71 (X) acts trivially on 7, (Cyl(f), X) for all n.

A map f: Y — X is an n-connected cover (cf [11, Example 4.20]) if Y is
n-connected and 7r; (f) is an isomorphism for all i > n, i.e. f is n-coconnected
since 0 certainly injects into 71, X. In other words, an n-connected cover is the
n-th Moore-Postnikov stage of a map * — X. If X is a connected CW complex
then an n-connected cover exists and is unique up to homotopy, and we will
denote any model by X(n).

1.1.2 Bundles

Relevant sources for bundle theory are Steenrod [31] and Husemoller [13].

If E — Xis a fibre bundle, a typical element will be denoted by (x; e) where
x € X and e is in the fibre over x. The information to the left of the semi-colon
is redundant, but it helps conceptually.

The trivial vector bundle X x IR™ will usually be denoted by ™, without
reference to the base-space.

If E — Xis a bundle and f: Y — X a continuous map, then the canonical
map from the pull-back to V will be denoted f: f*V — V.

Vector bundles E and F of the same rank are said to be stably isomorphic if
there is a k > 0 and an isomorphism }: E & ¢* = F @ ¢*. 1 is called a stable
isomorphism, and the relation will be denoted by E =, F. If E and F are not
of the same rank, we can write E =; F @ ¢" where r = rank(E) — rank(F) € Z;
if r < 0 what is really meant is that E @ ¢~ " =, F, but for some purposes it is
convenient to have a consistent notation.

If E is a vector bundle, the Thom space Th(E) can be described by one-
point compactifying each fibre and then identifying all of the compactification
points; if the base space is already compact, this is the same as the one-point
compactification of the total space. If E has a metric, this is homeomorphic to
D(E)/S(E), the disk-bundle of E modulo the sphere-bundle. If ¢: E — Fisa
bundle map, it induces a map Th(¢): Th(E) — Th(F) between Thom spaces.

Lemma 1.1.1. IfE — X s a vector bundle of rank v > 2 then m; Th(E) = 0.

Proof. Letxo € X and so € S(E) be basepoints so that p: S(E) — X is a pointed
map. Expressing the Thom space as a pushout results in a pushout of funda-
mental groups by the Seifert-van Kampen theorem:

S(E) —— C(S(E)) mS(E) — 0

| l !

D(E) —— Th(E) m X —— m Th(E)
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Then 7y Th(E) = 0 iff 711 S(E) — m X is surjective. But given a loop y: I — X
at xo, the path lifting property gives a lift y: I — S(E) such that ¥(0) = so and
(1) € p~'(x0). But so long as T > 2 the fibre over x¢ will be path connected,
establishing surjectivity. o

Lemma 1.1.2. Let V — Y be a vector bundle of rank v > 2 with Y connected and let
f: X = Y be an m-connected continuous function. Then the map

Th(f): Th(f*V) — Th(V)
is (v + m)-connected.

In the particular case that V is trivial we see that Z"f: "X, — X"Y, is
(r 4+ m)-connected for any m-connected map f: X — Y.

Proof. Since f is m-connected, f.: Hx(X; f*A) — Hy(Y;A) is an isomorphism
for any coefficient system A on Y and k < m, and is surjective for k = m. The
bundle V — Y induces an orientation character w: mY — Z./2 and coefficient
system Z<; the pullback f*V has orientation character f*w and coefficient
system Z"' @ = f*(Z®) for X. Then using the Thom isomorphism with twisted
coefficients (e.g. [19, Theorem 3.31]) there is the commutative diagram:

P (Th(FV); Z) 25 P (Th(v); Z)

l; l;

Hi (G FZ9) — s Hy 1 (V;Z9)

The lower map is an isomorphism for all k < r+m and surjective for k = r+m,
and so the same holds for the upper map. If r > 2 then the Thom spaces are
simply-connected and therefore Th(f) is (r + m)-connected by [33, Theorem
10.28]. ]

We will also use the following fact about normal bundles:

Lemma 1.1.3 ( [16, IV.1.4]). Let f: X — Y be a smooth map of manifolds, and Z a
submanifold of Y such that £ f Z; let M = £~1(Z). Then

v>,\</l = (f*v\z()IM

In particular, dim(M) = dim(X) + dim(Z) — dim(Y) assuming this number is
non-negative, and M is empty otherwise.

In the special case that X is the total space of a vector bundle &: X —
and Z is the zero-section, then vi\(/[ = *¢|pm and it follows that dim(M) =
dim(X) — rank(&).

~

1.1.3 Stiefel and Grassmann Manifolds

A lot of our constructions will involve Grassmannians so it pays to have
some familiarity. For a reference on Stiefel and Grassmanian manifolds, see
Husemoller [13, Chapter 7].
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In order to prove Lemma 3.1.6 we will need to know the connectivities of
two families of maps; Corollary 1.1.6 and Lemma 1.1.7 provide these connec-
tivities, and are presented here to help the readability of Section 3.1.

Let shy: R™ — R™"! be the map sending the vector } ; aie; to Y ; aiei;1; on
the orthogonal complement of e; thismap has aninversesh_: (e2,...,en11) —
R™.

For any n > d > 0 denote by Stq(IR™) the Stiefel manifold of orthonormal
d-frames in R™, pointed by (eq,...,eq) and topologized as the homogenous
space O(n)/O(n —d)’, where O(n — d)’ is the subgroup of matrices which are
concentrated in the lower right (n—d) x (n—d) block. Note thatSt4(R%) = O(d)
and Sty (R™) = S™ 1.

There are two “stabilization” maps we want to have: one which increases
the ambient dimension, and one which increases ambient dimension as well as
the dimension of the planes. If we demand that both the maps be pointed, the
natural choice for

an: Stq(R™) — Stq(R™)

sends a d-frame in R™ to itself, as a subset of R™*'. The other stabilization
map is trickier to define: one does not simply concatenate e, 1 to the end of
any d-frame in R™ because this map is not pointed. Instead define the pointed
map

sn: Sta(R™) — Stqq (R™)

by sending (v1,...,vq) to (e1,sh; (v1),...,shi (v4)).

Aside: if we had chosen to use (én_g+1,- .., en) as the basepoint of Stq (R™)
then we could have defined s,, by concatenating with e, 1, but we still would
have had to use sh in order to make a,, pointed. A convention must be chosen
and we chose the above one.

Lemma 1.14. s, is (n — 1)-connected

Proof. Themap Stq41(R™ ') — St; (R™") sending (v1,...,va+1) tovy isafibre
bundle (follows from [13, Theorem 7.3.8]). The fibre over the basepoint e; is the
set of all (ey,v2,...,va11) where (va,...,vq:1) is a d-frame in (ez,...,eq41).
Thus the map sh_ identifies the fibre and its inclusion map with Stq(IR™) and
sn. The connectivity follows from the long exact sequence for this fibre bundle
and the fact that Sty (R™*1) = S™. o

In particular the map O(d) — O(d + 1) sending a matrix A to ( g) ,2 ) is

(d — 1)-connected.

The manifold Stq(IR™) has a free O(d) action: if a d-frame is considered as
ann x d matrix, then d x d matrices can multiply from the right. The quotient
manifold is Grq(IR™), the Grassmannian of d-dimensional subspaces of R™.
That is, the map

(—): Sta(R™) — Grq(R")

sending a d-frame to the subspace it spans is a principal O(d) bundle, and
Grg(IR™) is identified with O(n)/(O(d) x On— d)). Define

Yn: Gra(R™) — Gras1(R™)
by Yn(P) = (e1) & sh (P).
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Lemma 1.1.5. V., is (d — 1)-connected.

Proof. There is a map of fibre-bundles

O(d) —— Sta(R") ——— Grq(R™)

| [+ [

O(d+1) — Sta+1(R™") —— Gra1(R™7)

The map O(d) — O(d+1) is (d— 1)-connected and sy, is (n— 1) connected, and
n > dsoinparticular s, isalso (d—1) connected. Then the long exact sequences
of these bundles and the Five-lemma yield the desired connectivity. ]

There is an inclusion map t,,: Grgq(R™) — Grq(R™"') induced by the stan-
dard inclusion R™ € R™*!. The colimit over these inclusion maps is naturally
homeomorphic to Grq (R*), the Grassmannian of d-dimensional subspaces of

DR

Corollary 1.1.6. i, is (n — d — 1)-connected. In particular the map into the colimit
Grg(R™) — Grgq(R*®) is (n — d — 1)-connected.

Proof. Themap L: Grq(R™) — Grn—q(R™), sending a d-plane to its orthogonal
complement, is a diffeomorphism. Then the map t,, is equivalent to

— @ <en+1 >: Grn—d(an) — Grn—d—H (Rn+1)

whichis shown tobe (n—d—1)-connected by using the argumentin Lemma 1.1.5
with different basepoints. |

Grg(R*) is a model for BO(d), with tautological vector bundle vq4; let
Ug n be the restriction of y4 to Grq(IR™). Since n is finite, Uy n, has a finite-
dimensional orthogonal complement Uy, , an (n — d)-plane bundle. It is
immediate that (j,Ug4 41 is canonically isémorphic to Ug,» and that the map

L1114 ~ (%7111
$n: ud,n De= Lnl'ld,n+1

defined by ¢ (P;w,t) = (P;w + ten1) is also an isomorphism.

The pull back ll);Ué‘_’_])n_H is the set of (P, (P’;w)) € Grgq(R™) x Ué+1,n+1

such that P’ = (e1) @ shy(P). Since w L P/, wis in the domain of sh_ and
sh_(w) L P. Hence there is an isomorphism

lb;klué_Jr],nJr] = ué_,n
sending (P, (P’;w)) to (P;sh_(w)).

Lemma 1.1.7. The map f: Grq(R™) — S(Ug41,n+1) sending P to (b (P);er1) is
(n — 1)-connected.

Proof. The sphere bundle can be described using the Borel construction as
follows:

S(Uas1,nr1) = Star1 (R™) xo(arn) S¢
(

=0(n+1)/0(n—d) xora+1) O(d+1)/0(d)
= 0(n+1)/(0(d) x O(n—a))’
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Then the map of the lemma can be identified with

O(n) . On+1)
O(d) x O(n—d) O(d) x O(n—d)

so there is a fibre bundle
Gra(R™) — S(Ug41,ne1) = OMm+1)/0(n) = S™

Now apply the long exact sequence of homotopy groups. ]

1.1.4 The Vertical Tangent Bundle of a Vector Bundle

This is another result which will be used in exactly one place (Lemma 3.2.4) but
whose proof would further clutter the section where it appears. It is also sort
of interesting on its own.

Let m: E — X be a fibre bundle where the fibres are modelled by a smooth
manifold M and the structure group is Diff(M). Let P denote the underlying
principal Diff(M) bundle.

Definition 1.1.8. Define the vertical tangent bundle of E as

T\,E =P XDiff(M) ™

If X is a smooth manifold and 7t is differentiable, then T, E = ker Trt.

Consider the specific case where the model fibre is the smooth manifold
R™ and the structure group is O(n), i.e. E is a vector bundle with metric. Let
p: S(E) — X denote the projection of the sphere bundle, an S™~! bundle with
structure group O(n). Then the bundle p*E admits a canonical non-zero section
0: S(E) — p*E defined by

o(xu) = (x,w;u)
and which induces a decomposition p*E = (0)* & (o).

Proposition 1.1.9. If E — X is a vector bundle with metric and p: S(E) — X is
the sphere bundle, then there is a bundle-isometry T,S(E) = (o)*, and hence an
isomorphism

PE=T,S(E)@e

of bundles over S(E).

The proof goes as follows: for (x;v) € E there is a canonical identification
i: Tx,v)Ex = Ex since Ey is a vector space, and hence an embedding

I: UEX x By = UT(EX) — TE

Say that a smooth path y: R — E is vertical if yo € ImI; it follows that T, E is
isomorphic to the bundle of equivalence classes of vertical paths in TE.
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If we have a vertical path y which is based at (x;v) then yo € E, hence we
can define an evaluation map

ev: T,E =»'E
[yl =(vo; Vo)

This map is a bundle isomorphism, and if the vector bundle E is given a metric
it induces a metric on T, E so that ev is an isometry.
If we restrict the picture to S(E) we get an isomorphism

evisie): (WE)Is(e)y =p*E

T,S(E) embeds into (T, E)|s(g) as a subbundle; denote by v its orthogonal com-
plement. The bundle p*E has a canonical section o(x;u) = (x,u;u) as above,
with image in S(p*E).

Lemma 1.1.10. ev|s(g)(v) = (o)

Proof. Let (x;u) € S(E), and define yy,: R — E by v (t) = (1 +1t) - u. Then
Yu is a vertical path since it is entirely contained in E, and v,,(0) L S(E«) so
[yw] € v. Since v is one-dimensional we have V|(x.,) = ([y.]). But

ev(lyul) = (vu(0);vu(0)) = (x, wyu) = o(x;u)

Then since ev is an isometry, it restricts to an isomorphism
evls(e): TWS(E) = (0)*

proving the proposition.

1.1.5 The Signature

In this section we recall the definition of the signature of a closed, oriented
manifold, and state Hirzebruch’s Signature Formula.

Let M be a closed, oriented manifold of dimension n = 4k. Since it is closed
and oriented, it has a fundamental class [M] € H,,(M; Z). Recall its interestion
form

I(— —): H¥*(M;Z) x H**(M; Z) > Z

is given by I(e, 3) = (U B, [M]). Then I is a symetric, unimodular bilinear
form, and as such can be diagonalized over Q: let b™ be the number of positive
entries on the diagonal, and b~ the number of nagative entries. The numbers
b* and b~ do not depend on the diagonalization.

Definition 1.1.11. Let M be a closed, oriented manifold of dimension n.
Ifn € 4NN then the signature of M, denoted o(M), is defined to be b —b~.
Otherwise, o(M) is defined to be 0.

Hirzebruch’s Signature formula (see for example [24, 19.4]) relates the sig-
nature of a manifold to its Pontryagin classes. Very roughly it can be stated as
follows:
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Theorem 1.1.12 (Hirzebruch). Lef x1,%2,%3,... be a set of variables where x; has
degree . Then for each k > 0 there is a rational polynomial Ly € Q[x1,...,xi] which
is homogeneous of degree k so that for any closed, smooth, oriented manifold M4¥*

<Lk(p1 (TM)) .. )pk(TM))) [MD = G(M)
The first two polynomials are given by

1
Li(x1) = 3%

1
La(x1,%2) = 7= (72 —x7)
An immediate corollary of this theorem is that if M is stably parallelizable

then o(M) = 0. We will not need the explicit formulas for any other Ly.

1.2 The Spectrum MT 04

This section recalls the definition of the central objects of interest for this thesis:
namely for each integer d > 0 and any “tangential structure” 84: B(d) — BO(d)
there is an associated Madsen-Tillmann-Weiss spectrum MT 6.

The homotopy groups of these spectra admit interpretations as bordism
groups (see Proposition 1.2.3) with objects of the form (M, E, @), where M is a
closed manifold, E is a bundle over M with “04-structure”, and ¢ is a stable
isomorphism between TM and E; this will be made precise in Subsection 1.2.2.
This bordism interpretation is a starting point for the Signature Problem of
Chapter 2, and is fundamental to the computations of Chapter 3.

1.2.1 Definition of Madsen-Tillmann-Weiss Spectra

The notion of stable vector bundle is covered in [29, IV.5.12], where they are
refered to as “stable J-objects”. For our purposes, a stable vector bundle V
will mean a sequence of spaces

ix k41 k2
X1 X2 — ...

X

for some k € Z, with a set of vector bundles {pn,: Vn = Xn}n>k, and for each
1 an isomorphism ¢n: Vi, @ € = i}, Vi 11. The isomorphism ¢, ensures that
rank(Vy 1) = rank(V,,) + 1 and so rank(V) := rank(V,) —n € Z is well-
defined. The data of a stable vector bundle is precisely enough to produce a
Thom spectrum Th(V), whose n-th space is Th(V;,) and whose n-th structure
map isinduced by Th(¢r, ). Then the spectrum Th(V) is (rank(V)—1)-connected.

The bundles Ué‘n — Grq(R™), along with the maps t, and ¢, form a
stable vector bundle of rank —d, denoted here by —v4.

Definition 1.2.1. The unstructured Madsen-Tillmann-Weiss spectrum MTO(d)
is defined as the Thom spectrum Th(—y4).

One typically wants to consider bundles with extra structure, for example
an orientation. For this purpose a d-dimensional tangential structure is sim-
ply a fibration 64: B — BO(d); for a rank d vector bundle V: X — BO(d) a
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0g4-structure is a bundle map 1: V — 0%vq4. The prototypical examples are
BSO(d), BSpin(d), and other connected covers BO(d)(n) — BO(d) (indeed
BSO(d) = BO(d)(1) and BSpin(d) = BO(d)(2)).

A stable tangential structure is a fibration 8: B — BO, and a stable tangen-
tial structure can be restricted

6a: B(d) :=6""(BO(d)) — BO(d)

to a d-dimensional tangential structure along the map into the colimit BO(d) —
BO. Note that if 6 is a pointed map then any trivial bundle, classified by the
constant map to BO(d), has a preferred 6 4-structure.

Suppose 84: B(d) — BO(d) is a d-dimensional tangential structure, and
let 84_1: B(d —1) — BO(d — 1) be the pullback along s4—1: BO(d —1) —
BO(d). Now suppose E is a 84_1-bundle over a space X classified by a map
f: X = B(d —1), thatis E = f*0%_;v4—1; then the bundle ¢ & E naturally has a
0 4-structure by commutativity of

X — % B(d—1) =" B(d)

[

BO(d — 1) 2= BO(d)

In particular, if 6: B — BO is stable then the stabilization of any finite-rank
0-bundle has a natural 6-structure.

Given a tangential structure 64: B — BO(d), a stable vector bundle is
constructed analogously to —yq4 as follows: BO(d) is filtered by the finite-
dimensional Grassmannians t,,: Grq(R™) C Grgq(R™*"), so B is also filtered
by B, = 951 Grq(IR™); let 04 n, denote the restriction 84|g,,. Then the inclusion
An: Bn — Bny1 covering ,, is itself covered by a bundle isomorphism/map

Ano0% &
* * )k n d,n¥mn *
1 PR = U+ —_— u
9dn d,n A edn+1 d,n+1 ed,n+1 d,n+1

| |

>\n
Bn Bn+1

Thus the set {63 Ué o} forms a stable vector bundle over {B,}, denoted
05(—va). FOI‘breVIty, le’cudl n =03 ,Uanand Ue Lo — oy ué_n

Definition 1.2.2. The Madsen-Tillmann-Weiss spectrum with d-dimensional
tangential structure 04 is defined as MT 04 = Th(0%(—va4)).
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1.2.2 Bordism Interpretation of Homotopy Groups

Since MT 04 is a Thom spectrum, its homotopy groups can be described using
the Pontryagin-Thom correspondence (see for example [32, Chapter 2]).

Proposition 1.2.3. Let 04: B — BO(d) be a tangential structure. Then the group
1 MT O is isomorphic to the bordism group of triples [M, E, @] where

e M is a closed, smooth manifold of dimension k + d,
e E is a rank d vector bundle over M with 0 q-structure,
e ( is a stable isomorphism TM = E @ .

A triple is null-bordant if there is a (k 4+ d + 1)-manifold W, a vank d 0-bundle F and
a stable isomorphism \p: TW =g F & e+ which restricts to the given data on the
boundary.

Proof sketch. Here we will give an indication of where this data comes from; for
more complete details see [32].
By definition 7ty MT 04 = colimy, 7t 4k Th(Ug:# ), so choose a pointed map

@: S™F — Th(Uy)

for n > d. Without loss of generality the composition of ® with
Th(8): Th(UQ7) — Th(Ug ) is transverse to the zero section Grq (IR™). Let

M = (® o Th(8)) "' (Grq(R™)) ¢ R™**

and let f be the restriction of this composition to M. Then M is a closed manifold
of dimensionn +k —(n—d) =k +d,and v§; " = f*Ug ,,. Then since M is a

proper subset of S*** we have
MR =TSR = TM @ f*Ug ,
By adding f*Uq v to both sides we get an isomorphism
e:TM@e™ =™ fUgn

Note that since the bundle map Ug)n — Ug,n is an isomorphism in each fibre,
f in fact factors through B, so f*Ug4  comes with a 04-structure. O

Note that if k < 0 then dim(M) < rank(E), and so E = TM & ¢ * by
obstruction theory.

Definition 1.2.4. For a tangential structure 64: B(d) — BO(d) and a natural
number n < d, define the n-th 0 4 bordism group Q%4 as the bordism group of closed
n-manifolds M with a 04 structure on TM @ g9 ™.

Corollary 1.2.5. Ifk < 0 then m MT 04 = ngk
Now let k = 0, and consider a connected, stable tangential structure
0: B — BSO — BO

factoring through Orientation; then the restriction 84: B(d) — BO(d), for any
d > 0, also factors through BSO(d).
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Definition 1.2.6. Let Eul® C Z be the set of all (e(V),[M]) such that M is a
closed n-dimensional manifold, and V — M is a rank n vector bundle which is stably
isomorphic to TM and which admits a 6y, structure.

Denote by Euly, the set corresponding to B = BSO and © the identity.

It follows that Eul,, is the set of all x(M) where M is an oriented closed
manifold. As stated in [6], Eul,, is given by

0 if nisodd
Eul, =<¢<Z ifn=0 mod4
27 ifn=2 mod4

In general, it will follow from Lemma 3.2.3 that Eul®, is a subgroup of Z.

Proposition 1.2.7. Let 0: B — BSO be a stable tangential structure, and let 64, 0 g1
be its restriction to BSO(d) and BSO(d + 1) respectively, and suppose B(d + 1) =
0~ BSO(d + 1) is connected. Then there is a short-exact sequence

0= Z/Eull,; - moMT8y — Q5+ =0

Moreover this sequence is split, except possibly for the case where d +1 € 4N. If
B = BSO and 0 is the identity then it always splits.

Proof. A proof for B(d + 1) = BSO(d + 1) is given in Appendix A of [6], and the
proof given in this thesis is essentially the same. Since the proof will require
the interpretations of Section 3.2, it will be presented there. O

Higher homotopy groups are harder to describe explicitly.

By taking the bordism interpretation of these groups, one can attempt to de-
fine an external product. Given a stable tangential structure 6: B — BO and
elements [M, E, @] € 1 MT 04 and [N, F, ] € m MT 0., the tuple

(M x N,ExF @ x1)

defines an element of 71 MT 04, provided that E x F is equipped with a
O4+e structure. E and F being 6 bundles means there are lifts Ag: M — B(d)
and Ar: N — B(e) of their classifying maps, giving a diagram

(e) s B(d+e)

/l |

M x N -2 BO(d) x BO(e) —25 BO(d + e)

where @: O(d) x O(e) — O(d + e) is the block-sum. If there were a map p
covering B&, then po (Ag x Af) would be a 84 structureon E x F.

Definition 1.2.8. A stable tangential structure ©: B — BO is multiplicative if there
is given, for all d,e > 0, a map pq..: B(d) x B(e) — B(d + e) covering B&®.

Examples are BSO, BSpin; more generally if h: H — BO is an H-space
homomorphism then h is a multiplicative tangential structure.
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Definition 1.2.9. If 0: B — BO is a multiplicative tangential structure, then define

the product
mMT 04 x Ty MT 0, — T4 1 MT 6d+e

by taking the product coordinate-wise, and using the map Wy q to put a © structure on
the product of bundles.



Chapter 2

The Signature Problem

Consider an element
M, E, o] € m MTSO(d)

forsome d > 0and k € Zi.e. the bordism class of a triple where M is closed and
(k + d)-dimensional, E is an oriented rank d-bundle over M, and ¢: TM =
E @ €¥ is a stable isomorphism. Note that the orientation on E induces one
on TM via ¢. In the particular case that k + d € 4IN the signature o(M)
becomes a meaningful topological invariant, and moreover it is an invariant of
the MTSO(d)-bordism class. This induces a homomorphism

Ok,d: ﬂkMTSO(d) — —O-k+d —Z

which factors through the usual oriented bordism group of (k 4+ d)-manifolds
via the map which forgets E and ¢.

Ifk > 1and k+d = 4n then this forgetful map is never surjective. Indeed the
bordism class of CIP?™ cannot be in the image: since (2'2‘:1) =2n+ 1is always
odd it follows that wan (TCIP?™) # 0, so if M is oriented-bordant to CP?™ then
wyn (TM) # 0 as well because Stiefel-Whitney numbers are bordism invariants;
now by the Whitney product formula it follows that M cannot represent an
element of 7, MTSO(d) for any k > 1. We might then expect the composition
Oy, q to not be surjective either, and ask the following:

Question (The Signature Problem). For (k,d) € Z x IN, which integers can be
realized as the signature of an element of m MTSO(d)?
Equivalently, what is the subgroup Im(oy q) C Z.?

The purpose of this chapter is to provide partial solutions to the Signature
Problem, by finding theoretical lower bounds and constructing examples which
either attain or are close to these bounds.

In Section 2.2 we obtain results for very small values of k and d using ele-
mentary methods, and in particular all cases where k + d = 4. Two basic
examples are constructed, and are later used for computations in Section 3.3:
an element g, € m; MTSO(3) with signature 2 is given in Proposition 2.2.1, and
an element g4 € 7, MTSO(2) with signature 4 is given in Theorem 2.2.3. The
outcome is as follows:

13
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Theorem 2.0.10. Suppose (k,d) € Z x N with k + d positive and divisible by 4.
Then:

Ifd =0o0r1, then Im(oy,q) = 0.

Ifk <0, then Im((rk,d) =Z.

Ifk =1, then Im(oy q) = 2Z.

If k =2, then Im(oy,q4) = 4Z.

The methods used in Section 2.2 break down in higher dimensions when
k > 3,sowehave to appeal to pre-existing theory. If we further restrict the stable
isomorphism condition to the case where there is an unstable isomorphism
@’: TM = E & ¢*, this is the same as asking for k linearly independent vector
fields (we will define the “span” of a manifold M is the largest k so that M
admits k linearly independent vector fields). This is already a classical and
heavily studied problem, the so-called “Vector Field Problem”; a very brief
survey of the Vector Field problem is given in Section 2.3. In particular, there
are already general divisibility results for the signature of a manifold with span
k. Namely there is the following:

Theorem (Atiyah, Mayer, Frank). If M admits k linearly independent vector fields
then its signature is divisible by a number 1\, which is characterized by the following
table

k ||1]12/3|4 |5 |6 |7 |8
T ||2]4]|8]|16 |16 | 16 | 16 | 32

plus the relation Ty g = 16Ty

The number 1 (which is related to the rank of irreducible Clifford modules)
and this Theorem are used as black-boxes.

In Section 2.1 the Signature Problem for manifolds with a stable isomorphism
TM =, E @ ¥ is reduced to the case where the manifold admits an unstable
isomorphism TM = E & ¢, in other words to the context of the Vector Field
Problem, via the following useful result:

Proposition 2.1.1. Let [M, E, ¢] € m MTSO(d), where k > 1, and where k + d is
even and at least 4. Then there is a stably parallelizable manifold N such that M#N
admits k linearly independent vector fields.

Thensince o(N) = 0, Corollary 2.1.13 concludes thatif [M, E, ¢] € m MTSO(d)
then 1y divides o(M), establishing a lower bound for our Signature Problem.

(It should be remarked that Section 2.1 appears first mainly because Propo-
sition 2.1.1 is also used to construct the example g, in Section 2.2.)

Section 2.4 continues the program of trying to realize 1 as the signature of
an element of my MTSO(d) for some d by using known results from Section 2.3,
and obtains some results for k < 6. The “hand-made” examples g> and g4
from Section 2.2 can be used with the product structure from Definition 1.2.9
to produce a few examples, but their signatures are only optimal if k < 4: for
example one can check by case analysis that any combination of g, and g4 in
mi5s MTSO(d) will have signature at least 32, but r5 = 16. Further examples are
given using the obstruction results of [4] as discussed in Section 2.1; however
in order to apply their results one must add the assumption that k < d. The
summary of results is:
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Theorem 2.0.11. Suppose (k,d) € Z x N with k + d positive and divisible by 4.
Then:

Ifk =3and d > 8, then Im(oy q) = 8Z.

Ifk =4and d > 8, then Im(oy q) = 16Z.

Ifk =5and d =12, thenIm(oy q) D 327Z. It is not known wether 16 is realizable
or not in this case.

Ifk =50r6and d > 16, then Im(oy q) = 16Z.

It is important to emphasize that in all cases listed, except for possibly
(k,d) = (5,12), the subgroup Im(o¥ 4) in Z is generated by the number ry.

One set of cases which is not considered at all in this thesis is when 2 < d < k.
It is likely that further restrictions would be added to the signature, due to the
fact that if d < k then Pontryagin classes begin to disappear, with the extreme
case being d = 0, 1 where all manifolds have vanishing signature. Some of the
values of m MTSO(2) are given by Theorem 3.0.8, but the only k where the
group has interesting signatures is k = 2.

2.1 Stable Span Versus Span

In this section, the problem of determining the minimal signature of elements
of m, MTSO(d) is reduced to determining the minimal signature of manifolds
with “span” k. After presenting the notions of span and “stable span”, the
following is proven:

Proposition 2.1.1. Let [M,E,$] € m MTSO(d), and suppose that k > 1, that
k + d > 4 and is even, and that M is connected. Then there is a stably parallelizable
manifold N such that M#N admits k linearly independent vector fields.

Therefore an element of m MTSO(d) cannot achieve a smaller signature
than a manifold whose tangent bundle unstably reduces to a rank d vector
bundle.

Before proving this, first some definitions and basic properties of span and
stable span:

Definition 2.1.2. Let E — X be a vector bundle.

Define the span of E, denoted span(E), to be the maximum number of linearly
independent sections of E.

Define the stable span, Span(t), to be the maximum of span(E & ™) — n over
allm > 0.

For M a smooth manifold, span(M) and span(M) will denote the respective
functions applied to TM.

Then span(M) > k iff M represents an element of 7 MTO(dim(M) — k),
and if M is also oriented then Span(M) > k iff M represents an element of
T MTSO(dim(M) — k).

The first observation is that §pan(E) > span(E). Furthermore, span behaves
very poorly with respect to stabilization: span(S?™) = 0 since x(S?™) # 0, but
span(TS?™ & ¢) = 2n + 1, and in fact §pan(S?™) = 2n. However, it is indeed
the case that for any vector bundle $pan(E @ ) = span(E) + 1.
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Lemma 2.1.3. Let E — X be a rank v vector bundle over a finite CW complex of
dimension .

Ifr > n then Span(E) = span(E) > r —n.

Ifr <nthenspan(E) =span(E® e™ ™) —(n—1+1)

Proof. This is a well-known result and standard exercise in obstruction theory
(cf. Exercise 11.6.10 of [15]). O

Corollary 2.1.4. If E and €' are vector bundles over X which are stably isomorphic,
then $pan(E) = Span(E’). In other words, stable span is a stable isomorphism
invariant.

Proof. Add enough trivial bundles so that they become isomorphic and the
rank exceeds the dimension of the base space. O
The following is apparent:
Lemma 2.1.5. IfE — Xand £/ — X’ are bundles, then
span(E x E’) > span(E) + span(E’)
If X = X' then moreover span(E @ E’) > span(E) + span(E’).

To prove Proposition 2.1.1 we will have to consider the span/stable span
of the connected sum of two vector bundles. For M and N two connected
manifolds of the same dimension n and E — M, F — N two vector bundles of
the same rank r, we will define the bundle E#:F — M#N, the connected sum of
E and F clutched by a function f: S™~1 — O(r).

First, we recall an explicit construction for the connected sum of two smooth
manifolds. Let M and N be connected, closed smooth manifolds of dimension
n, and let

d)MZDn—>M ¢N1Dn—>N
be smooth embeddings of the standard disk. Let
Mo =M —bm(0) No=N—dn(0) Do=D"—(S""1U0)

Define a smooth automorphism o«: Dy — Do by o(x) = (1 —[Ix|[) - x. Then the
smooth manifold M#N is defined to be the pushout

Doﬂ)Mo

ld)NOCX lLM

No —5 M#N

The tangent bundle of M#N is also a pushout. Since ¢pm and dn were
smooth they induce trivializations

Tom: D" xR" = TM Ton: D™ x R™ — TN
and we get the following pushout diagram:

Do x R™ —*M 5 TM,

lT(d)NOCX) J/TLM

TNy — N 5 T(M#N)
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In terms of orientations, notice that « is orientation reversing, and so to induce
an orientation on T(M#N) from given orientations on TM and TN it is required
that dm and ¢ have different orientation parities.

Now suppose E — M and F — N are arbitrary vector bundles of rank m.
Now the smooth charts ¢pm and $n no longer induce trivializations, and we
have to choose

Ve: D" xR™ 5 E  Pp: D" x R™ = F

covering them. Moreover, we are also not bound to use Ta as the bundle map
covering o anymore. Instead, choose any continuous function

f: S™1 5 O(m)

and use the same symbol for the map f: Dy — O(m) which is f pre-composed
with the the norm map Dy — S™~'. Then define os: D™ x R™ — D™ x R™ by

xr(x,v) = (x(x), fx(v))
(note that fx = fy(x))-

Definition 2.1.6. The bundle E#¢F, called the connected sum of E and F, clutched
by f, is defined as the pushout

Do x R™ —255 Ely,

lll’FOle J,LE

Fln, ——— E#F

Denote by B#.F the connected sum clutched by a constant map.

If E and F are oriented, to get an orientation on E#¢F you could either choose
orientation-preserving trivializations and a map f: S*~! — SO(m), or choose
f: S*1 — A . SO(m) for det(A) = —1 and take trivializations with different
orientation parity. We will take the first convention.

The map Taisamap Do x R — Do x R™ whose second coordinate doesn’t
depend on the norm of the first coordinate, so it can be considered as a map

Ta: S™' = 0O(n)
Note that the image of Tx isin A - SO(n); let Tact (x) = AT Ta(x).
Lemma 2.1.7. T(M#N) = TM#7,+TN

It is easy to see explicitly that Ta™ is stably null-homotopic. Moreover Ta™
clutches the tangent bundle of S™, so since the correspondances

Mh—150(m) = 7, BSO(m) (for every m)

send a stabilized clutching function to the stabilized bundle, this abstractly
shows T is stably null-homotopic.

Lemma 2.1.8. If f ~ g then E#;F = E#4F.
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Lemma 2.1.9. (E#F) ®V = (E® V)#¢qun, (FO V).
Corollary 2.1.10. T(M#N) =, TM#,TN.

Having set up the relevant basics, the proof of Proposition 2.1.1, as suggested
to the author by Oscar Randal-Williams, primarily consists of the following two
Lemmata:

Lemma 2.1.11. Let M be a connected oriented manifold of even dimension n, let
k > 1, and suppose x(M) = 0. Then span(M) > k implies span(M) > k.

Proof. 1f span(M) > k then span(TM @ ¢) > k + 1, so by Lemma 2.1.3 in fact
span(TM @ ¢) > k + 1, so there is a rank n — k bundle E over M so that
TM @ e = E@ ek, Moreover e(TM) = 0 by assumption and e(E @ €*) = 0
sincek > 1,50 TM = E & ¢* by Theorem A2. O

Lemma 2.1.12. Let M be a connected, oriented manifold of even dimension n > 4,
and suppose x(M) is even. Then there is a stably parallelizable manifold N such that
X(M#N) = 0.

Proof. Note that x(M1#M;) =x(M1) +x(M2) — 2 when dim(M,) is even. Let
m= %n and c = %X(M). Then the manifold

sn ifx(M)=0
N = ¢ #S™ x §™ if x(M) > 0 and m odd, or x(M) < 0 and m even
#eSm—1 5 SMH1 otherwise

has the desired property. m|

Proof of Proposition 2.1.1. Let [M,E, @] € m MTSO(d), with k > T and k + d
even. Since k > 1 then wi4(M) = 0 so x(M) is even, so we find a stably
parallelizable N such that x(M#N) = 0. Then

TIM#N) @ e = (TM#ro+ TN) @ e = (TM D e)#trarq1 (TN D €)
and this is isomorphic to
(E @ £k+1 )#*£n+l o~ (E#*Enfk) @ €k+1

i.e. Span(M#N) > k. Since its Euler characteristic vanishes, it follows that
span(M#N) > k. O

We will typically denote M#N by My. As a corollary of this and Theo-
rem 2.3.5, we have

Corollary 2.1.13. Suppose M represents an element of e MTSO(d). Then vy divides
o(M).

Proof. o(N) = 0 for any stably parallelizable N. o
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2.2 The Hands-On Cases

Some immediate observations about 71, MTSO(d) can be made for small values
of kand d. If d = 0 or 1 then any element of 7, MTSO(d) will be stably
parallelizable, and hence oy 4 = 0; thus the interesting case is when d > 2.

As for the variable k, if k < 0 then any signature is possible: letting M =
CIP%, take the element [M, TM, Id]. Therefore we will tend to restrict to the
casek > 1.

Proposition 2.2.1. For all n > 1 there is an element of 11 MTSO(4n — 1) with
signature 2, and this is the minimum positive signature.

Proof. If k is equal to 1, an element [M, E, @] € 711 MTSO(4n — 1) will have
Wan (TM) = 0 which means that x(M) = 0 mod 2. Since 0(M) and x(M) have
the same parity, then the signature must alsobe even. For4n € 4Z an element of
signature 2 can be described as follows. Begin with the manifold #2CIP*™: since
this manifold has even dimension and Euler characteristic, Proposition 2.1.1
produces a stably parallelizable manifold N so that

(#CP?™)y := (#CP?™)#N

has vanishing Euler characteristic and signature 2. Then, by the classical
Poincare-Hopf theorem, T(#ZC]PZ“)O admits a non-zero section s and hence
a decomposition as (s) @ (s)*. Therefore

[(#2CIP?™)o, (s)*, Id] € 1y MTSO(4n — 1)

Definition 2.2.2. Let g, = [(#*CIP?)o, (s)*,1d] € 1; MTSO(3)
The rest of the section will prove the following;:

Theorem 2.2.3. There is an element g4 € 7, MTSO(2) with signature 4, and this is
the minimum positive signature.

This is proven with fairly elementary methods, exploiting the close relation-
ship between the intersection form of a 4-manifold and its characteristic classes.

First recall Wu classes (see [24]). Let M be a closed manifold of any dimension
n, let [M] € H,,(M; Z/2) be its mod 2 fundamental class, and for 0 < i < nlet

Ii(— —): H{(M;Z/2) x H* Y{(M; Z/2) — Z/2

be its mod 2 cup-pairing, i.e. Ii(x,y) = (x Uy, [M])z,> where (—, —)z,, is the
mod 2 Kronecker pairing. Then I;(—,—) is non-degenerate, which implies
that for each i there is a unique class vi € H'(M;Z/2) such that for all x €
H 4 (M; Z/2) |

(xUvi, Ml)z,2 = (Sq" x, M])z,>

where Sq' is the i-th mod 2 Steenrod operation. The classes v; are called the
Wau classes. In particular vo = 1 and v; = 0if 2i > n.
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Theorem 2.2.4 (Wu's Formula). Let M be a closed manifold, let V = 14+vy+vy+...
be its total Wu class, W = 1+ wy +w; + ... its total Stiefel-Whitney class, and
Sq=1+Sq' +Sq”+... the total Steenrod square. Then

W =5qV

A surprising corollary of this theorem is that, since V and Sq only depend on
the cup-product structure of the cohomology of M, the Stiefel-Whitney classes
of M’s tangent bundle are invariant under homotopy equivalences. However
we will only use a much simpler corollary:

Corollary 2.2.5. If M is a closed manifold then vi = wy, and if M is orientable then
V) = Wjp.

Proof. Immediately from Wu's formula we have v; = w; for any manifold, so
vy = 0 if it is orientable. Then

wz:vz—FSq1 2 +Sq21 =V
O

Now we recall some basic things about bilinear forms. Let A be a finitely-
generated abelian group. For a bilinear form q: A x A — Z over A, say that
¢ € A is a characteristic element of q if forall x € A

q(x,c) = q(x,x) mod 2

Immediately from the definition we see that if M is a closed manifold of di-
mension 2n then a characteristic element of its intersection form is the same as
an integral lift of v,. If q is also unimodular, then the following holds:

Lemma 2.2.6 (van der Blij). Let q: A x A — Z be a symmetric unimodular bilinear
form. Then q has a (not necessarily unique) characteristic element c, and

q(c,c) =sign(q) mod 8

Proof. Originally derived in [38] by an argument using Gaussian sums, though
it has a more algebraic proof as Lemma I1.5.2 in [25]. O

Now we can easily prove the following:
Proposition 2.2.7. If [M, E, ¢] € 71, MTSO(2) then o(M) is divisible by 4.

Proof. Suppose that [M, E, ¢] € m; MTSO(2), and let I(—,—) denote its inter-
section form. Since M is orientable, by the above corollary we have w, (M) =
v2(M) and so a characteristic element of I is any integral lift of w>(M). The
stable isomorphism TM =, E @ ¢? implies w, (M) = w3 (E), hence the class e(E)
is characteristic for the intersection form of M, so by van der Blij’'s Lemma

I(e(E), e(E)) = (e(E)%,[M]) = 6(M) mod 8

Bute(E)? = p;(E) = p1(M),and so by Hirzebruch'’s signature formula 3c(M) =
p1M] = o(M) mod 8, and therefore 20(M ) is divisible by 8. O
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Since 4 is a lower bound, the ideal example would have signature 4. Let
M, = #*CIP? be the connected sum of 4 copies of CIP? with the canonical ori-
entation, so that 0(M4) = 4. For notation’s sake, let [M4] € H4(Mgy;Z) denote
the fundamental class induced by the orientation, and let 4 € H*(My; Z) be
its dual. Let T4 be the tangent bundle of M.

In order for M4 to represent an element of 71, MTSO(2), recall that this
requires an oriented rank 2 bundle E over My and a stable isomorphism T4 =,
E @ ¢2. Since oriented rank 2 bundles are parametrized by H?(My; Z) because
BSO(2) ~ K(Z,2), producing candidates for E is easy; therefore it is pertinent
to have a way of detecting wether two given bundles over My are stably
isomorphic. For this we employ K-theory (see for example [17]).

Lemma 2.2.8. Let X be a 7-dimensional CW complex with H3(X; Z,/2) = 0. If V and
W are oriented bundles over X with w,(V) = wa (W) and p1 (V) = p1 (W), then V
and W are stably isomorphic.

Proof. Consider V and W as pointed maps X — BO, which factor through BSO
since they are orientable. The proof is by obstruction theory and employs the
following two facts:

1. m; BSO = Z/2 and w,: BSO — K(Z/2,2) induces an isomorphism on 7.
2. m4 BSO = Z and py: BSO — K(Z,4) induces multiplication by 2 on 7y4.

The identification of the groups 71, BSO and 74 BSO is part of Bott periodicity in
the real case [17, 1.9.21]. That w; is an isomorphism on 7, follows from Corol-
lary A.3.2 and the fact that S is parallelizable, alternatively, the tautological
complex line bundle L — CP' = S? has w; # 0 when considered as an oriented
2-plane bundle.

To show that p; induces multiplication by 42, first note that by definition it
is the composition of two maps:

BSO — "' K(Z,4)

NS

where « is induced by complexification SO(n) — U(2n), and c; represents the
second Chern class. Recall that, for spheres, the reduced Chern character

ch: KU(S?™) = 7, BU — H2™(S2™; Q)

factors through an isomorphism onto H2™(S?™; Z) = m,,K(Z, 2n) for all n [15,
V.3.25]. When n = 2, c; always vanishes and the Chern character reduces to
the second component ch, = %(—202 + c%) = —c; [26, IV.4.18], therefore —c;
induces an isomorphism on 7t4. As for «, there is a long exact sequence of KO
and KU groups [1]:

KO3 S, KO S kUt PP ko2 XY ko

where b: KU™™ = KU~ is the Bott isomorphism, 1 € KO~ is the generator,
and p: KU™ — KO™™ is realification. Now, KO3 = 0, KO~2 = Z/2 and
KO~* = Z = KU %, so by exactness k is multiplication by +-2.
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For the sake of notation let K = K(Z/2,2) x K(Z,4), and let f: BSO — K
be the product w, x p;. By assumption, the compositions f o V and f o W
are homotopic as pointed maps X — K, so to show the bundles are stably
isomorphic we want to lift the homotopy to BSO. The problem of lifting the
homotopy to BSO is described by the following diagram

({0, 1} x X) U ([0, 1] x x0) *;BSO

0,1]xX——>K

where x, is the basepoint of X. The obstruction groups are then H" (X; 7. F)
where F is the homotopy fibre of f. From the long exact sequence of homotopy
groups for F — BSO — K it follows that i F = 0 for k < 7 and # 3, and
mi3F = Z/2. Since X has dimension 7 and H3(X;Z/2) =0 by assumption, all of
the obstruction groups vanish and therefore V =, W. m|

Now we construct a bundle with the same w;, and p; as My:

Lemma 2.2.9. There is an oriented rank 2 real vector bundle V. — My with
w2 (V) = wa(t4) and p1(V) = p1(T4).

Proof. As stated above, isomorphism classes of oriented rank 2 vector bundles
over My are in bijective correspondance with H?(My; Z) = Z*, where a vector
bundle V corresponds to its Euler class e(V). Moreover, for such a bundle V we
have p1 (V) = e(V)?2 and w> (V) = poe(V) where p,: H*(— Z) — H*(—;Z/2) is
reduction modulo 2.

By the formula wy; (CPP™) = pa( (Tl‘) u'), where u is the standard generator
of H?(CIP™; Z), one obtains w,(14) = (1,1,1,1) € H3(My;Z/2) = (Z/2)*, and
by Hirzebruch’s signature formula pi(t4) = 124, where py was dual to the
fundamental class of M4.

Now let V be the bundle with Euler class (3,1,1,1). Then V has w,(V) =
p2e(V) = (1,1,1,1), and because the intersection form of My is the standard
scalar product on Z* we have p1 (V) = (3,1,1,1)? = 124. O

Corollary 2.2.10. There is an oriented rank 2 real vector bundle V4 — My such that
V4 =5 T4.

Proof. Take the bundle V,4 corresponding to (3,1, 1, 1) as above. Then since w;,
P1 agree on V; and 14 it follows that there is a stable isomorphism @4: T4 ® € =
V, @ e3. O

Hence (#*CIP?, V4, ¢4) represents an element g4 € m, MTSO(2). Moreover,
it has the minimal positive signature by the above Lemma, so it is an indivisible
element. This element will be used in Proposition 3.3.13 to show 7, MTSO(2) =
Z, and is in fact a generator.
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2.3 Span Versus Signature

Much of the basic material discussed in this section can be found in Emery
Thomas’ extensive expository paper [34]. Other results cited here are found in
Atiyah-Dupont [2], Bokstedt-Dupont-Svane [4], and Lawson-Michelsohn [17].

This section discusses some known results about the span of an oriented
smooth manifold. Fix M™ a smooth, compact, oriented manifold with metric,
and let k be a positive integer. k will be the number of linearly independent
vector fields we want be able to find.

The criteria for determining if span(M) > 1 is a classical result of Hopf. Con-
sidering TM as a manifold of dimension 2n, by transversality a generic section
s will intersect the zero-section at finitely many points {x1,...xm}. By choos-
ing small disks D; around each x; and trivializations TM|p, = D; x R™, s
determines a non-zero section of

Tl\/[lul oD; = |—|sﬂ—1 x R™
i

Normalizing s over this union of spheres by using the metricon M, s determines

an element
m

Ind(s) := ) slop, €M 18" ' 2 Z
i=0
called the index of s. Then, if M is connected, s can be replaced by a non-zero
vector field iff Ind(s) = O (see the proof of Theorem 2.10 in [12]).
Many choices were made in the definition of Ind(s), but the remarkable
result is that they didn’t matter for the reason that the index is actually equal
to a topological invariant of the manifold:

Theorem 2.3.1 (Poincare-Hopf). In the situation outlined above, Ind(s) = x(M).
Corollary 2.3.2. If M is connected then span(M) > 1 iff x(M) = 0.

In particular span(S2™) = 0 since x(S°™) = 2, and span(M) > 1 for every
odd-dimensional manifold. Furthermore, if span(M) > 1 then o(M) is even,
since 0(M) = x(M) mod 2.

The case k > 1 is drastically more delicate. Even if M admits non-zero vector
fields, if they are transverse then the set of points where they fail to be linearly
independent may be a submanifold of positive dimension. In order to imple-
ment a similar strategy to the one above, one can impose an extra assumption
on the manifolds under consideration.

Definition 2.3.3. A set of vector fields s = {s1, ..., sk} € TMX has finite singulari-
ties if they are only linearly dependent at a finite set of points. Such a set will be called
a finitely-singular k-field.

For example, spin a globe and take the velocity vector field: this is a section
s = {s1} with finite singularities since it only has two zeros. If all vectors in
this field are rotated southward by an angle 0 < 0 < 7 this produces another
section which is linearly independent from the first everywhere except for the
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same two zeros. Thus, $? admits two vector fields with finite singularites, even
though it doesn’t admit a single non-zero vector field.

In general, the assumption that M admits a finitely-singular k-field is non-
trivial, but there is a convenient necessary condition:

Proposition 2.3.4 ( [34]). M admits a finitely singular 2-field, except possibly when
n=1 mod 4and w,_1(M) £ 0.

For general k, suppose M is (k—2)-connected, and either w11 (M) = 0ifn—k
is odd, or Bwn_ (M) = 0 if n — k is even, where [ is the Bockstein homomorphism
for the sequence Z. — Z. — Z./2. Then M admits a finitely-singular k-field.

In the case M does admit a finitely-singular k-field s = {s1,..., sk}, the
definition of Ind(s) generalizes from the case k = 1. Say s is linearly dependent
at the points x1,...%xm, and trivialize the tangent bundle of M over disjoint
oriented disks D; around the singular points. Since M was assumed to have
a metric, the Gram-Schmidt procedure naturally orthogonalizes s over the
complement of the singular points, so in particular s defines an element

Ind(s) = Z slop; € 1Stk (R™)

i=1

where St (V) is the Stiefel manifold of k-frames in V for any inner-product
space V. Then, again, M admits k linearly independent sections iff Ind(s) = 0.

In contrast to the k = 1 case, Ind(s) can sometimes depend on s and so as
an element of 7,1 Sty (IR™) it can’t always be interpreted as an invariant of the
manifold. It was not until much later, with the advent of Index Theory in the
1960s, that further progress was made in this direction.

One of the earliest applications of Index Theory to the vector field problem
provided a necessary condition for span(M) > k in terms of a topological
invariant of M. Recall from [17, IV.2] the number 2a;., defined as the rank of an
irreducible Z/2-graded Cl(R*) module. A complete description of the values
of ay is given by the first eight values

kK [1]2[3[4[5]6]7]8
ax | 12448888

and the relation ay ;g = 16ax. For notation’s sake, define 1, = 2ay when k is
not divisible by 4, and 141 = 4a41.

Theorem 2.3.5 ( [17, IV.2.7]). Let M be a smooth, closed, orientable manifold. If
span(M) > k then ri|o(M).

This theorem is usually attributed to Mayer [22], though the result above
is not explicitly stated in the referenced paper. Atiyah [3] around the same
time proved slightly simpler statements using more elementary methods, but
nonetheless still Index Theoretic in nature.

Note that the divisibility in Theorem 2.3.5 only depends on the number
of linearly independent vector fields, and not on the dimension of M. In his
expository paper from 1969, Thomas made the following conjecture:

Conjecture 1 ( [34, Conjecture 4]). If n € 4Z and n > 4, and M is a connected
n-manifold admitting a finitely singular k-field, then span(M) > k iff x(M) = 0 and
Tklo(M).
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Shortly after, this conjecture was verified for k = 2 and 3 by Atiyah and
Dupont [2] via a different application of index theory. They produced a natural
homomorphism from 7, _; Sty (R™) to a certain KR group, and then interpretted
theimage of Ind(s) as an invariant of M using the Index Theorem for KR-Theory.
Their result is the following

Theorem 2.3.6. Suppose M™ admits a finitely-singular k-field s, where k = 2,3.
Then Ind(s) can be interpreted as:

n mod 4 ‘ Ind(s)
0 Xx(M) @ I(x(M) + 6(M)) € Z & Z/by
1 Kerv(M) € Z/2
2 x(M) ez
3 0
where by, happens to be 5+, and
13]
Kerv(M) = ) (—1)'rankz,, H'(M;Z/2)
i=0

is the Kervaire semi-characteristic.

Corollary 2.3.7. Supposen € 4Z. Then span 2iff x(M) = 0and 4|c(M). If
M admits a finitely singular 3-field then span(M zJj‘X = 0 and 8|o(M).

Interpretations of Ind(s) for higher values of k didn’t arrive until very
recently, in a 2014 publication by Bockstedt, Dupont, and Svane [4], using
a construction involving Madsen-Tillman-Weiss spectra and a very involved
Adams spectral sequence computation. They were able to interpret the index
in nice cases when k = 4, 5, or 6. In particular, they proved the following:

Theorem 2.3.8. Suppose n is even, k < 5 and k = 4,5, or 6. Suppose M admits
finitely-singular k-field s.

Ifn =2 mod 4 then Ind(s) = x(M) € Z.

Ifn=0 mod 4 then Ind(s) = x(M) & $(x(M) + ¢(M)) € Z& Z/8.

Corollary 2.3.9. Suppose M admits k vector fields with finite singularities, with
nedzZ. If

k=4,5andn > 12, or
k=6andn > 16
then span(M) > k iff x(M) = 0 and 16|c(M).

Note thatagain 16 = r4 = 15 = 16. This suggets that the following conjecture
may be more likely to be true than Conjecture 1:

Conjecture 2. Suppose M™ admits k sections with finite singularities, where 2k <
N € 4Z. Then span(M) = kiff x(M) = 0 and r¢|c(M).
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2.4 Examples and Results

The aim of this section is to produce, for a given k > 0, closed manifolds
M*™ for any n > 0 with §pan(M) = k and ¢(M) = Ty, using the results from
the previous sections. All examples here have k < 2nand in many cases k < 2n.

In Proposition 2.2.1 an element g, = [(#2CIP?),, (s)+,Id] € 1y MTSO(3) with
signature 2 was given, and in Proposition 3.3.13 it will be shown to be a gen-
erator. Furthermore, taking products with complex projective spaces produces
elements in 1y MTSO(3 + 4n) for every n > 1 as well. Specifically:

Lemma 2.4.1. Suppose k + d is divisible by 4, and suppose there is an element
M] == [M, E, @] € m MTSO(d) with signature o # 0. Then for every n > 0 there
are at least 7(n) linearly independant elements of m MTSO(d + 4n) with signature
o, where Ti(n) is the number of partitions of n.

What this Lemma means for this problem is that if the Signature Problem
has been solved for some k and d, then it has also been solved for that same k
and all higher values of d.

Proof. Let I = (ay,...,a1) be a partition of n > 1. Then for each 1 < i <1
the manifold CIP?% determines an element [CIP%%] := [C]Pzai,TC]Pzai,Id} €
1o MTSO(4a;). Now let

[CP?!] == x!_,[CIP**!] € 1o MTSO(4n)

Then for each I the element [M] x [CIP?!] is an element of 7, MTSO(d + 4n)
with signature o. In order to see that these are linearly independent as I varies
over partitions of n, consider their image under the homomorphism

Tk MTSO(d + 411) — Qk+d+4n

Since o(M) # 0, [M] remains non-zero after projecting to the torsion-free part.
But the torsion-free part of the oriented cobordism ring is a polynomial algebra
generated by the complex projective spaces {CIP*™}, so the elements [M] x
[C]PZIL as I varies over all partitions of n, become linearly independent in
Oyt d+an- Therefore they are also independent in i MTSO(d + 4n). O

In fact Proposition 2.2.1 gave for every n > 1 an element of t; MTSO(4n—1)
with signature 2 = ;. In light of the above Lemma, we could have just taken
the generator g, € m; MTSO(3) and taken products with complex projective
spaces to produce more elements.

For k = 2, Theorem 2.2.3 gave the element g4 generating m, MTSO(2) with
0(ga) =4 = 2. Again, taking products with [CIP*'] as I ranges over partitions
of n gives linearly independent elements of 1, MTSO(4n + 2) foralln > 1. Le.

Proposition 2.4.2. There are at least 7(n) linearly independent elements of
m, MTSO(2 + 4n) with signature 4 = r; foranyn > 0.

In the case of k = 3, since MTSO(1) ~ $~! it follows that 13 MTSO(1) = 0,
so the search begins with 8-manifolds. The product g, x g4 is indeed an element
of m3 MTSO(5) and its signature is 8 = r3. Thus
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Proposition 2.4.3. There are at least m(n) linearly independent elements of
73 MTSO(5 + 4n) with signature 8 = 3 for any n > 0.

For k = 4 again an example can be constructed with the external product,
namely g4 x g4 € 1y MTSO(4), having signature 16 = 4.

Proposition 2.4.4. There are at least (1) linearly independent elements of
14 MTSO(4 + 4n) with signature 16 = r4 for any n > 0.

For the case k = 5however, products fail to produce an element of 1s MTSO(7)
with signature 16 = 15, though the element g, x g7 has signature 32. We do
have the following:

Proposition 2.4.5. There are possibly two different elements of s MTSO(7) with
signature 32 = 2rs.

There are at least m(n) linearly independent elements of ms MTSO(11 + 4n) with
signature 16 = rs for any n > 0.

Proof. As stated above, g, x g7 is an element of s MTSO(7) with signature
32. Another example can be constructed using the obstruction of Bockstedt-
Dupont-Svane by producing a 12-manifold which is 3-connected, has wg = 0,
X = 0, and has signature divisible by 16; such a manifold will then have
span > 5.

Begin with K = K3 x (HIP?#HIP?), where K; is one of the spin, signature
16 complex surfaces named for Kéhler, Kodaira, and Kummer, all of which are
diffeomorphic (see for example [30, I1.3.3]). Then since K is spin any embedded
1-, 2-, or 3-sphere will have trivial normal bundle, so it can be surgered into a 3-
connected manifold K’ [23]. After doing these surgeries, construct Ky by adding
copies of $° x S” to eliminate the Euler characteristic, as per Lemma 2.1.12; then
K{ is 3-connected by construction. Now, wg (HIP?) # 0 but wg (HP?#HIP?) = 0,
and it follows that wg(TK{}) = 0 so K} admits a finitely singular 5-field by
Proposition 2.3.4. Then since o(K}) = 32 is divisible by 16 and x(Kj) = 0 this
manifold admits 5 linearly independent vector fields by Corollary 2.3.9. This is
not ideal since the signature of K} is 2r5, but having two copies of HP? in the
construction ensures that wg = 0 so that we can apply the necessary condition
for the existence of a finitely singular 5-field.

For higher dimensions, consider the manifold (#' 60IP?)y. Then this mani-
fold is 6-connected since copies of S” x S? were added to eliminate the Euler
characteristic, wio = 0, and its signature is 16. Then the results of [4] tell us
again that span((#'®OP?),) > 6, so in particular it is at least 5. ]

Corollary 2.4.6. Thereareat least (1) linearly independent elements of t¢ MTSO(10+
4n) with signature 16 = r¢ for any n > 0.

At the time of writing an element of s MTSO(7) with signature 16 remains
elusive, and s MTSO(3) remains unconsidered.
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Chapter 3

A Cofibre Sequence and Some
Computations

In the landmark four-author paper by Galatius, Madsen, Tillmann, and Weiss
[7], one of their smaller propositions, Proposition 3.1, provides a cofibre se-
quence of spectra

£~ MTO(d — 1) = MTO(d) — £*BO(d), — MTO(d — 1)

as well as the analogue for SO(d). The details of the proof were sparse to say
the least. Section 3.1 provides extensive details for a generalization to arbitrary
tangential structures; namely it proves the following:

Proposition 3.0.7. Let 64: B(d) — BO(d) be a d-dimensional tangential structure
ford > 1, and let ©4_1 be its restriction to BO(d —1). Then there are maps (described
in Section 3.1) giving a cofibre sequence of spectra

TTMT 04 1 —— MT0q —— I®B(d), — MT 0,
Specifically, we will construct a cofiber sequence of spectra of the form

P—>MTOy -G —S'AP

as well as homotopy equivalences G — Z*B(d), and I TMTO4_1 — P.
The chapter culminates by using these basic results to prove the following:

Theorem 3.0.8. The first four positive homotopy groups of MTSO(2) are given by

K 1121 3 |4
T MTSO2) || 0 | Z | Z/24 | Z

The group 1, MTSO(2) is generated by a class with signature 4.
Furthermore, the group 1 MTSO(3) is isomorphic to Z and is generated by a class
with signature 2.

The values of the first three homotopy groups of MTSO(2) were remarked
in Corollary 4.4 of [20] (where, at the time, MTSO(2) was referred to as CIP>;)

29
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and the idea they had in mind likely parallels the proof given here. However
they do not state a result for my MTSO(2) or 71y MTSO(3), and at the time of
writing this thesis computations of these groups are not found in the literature.
The computations given here use the cofibre sequence of Proposition 3.0.7 and
the interpretation of homotopy groups given in Proposition 1.2.3, and are con-
tained in Section 3.3.

The first two homotopy groups of MTSO(2) can also be computed via highly
non-trivial means by appealing to the Madsen-Weiss theorem [21] and homo-
logical stability for mapping class groups (cf [10], [14], [5]). If M is a manifold,
let Diffy (M) denote the topological group of diffeomorphisms which fix (a col-
lar of) OM. If L4, denotes a genus g surface with b boundary components,
then the mapping class group of L, ; is defined as

Fg‘b =T lefa (Zg,b)

For the purposes of this discussion fix b = 1. Let H be the 2-torus with two disks
removed and boundary components labelled B_ and B, and let 4,1 7 be the
result of attaching H to £ 1 along B_. Then there is an induced homomorphism
Ig,1 — Tg41,1 which extends a given diffeomorphism by Idy; in particular it
induces a map on homology

H*(rg,l) — H*(rng],])

The results that Harer derived in [10] show that this map (which is really a
composition of two more basic maps) is an isomorphism for 2 < * < %2, and
if x = 1 it is an isomorphism given that g > 3. (Ivanov [14] improved the
homological-stability range to * < %, and Boldsen [5] further improved this
to * < #.) Therefore if we continue the process of attaching H to Zgn 1
along B_, the homology of the mapping class groups Iy, 1 stabilizes to the
homology of the stable mapping class group I, := colimy 'y, 1. Then the
homology of MTSO(2) comes into play using the homology equivalence

Z x BTy — Q® MTSO(2)

given by the Madsen-Weiss theorem [21, Theorem 1.1]. If g > 3 then Iy,
is perfect, so H;(Q*°MTSO(2)) = H;(I'w) = 0; but infinite loop spaces have
abelian fundamental group, so m; MTSO(2) = 1 (Q*MTSO(2)) = 0. In an
earlier paper [9] Harer also computed that H(Iy 1) = Z for g > 5, so using the
Hurewicz theorem we can deduce that t, MTSO(2) = Z.

The methods used in this thesis are somewhat more elementary. Section 3.2
studies the maps in the cofibre sequence of Proposition 3.0.7, namely it inter-
prets their induced homomorphisms at the level of bordism groups. Section 3.3
uses these interpretations to help compute the groups in Theorem 3.0.8, and
gives explicit generators g, € m; MTSO(3) and g4 € 1, MTSO(2).

3.1 The Cofibre Sequence

Let X be a compact topological space, and let E and F be finite-dimensional
vector bundles with metric over X. Let p: S(F) — X be the projection of the
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sphere bundle of F to X. If E is pulled back to S(F) along p then there is a
tautological bundle map
P:p'E—E

Furthermore, E naturally imbeds into F & E; let

jE=208ECFaE

denote this embedding. As they are bundle maps, p and j induce maps Th(p),
Th(j) on Thom spaces.

The total space of ¢ & p*E can be embedded as an open subspace of F ¢ E:
for x € X, u a unit vector of F, v € Rand w € E,, the embedding is given by
((x,u);ry,w) = (x;e" -u,w). In fact ¢  p*E is isomorphic to the normal bundle
of S(F) in F & E. Define

PT: Th(F® E) — Th(e ® p*E)
by PT(c0) = oo and for an element (x;v,w) € F @ E itis given by

00 v=0

PT(x;v,w) = { (3.1.1)

(06 )iVl W) otherwise

Then PT could be though of as the Pontryagin-Thom collapse map of the
embedding S(F) - F@ E.

Lemma 3.1.1. The situation described above produces a cofiber sequence of spaces:

Th(p*E) =L Th(E) U4 Th(Fo E) —F% Th(e @ p*E)

Proof. Th(j) is a closed embedding with image (0 @ E)*. PT is a topological
embedding outside of the subspace PT '(c0) =Im Th(j). It follows that

Th(e ® p*E) = Th(F & E)/Im Th(j) ~ Cone(Th(j))
Hence the last three spaces form a cofiber sequence.
In order to show that the first three spaces form a cofiber sequence, replace

Th(E) with the mapping cylinder, and consider the mapping cone. Explicitly,
let Cone(Th(p)) be the space

(Th(p*E) x I)|_J Th(E)

modulo the subspace Th(p*E) x 0 and the relation (b,u;v,1) ~ (b;v) for b €
X, u € §(Fx), and v € E,. Then we can define a homeomorphism

Cone(Th(p)) —

D(F) @ D(E)
(D(F) @& S(E)) U (S(F) & D(E))
by sending (b;v) € Th(E) to (b;0,v), and sending (b, u;v,t) € Th(p*E) x I to

(b; (1 —t)u,v). Then this is indeed well-defined, a bijection, and continuous in
both directions. Finally, the space on the rightis homeomorphicto Th(F&E). O
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Consider the situation where
Xn = B(d)rn n — e d n» Fn = >,gi,nud,n

and label the projection map py: S(Fn) — Xn. For the sake of notation let
ug =65, Uanand U§ =65 Uy . Then for each n Lemma 3.1.1 gives a
cofiber sequence

Th(p

ThipsUgL) 20 Th(ugt)y M

Th(Ug,, ® U$%) — Th(e @ p;UgL)
Although Ug)n ® Ug:# = ¢™, it helps to use this orthogonal decomposition to
define bundle maps.

Recall that as n varies, the bundles Ug: L form a stable vector bundle, whose
Thom spectrum is MT 64.

Lemma 3.1.2. Thesets (U3 | ®@UJ% — B(d)nlnzaand {prUPE — S(UY | nza
form stable vector bundles, and the sets {Pnn>a and {in}n>q are maps of stable vector
bundles.

Proof. Remember that for each b € B(d)n, 6(b) is a plane in Grq(R™). Given
b e B(d)n, ve 8(b), w L 8(b)and t € IR, define a bundle map

Br: U n ®Ugn @e— Uiy ® UL (312)

by Bn(b;v,w,t) = (b;v,w + ten11). Then this map covers the inclusion map
An: B(d)n — B(d)n41 and is an isomorphism in each fibre, so induces the
required isomorphism for a stable vector bundle.

An element of S(U‘?1 ») has the form (b,u) where b € B(d), and u €
0(b) is a unit vector; an element of pnugi then has the form ((b,u);w) for
(b,u) € S(u§ n) andw 1 6(b). The inclusion R™ — R™* induces an inclusion

An: S(Ug ) = Sy n+1) which covers An:

7\n
S(UG,) 2 S(UY 1)

J/ n J/‘pn+'l

B(d)n —™— B(d)ns1

Then 6’& n‘bn Ugn @ e = AU, where ¢ was the isomorphism
Ui@s = Ul dnt1s 1r1duces an 1som0rphlsm/bundle map

p: d, n‘bn pnud n De= pn}\* ud n+1 — 7\* pn+1 ud n+1 - pn+1 ud n+1
(3.1.3)

sending ((b,u); w,t) to ((b,u);w + ten 1), and covering A.

{Pn} and {i} induce maps of stable vector bundles because the following dia-
gram commutes:

*11(0,L Pnold 0,1 tn®lde 0
pnud,n De ud n ©e ud n ud n De
lpﬁe(d)ﬁd)n le(d)ﬁd)n J/Bn
* 0,L  Pnii 6,1 fnt1 0 0,L
PriiUgne — Ugny — Ug i @ Ugn
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Now we can define the spectra G and P alluded to in the introduction:

Definition 3.1.3. Let IP be the Thom spectrum of the stable vector bundle {p:;ug»‘#
and let G be the Thom spectrum of the stable vector bundle {Ug ,, & Ug

It should be remarked that as n varies the bundle isomorphisms
U3 . ® Uy =n B(d)n x R™ induce homeomorphisms G ) = (B(d)n) /A S™
making the following diagram commute:

Th(Ug,,, ® USE)AS' 2228 (B(d)n)1 ASTAS!

J{Th(ﬁn) J/An/\h-n

Th(U§ . & USE ) —5 (B(d)nir)p AS™H

where h,, is the standard homeomorphism S™ A S =~ Snt1. However, we will
continue using the Ug‘n ® Ug’) L description so that there are less identifications
to keep track of.

Lemma 3.1.4. The collections of maps {Pn}, {in} and {PTn} induce maps of spectra.
p:P— MTO,, i: MT 84 — Gand PT: G — S' AP

Proof. By Lemma 3.1.2, the sets {Pn}, {in} are maps of stable vector bundles.
Applying the Thom space functor induces mapsp := Th({pn}) and i := Th({in}).
The maps {PT,} are not given by a bundle maps, so showing they induce a
spectrum map needs to be done explicitly. Recall that the n-th structure map of
ST APisIdgt ATh(p:0(d)% dn); then the following diagram must commute:

PT, N1Id
Th(U§,, & UL @) ——'Th(e @ prUQ s @ €)

lmrsn) lldy ATh(p30(d) bn)
PT,.
Th(ug et @Ud i) —= Th(E@PnHud )

Letb € B(d)n, v 6(b), w L 8(b),and t € R. If v =0 then both compositions
send (b;v,w,t) to oo, and if v # 0 then

(Idst ATh(py0(d); dn)) o (PTn Aldsi)(b;v, w, t) =

Ids1 ATh(p,,0(d)y,$n) (( 'y II) sIndpvll, w t) (( —); In[pv[[, W+ten+1>

(3.1.4)

and
PTyq1 0oTh(Bn)(b;v,w,t) = PTr 1 (b;v,whten 1) = (( 'y II) ;Invil, W+ten+1)
O

Corollary 3.1.5. P —P Sy MTOy —— G 55 STAP isa cofiber sequence
of spectra.
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Proof. By Lemma 3.1.1 this sequence is a level-wise cofibre sequence. m]

Therefore we have identified some cofibre sequence of spectra, but the spec-
tra IP and G aren’t precisely the spectra Z~'MT 041 and Z*B(d), that we
want. Thankfully they are of the same homotopy type.

Lemma 3.1.6. There are weak homotopy equivalences of Thom specra
G — I®B(d),, b: I "MT04_ 7 —» P

Proof. The maps in question here are induced by pulling back stable vector
bundles.

For each n, B(d),, C B(d) and the trivial bundle pulls back to U§ & U%
in a way which is compatible with stabilization, so there is a map from the
stable vector bundle underlying G to the one whose n-th space is B(d) x R™,
inducing a map of Thom spectra 1: G — Z*B(d),. The connectivity of the
map B(d), — B(d) is the same as the map Grq(R™) — Grq(R*), which is
(n—d—1)-connected by Corollary 1.1.6. Then themap Z™(B(d)n)+ — X™B(d)+
is (2n — d — 1) connected by Lemma 1.1.2, i.e. it induces an isomorphism on
Tk as long asn > k 4 d 4 1. Therefore the induced map of spectra is a weak
homotopy equivalence.

There are bundle maps

1 *7(L 1
Ug 1wy — palg, — Ug,

| | |

Gra_1(R™ 1) 125 S(Ugn) —2 Grg(R™)

where f,_1(P) = ((e7) ® shP;e;). In other words, the stable vector bundle
whose Thom spectrum is - TMTO(d — 1) is the pullback of {p;’;Uﬂ{‘n} along
{fn—1}. Then map fn_; is (n — 2)-connected by Lemma 1.1.7.

Moreover, we can define g, _1: B(d—1)n_1 — S(Ug}n)by gn_1(b) = (b;eq)
since 84(b) = (e1) ® 04_1(b). With tangential structure included, there is the
diagram

*7110,L 0,L _ o* L
pnud’,n ud),n - ed,nle,n

| !

B(d—no1 ——5 S(U§ ) —— B(d)n

J/edfhn—] l lSd,“

Gra_1(R™1) 2% S(Ug ) —— Grg(RY)

Then by commutativity of this diagram, gj, ;pRUg% = 65, Ug ., 1,
and so there is an induced map : S TMTO4_1 — P.

The map gn—1: B(d—1)n_1 — S(U.g’n) has the same connectivity as fn_1.
Then, so long as n — d > 2, the induced map on Thom spaces has connectivity
(2n—d—1) by Lemma 1.1.2, so again it induces an isomorphism on 7t,, 1« when
n >k +d +1, hence \ is a weak-homotopy equavalence.

O
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All of the above is summarized in the following, which proves Proposi-

tion 3.0.7:

Corollary 3.1.7. There is the following diagram of spectra, where the horizontal
sequence is a cofibration and the vertical arrows are homotopy equivalences:

P— " s MTOy — G P STAP
L[)T J/L Id/\ll)T
I TMT 04 ; I°B(d), STA(Z TMT04_1)
MT 04+

3.2 Interpretting Induced Maps on Homotopy Groups

In light of Proposition 1.2.3, the maps between spectra in the cofibre sequence
of Proposition 3.0.7 induce maps of bordism groups, whose interpretations are
given here.

The basic template is as follows: suppose E and E’ are Thom spectra with
n-th spaces Th(V;,) and Th(V},) respectfully, where both V,, and V/, are smooth
bundles over manifolds, and let f: E — E’ be any map. Given a map
®: S™* — Th(V,) representing an element of 7ty [E, we arrange (by replac-
ing with homotopic maps) that ® and f o ® are transverse to the zero sections
of Vi and V/,. Then, via the Pontryagin-Thom correspondence, @ produces
a manifold M with some bundle data D, f o ® produces (M’,D’) in a similar
way, and
nk(f) [M) D] = [M/) DI]

Then, a procedure is given which explicitly turns the data (M, D) into some-
thing bordant to (M’, D’). Aslong as this procedure is bordism invariant it will
give an explicit formula for 7y (f), since any element of 7ty [E can be represented
in this way.

In practice, a bundle V;, will be over something like B(d),, which is not a
smooth manifold, but it will be pulled-back from a bundle U,, over something
like Grq(IR™). Then composing ® with the map Th(Vy) — Th(U,) canbe made
transverse to Grq(R™) to give the manifold and bundle data as above, and the
“lift” ®|m: M — B(d)n gives the tangential structure.

Since P ~ £~ 'MT04_1 we can describe its homotopy groups using Propo-
sition 1.2.3, as bordism classes of triples (M, E, @) where M has dimension
(k+1)4+(d—1) =k+ dand Eisa 04_1-bundle. However we will use the IP
model of this spectrum in the proof of the following.

Lemma 3.2.1. The homomorphism m(p): M1 MT 041 — m MT 04 sends the
class [M, E, @] to [M, ¢ @ E, @], where ¢ ® E has the natural 0 q-structure.

Proof. Use the model IP for £~! MT6q4-1. Let qn: S(Uin) — Grg(R"™),
Pn: S(UG ) — B(d)n, and let 6: S(UG ) — S(Uqa,n) be the obvious map
covering 0.
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Take a map ®: S™"* — Th(p;, U7 so that the composition with

Th(8)

is transverse to the zero-section S(Ugn); let M = (Th(8) o @)~ (S(U.d )
and f = (Th(6 0) o ®)|m. Note that f factors through a map f: M — Th(pnug )

because 0 is an isomorphism in each fibre. Then indeed M has dimension k +d,
and the embedding M C S™** induces an isomorphism TM @ v§; ' = e™+¥.

Since v}y = f*piUY %, adding f*pj U] | to both sides gives an isomorphism

e: TM@e™ =™ o fprug

UnlikeU§ | thebundlep; U3  — S(U§ ,,) hasacanonical non-zero section,
namely o(b; u) = (b, u; u), which induces an isomorphism an?1 L2ed (o)t
Then @ defines the element [M, f*(c)~, @] € mIP.

Now consider the composition

Th(pn) o @: S™* = Th(p;UH) — Th(UgT)

Then composition of th1s map with the one to Th(Ué ) istransverse to Grq (R™).
If M" = (Th(pn) o @)~ (Grq(R™)) and f' = Th(pn) o @|m, then just as above
there is an induced isomorphism

e TM @ e = ek g f’*Ug’n
Then Th(p) o @ defines the element [M’, f’*Ug‘n, @'l € ;u MT 04 and

7 (p)(IM, *(0) ™, @]) = IM/, UG 1, ]

However M’ = (Th(pn) o @)~ (Gra(R™)) = @ '(S(U§ ,)) = M. Thus
f'=Ppnofsof Uy  =e®f (o)t and ¢’ = o. O

Now consider the spectrum G ~ £*B(d),. An element of mG is repre-
sented by a map
r:S™* - Th(Uug,, ® U3y)
such that Th(8) o T h Grd(]R“) let N = (Th(0) o I~ "(Grgq(R™)) and g =
(Th(B) oT)|n. Then vy = g*e™ and hence we get an isomorphism

ll): ™ @ e~ Tsn+k|N =~ €n+k
We also naturally have a 04-bundle over N, namely g*Ugyn.

Lemma 3.2.2. 7y G is the bordism group of triples [N, 1, E] where (N, ) is a framed
manifold and E is a map N — B(d).

This can also be seen by noting that £*B(d), ~ B(d); A5, so its k-th
homotopy group is the (un-reduced) k-th homology group associated to the
spectrum $ applied to B(d), that is Q" (B(d)).

Now we interpret the homomorphism m (i): M MT 04 — mZ*B(d),.
Suppose [M, E, @] is an element of iy MT 04. Let s be a section of E trans-
verse to the zero-section, and let S = s~'(0), a smooth manifold of dimension k
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with normal bundle v}{! = E|s. Denote by j: S < M the inclusion. If we choose
some complement E* of rank 7, then the map ¢ defined by

@:TSOEls ®e™ @ E[F ——— edintkir

- i

|s@ld
TMls @ e" @ Eld 25255 Elg @ entR @ EfE

is a stable framing of S.

Lemma 3.2.3. The map m(i): me MT 04 — mZ*B(d), is given by
() IM, E, @] =[S, @, Els]

Proof. Let 5 be a section of Uy r, transverse to the zero-section; this induces a
section s: B(d)n — Ug ,, because U], a pull-back of Ug,». Note that the map

s@Id: UPy — U§ @ Uds

defined by (s @ Id) (b, w) = (b; s(b),w) is not a bundle map so the Thom space
functor doesn’t apply, but it still induces a map (s @ Id)™ on the one-point
compactifications. Since s @ Id ~ 0 @ Id, the map 7y (i) can be described by
composing with (s @ 1d)* ~ Th(0 & Id).

Now let @: S™** — Th(U$7) so that Th(6) o @ th Grq(R™), and let T' =
(s@®Id)* o @. Then the composition

(spId) ™+

gnik _ @ Th(U$L) — Th(Uf , & USE) Tho, Th(Ua,n ® Ug,)

is again transverse to Grq(R™). Then ® and T’ simultaneously define triples
(MM, @) and (N, ¥, E') respectively, where E = @[3, U§ | and E' =Tl Uy ,
and
ﬂk(i)[M) E, (P] = [N)¢> E/]
Let f = ®|pm, g = INn. Note that s o f defines a section of f*ugyn which is
transverse to M. Then

(sof)~T(M) = {x € M[sf(x) = (f(x);0)} = Th(8) o " " (Gra(R™))

That is N is the manifold S described before the statement of the Lemma.
Moreover g*U§ . = f*Ug , [n, again since s ~ 0, i.e. E’ = E|n.

Finally, the framing of N given by the above is of the formp: N e™ = enk,
but the framing @ can be interpreted as 1\ @ Ida+r, and these two framings are
equivalent under the bordism relation. IL.e.

(N,ﬂ),E/) ~ (S) @)E|S)
[m}

We want to now describe 7t PT: mZ*°B(d), — mc MT 041, so consider an
element [N, 1, E] € mZ*B(d), . The total space of the sphere bundle p: S(E) —
N is a closed manifold of dimension k+d—1, and choosing a metric on E induces
an isomorphism &: TS(E) = T,S(E) @ p*TN. Then let \p be the composition

(Idey)o (6@ 1d): TS(E) e = T,S(E) @ p* TN @ ¢ = T, S(E) @ k!
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Note that T,,S(E) is arank d—1bundle over S(E). By Proposition1.1.9, e T, S(E)
is naturally isomorphic to p*E where p: E — N is the bundle projection, and
p*E does have a 68(d) structure, say A: S(E) — B(d). Then the decomposition
p*E = (o) @ € induces a homotopy of its classifying map into BO(d — 1) <
BO(d), which lifts to a homotopy of A into B(d — 1) — B(d) by the homotopy
lifting property; this induces a 641 structure on T, S(E).

Lemma 3.2.4. The map m, PT: m Z*B(d), — mcMT 041 is given by
Tl PT[NJP, E] - [S(E)) TVS(F—), d)]
where ¢ is described in the proof.

Proof. We continue to use the S' /A IP model for MT 6d — 1.
Let ®: S™** — Th(U§ | @ U$1) be continuous, let Th(8 0) denote the map
Th(Ug n® u$l) — Th(ud n ® U 4,n) induced by pulling-back along 6, and let
Th( 9) o (D Let M=0a" (S(Ud n®0)), f=®u. A diagram might help:

Sn+k

UgnﬁﬁLl UdeBUém)
\ W PT,
0 Th(e @ pUgE) — J Th(e ® qjUg )
0
B(d), Oan T Gra(R™)

s(ug,,.) S(Uan)

LetD =2-D(Ugn®Ug,,) C Th(Ugn ®US ). Wlog @'(D) is a tubular nhd
of M C Sk, say T. Then in particular, @ is transverse to the submanifolds
Gra(R"), S(Ugn @ 0), and D(Uqg,n ©0). Let W = &1 (D(Ug,n @ 0)), let
F=®w,let N =D 1 (Grgq(R")) and f = ®|n: then W is a d-disk bundle over
N with projection 7, say, and M is its sphere bundle with projection p = 7t|pm.
Moreover the normal bundle of N in W is isomorphic to f*Ugq r.

Note that the normal bundle of D(Ug  ©0) in Ug n & U 1 is the pullback
of Ué . along the projection to Grq(R™); then the normal bundle of Win §™*¥
isT f*ul since the following commutes

W — Ugn &0

L

N — Grq(R™)
Then there is an isomorphism

E: e =TSy 2 TWe n* f Uy, = TN @ " f* Uq n @ Uy,
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Restricting this to N gives the usual isomorphism
P: TN @ e™ = TN @ fF*Ugpn @ FUg,, = TS|y = e te

Therefore @ defines the element [N, 1, f*Uq,n] € mZZ*BO(d), . By definition
F factors through Th(U§ | ® U§7) via @|w, mapping W to D(U§ , ©0) and N
to B(d)n; in particular f*Uy r, comes with a 6(d)-structure. Thus @ (without a
tilde) defines an element [N, , f*Ug ] € m Z*B(d), . Abbreviate E = f*Ugq n.

Now consider ® composed with PT,,: Th(U§ , @ U§:) — Th(e @ pUgyy).
Then the care taken to arrange @ ensures that Th(8’) o PT,, o® is transverse to
the zero-section S(Uq ) of € ® pjUg ,,. Then

(Th(8) o PTp 0®) ' (S(Ug,n)) = @' (S(UG,,, ®0)) =M

If g = (Th(’) o PT, o®)[\m we get e"* = TS|y = TM @ e & g*q Uy, and in
particular

e: TM@e™ ! =™ @ g*prUgn = e™ 2@ g*(0)"

Regarding M as a sphere bundle over N, g is a map of sphere bundles and

(o)t = T,Uqg,n so g* (o)t = T,M. Therefore PT,, o ® determines the element
[S(E), TLS(E), @] € m¢ MTO(d — 1), which we wish to upgrade to an element of
m. MT 8(d) by showing that T, S(f*Uq ) has a natural 8(d — 1)-structure. Then

Tl PT[N)LI)) F—} - [S(E),T\,S(E), (p]

It remains to describe the relation between 1\ and ¢. If the isomorphism & is
restricted to M = S(E) it becomes

MR p TN @ p* FUgn @ p*fUg, =p TN e ® T,S(E) @ p*f*Uy

Adding p*f*Ugq n to both sides results in ¢, and it is seen from this that ¢ =
(Id@) o (6 @ Id). Intuitively the point is that & is supposed to interpolate
between ¢ and .

O

3.3 Some Computations

Using the above interpretations, some computations can be made for small
values of k and d. First, we will finally give a proof of

Proposition 1.2.7. Let 0: B — BSO be a stable tangential structure, and let 04, 0 a1
be its restriction to BSO(d) and BSO(d + 1) respectively, and suppose B(d + 1) =
0~ BSO(d + 1) is connected. Then there is a short-exact sequence

0= Z/Eull,; - moMT8, — Q5+ =0

Moreover, this sequence is split except possibly for the case where d + 1 € 4IN. If
B = BSO and 0 is the identity then it always splits.
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Note that by Lemma 3.2.3, Eulgﬂ = Im(moi: Mo MTO0q — meZ*B(d + 1))
so Eul§  ; is indeed a subgroup of Z.
Recall that
0 if nis odd
Eul, =< Z ifn=0 mod4
27 ifn=2 mod4

Lemma 3.3.1. Ifn %0 mod 4 then Eul}, = Eul, for any 6: B — BSO.

Proof. If n = 1 or 3 mod 4 then (e(V),[M]) = 0 for any rank n bundle, since
the Euler class of an odd-rank bundle is 2-torsion and a stable isomorphism
V =, TM would mean M is orientable. Therefore Eul®, = Eul,, = 0.

Since 0, : B(n) — BSO(n) is pulled back from a tangential structure over
BSO(n + 1), it follows from Lemma 5.6 of [8] that in particular TS™ admits a
0., structure, and if n is even then (e(TS™), [S™]) = x(S™) = 2: it follows that
Eul]e1 D 2Z when n is even. When n = 2 mod 4 then Eul,, = 2Z as above,
and since the bundle V is required to be stably isomorphic to TM these bundles
have the same w;, and hence their Euler numbers have the same parity, i.e.
(e(V), [M]) cannot be odd and so Eul® = 2Z = Eul,,. O

Note that when n = 0 mod 4 then there is a disparity: a classical theorem
of Rohlin [28] states that if M is a smooth, closed, spin 4-manifold then (M) is
divisible by 16, and since the signature and Euler characteristic of a manifold
are congruent modulo 2 it follows that Eulflpm # Z; however Euly = Z since
x(CPP?#(ST x $3)) = 1.

Proof of Proposition 1.2.7. The tangential structure 641: B(d+1) — BSO(d+1)
leads to a cofibre sequence of spectra, as in Proposition 3.0.7:

MT 041 —— E®B(d+1), —1» MT8q4
Focusing on the 7y region yields

ToMT 0441~ morB(d+ 1), 25 myMT 04 — 71 MT 04, —— 0

According to Lemma 3.2.3, the map 7, (i) takes a tuple [M4+1 E4+T @] to
(e(E),[M]), and it follows that Im (i) = Eul}, ;. Then the identifications
1 MTOgq,.1 = Qg‘“‘ and o X*°B(d + 1), = Z yeild the short exact sequence

0— Z/Eul§, ; = moMT8g — Q5" =0

The homomorphism 7oPT: moZ*°B(d + 1), — moyMT 04 takes a framed 0-
manifold with rank d + 1 84.+1-bundle [M, 4, E] to [S(E), T, S(E), ¢] for a par-
ticular stable isomorphism ¢, but since M is a compact 0-manifold the sphere
bundle S(E) is really a finite disjoint union of spheres, T,S(E) = TS(E), and ¢
can be taken to be the identity. In particular, a generator of oZ*B(d + 1), is
given by g = [, R4*1 ] where R4*" is given a 04,1 structure covering the
usual orientation, and
moPT(g) = [S4, TSY,1d]
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Therefore, to give the splittings s4: 1o MT 84 — Z/ Eul], ; it suffices to give a
homomorphism taking the class [S4, TS, Id] to 1. These are easy to describe
using familiar topological invariants, and take the same form as the splittings
given in Appendix A of [6]. Of course, the splitting depends on the residue
class of d mod 4.

If d = 0 mod 4, then Z/Eul},; = Z and for any oriented d-manifold
M it holds that o(M) = x(M) mod 2. Then the splitting can be given by
[M,E, @] = J(x(M) — 6(M)), and indeed s4[S¢, TS4,1d] = 1.

If d = 2 mod 4, then again Z/Eul§, ; = Z, and x(M) is always even and
for any rank d bundle E — M with E =, TM it follows that its Euler number
is even as well. Then the splitting can be given by s4[M, E, ¢] = %(e(E), M]),
and again s4[S9,TS4,1d] = 1.

If d =1 mod 4 then Z/Eul3,,; = Z/2 and the splitting can be given by
M — Kerv(M), where Kerv(M) is the Kervaire semi-characteristic.

If d =3 mod 4 then Eul, ; isn’t known for arbitrary 6, but for the case of
orientation Z/ Eulg;1 = 0 so there is nothing to split and mo MTSO(4k — 1) =
Q4.

Note that there is a non-trivial issue of whether (e(E), [M]) and Kerv(M) are
well-defined with respect to the bordism relation in 1o MT04. However, in
Appendix A of [6] it is shown that this is the case for 1o MTSO(d), and since
there is a natural forgetful homomorphism 7o MT 84 — o MTSO(d) it follows
that these invariants are well-defined for 71 MT 64 as well. m|

Now we restrict to the case of the tangential structure BSO(d) — BO(d) and
d = 2. The terms in the cofiber sequence given in Proposition 3.0.7 are then
MTSO(2), £*BSO(2),, and MTSO(1) ~ S~ '.

Much is known about the homotopy groups of 5, especially in low degrees.
In particular

Lemma 3.3.2. Forall k, $ = QIT, the k-th framed bordism group.
Moreover (see for example [27, p.15])

1. me$ = Z.

2. m$ = Z/2, generated by n = [T, L], where T is the circle-group and L is its
Lie-group framing. The trivialization £ is same as the trivialization induced by
being an oriented 1-manifold.

3. S = Z/2, generated by n?.

4. 738 = Z./24, generated by v = [S3, L3] where L3 is the Lie group framing on
S3, andn3 # 0 (in particular it is the unique element of order 2).

5. S =755 =0.
6. Finally, sS = Z./2, where the non-trivial element is v2,

As for Z*BSO(2) ., note that for any pointed space X there is a natural
splitting m Z*°X, = mX*°X & m 5. Liulevicius [18] proved the following:
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Lemma 3.3.3. For k < 8 the values of m, X BSO(2) are given by

K (1]2 |3]4]5 |6]7 |8
TWE®BSOR2) |0 | Z | 0| Z | Z)2 | Z | Z/2| Z5Z)2

An element [M, L, @] € m MTSO(1) is a (k + 1)-manifold M, an oriented
line bundle L, and an isomorphism ¢: TM @ ¢ = L@ e**!. The orientation on L
induces a trivialization, say w, and so TM is stably framed via the isomorphism
(w @ 1d) o ¢. In order to help with computations we will want the following:

Lemma 3.3.4. The isomorphism T MTSO(1) = mS~' = QfT, sends the tuple
M, L, @] to [M, (w & 1d) o ¢].

Then we get

Corollary 3.3.5. On the subgroup 0 ® Qf" C mcZ*®BSO(2)., the map
m PT: 0 ® Qf — m MTSO(1) = Q"
agrees with (—) x 1.

Proof. An element in this subgroup has the form x = [N, @, £2], so 7 PT(x) =
N x ST, b xw]=xxI[ST, w]. Depending on orientation conventions, w agrees
with £ up to sign, and it follows that [S', w] = 7. o

Finally recall from Proposition 1.2.7 that 1o MTSO(2) = Q, ® Z = Z.

Now apply the long exact sequence of homotopy groups to the cofibre se-
quence of spectra given by Proposition 3.0.7. The portion of the sequence
which is relevant to k = 1 and 2 is then:

00— mMTS0(2) =Y m,5=Bs0(2), 5 7, MTSO(1)
02

TI](PT 01

4 MTSO(2) —— m,2B50(2), =1 71, MTSO(1) —2— 759 MTSO(2)

7 (1) +

where the isomorphism 7t; MTSO(1) = 7t;_; £~ MTSO(1) identifies the bound-
ary map 9; with 7t;_; (p). Substituting the known values of these groups yields:

0 —— uMT50(2) 2% Zz o z/2 2 704
0

T MTSO(2) & 7/2 z)2 z

Immediately it is seen that m, MTSO(2) is a subgroup of Z & Z/2. By The-
orem 2.2.3 the manifold #*CIP? represents an element of 7, MTSO(2) with

non-zero signature, so since the signature is a homomorphism to Z it follows
that 7, MTSO(2) = Zor Z & Z/2.

Proposition 3.3.6. 1; MTSO(2) = Z, generated by g4 = #CP?, V(3,1,1,1), P4l
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Proof. Suppose m; MTSO(2) = Z & Z/2, and consider
i) ZOZ/2 - ZDZ/2

There is a unique element of Z @ Z/2 of order 2, namely (0, 1), and so it must
be the case that 7, (1)(0, 1) = (0,12). Then by exactness 72 (PT)(0,n?) would be
0; however 7, PT(0,1n%) =n?3 # 0 by Corollary 3.3.5.

g4 is a generator since it has signature 4 and by Proposition 2.2.7 all elements
of m; MTSO(2) have signature divisible by 4. ]

From the right side of the above sequence it follows by exactness that the
map 71 MTSO(2) — Z/2is 0, and so 71y MTSO(2) = 0 iff 7, (PT) is surjective.
Lemma 3.3.7. The kernel of 7, PT is generated by (12,1).

Proof. Since m, MTSO(2) = (ga4) is suffices to show

m2(1)(g4) = (12,1)
Consider the homomorphism

e: mI*BSO(2), —Z
[N, f, E] —(e(E), N])

This is split-surjective: send the integer 1 to the triple [S?,,y1] where 1 is the
stable framing of S2 and Y1 is the tautological line bundle over $2 = CP'. Then
indeed (e(y1),[S%]) = 1.

For any [M, E, ] € m; MTSO(2), let S be the zero-locus of a section which
is transverse to the zero-section of E, and j: S — M its inclusion. Then by
Lemma 3.2.3 we have

eom; (1)[M, E, @] = (e(Els), [S]) = (e(E),j.[S]) = (e(E), e(E)N[MI) = (e(E)?, [M])

where the second-to-last equality uses the fact that j.[S] is Poincare-dual to
e(E), and the last equality uses the duality between cup- and cap- product. In
particular

eom(i)(ga) = ((3,1,1,1)% #'CP?]) =12
and hence 7, (1)(g4) = (12,x) for some x € Z/2. If x = 0 then Coker(m;(i)) =
Z/12 ® Z/2, which cannot inject into Z/24 because it contains too many ele-
ments of order 2; therefore x = 1. m]

Proposition 3.3.8. 1y MTSO(2) = 0.

Proof. Consider (1,0) € m,Z*BSO(d), . Since the kernel of 7, (PT) is generated
by (12,1) the class n - (1,0) is in the kernel iff 24 divides n. Hence 7, (PT)(1,0)
has order 24, so 7, (PT) is surjective. O

One extra outcome of this computation is two families of representatives for
elements of Qf. If T § denotes the oriented surface of genus g, then £ with the
stable framing induced by embedding into IR® represents the trivial element of
QfT. Because we have a surjection

kK: Z —Qi = 7/24
n —7; (PT)(n,0)

in particular we have
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Corollary 3.3.9. Let ys = k(1) € Qf". Then n - ys is represented by the circle
bundle S, — Lg of Euler number n, framed with the orientation of T, Sy, and taking
the trivial stable framing of L 4. In particular every element of QL can be represented
by a circle bundle over Lq for any g.

Observe that ys is represented by the manifold S3 (by setting g = 0), framed
by viewing it as the total space of the Hopf fibration and framing its tangent
bundle with the orientation on the vertical tangent bundle and taking the trivial
stable framing on S%. I'm not sure if this is the same (up to framed bordism) as
the Lie group framing. More generally, k(n) is a generator for any n coprime
to 24.

Note that since ker(7t; PT) is generated by (12, 1) we have

7 PT(n,x) = ma PT(n+12,x + 1)

forany n € Z and x € Z/2. In particular every class in Qf" can be represented
by a circle bundle over (T%,£2), since k(n) = 7, PT(n + 12, 1).
One more weird corollary along this vein:

Corollary 3.3.10. Consider the circle bundle S12 — X4 of Euler number 12, and
framed as above. Then this is framed bordant to (T3, £3).

Proof. m; PT(12,0) = my PT(24,1) = my PT(0,1) =n?3. o

Return attention to MTSO(2). Using the result of Liulevicius we can attempt
to continue climbing the long exact sequence.

Proposition 3.3.11. 713 MTSO(2) = Z/24.
Proof. Consider the portion
714 MTSO(1) — 73 MTSO(2) — 3 Z*°BSO(2), — 73 MTSO(1)
Since 1145 = 715% = 0 then 13 MTSO(2) = 7§ BSO(2) & m3$ = Z,/24. O
Proposition 3.3.12. 1y MTSO(2) = Z.
Proof. Consider

5 2°BSO(2), — 75 MTSO(1) — 74 MTSO(2) — m4 Z*°BSO(2) . — 714 MTSO(1)

The last term is 0 and 7, Z*°BSO(2) , = Z so 74 MTSO(2) surjects onto Z, and
the first two terms are both Z/2. Hence the proposition is equivalent to the
claim that
715 PT: ms Z°BSO(2),. — 75 MTSO(1) = QfF

is an isomorphism. The non-trivial element of Qgr is [S® x S3, L3 x L£3], so we
seek a pre-image.

Consider the element [S® x $%,£3 X 12,0 x y1] € T5Z°BSO(2) . where 1},
is the usual framing of S? and p: y; — S? is the tautological line bundle. Note
0 x 1 is isomorphic to the pull-back of v along the projection to S%:

0xyr —— V1

P b

§3xs2 Plyg2
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Then applying 715 PT results in [S(0 x v1), T,S(0 x v1),Id ®p* (L3 x ;)]. Note
that S(0 x v1) is diffeomorphic to S3 x S3 and the vertical tangent bundle has
the form 0 x T,,S(y1). The framing is coming from

TS(Oxvy1) =TS0 xv1) &P T(S? x $2) = T,S(0 x v1) @ €°
and with respect to these identifications it takes the form
L3 x (Id@ph): TS? x TS = &3 x (T,S(y1) @ €?)

Therefore as a framed manifold it is equal to W := (S3 x S3, £3 x wo (Id ©@p*7))
where w is the trivialization of T, S(y1) induced by being an oriented line
bundle.

It now only remains to show that W is in the same class as (S3 x $3, £3 x £3).
The collection of framed bordism groups forms a graded ring and in particular
there is a surjective homomorphism

[S%, L3l x (—): Qf = Qlr =72

It follows that every odd multiple of [S3, £3] is mapped to the non-zero el-
ement, and since [S®, w o (Id Bp*2)] = 7, PT(1,0) is a generator of Qf" by
Corollary 3.3.9 it follows that (W] = [S? x S$3,£3 x £L3]. Therefore 75 PT is an
isomorphism and 7ts MTSO(2) = Z. |

Finally, consider MTSO(3). In Proposition 2.2.1 we constructed an element
g2 € my MTSO(3) which was represented by (CP?#CIP?),.

Proposition 3.3.13. The group m; MTSO(3) is isomorphic to Z, generated by the
element g,. Moreover, 1P (ga) = 29,, since they have the same signature.

Proof. Using the cofibre sequence with d = 3 we see
7, MTSO(2) 25 71y MTSO(3) —— m Z%BSO(3), —— 1 MTSO(2)

From the above computation we have 1y MTSO(2) = 0 and 71, MTSO(2) =
(ga); Tt BSO(3) vanishes since the space BSO(3) is simply connected, so the
third term in this sequence is Qi" = Z,/2.

The homomorphism 711 preserves the signature so 119 (g4) # 0, hence this
homomorphism is injective. Therefore 71; MTSO(3) is a Z extension of Z/2.
Proposition 2.2.1 gives an element g, = [#2CIP?, (s)*, Id] € 71y MTSO(3) which
is indivisible and non-torsion, but since o7 3(g,) = 2 it cannot be in the image
of 1P, so the extension takes the form Z — Z — Z/2. O
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Appendix A
The Euler Class

The purpose of this Appendix is to provide a proof of the following Theorem:

Theorem A2. Letn be even, let X be finite CW complex of dimension n, and let Vo, V7
be two oriented rank n. vector bundles over X. If Vo @ € = V1 @ e and (Vo) = e(V7),
then Vo = V.

This theorem is apparently well-known, though the author of this thesis
could not find a reference in the literature. Observe that Theorem A2 is false
when n is odd: all spheres are stably parallelizable and all odd-dimensional
spheres have vanishing Euler class, but most odd-dimensional spheres are not
parallelizable.

This Appendix will derive basic properties of the Euler class by elementary
means. The proof of Theorem A2 will employ a lemma about homotopy fibres,
Lemma A.2.1, which produces a Z x Z array of exact sequences of homotopy
groups out of a commutative square of pointed spaces. As an other application
of this lemma, we will prove

Theorem Al. Let X be a finite CW complex of any dimension n. > 0, and let V — X
be an oriented rank n vector bundle. Then V admits a non-zero section iff e(V) = 0.

This theorem is certainly well-known, and we present a proof for the sake
of completion.

A.1 Basics

It will be tacitly assumed that all spaces are CW complexes in order to have a
nice theory of bundles.

Recall that an orientation class (or Thom class) of a rank n vector bundle
V — B is a cohomology class u € H™(V, Vj; Z) such that for each fibre (R, R —
0) = (RF—0) — (V,Vy) the restriction of u to (F,F —0) is a generator of
H™(R™,R™—0; Z) = Z. V is defined to be orientable if it admits and orientation
class, and (V,u) is called an oriented bundle (u is often omitted from the
notation).

If (V,u) and (V’,u’) are two oriented bundles of the same rank (possibly
over different spaces), say a bundle map ¢: V — V' is orientation preserving
if *u’ = u, and orientation reversing otherwise. Since a bundle map is an

47
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isomorphism when restricted to each fibre over the domain, it follows that over
each component it either preserves or reverses orientation.

Definition A.1.1. Let (V,u) be an oriented bundle of rank n over B, with zero section
z: (B,0) — (V, Vo). The Euler class is defined as

e(V) =z*u e H"(B; Z)

Immediately it follows thatif ¢: V — V' is an orientation preserving bundle
map covering f: B — B’ then f*e(V’) = e(V), so in particular it is natural with
respect to pullbacks. Hence if

e =e, € H'(BSO(n); Z)

denotes the Euler class of the universal oriented n-plane bundle, then for any
oriented bundle (V,u) and classifying map f: B — BSO(n), it is the case that
e(V) =f*e. Let en: BSO(n) — K(Z, n) represent the cohomology class.

Lemma A.1.2. If V admits a non-zero section, then e(V) = 0. Hence the composition
en 0Sn_1: BSO(n — 1) — BSO(n) — K(Z, n) is null-homotopic.

Proof. Let s: (B,0) — (V, Vo) be a non-zero section. Then s factors through
(Vo, Vo) so there is the commutative diagram

*

H™(V, Vo) : H™(B)

\/

H™(Vo, Vo) =0

hence s* = 0. But all sections are homotopic (as maps of pairs (B, ) — (V, Vo))
so z* = s* and in particular e(V) = 0.

The second assertion follows from the fact that if X is a CW complex and
f: X = K(G,n) is a map inducing 0 on all homotopy groups, then f is null-
homotopic. Since a rank n bundle admits a non-zero section iff its classifying
map lifts to BSO(n — 1), the first part of the lemma implies that for all CW
complexes B the map

(ensSn—1)«: [B) BSO(n —1)] — [B) K(Z) n)]
is the 0 map, so in particular it vanishes for homotopy groups. O

Using Grassmannian models for classifying spaces the standard stabiliza-
tion maps are cofibrations, so using the homotopy extension property e, can
be homotoped so that e, s,—1 is constant.

In the particular case that V is the tangent bundle of an oriented manifold
(M, [M]), the Euler class can be computed in terms of ranks of homology groups,
or by counting cells in a cell structure:

Lemma A.1.3. x(M) = (e(M), [M])

Proof. This is proven in [24, Corollary 11.12] using mostly algebraic computa-
tions in cohomology. O
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For example (e(S™), [S™]) = x(S™) = 2 if nis even and 0 if n is odd, since
S™ has a CW structure with one 0-cell and one n-cell. If u,, is the dual of [S™]
then it follows that e(S?™) = 2, and e(S2™H1) = 0.

Lemma A.1.4. For all n there is a fibration S™ — BSO(n) — BSO(n + 1).

Proof. SO(n + 1) acts smoothly on S™ by (A,v) — Av. The isotropy subgroup
of eny11is SO(n) @ [1], and so the map SO(n+1) — S™ sending A to Aen 1 isa
fibre bundle with fibre SO(n). In particular S™ = SO(n + 1)/SO(n). Then, for
any topological group G and subgroup H there is a fibration

G/H — BG — BH
O

Corollary A.1.5. The stabilization map s : BSO(n) — BSO(n + 1) is n-connected.
Le. mi(sy) is an isomorphism for i < n and surjective when i = n.

Proposition A.1.6. The maps in the long exact sequence associated to this fibration
are interpretted as follows:

1. For every k the map m, BSO(n) — m BSO(n + 1) takes a rank n bundle
E—>StoEde.

2. The map ,S™ — 7, BSO(n) takes the homotopy class of Ids» to the isomor-
phism class of TS™.

3. The boundary map mn1BSO(n + 1) — 7,S™ takes a bundle to its Euler
number.

Proof. The firstitem is clear. For the second item it is traditional to cite Steenrod
[31, Section 23].

For the third item, the case where n is odd is covered in the proof of Propo-
sition A.3.1. When n is even, every rank n + 1 bundle over S™*! has trivial
Euler number, since the cohomology of S™! contains no 2-torsion. Moreover
TS™ is non-trivial since x(S™) = 2 # 0, so the next map is injective: therefore
the boundary map is null in this case. ]

Corollary A.1.7. 7, S™ — 11, BSO(n) is injective when n is even.

Proof. This map sends [Id5 '] to TS™'. To show TS™ ! is not torsion, note
that
e.: Th 1 BSOM—1) = My 1K(Z,n—1)=H* (ST, 2)

is a homomorphism, so e(k - TS™ 1) = k- e(TS™ ") = 2k, is non-zero for
k # 0, and hence k - TS™~! is non-zero for all non-zero k. ]

Aside: this map is not injective for n odd, because in that case 7, BSO(n)
is in fact 2-torsion. The question of whether this map is 0 or not is famously
known to be answered by “Yes if n = 1,2, 3 and No otherwise” but the proof is
not possible by elementary means so it is not discussed here.

Corollary A.1.8. If n > 1 is odd then every rank n vector bundle over S™ admits a
non-zero section.
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Proof. In other words, the lemma asserts that 7, BSO(n — 1) — 7, BSO(n) is
surjective when n is odd. Consider the long exact sequence

oo = BSO(M — 1) = 7, BSO(M) — 7, 1S™ ' =, 1BSO(n—1) — ...

To prove the lemma it suffices to know that 7w, 1S™! — 7,1 BSO(n — 1) is
injective, which follows since n — 1 is even. m]

A.2 Lemma About Homotopy Fibres

The following fact is very useful.
Lemma A.2.1. Assume we are given a commutative diagram of pointed spaces:

hq
—_—

C D
V()T V]T
AgB

Then, after taking the standard homotopy fibres of all the maps, there are obvious
continuous functions between homotopy fibres

hofib(hy) T D
hofib(ho) A

|

hofib(vy) —*= hofi

g ——

(v1)
and a natural homeomorphism hofib(h) = hofib(v).
Proof. Explicitly, define:
hofib(ho) = {(a,p) € A x B' [ p(0) = ho(a) and p(1) = bo}

hofib(h1) = {(c,¥) € C x D' | y(0) = hi(c) and y(1) = do}
hofib(vo) = {(a,v) € A x C!|v(0) =vo(a) and v(1) = co}
hofib(vi) = {(b,y) € B x D' |y(0) =vi(a) and y(1) = do}

Each of these homotopy fibres are given the subspace topology, and are
naturally pointed with the base point of the domain and the constant path at
the base point in the codomain. (Here constant paths will be denoted by their
value.)

Then define the pointed maps h: hofib(vo) — hofib(v;) and v: hofib(hy) —
hofib(h;) by

h((l,\/) = (ho((l),h] OV) andv(a, p) = (Vo((l),\}1 © p)

h and v have the correct range since the initial maps are strictly commutative
and pointed: explicitly, hyvis a pathin D from vihp(a) to do because hy1v(0) =
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hivo(a) = viho(a) and hyv(1) = hy(co) = do; analogously for v. They are
continuous because they are coordinate-wise continuous.
Then write

hofib(h) ={((a, v),n) € hofib(vo) xhofib(vy)" [n(0) = h(a,v) and n(1) = (bo, do)}

hofib(v) = {((a, p), 8) € hofib(ho)xhofib(h;)!5(0) = v(a, p) and 5(1) = (co, do)}

Since (X x Y)% = X% x Y%, 1 decomposes as (np,np) where ng € B! and
Mo € (DYHY; anologously write § = (5¢c,8p). Let s: 12 = 12 swap the two
coordinates. Now define f: hofib(v) — hofib(h) by

f(((l, p)) (6(:) 6D)) = ((Cl, 6(:)) (p) 6Ds))

It must be verified that f has the correct codomain. First, (a,d¢) € hofib(vg)
because by definition 8¢ (0) = vo(a)and 8¢ (1) = co. Next, (p,8ps) € hofib(vy)!
because for all s the function éps(-,s) = dp(s,-), which is a path from v;p(s)
to do. Lastly, (p,0ps) is a path from (ho(a),h; o 8¢) to (bo,do), because
for each s the function dp (., s) is a path from h;0¢(s) to do, so in particular
6DS(S) O) =dp (0> 5) =hy 6C(S)-

f is continuous because again all of its coordinates are. Finally, f is a home-
omorphism because its continuous inverse is given by the formula

fﬁ] (((l,'\/), (T]B)T]D)) = ((a»nB)) (V>nD5J)

A.3 Proof of Theorem A1l

Theorem Al is proven by showing that the n-th Moore-Postnikov stage of the
stabilization map sn_1: BSO(n — 1) — BSO(n) is given by the homotopy fibre
of the map e: BSO(n) — K(Z,n). For suppose F,, is the n-th stage and is
classified by e.

Since the map sn—1: BSO(n — 1) — BSO(n) is already (n — 1)-connected,
BSO(n) is already the i-th Moore-Postnikov stage for i < n and s, is its own
lift, so Fr, would be the first non-trivial stage. F, — BSO(n) is a principal
K(Z,n — 1) fibration classified by e, hence for any map V: X — BSO(n) the
cohomology class e(V) is the obstruction to lifting V to F,,. If X is n-dimensional
then there are no higher obstructions, so the Euler class is the obstruction to
lifting V all the way up the Moore-Postnikov tower, and hence to BSO(n — 1).

Let F,, = hofib(e: BSO(n) — K(Z,n)). Then F,, — BSO(n) is the pull-back of
the path-loop fibration of K(Z,n), so is a principal K(Z,n — 1) fibration classi-
fied by e. Since e o s;,_1 can be made constant by Lemma A.1.2, s,,_; admits a
lift

Fp ———— *
7‘I’l

B b J

BSO(m — 1) =% BSO(n) —*— K(Z,n)

Proposition A.3.1. For all n, Fy, is the n-th Moore-Postnikov stage of sn—_1.
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Proof. Specifically, the following must be proven:
1. m;(g) is an isomorphism for i < n and surjective for i = n, and
2. mi(f) is an isomorphism for i > n and injective for i = n.

The second item follows immediately from the long exact sequence for F,, —
BSO(n) — K(Z,n).

Consider in general a continuous map i: A — X, and let F(i) be the homo-
topy fibre. Suppose S*~! and D* are based at the vector ex. Given a pointed
map of pairs

sk A

N

one can construct a kind of adjoint

sk1 o px

[

* — X

where P, X is the space of paths in X ending at the basepoint, by

~

fe(t) = F((1—t)x + tey)

In fact, for all x € S*~1, £, (0) = i o f(x) and fx(1) = *, so f can also describe a
map S*! — F(i) by

fx) = (Fx), [t = £((1 — t)x + tex)])

This construction defines a well-defined isomorphism
V: me (X, A) = e F(1)

by [37, 6.1.3]. Moreoever, if A = * then this map agrees with the boundary map
0: mcX = me_1 QX from the long exact sequence of the path-loop fibration of X.

Now consider an oriented rank n vector bundle 7t: V — B with metric.
Then there is a Thom class T € H*(DV, SV; Z), with the property that for any
point b € B the restriction Ty := Tl is a generator of H™(DVy, SV ) = Z. The
Thom class can be represented by a map of pairs

SV — «

| |

DV —% K(Z,n)

where e represents the Euler class under the homotopy equivalence DV ~
B. Choosing a point b € B and a basepoint b’ € SV}, we apply the above
construction to get
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OK(Z,n)
SV K £
[ |

b DV —¢— K(Z,n)

The the claim is that the map SV, — QK(Z,n) is n-connected; for this it
suffices to show it is an isomorphism on 71, 1. This follows because this map
is (Tl ), and by definition T, is a generator of H™(DVy, SVy,; Z) = 1, K(Z, 1),
and furthermore 1 is an isomorphism.

Now apply this to the universal bundle y, — BSO(n). It follows from
Lemma 1.1.7 that there is a homotopy equivalence S(y+,) ~ BSO(n — 1), and
the universal Thom class is identified with the universal “relative Euler class”

BSOn—1) —— «

! !

BSO(n) —&— K(Z,n)

Then applying Lemma A.2.1 we get the square of homotopy fibre sequences:

Gn sn—1 K(Z,n—1)

! ! |

BSOn—1) — BSOn—1) ——— =«

| | |

F, — 5 BSO(M) —=— K(Z,n)

Then the map S*~! — K(Z,n — 1) is n-connected, and hence the map G, —
S™~1 is a model for the (n — 1)-connected cover. It then follows that the map
BSO(n — 1) — Fy, is n-connected, completing the proof. o

Some corollaries can be derived from this. Consider the diagram

TTh_1 BSO(n —1)

Tcnl

Th—1 sl — Th—1 K(Z,n — ])

L

7, BSO(n) - mK(Z,n)

113

First, since ¢ is an isomorphism it follows that for every oriented rank n bundle
V over S™, 9(V) = +e(V). Then, since c,, 1 ([Id]) = TS™! by Proposition A.1.6
it follows moreover that there is an oriented rank n bundle over S™ with Euler
number +1 iff S*~! is paralellizable.
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If we discussed Stiefel-Whitney classes and the relation e(V™) = w;,, mod 2
when we would get the following corollary:

Corollary A.3.2. Consider the map wy: BSO — K(Z/2,n). Then m,(wy) is
surjective iff S* is parallelizable.

Proof. There are the following commutative diagrams, the first inducing the
second:

BSO(n) —— K(Z,n) m,BSO(n I nK(Z , 1)

\ [ [ W) [rors

Ttn Wn

BSO — K(Z/2,n) m,BSO —= m,K(Z/2,n)

where Wy, represents the class wy, € H"(BSO(n); Z/2). It follows that 7t,, (Wn )
is surjective iff 7, (e) is.
O

A.4 Proof of Theorem A2

The proof of Theorem A2 is more involved. In the following it will be always
be assumed that n is even.

For brevity, let s..: t, BSO(n) — 7, BSO(n + 1) denote the homomorphism
induced by sy, and let e, : 7, BSO(n) — H™(S™; Z) send abundle V to its Euler
class.

Note that the set [S™,K(Z,n)] has two group operations: one coming
from point-wise multiplication using an H-space structure on K(Z,n), giv-
ing H™(S™; Z); and the other coming from the co-group structure on S™, giving
mnK(Z,n). These two operations satisfy the interchange law and so by the
general Eckmann-Hilton principle they agree.

Lemma A.4.1. The function e, is a homomorphism.

Proof. Explicitly, the function e, takes a homotopy class [f] € 7, BSO(n) and
returns [e o f] € myK(Z,n) = H*(S™; Z). Given continuous maps f,g: S™ —
BSO(n), the element e, ([f] + [g]) is represented by

gn Pl gny gn V9, By €y K(Z,n)

Then the equation e, ([f] + [g]) = e.([f]) + e.([g]) corresponds to the equation
eo(fVg)=(eof)V(eogqg).

For a class [f] € m, X for any X, we have —[f] = [f o r] where 7: S™ — S™ is
any map of degree —1. Thus for [f] € , BSO(n) wehave e, (—[f]) = [eofor] =
—e, ([f]) by associativity of function composition. |

Let wn: BSO(n + k) — K(Z/2,n) for k > 0 represent the n-th Stiefel-
Whitney class; let wy, also denote 71, (W, ). Let r2: K(Z,n) — K(Z/2,n) repre-
sent the surjective homomorphism r,: Z — Z/2.
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Lemma A.4.2. The diagram

BSO(n) —— BSO(n + 1)

¢ T [

K(Z,n) —2— K(Z/2,n)

commutes up to homotopy.

Proof sketch. The upper triangle is due to the Whitney sum formula; the bottom
is expressing the relation e = w, mod 2. ]

Lemma A.4.3. For n even the following sequence is exact:
0 — mBSO(n) “% m, BSO(m+ @z % 7/2 —— 0

Proof. First we show injectivity of s, @ e,. Proposition A.1.6 gives us a fibration
S™ — BSO(n) — BSO(n + 1) so examine its long exact sequence:

Cn

a1 BSO(M + 1) T S™ 7, BSO(M) —> 7, BSO(n + 1) —= 0

We know that ¢y, sends [Id] to TS™ and e(TS™) # 0 for n even (Proposition A.1.6
and Lemma A.1.3, respectively); since H™(S™;Z) is torsion-free and e, is a
homomorphism it follows that k - TS™ is non-trivial for every non-zero k, so
Cn is injective. By exactness ker(s,) = Im(cn) = (TS™), in other words if
V € m, BSO(n) is stably-trivial then V = #<TS™ for some k and so e(V) = 2k.
We see that the kernel of the homomorphism s, & e, only contains the trivial
bundle.

Lemma A.4.2 implies Im(s, @ e,) C ker(w, —13). To show the opposite in-
clusion, let (V, k) € m, BSO(n+1) ®Z withk = w,, (V) mod 2. Themap sisn-
connected so in particular s, is surjective, so choose V' € s; (V). Lemma A.4.2
then says e(V') = wn (V') = wn (V) = k mod 2; say k = e(V’) + 21. Now let
V" = V'#(1-TS"), so that s.(V”) = Vand e(V") = k. Therefore (s, ®e,) (V") =
(V, k).

To see wy, — 1, is surjective, take V € 7, BSO(n + 1) and let k € Z be
incongruent to wy, (V) modulo 2.

[m}

Having shown that the homomorphism
Sy @ ey: 1y, BSO(n) — 7, BSO(n + 1) ® H™(S™; Z)

sending V to (V@e, e(V)) is injective, Theorem A2 has been verified for X = S™.
The general case is more difficult because of course [X,BSO(n)] is in general
just a set. In the proof of Theorem A1l we managed to give an n-factorization of
the map s,,_1; knowing the relation e(V™~! @ ¢) = 0 we tried considering the
homotopy fibre of e, and we were lucky enough that it suited our purpose. In
this case, we need to use a relation between s,, and e, and in light of Lemma A.4.3
we consider the homotopy fibre

F —— BSO(n+1) x K(Z,n) =% K(Z/2,n)
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where “w;,, —1,” is defined using the infinite loop-space structure on K(Z/2,n).
Lemma A.4.2 implies that (W, — 12) o (s x e) is null-homotopic, so if s x e
is replaced with a cofibration then w,, — 1, can be homotoped to make the
composition constant. Then there is a lift of s x e along , denoted

se: BSO(n) — F

Proposition A.4.4. 7t;(1) is an isomorphism if i # n and injective if i = n.
i (se) is an isomorphism if i < n 4+ 1 and surjective if i =n + 1.

Proof. Apply Lemma A.2.1 to the commutative square.

BSO(n +1) x K(Z,n) =% K(Z/2,n)

sx{ T

BSO(n) *

to obtain

Wn—T2

F ——— BSO(n+1) x K(Z,n) 222 K(Z/2,n)

T sxce] T

BSO(n) ————— BSO(n) *
I I |
G H K(Z/2,n—1)

Taking long exact sequences of homotopy groups gives a commutative diagram
of groups indexed by Z x Z, a “fundamental domain” of which is shown in
Figure A.1 on page 58 (some of the periodicity has been emphasized). Some
obvious deductions about injectivity and surjectivity have already been made;
moreover Tn11(s): mh11 BSO(n) — 741 BSO(n + 1) is surjective by Corol-
lary A.1.8, and Lemma A.4.3 says that e, @ s, is injective and that 71, (W, —12)
is surjective. This is enough to deduce the first assertion of the Proposition.

To obtain the second, begin analysis of Figure A.1 at the bottom. 7;(s) and
i (1) are isomorphisms for i < n — 1 and hence m;(se) is an isomorphism for
i < n—1; it follows that m,_>G = 0 and m,_1H surjects onto Z/2. Since
Th—1(s) is in particular injective, it follows that 7t,,_1H = Coker(s. ®e,) = Z/2
thus 71,1 G = 0. Therefore 7, (se) is surjective, and it is also injective because
it is the first map in an injective composition. Finally, 7,41 (se) is surjective
because 7, 1(s) is. O

Corollary A.4.5. 1o seis the n-th and (n + 1)-st Moore-Postnikov stages of s x e.

Proof. Observe that 7ti(s x e) is an isomorphism for i < n but not surjective
when i =n, so Ido(s x e) is the (n — 1)-st factorization. By definition t: F —
BSO(n + 1) x K(Z,n) is a principal fibration classified by the map wy — 15.
Proposition A.4.4 gives the relevant homotopical information. m|

Proof of Theorem A2. Suppose we are given two bundles V = Vo UV;: X x 0l —
BSO(n) with the same stable class and Euler class; that is, suppose (s x ) o V
extends to X x I. We want to show the composition

X x I —Y— BSO(n + 1) x K(Z,n) *>=% K(Z/2,n)
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is null-homotopic, so that we get a lift

/F
\% lt
Xx 1Y% BSO(m +1) x K(Z,n)

We know that (wn, — 12) o (s x e) o V is null-homotopic, so choose a null-
homotopy H. Now define a null-homotopy H: X x I x I — K(Z/2,n) of
(Wn —712)0 \ by

Fl(x,t,g):{ (Wn —12) 0 V(x, t(1—2s)) ifs € [0,

1
247
H(x,2s —1) ifs € [3,10.
Hence there is no obstruction to extending the map se o V. Now consider
the obstructions to extending the map V to X x I; they live in the groups
H"(X; 7t BSO(n)). Since se is (n + 1)-connected it induces isomorphisms

H" (X; . BSO(n)) = H"(X; 7, F)

for r < n and we know that the obstruction to extending se o V vanishes. Since
X is at most n-dimensional and since F is also the (n + 1)-st Moore-Postnikov
stage it follows that are no higher obstructions. Hence V can be extended to
X x Tand so Vy = V;. ]
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j |

7tn+2(l')

0 — s muaF <2 BSO(M 1) ——— 0

| |

00— M Ge—— 5 myH———— 0

| |

0 —— mn 41 BSO(M) —— m,,4+1 BSO(n) ——— 0

J{an(se) lﬂnJrl(SJ

7Tn{1('-)

0 — M F — "y 1 BSO(M+1) —— 0

| l

0 ——— m,G mH ——— 0

l l

0 —— m, BSO(n) —— m, BSO(n) ——— 0

7-[11(53) \[S*@e*
00— v F Y ¢ BSOMm+1) ez "% 7/2
0— s m G — s H 7,2

|

0 —— m,_1 BSO(n) ——» m,_1 BSO(n) ——— 0

TTh_1(se) lﬂnq(s)

Tn—1 (1)

W BSOn+ 1)z 2% 2/2 —— my 1 F ——— m, 1BSO(n+1) ——— 0

| | |

mH— 72— s G — s H—— 50

|

0 — m,_»BSO(n) «——» m,_»,BSO(n) ——— 0
TTh_2(se) L?Tnfz(s]

0 ———— mn_oF EUEICIN Tn—2BSOn+1) ——— 0

|

Figure A.1: The diagram to be chased.



Notation

This is a collection of essential notions used in this thesis with their meaning
and the page where they are defined. This list is not complete but tries to cover
the most common notations. If there is no page entry it is because the definition

doesn’t appear in this thesis.

Symbol Meaning Page number
R™ the standard n-dimensional vector space with
standard basis {e1,...,en}
shy the linear “shifting” map R™ — R™*! 4
5 the sphere spectrum
X{(n) the n-connected cover of a space X 2
o(M) the signature of an oriented manifold 7
x(X) the euler characteristic of a finite CW complex
en the tivial rank n real vector bundle over any
non-empty space
= stable isomorphism relation 2
Th(V) the Thom space of a vector bundle V — X 2
T.E the v-ertical tangent bundle of a bundle of smooth 6
manifolds
the Stiefel manifold of d-frames in V, for V an
Sta(V) . 4
inner-product space
Gra(V) the Grassmannian manifold of d-dimensional 4
subspaces of V, for V a vector space
tn the stabilization map Grq(R™) — Grgq(R™) 5
U. o Ut the tautological d-plane bundle over Grq(R™) and its 5
dns Hdn orthogonal complement
bn a bundle isomorphism Ué}n De= LfIUin 1 5
the classifying space of rank d bundles, and the
BO(d), va universal ilani (f bundle >
0, 0, a tangeptial structure B — BO or B(d) — BO(d), 8
’ respectively
B(d)n,0an 931 (Grq(R™)) and 04lg(q),, , respectively 9
An the inclusion map B(d)n — B(d)n1 9

59



60

Symbol

NOTATION

Meaning

Page number

0 0,L
ud,n’ ud:n

MTO(d), MT 9
Qq, Q8

Eul,,

Ok,d

span(E), span(E)

E#¢F

Mo

g2
ga4
Ind(s)

ak

Tk
Kerv(M)
P,G

$,1, PT

nv

Ug n, respectively Ué’n, pulled back along

Oa.n: B(d)n — Grg(R™)

the Thom spectrum of {Uy , }n>a and {(UJ 7 In>a,
respectively

the oriented bordism group of smooth d-manifolds,
and the bordism group of smooth d-manifolds with
O-structure

the subset of Z consiting of all Euler characteristics of
closed, oriented n-dimensional manifolds

the signature homomorphism m MTSO(d) — Z
the span and stable-span of a vector bundle

the connected sum of two vector bundles, clutched by
the function f

the result of eliminating an even-dimensional, closed,
connected, oriented manidold’s Euler characteristic via
connected sum with a stably paralellizable manifold

the generator of 71y MTSO(3) with signature 2

the generator of 1, MTSO(2) with signature 4

the index of a finitely-singular k-field

half the rank of an irreducible Z/2-graded ¢\, module
2ay if 4 does not divide k, and 4ay if it does

the Kervaire semi-characteristic

alternate models of X~ MT 04_7 and I*B(d),

maps in the cofibre sequence of spectra in

Proposition 3.0.7

the non-trivial element of of 7115 represented by the
circle with its Lie-group framing, and the generator of
736 represented by S3 with its Lie-group framing

a trivialization of an orientable line bundle induced by
a chosen orientation

the Euler class of a vector bundle, and the universal
Euler class

Stiefel-Whitney and Pontryagin classes of a vector
bundle

8,9

10

48

13
15

17

18

19
22
24
24
24
25
33

33

41

41

48
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