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DISTANCE IN CAYLEY GRAPHS ON PERMUTATION GROUPS
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MOHAMMAD HOSSEIN GHAFFARI AND ZOHREH MOSTAGHIM∗

Communicated by Ali Reza Ashrafi

Abstract. In this paper, we extend upon the results of B. Suceavă and R. Stong [Amer. Math.

Monthly, 110 (2003) 162–162], which they computed the minimum number of 3-cycles needed to gener-

ate an even permutation. Let Ωn
k,m be the set of all permutations of the form c1c2 · · · ck where ci’s are

arbitrary m-cycles in Sn. Suppose that Γn
k,m be the Cayley graph on subgroup of Sn generated by all

permutations in Ωn
k,m. We find a shortest path joining identity and any vertex of Γn

k,m, for arbitrary

natural number k, and m = 2, 3, 4. Also, we calculate the diameter of these Cayley graphs. As an

application, we present an algorithm for finding a short expression of a permutation as products of

given permutations.

1. Introduction

Let G be a finite group and Ω a subset of G that generates it. We assume that Ω does not contain

identity element of G and Ω = Ω−1, where Ω−1 = {s−1 | s ∈ Ω}. The Cayley graph Γ = Cay(G,Ω) is

a graph whose vertex set is G and two vertices g and g′ are adjacent if and only if g′ = gs for some s

in Ω. The distance between the vertices g and g′ in Γ, denoted by dΓ(g, g
′) or briefly d(g, g′), is the

length of a shortest path joining g and g′. It is easily seen that d = d(g, g′) is the least number of

hi ∈ Ω so that g′ = gh1 · · ·hd. So, d(g, g′) = d(1, g−1g′). The diameter of Γ is the maximum distance

among the vertices of Γ.

For every permutation g, the support of g is the set Supp(g) of points moved by g, and the support

size is supp(g) = |Supp(g)|. Every permutation g may be expressed as a product of disjoint cycles.
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This factorization is unique, ignoring 1-cycles, up to order. For permutation g with ei cycles of length

i for i = 2, 3, . . . , n, the cycle type of g is the formal product 2e23e3 · · ·nen .

Finding the distance between two vertices in the Cayley graphs appears in many applications; for

example in network science, computational biology, coding theory and cryptography (see [4], [12], [7],

[9] and [6]). In [10], [5] and [6] authors found algorithms that factor a permutation over a generating

set. Among all types of generating sets for permutation groups, m-cycles play an important role

(see [1] and [2]). Finding and estimating the diameter of Cayley graphs is an active research area in

mathematics (see [3], [2] and [8]). In this paper, we calculate the distance function and the diameter

of some family of Cayley graphs.

For natural numbers n, m and k satisfying mk ≤ n, suppose that Ωn
k,m be the set of all permutations

of the form c1c2 · · · ck where ci’s are arbitrary m-cycles, and Ωn
mk be the set of all permutations with

cycle type mk in Sn. Let G be the subgroup of Sn generated by generating set Ωn
k,m (respectively,

Ωn
mk ). It is clear that G is a normal subgroup of Sn and so G = Sn or An (for n = 4, it is easily seen

that G is not isomorphic to the Klein four-group). It is easily seen that G = Sn if and only if (m+1)k

is an odd integer. We denote the Cayley graph corresponded to the subgroup of Sn generated by all

permutations in Ωn
k,m (respectively, Ωn

mk) by Γn
k,m (respectively, Γn

mk). We will omit superscript when

it is clear from the context. We denote the distance function on Γn
k,m (respectively, Γn

mk) by dk,m

(respectively, dmk). In this paper, we find a shortest path joining identity and any vertex of Γn
k,m, for

m = 2, 3 and 4. As a consequence, we calculate the diameter of these Cayley graphs.

With the purpose of attacking to a cryptosystem, authors in [6] presented an algorithm that can

find a short expression for an arbitrary permutation in terms of given permutations. In Section 4, we

improve their algorithm.

2. Preliminaries

Suppose that g is a non-trivial element of Sn. The disjoint cycle decomposition of g has the following

form:

g =

t∏
i=1

ai,(2.1)

where t is a natural number and ai’s are disjoint cycles.

Proposition 2.1. [[11], Theorem 3.1] For g ∈ Sn in the form of Equation 2.1 suppose that,

ai = (αi1 αi2 αi3 · · · αilai
), i = 1, 2, 3, . . . , t.

Then, the following product has the minimum factors in the generating set Ω1,2 for Sn:

g =
t∏

i=1

(αi1 αi2)(αi1 αi3) · · · (αi1 αilai
),(2.2)

and we have,

d1,2(1, g) = supp(g)− t.(2.3)
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Let h be a non-trivial element of An. In disjoint cycle decomposition of h we have:

h =

s∏
i=1

ai

k∏
j=1

bjcj ,(2.4)

where s and k are non-negative integer numbers, ai’s are odd length cycles with |ai| ≥ 3, and bj ’s and

cj ’s are even length cycles. We write the identity of the group as empty product of cycles, i.e. in the

above form, s = k = 0.

Proposition 2.2. [[13], page 162] For h ∈ An in the form of Equation 2.4 suppose that,

ai = (αi1 αi2 αi3 · · · αilai
),

bi = (βi1 βi2 βi3 · · · βilbi ),

ci = (γi1 γi2 γi3 · · · γilci ),

then, the following product has the minimum factors in the generating set Ω1,3 for An

h =
s∏

i=1

(αi1 αi2 αi3)(αi1 αi4 αi5) · · · (αi1 αilai−1 αilai
)

k∏
j=1

(βj1 γj1 γj2)(βj1 γj1 βj2)

(βj1 βj3 βj4)(βj1 βj5 βj6) · · · (βj1 βjlbj−1
βjlbj )

(γj1 γj3 γj4)(γj1 γj5 γj6) · · · (γj1 γjlcj−1 γjlcj ).(2.5)

and we have,

d1,3(1, h) =
(
supp(h)− s

)
/2,(2.6)

where, s is the number of odd length cycles of permutation h in An.

3. On Cayley graph Γn
k,m

In the next theorem we show that it is enough to consider the Cayley graph generated by single

m-cycles; more precisely, we express dk,m as a function of d1,m. Since Ωn
mk is a subset of Ωn

k,m, the

following theorem finds a lower bound for dmk(1, g).

Theorem 3.1. In Γn
k,m we have,

dk,m(1, g) =

⌈d1,m(1, g)/k⌉ if 2 ∤ m or 2|u

⌈d1,m(1, g)/k⌉+ 1 if 2|m and 2 ∤ u,

where,

u = k⌈d1,m(1, g)/k⌉ − d1,m(1, g).
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Proof. We prove the theorem by presenting the desired path in Γn
k,m. Suppose that g = c1c2c3 · · · ct

where ci’s are m-cycles and t = d1,m(1, g).

Case 1: 2|u. Set yi = ci for 1 ≤ i ≤ t. For t + 1 ≤ i ≤ t + u if 2|i, then we set yi = ct and otherwise

yi = c−1
t . We have,

∏t+u
i=1 yi = g.

Case 2: 2 ∤ u and 2 ∤ m.

Subcase 2-1: u = 1. Since gcd(2,m) = 1, there exists an integer number v such that 2v ≡ 1 (mod m).

Set yi = ci for 1 ≤ i < t, and yt = yt+1 = cvt . Therefore,
∏t+u

i=1 yi = g.

Subcase 2-2: 3 ≤ u. Set yi = ci for 1 ≤ i ≤ t, and yt+1 = yt+2 = ct, yt+3 = c−2
t . For t+ 4 ≤ i ≤ t+ u

if 2|i, then we set yi = ct and otherwise yi = c−1
t . We have,

∏t+u
i=1 yi = g.

Case 3: 2 ∤ u and 2|m. Since m-cycles are odd permutations, it is impossible to generate g by t + u

number of m-cycles. We generate g by u+ t+ k number of m-cycles. Also note that 2 ∤ k. Set yi = ci

for 1 ≤ i ≤ t. For t + 1 ≤ i ≤ t + u + k, if 2|i, then we set yi = ct and otherwise yi = c−1
t . Thus,∏t+u+k

i=1 yi = g.

Now, we show that the previous presented products are of minimal length. Suppose that g =

h1h2h3 · · ·hl where hi ∈ Ωn
k,m and l ≤ ⌈t/k⌉ − 1. So, kl < t. This means that g is written by

less than d1,m(1, g) number of m-cycles, but this is impossible. □

As an immediate consequence of Proposition 2.1 and Theorem 3.1 the following corollary holds.

Corollary 3.2. We have,

dk,2(1, g) =

⌈d1,2(1, g)/k⌉ if 2|u

⌈d1,2(1, g)/k⌉+ 1 if 2 ∤ u,

where,

u = k⌈d1,2(1, g)/k⌉ − d1,2(1, g) , d1,2(1, g) = supp(g)− t,

and t is the number of cycles in the disjoint cycle decomposition of g.

Now, we can find the diameter of Γn
k,2.

Corollary 3.3. We have,

diam(Γn
k,2) =

⌈(n− 2)/k⌉ if 2|k

⌈(n− 2)/k⌉+ 1 if 2 ∤ k.

Proof. We find the maximum value of function dk,2(1, g), denoted by dΓ, for suitable permutation g

in the group generated by Ωn
k,2. For every permutation g, suppose that bg is the remainder of division

d1,2(1, g) on k. Set ug = k⌈d1,2(1, g)/k⌉−d1,2(1, g). We have 2|ug if and only if k|d1,2(1, g) or 2|(k−bg).
Also, for k > 1, ⌈(n− 2)/k⌉ = ⌈(n− 1)/k⌉ if and only if k ∤ (n− 2).

Case 1: Suppose that 2|k. In this case Γn
k,2 = Cay(An,Ω

n
k,2). For every permutation g in An we have

2|d1,2(1, g). So, 2|bg. Since 2|k, we have 2|ug.
Subcase 1-1: 2|n. In this case, it is easily seen that g2 = (1 2 · · · n− 1) gives dΓ. By Proposition 2.1,
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we have d1,2(1, g2) = n− 2. So, diam(Γn
k,2) = ⌈(n− 2)/k⌉.

Subcase 1-2: 2 ∤ n. In this case g1 = (1 2 · · · n) gives dΓ. By Proposition 2.1, we have d1,2(1, g1) = n−1.
Since 2 ∤ (n− 2), k ∤ (n− 2). Thus,

diam(Γn
k,2) =

⌈n− 1

k

⌉
=

⌈n− 2

k

⌉
.

Case 2: Suppose that 2 ∤ k. In this case Γn
k,2 = Cay(Sn,Ω

n
k,2). So, both g1 = (1 2 · · · n) and

g2 = (1 2 · · · n− 1) belong to the vertex set of Γn
k,2.

Subcase 2-1: 2 ∤ ug1 . In this case g1 gives dΓ. We have k ∤ (n − 1) and 2 ∤ (k − bg1). Thus 2|bg1 and

1 < bg1 < k. Hence k ∤ (bg1 − 1) and k ∤ (n− 2). We have,

diam(Γn
k,2) =

⌈n− 1

k

⌉
+ 1 =

⌈n− 2

k

⌉
+ 1.

Subcase 2-2: 2 ∤ ug2 . In this case, it is easily seen that g2 gives dΓ. So, diam(Γn
k,2) = ⌈(n− 2)/k⌉+ 1.

Subcase 2-3: 2|ug1 and 2|ug2 . If we show that k|n− 2, then,

diam(Γn
k,2) =

⌈n− 1

k

⌉
=

⌈n− 2

k

⌉
+ 1.

Suppose that, on the contrary, k ∤ n − 2. Since 2|ug2 , we have 2|k − bg2 . So, 2 ∤ k − bg1 and k|n − 1.

Thus, bg2 = k − 1; which contradicts 2|k − bg2 . □

The following corollaries are immediate consequences of Proposition 2.2 and Theorem 3.1.

Corollary 3.4. By the above notations, we have:

dk,3(1, g) =
⌈supp(g)− s

2k

⌉
.

Corollary 3.5. The diameter of Γk,3 is
⌈
⌊n2 ⌋/k

⌉
.

Suppose that n > 4 and g is an element of Sn in the following form:

g =

c0(g)∏
i=1

αi

c1(g)∏
j=1

βj

c2(g)∏
l=1

γl(3.1)

where ci(g)’s are non-negative integer numbers, αi’s are 3m-length cycles, βj ’s are (3m + 1)-length

cycles with |βj | ≥ 4, γj ’s are (3m+ 2)-length cycles, and all cycles are disjoint. We write the identity

of the group as empty product of cycles, i.e. c0(1) = c1(1) = c2(1) = 0. In this section, we consider

the Cayley graph Γk,4.

Lemma 3.6. Let n > 4. For any permutation g in Sn, we have:

d1,4(1, g) ≤ r4(g),

where r4(g) = 3 if g is a transposition, and

r4(g) =
supp(g) + c2(g)− c1(g)

3
+

1− (−1)c0(g)

2
,(3.2)

for other permutations.
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Proof. For transposition g = (ϵ1 ϵ2), we have:

g = (ϵ1 ϵ3 ϵ4 ϵ5)(ϵ1 ϵ3 ϵ5 ϵ4)(ϵ1 ϵ3 ϵ5 ϵ2).

It is easily seen that g cannot be generated by less than three generators; thus d1,4(1, g) = 3. By the

notations used in Equation 3.1, let

αi = (αi 1 αi 2 αi 3 · · · αi lαi
),

βi = (βi 1 βi 2 βi 3 · · · βi lβi ),

γi = (γi 1 γi 2 γi 3 · · · γi lγi ).

In the following order, we rewrite non-transposition g by a product of 4-cycles. In this algorithm, we

may relocate disjoint cycles to put the desired cycles near each other.

Step 1. Until the number of γl’s is more than 4, replace any γiγjγt by (|γi|+ |γj |+ |γt|)/3+ 1 number

of 4-cycles,

γiγjγt = (γi 1 γj 1 γt 2 γi 2)(γi 2 γj 2 γt 2 γj 1)(γj 1 γj 2 γt 1 γt 2)

(|γi|−2)/3∏
l=1

(γi 1 γi 3l γi 3l+1 γi 3l+2)

(|γj |−2)/3∏
l=1

(γj 1 γj 3l γj 3l+1 γj 3l+2)

(|γt|−2)/3∏
l=1

(γt 1 γt 3l γt 3l+1 γt 3l+2).

Step 2. Replace any γiγt by (|γi|+ |γt|+ 2)/3 number of 4-cycles,

γiγt = (γi 1 γt 1 γi 2 γt 2)(γi 1 γt 1 γi 2 γt 2)

(|γi|−2)/3∏
j=1

(γi 1 γi 3j γi 3j+1 γi 3j+2)

(|γt|−2)/3∏
l=1

(γt 1 γt 3l γt 3l+1 γt 3l+2).

So, after doing this step, there is at most one γj in g.

Step 3. Replace any γiβt by (|γi|+ |βt|)/3 number of 4-cycles,

γiβt = (βt 1 βt 2 γi 1 γi 2)(βt 1 γi 1 βt 3 βt 4)

(|γi|−2)/3∏
j=1

(γi 1 γi 3j γi 3j+1 γi 3j+2)

(|βt|−4)/3∏
l=1

(βt 1 βt 3l+2 βt 3l+3 βt 3l+4).

Step 4. Replace any γiαtαq by (|γi|+ |αt|+ |αq|+ 1)/3 number of the following 4-cycles,

γiαtαq = (αt 1 αq 3 γi 2 γi 1)(αt 1 γi 2 αq 1 αq 2)(αt 1 αq 3 αt 2 αt 3)

|αt|/3−1∏
j=1

(αt 1 αt 3j+1 αt 3j+2 αt 3j+3)

|αq |/3−1∏
j=1

(αq 1 αq 3j+1 αq 3j+2 αq 3j+3)

(|γi|−2)/3∏
j=1

(γi 1 γi 3j γi 3j+1 γi 3j+2).
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As a result, after doing this step, either we have no γi in g, or there is at most one αj in g.

Step 5. Replace any γiαt by (|γi|+ |αt|+ 4)/3 number of 4-cycles,

γiαt = (αt 1 αt 3 γi 1 γi 2)(αt 1 γi 1 γi 2 αt 2)(αt 1 αt 3 αt 2 γi 2)

|αt|/3−1∏
j=1

(αt 1 αt 3j+1 αt 3j+2 αt 3j+3)

(|γi|−2)/3∏
l=1

(γi 1 γi 3l γi 3l+1 γi 3l+2).

Step 6. Replace any αiαt by (|αi|+ |αt|)/3 number of 4-cycles,

αiαt = (αi 1 αt 1 αt 2 αt 3)(αi 1 αt 1 αi 2 αi 3)

|αi|/3−1∏
j=1

(αi 1 αi 3j+1 αi 3j+2 αi 3j+3)

|αt|/3−1∏
l=1

(αt 1 αt 3l+1 αt 3l+2 αt 3l+3).

Step 7. Replace any αi by |αi|/3 + 1 number of 4-cycles,

αi = (αi 1 αi 3 δ αi 2)(αi 1 αi 3 αi 2 δ)

|αi|/3−1∏
j=1

(αi 1 αi 3j+1 αi 3j+2 αi 3j+3),

where δ is an arbitrary number in the {1, 2, . . . , n} \ {αi 1, αi 2, αi 3}.
Step 8. Replace any βi by (|βi| − 1)/3 number of 4-cycles,

βi =

(|βi|−1)/3∏
j=1

(βi 1 βi 3j−1 βi 3j βi 3j+1).

Step 9. Replace any γi by (|γi|+ 1)/3 number of 4-cycles,

γi = (γi 1 γi 5 γi 3 γi 4)(γi 1 γi 5 γi 2 γi 3)

(|γi|−2)/3∏
j=2

(γi 1 γi 3j γi 3j+1 γi 3j+2).

So, we can write any non-transposition permutation g by

r4(g) =

c0(g)∑
i=1

|αi|/3 + (1− (−1)c0(g))/2 +
c1(g)∑
i=1

(|βi| − 1)/3 +

c2(g)∑
i=1

(|γi|+ 1)/3

number of 4-cycles. Since

supp(g) =

c0(g)∑
i=1

|αi|+
c1(g)∑
i=1

|βi|+
c2(g)∑
i=1

|γi|,

it is easily seen that we have:

d1,4(1, g) ≤ r4(g) = supp(g)/3 + (c2(g)− c1(g))/3 + (1− (−1)c0(g))/2.

□
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Lemma 3.7. Let X, Y be two finite sets of integer numbers, and c an integer number, such that,∑
x∈X

x ≡ c+
∑
y∈Y

y (mod 3).

For j = 0, 1, 2, define

εj =
∣∣∣{y ∈ Y | y ≡ j (mod 3)}

∣∣∣− ∣∣∣{x ∈ X |x ≡ j (mod 3)}
∣∣∣.

Then, we have:

(1)
∑2

j=0 εj = |Y | − |X|.
(2) |ε2 − ε1| ≤ |X|+ |Y |.
(3) ε2 − ε1 ≡ c (mod 3).

(4) ε0 ≡ |Y | − |X|+ ε2 − ε1 (mod 2).

(5) If |X|+ |Y | < |c± 6| and exactly one of the c and |Y | − |X| is an even integer, then

δ = max
{ε2 − ε1 − c

3
± 1− (−1)ε0

2

}
≤ 1.(3.3)

Proof. The first equation is trivial. Without loss of generality we can replace any xi and yi by their

incongruent modulo 3 in the set {−1, 0, 1}. Since

c ≡
∑
x∈X

x−
∑
y∈Y

y ≡ ε2 − ε1 (mod 3),

we have |ε2 − ε1| ≤ |X|+ |Y |. Define the functions

f0(t) = 1− t2, f1(t) =
t(t+ 1)

2
, f2(t) =

t(t− 1)

2
.

So, fj(t) = 1 if and only if 3|t − j, and fj(t) = 0 if and only if 3 ∤ t − j, for any t ∈ {−1, 0, 1}. By

definition of εj we have:

εj =
∑
y∈Y

fj(y)−
∑
x∈X

fj(x), j = 0, 1, 2.

Since z2 ≡ z (mod 2) for any z ∈ {−1, 0, 1},

ε0 = |Y | − |X|+
∑
x∈X

x2 −
∑
y∈Y

y2

≡ |Y | − |X|+
∑
x∈X

x−
∑
y∈Y

y (mod 2).

Thus ε0 ≡ |Y | − |X|+ ε2 − ε1 (mod 2).

For proving Equation 3.3 in Part 5 of the lemma, note that 2 ∤ |Y | − |X|+ c, and by Part 2 we have

|ε2 − ε1| < |c± 6|. If ε2 − ε1 = c, then 2 ∤ ε0, and δ = 1. If ε2 − ε1 = c± 3, then 2|ε0, thus δ = 1. □

Theorem 3.8. By the above notations, for arbitrary permutation g, we have:

d1,4(1, g) = r4(g).(3.4)
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Proof. Let Ci(ρ) be the set of all cycles in disjoint cycle decomposition of permutation ρ whose lengths

are congruent to i modulo 3. Set ci = |Ci|.
We prove Equation 3.4 by induction on d(1, g). It is easily seen that r4(g) = 1, for every 4-cycle g

in Sn. Suppose that the induction hypothesis is true for every permutation with distance less than r.

For an arbitrary permutation g with d(1, g) = r > 1 we show that r4(g) = r. It is trivial that there

exist h ∈ Sn with d(1, h) = r − 1, and c, a 4-cycle in Sn such that g = hc. By induction hypothesis

we have r4(h) = r − 1. By case-by-case checking of |Supp(h) ∩ Supp(c)| we show that

r4(g)− r4(h) ≤ 1.(3.5)

If Inequality 3.5 holds, then r4(g) ≤ r, and from Lemma 3.6 we have r4(g) = r. From the proof of

Lemma 3.6, for any transposition ρ, we have d(1, ρ) = 3. It is enough that we only prove Inequality

3.5 when both h and g are not transpositions. By Equation 3.2, for non-transposition permutations g

and h, we have

r4(g)− r4(h) =
supp(g)− supp(h) + ε2 − ε1

3
± 1− (−1)ε0

2
,(3.6)

where εk = ck(g)− ck(h), for k = 0, 1 and 2.

Case 1: |Supp(h) ∩ Supp(c)| = 0. In this case supp(g) = supp(h) + 4, ε1 = 1 and ε0 = ε2 = 0. So, by

Equation 3.6, we have r4(g)− r4(h) = 1.

Case 2: |Supp(h) ∩ Supp(c)| = 1. In this case supp(g) = supp(h) + 3 and ε0 = ε1 = ε2 = 0. Thus,

r4(g)− r4(h) = 1.

Case 3: |Supp(h) ∩ Supp(c)| = 2. In this case supp(g) ≤ supp(h) + 2.

Subcase 3-1: c has some common points with two cycles of h. In this case supp(g) = supp(h)+ 2. We

can describe this situation with the following product of permutations

(I1 ι1)(I2 ι2)(I3 ι1 I4 ι2) = (I1 I4 ι2 I2 I3 ι1),

where ιi’s are distinct numbers in {1, 2, . . . , n} and Ii’s are arbitrary sequences of numbers (maybe

empty) and for i ̸= j, Ii and Ij are disjoint. Suppose that

(I1 ι1) ∈ Cx1 , (I2 ι2) ∈ Cx2 , c = (I3 ι1 I4 ι2) ∈ C1, (I1 I4 ι2 I2 I3 ι1) ∈ Cy1 .

Since ∣∣(I1 ι1)∣∣+ ∣∣(I2 ι2)∣∣+ ∣∣c∣∣− 2 =
∣∣(I1 I4 ι2 I2 I3 ι1)∣∣ ,

we have x1 + x2 ≡ y1 − 2 (mod 3). By Lemma 3.7, for c = −2, X = {x1, x2} and Y = {y1}, we have

r4(g)− r4(h) ≤ 1.

Subcase 3-2: c has two common points with just one cycle of h. We can describe this situation with

the following product of permutations,

(I1 ι1 I2 ι2)(I3 ι1 I4 ι2) = (I1 I4 ι2)(ι1 I2 I3),
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where for i ̸= j, Ii and Ij are disjoint and ιi ̸= ιj .

Subcase 3-2-1: If I1 ∪ I4 and I2 ∪ I3 are non-empty, then

(I1 ι1 I2 ι2) ∈ Cx1 , c = (I3 ι1 I4 ι2) ∈ C1, (I1 I4 ι2) ∈ Cy1 , (ι1 I2 I3) ∈ Cy2 ,

So x1+2 ≡ y1+y2 (mod 3), In this case supp(g) = supp(h)+2. By Lemma 3.7, for c = −2, X = {x1}
and Y = {y1, y2}, we have r4(g)− r4(h) ≤ 1.

Subcase 3-2-2: At least one of the I1 ∪ I4 and I2 ∪ I3 is empty; if for example, I1 and I4 are empty,

then

(ι1 I2 ι2) ∈ Cx1 , c = (I3 ι1 ι2) ∈ C1, (ι1 I2 I3) ∈ Cy1 .

Thus, (ι1 I2 ι2)(I3 ι1 ι2) = (ι1 I2 I3), and x1 + 1 ≡ y1 (mod 3). In this case supp(g) = supp(h) + 1. By

Lemma 3.7, for c = −1, X = {x1} and Y = {y1}, we have r4(g)− r4(h) ≤ 1.

Case 4: |Supp(h) ∩ Supp(c)| = 3. Using Lemma 3.7 we can prove Inequality 3.5 similar to Case 3 by

checking possible cases. We summarized these cases in Table 1. Note that in this table all Ii’s are

non-empty and c = supp(h)− supp(g).

Product c |X| |Y |
(I1 ι1 I2 ι2 I3 ι3)(ι4 ι1 ι2 ι3) = (I1 ι2 I3 ι4 ι1 I2 ι3) -1 1 1

(I1 ι1 I2 ι2 I3 ι3)(ι4 ι1 ι3 ι2) = (I1 ι3)(ι1 I2 ι4)(ι2 I3) -1 1 3

(ι1 I2 ι2 I3 ι3)(ι4 ι1 ι3 ι2) = (ι1 I2 ι4)(ι2 I3) 0 1 2

(ι1 I2 ι2 ι3)(ι4 ι1 ι3 ι2) = (ι1 I2 ι4) 1 1 1

(I1 ι1 I2 ι2)(I3 ι3)(ι4 ι1 ι2 ι3) = (I1 ι2)(ι1 I2 ι3 I3 ι4) -1 2 2

(ι1 I2 ι2)(I3 ι3)(ι4 ι1 ι2 ι3) = (ι1 I2 ι3 I3 ι4) 0 2 1

(I1 ι1)(I2 ι2)(I3 ι3)(ι4 ι1 ι2 ι3) = (I1 ι2 I2 ι3 I3 ι4 ι1) -1 3 1

Table 1. Case 4 of Theorem 3.8

Case 5: |Supp(h) ∩ Supp(c)| = 4. Similar to Case 4, we can prove Inequality 3.5 by checking possible

cases. We checked these cases in Table 2. Note that in this table all Ii’s are non-empty and c =

supp(h)− supp(g).
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Product c |X| |Y |
(I1 ι1 I2 ι2 I3 ι3 I4 ι4)(ι4 ι1 ι2 ι3) = (I1 ι2 I3 ι4)(ι1 I2 ι3 I4) 0 1 2

(I1 ι1 I2 ι2 I3 ι3 I4 ι4)(ι4 ι1 ι3 ι2) = (I1 ι3 I4 ι1 I2 ι4)(ι2 I3) 0 1 2

(I1 ι1 I2 ι2 ι3 I4 ι4)(ι4 ι1 ι3 ι2) = (I1 ι3 I4 ι1 I2 ι4) 1 1 1

(I1 ι1 I2 ι2 I3 ι3 I4 ι4)(ι4 ι3 ι2 ι1) = (I1 ι4)(ι1 I2)(ι2 I3)(ι3 I4) 0 1 4

(I1 ι1 I2 ι2 I3 ι3 ι4)(ι4 ι3 ι2 ι1) = (I1 ι4)(ι1 I2)(ι2 I3) 1 1 3

(I1 ι1 I2 ι2 ι3 ι4)(ι4 ι3 ι2 ι1) = (I1 ι4)(ι1 I2) 2 1 2

(I1 ι1 ι2 ι3 ι4)(ι4 ι3 ι2 ι1) = (I1 ι4) 3 1 1

(ι1 ι2 ι3 ι4)(ι4 ι3 ι2 ι1) = 1 - - -

(I1 ι1)(I2 ι2 I3 ι3 I4 ι4)(ι4 ι1 ι2 ι3) = (I1 ι2 I3 ι4 I2 ι3 I4 ι1) 0 2 1

(I1 ι1)(I2 ι2 I3 ι3 I4 ι4)(ι4 ι1 ι3 ι2) = (I1 ι3 I4 ι1)(I2 ι4)(ι2 I3) 0 2 3

(I1 ι1)(I2 ι2 ι3 I4 ι4)(ι4 ι1 ι3 ι2) = (I1 ι3 I4 ι1)(I2 ι4) -1 2 2

(I1 ι1)(ι2 ι3 I4 ι4)(ι4 ι1 ι3 ι2) = (I1 ι3 I4 ι1) 2 1 2

(I1 ι1 I2 ι2)(I3 ι3 I4 ι4)(ι4 ι1 ι2 ι3) = (I1 ι2)(ι1 I2 ι3 I4)(ι4 I3) 0 2 3

(I1 ι1 I2 ι2)(ι3 I4 ι4)(ι4 ι1 ι2 ι3) = (I1 ι2)(ι1 I2 ι3 I4) 1 2 2

(ι1 I2 ι2)(ι3 I4 ι4)(ι4 ι1 ι2 ι3) = (ι1 I2 ι3 I4) 2 2 1

(I1 ι1 I2 ι2)(I3 ι3 I4 ι4)(ι4 ι1 ι3 ι2) = (I1 ι3 I4 ι1 I2 ι4 I3 ι2), 0 2 1

(I1 ι1)(I2 ι2)(I3 ι3 I4 ι4)(ι4 ι1 ι2 ι3) = (I1 ι2 I2 ι3 I4 ι1)(ι4 I3) 0 3 2

(I1 ι1)(I2 ι2)(ι3 I4 ι4)(ι4 ι1 ι2 ι3) = (I1 ι2 I2 ι3 I4 ι1) 1 3 1

(I1 ι1)(I2 ι2)(I3 ι3 I4 ι4)(ι4 ι1 ι3 ι2) = (I1 ι3 I4 ι1)(ι2 I2 ι4 I3) 0 3 2

(I1 ι1)(I2 ι2)(I3 ι3)(I4 ι4)(ι4 ι1 ι2 ι3) = (I1 ι2 I2 ι3 I3 ι4 I4 ι1), 0 4 1

Table 2. Case 5 of Theorem 3.8

It is easily seen that in the case (ι1 ι2 ι3 ι4)(ι4 ι3 ι2 ι1) = 1 in Table 2, the desired inequality holds.

As a result, we have r4(g)− r4(h) ≤ 1 for all cases. This completes the proof. □

As an immediate consequence of Theorem 3.8 and Theorem 3.1 the following corollary holds.

Corollary 3.9. By the above notations, we have

dk,4(1, g) =

⌈r4(g)/k⌉ if 2|u

⌈r4(g)/k⌉+ 1 if 2 ∤ u,

where u = k⌈r4(g)/k⌉ − r4(g).

Corollary 3.10. We have

diam(Γn
k,4) =

⌈(n− 2)/(2k)⌉ if 2|k

⌈(n− 2)/(2k)⌉+ 1 if 2 ∤ k.

Proof. We find the maximum value of the function dk,4(1, g), denoted by dΓ, for suitable permutation

g in the generated group by Ωn
k,4. For every permutation g, suppose that bg is the remainder of r4(g)
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divided by k. It is clear that for ug = k⌈r4(g)/k⌉ − r4(g), we have 2|ug if and only if k|r4(g) or

2|(k − bg).

Case 1: Suppose that 2|k. In this case Γn
k,4 = Cay(An,Ω

n
k,4). For every permutation g in An we have

2|r4(g); hence 2|bg and 2|ug.
Subcase 1-1: 4|n. In this case it is easily seen that g = (1 2)(3 4) · · · (n− 1n) gives dΓ. By Corollary

3.9, dk,4(1, g) = ⌈n/(2k)⌉. Since 2k ∤ n− 1 and 2k ∤ n− 2, we have ⌈n/(2k)⌉ = ⌈(n− 2)/(2k)⌉. Thus,
diam(Γn

k,4) = ⌈(n− 2)/(2k)⌉.
Subcase 1-2: Suppose that n ≡ 1 (mod 4). In this case it is easily checked that g = (1 2)(3 4) · · · (n−
2 n− 1) gives dΓ. Since 2k ∤ n− 2 and dk,4(1, g) = ⌈(n− 1)/(2k)⌉, we have

diam(Γn
k,4) =

⌈n− 1

2k

⌉
=

⌈n− 2

2k

⌉
.

Subcase 1-3: Let n ≡ 2 (mod 4). Since g = (1 2)(4 5) · · · (n− 3 n− 2) gives dΓ, we have diam(Γn
k,4) =

⌈(n− 2)/(2k)⌉.
Subcase 1-4: n ≡ 3 (mod 4). In this case it is easily checked that g = (1 2 3)(4 5) · · · (n − 1n) gives

dΓ. Since 2k ∤ n , 2k ∤ n− 1 and 2k ∤ n− 2, we have

diam(Γn
k,4) =

⌈n+ 1

2k

⌉
=

⌈n− 2

2k

⌉
.

Case 2: Suppose that 2 ∤ k and 2|n. In this case Γn
k,4 = Cay(Sn,Ω

n
k,4). Let g1 = (1 2)(3 4) · · · (n− 1n)

and g2 = (1 2)(3 4) · · · (n− 3n− 2). Thus, r4(g1) = n/2 and r4(g2) = n/2− 1.

Subcase 2-1: Let 2 ∤ ug1 . In this case it is easily checked that g1 gives dΓ. By Corollary 3.9,

r4(g) = ⌈n/(2k)⌉ + 1. Since 2 ∤ ug1 , we have bg1 ̸= 1 and k ∤ n/2 − 1. So, 2k ∤ n − 2. Thus,

⌈n/(2k)⌉ = ⌈(n− 2)/(2k)⌉.
Subcase 2-2: If 2 ∤ ug2 then g2 gives dΓ. By Corollary 3.9, we have r4(g) = ⌈(n− 2)/(2k)⌉+ 1.

Subcase 2-3: Let 2|ug1 and 2|ug2 . In this case it is easily seen that g1 gives dΓ. If we show that

k|n/2− 1 then ⌈n/(2k)⌉ = ⌈(n− 2)/(2k)⌉+1. Suppose that, on the contrary, k ∤ n/2− 1. Since 2|ug2 ,
2 ∤ bg2 . Hence 2|bg1 . So, k|n/2 and bg1 = 0. Thus, bg2 = k − 1 and 2|k, which is a contradiction.

Case 3: Suppose that 2 ∤ k and 2 ∤ n. In this case Γn
k,4 = Cay(Sn,Ω

n
k,4). Let g3 = (1 2 3)(4 5) · · · (n−1n)

and g4 = (1 2)(3 4) · · · (n−2n−1). It is easily checked that r4(g3) = (n+1)/2 and r4(g2) = (n−1)/2.

Subcase 3-1: Let 2 ∤ ug3 . In this case it is easily seen that g3 gives dΓ. By Corollary 3.9, r4(g3) =

⌈(n + 1)/(2k)⌉ + 1. Since 2 ∤ ug3 , we have bg3 ̸= 1 and k ∤ (n − 1)/2. Therefore, 2k ∤ n − 1. Thus,

⌈(n+ 1)/(2k)⌉ = ⌈(n− 2)/(2k)⌉.
Subcase 3-2: If 2 ∤ ug4 then g4 gives dΓ. Thus,

diam(Γn
k,4) = r4(g4) = ⌈(n− 1)/(2k)⌉+ 1 = ⌈(n− 2)/(2k)⌉+ 1.

Subcase 3-3: Let 2|ug3 and 2|ug4 . In this case it is easily checked that g3 gives dΓ. If we show that

k|(n+1)/2− 1 then ⌈(n+1)/(2k)⌉ = ⌈(n− 2)/(2k)⌉+1. Suppose that, on the contrary, k ∤ (n− 1)/2.

Since 2|ug4 , we have 2 ∤ bg4 and 2|bg3 . Therefore, k|(n+ 1)/2 and bg3 = 0. Thus, bg4 = k − 1 and 2|k,
which is a contradiction. □
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4. Improvement of an Algorithm

Algorithm 1: An algorithm for finding a short expression of a permutation as products of given

permutations

Input : Permutations s1, s2, . . . , st in Sn;

permutation s in Sn that can be generated by si’s.

Output: Find a short expression for s.

Step 1: Find a good permutation in ⟨s1, s2, . . . , st⟩.
foreach τ ∈ ⟨s1, s2, . . . , st⟩ do

for m = 1 to n do
if τm is a good permutation OR τm and s have same cycle type

then
µ← τm

Go to Step 2.

end

end

end

return fail

Step 2: Find a short expression for the additional good permutations.

Set C as the set of all permutations needed for expressing s as products of the permutations of

the same cycle type of µ.

A0 ← {µ}
for l = 1 to maximum-tries do

Al ← ∅
foreach i ∈ {1, 2, . . . , t} each ϵ ∈ {1,−1} and each a ∈ Al−1 do

if s−ϵ
i asϵi ̸∈

∪l
j=0Aj then

Add s−ϵ
i asϵi to Al.

if C ⊆
∪l

j=0Aj then
Go to Step 3.

end

end

end

end

return fail

Step 3: Find a short expression for s according to the algorithms presented in the previous

sections using the good permutations in C.

In [6], authors presented an algorithm for expressing a permutation by given generating set of

G = Sn or An. We call a permutation a good permutation if, it is a transposition, 3-cycle or 4-cycle,

The main difference between Algorithm 1 and the algorithm in [6] is in the definition of the good
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permutation. In [6], authors did not consider 4-cycles as a good permutation. By using the algorithm

in the proof of Lemma 3.6 we can express a permutation as products of 4-cycles. According to our

experiments for n = 8, 16, 32, 64, 128, depending on n, in the more than 35 percent of the cases, Step

1 of the Algorithm 1 returns a 4-cycle, that in general causes a shorter expression. Note that, the

Algorithm 1 as its origin in [6] will not necessarily returns a shortest expression. Unlike the algorithm

in [6], we do not specific the group G in the input of Algorithm 1. It causes shorter runtime in most

cases. If we interested in quicker algorithm rather than shorter result, we can drop 4-cycles from the

definition of good permutation. For the proof and more details of Algorithm 1 we refer the reader to

the proof of the origin algorithm in [6].

5. Conclusion

We find the distance function and the diameter for Γn
k,m, a family of Cayley graphs, for m = 2, 3, 4.

This problem for Γn
mk is an interesting open problem. In Section 4 we improve an algorithm that finds

a short path in the Cayley graphs on permutation groups, which has applications in cryptography and

biological mathematics.
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[3] L. Babai and Á. Seress, On the diameter of permutation groups, European J. Combin., 13 no. 4 (1992) 231–243.

[4] M. Camelo, D. Papadimitriou, L. Fbrega and P. Vil, Efficient routing in data center with underlying Cayley graph,

In: Complex Networks V, (2014) (Springer) vol. 549 189–197.

[5] G. Cooperman and L. Finkelstein, A strong generating test and short presentations for permutation groups, J.

Symbolic Comput., 12 no. 4-5 (1991) 475–497.

[6] A. Kalka, M. Teicher and B. Tsaban, Short expressions of permutations as products and cryptanalysis of the

algebraic eraser, Adv. Appl. Math., 49 no. 1 (2012) 57–76.

[7] E. Konstantinova, On reconstruction of signed permutations distorted by reversal errors, Discrete Math., 308 no.

5-6 (2008) 974–984.

[8] E. Konstantinova, Vertex reconstruction in Cayley graphs, Discrete Math., 309 no. 3 (2009) 548–559.

[9] V. Levenshtein and J. Siemons, Error graphs and the reconstruction of elements in groups, J. Combin. Theory Ser.

A, 116 no. 4 (2009) 795–815.

[10] T. Minkwitz, An algorithm for solving the factorization problem in permutation groups, J. Symbolic Comput., 26

no. 1 (1998) 89–95.

[11] T. Phongpattanacharoen and J. Siemons, Metric intersection problems in Cayley graphs and the Stirling recursion,

Aequationes Math., 85 no. 3 (2013) 387–408.
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