Overview of the fields in QFT (FK8017 HT15)

Real scalar field Complex scalar field

Field: ¢(z) € R
Symmetry: O(1) (no continuous
symmetries)

Field dofs: ¢(z),¢'(z) € C
Symmetry: U(1) ~ SO(2) = mass
degeneracy of the real doublet

Complex field from a real doublet ¢, (22:

Spinor field
Two-component (Weyl) spinor field
Field dofs: y,(z) € C?+he
Symmetry: O(1)

Bispinor field
Four-component spinor field
Field dofs: (), %q(z) € C2+he
Symmetry: U(1) ~ SO(2) = mass
degeneracy of the 2-spinor doublet

»

Bispinor from a 2-spinor doublet 14, Xg,::

Real vector field Complex vector field Real scalar multiplet

oi(x) €R, i=1,...,n
Symmetries depend on mass
degeneracies (at most O(n)).

Field: A,(z) € R*
Gauge symmetry (if free)

Field dofs: A, (x), Al (z) € C*
Gauge symmetry (if free)

Complex scalar multiplet

¢i(x),¢l(x) €C, i=1,..,n
Symmetries depend on mass
degenaracies (at most U(n)).

Real vector multiplet

Fields: AL(.Z‘) eRYi=1,...n

To do...

(this column is not complete!)

Free theory = kinetic + opt. mass term
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Symmetrized (hermitian) kinetic term:
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Optional quadratic terms (mass and gauge fixing):
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For the general mass term,
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gauge fixing term
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gauge fixing term
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Possible self-interaction terms:

(cubic term (cubic term
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Free-field examples (with propagators):

where M is a positive definite
l e real matrix with &k distinct
eigenvalues m; each with de-
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- " | the internal symmetry group is,
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mixed term
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For the general mass term,
— o M,
where M is a positive definite

Hermitian matrix with k& dis-
tinct eigenvalues m; each with
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the internal symmetry group is,
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Note: The self-interaction terms for vector fields lead to incon-

Note: There can be other internal symmetries (in addition to those
coming out of mass term degeneracy).

sistencies unless their coupling constants are precisely chosen on
the basis of a special type of symmetry, which must involve sev-
eral vector fields. This symmetry underlies the non-Ahelian gauge
theories.

(ghost term for QCD
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(ghost term for QED
0,m 0"
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Massive neutral spin-0
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(Massive charged spin-0 / KGF |
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(Meson propagator: (Meson propagator:
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Majorana Lagrangian
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(Dirac Lagrangian
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Dirac fermion propagator:
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(Massless neutral spin-1 (Maxwell) | [Massive neutral spin-1 (Proca)
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(Photon propagator:
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Massive vector propagator:
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Stiickelberg Lagrangian
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Gauge-fixing ¢ = 0, yields the Proca action.

¢ =1: Feynman gauge (£ = ("1 =1)
¢ — oo : Landau gauge (¢ = ¢~ =0)

Legend:

9w Minkowski metric, diag(1, -1, -1, —1)

W, v, ... . (World) tensor indices
a, 3, ... : Four-component (Dirac) spinor indices
a,b,...,a,b, ... : Two-component (Weyl) spinor indices
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ot 49,

Yukawa coupling

—g UV ¢

Scalar QED
+e g0t A,
+e (¢7¢)(A,A%)

[(Spinor) QED

—e UMy /iy

L

(Yukawa coupling

—g V¥ ¢

1. The Lagrangian must be real modulo total derivative (required by CPT invariance).
2. All the added terms must be Lorentz-invariant.

N.b. Any interaction of higher dimension than M* leads to a nonrenormalizable theory.
Hence, ignoring all the constants, the dimension of any term must be at most M? since the
dimension of a Lagrangian density is M*.

(Spinor) QED ) Prescription for building a consistent Lagrangian:
—e Uyr A "
: 3. All the added terms must be of dimension less or equal M*.
Scalar QED
+epdtpl A,
+e (¢7¢)(A4,A%)

’ [S] = M?, [£] = MY, [0,] = [¢] = [A,] = MY, [¥]

[Xa] = MP2, [F,] = M2,
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