Overview of the fields in QFT (FK8017 HT15)

Spinor field Bispinor field Complex scalar field Real scalar multiplet Complex scalar multiplet Real vector multiplet Complex vector field Real scalar field Real vector field Two-component (Weyl) spinor field Four-component spinor field Field dofs: $\chi_a(x) \in \mathbb{C}^2 + hc$ Field: $\phi(x) \in \mathbb{R}$ $\phi_i(x), \phi_i^{\dagger}(x) \in \mathbb{C}, \ i = 1, ..., n$ Field dofs: $\phi(x), \phi^{\dagger}(x) \in \mathbb{C}$ Field dofs: $\chi_a(x), \psi_a(x) \in \mathbb{C}^2 + hc$ Field: $A_{\mu}(x) \in \mathbb{R}^4$ Field dofs: $A_{\mu}(x), A_{\mu}^{\dagger}(x) \in \mathbb{C}^4$ $\phi_i(x) \in \mathbb{R}, i = 1, ..., n$ Fields: $A_{i}^{i}(x) \in \mathbb{R}^{4}, i = 1, ..., n$ Symmetry: O(1) (no continuous Symmetry: $U(1) \simeq SO(2) = mass$ Symmetry: $U(1) \simeq SO(2) = mass$ Symmetries depend on mass Symmetry: O(1) Gauge symmetry (if free) Gauge symmetry (if free) Symmetries depend on mass symmetries) degeneracy of the real doublet degeneracy of the 2-spinor doublet degeneracies (at most O(n)). degeneracies (at most U(n)). To do... (this column is not complete!) Complex field from a real doublet ϕ_1, ϕ_2 : Bispinor from a 2-spinor doublet χ_{1a} , χ_{2a} : $\Phi(x) = \begin{pmatrix} \phi_1(x) \\ \vdots \\ \phi_n(x) \end{pmatrix} \in \mathbb{R}^n$ $\Phi(x) = \begin{pmatrix} \phi_1(x) \\ \vdots \\ \phi_n(x) \end{pmatrix} \in \mathbb{C}^n$ $\phi(x) = \frac{1}{\sqrt{2}}(\phi_1(x) + i\phi_2(x))$ $\chi_a(x) = \frac{1}{\sqrt{2}} (\chi_{1a}(x) + i\chi_{2a}(x))$ $\phi^{\dagger}(x) = \frac{1}{\sqrt{2}}(\phi_1(x) - i\phi_2(x))$ $\psi_a(x) = \frac{1}{\sqrt{2}} (\chi_{1a}(x) - i\chi_{2a}(x))$ Symmetrized (hermitian) kinetic term: kinetic term (alt) kinetic term kinetic term $(\mathcal{L} = \mathcal{L}^{\dagger})$ kinetic term $(\mathcal{L} = \mathcal{L}^{\dagger})$ $(\mathcal{L} = \mathcal{L}^{\dagger})$ kinetic term (alt) $(\mathcal{L} = \mathcal{L}^{\dagger})$ kinetic term $(\mathcal{L}=\mathcal{L}^{\dagger})$ $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$ $\mathcal{L} = \frac{1}{2} \left(\chi^a \, \mathrm{i} \partial_{a\dot{a}} \overline{\chi}^{\dot{a}} + \overline{\chi}_{\dot{a}} \, \mathrm{i} \overline{\partial}^{\dot{a}a} \chi_a \right)$ $\mathcal{L} = -\frac{1}{2}F^{\dagger}_{\mu\nu}F^{\mu\nu}$ $\mathcal{L} = -\frac{1}{4}G^i_{\mu\nu}G^{i\,\mu\nu}$ $\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi$ $\mathcal{L} = \partial_{\mu} \phi^{\dagger} \, \partial^{\mu} \phi$ $\mathcal{L} = \frac{1}{2} \partial_{\mu} \Phi^{\mathsf{T}} \partial^{\mu} \Phi$ $\mathcal{L} = \partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi$ $\mathcal{L} = \psi^a \, \mathrm{i} \partial_{a\dot{a}} \overline{\psi}^{\dot{a}} + \overline{\psi}_{\dot{a}} \, \mathrm{i} \overline{\partial}^{\dot{a}a} \psi_a$ where $F_{\mu\nu} = 2\partial_{[\mu}A_{\nu]}$ where $F_{\mu\nu} = 2\partial_{[\mu}A_{\nu]}$ $+\chi^a i\partial_{a\dot{a}} \overline{\chi}^{\dot{a}} + \overline{\chi}_{\dot{a}} i\overline{\partial}^{aa} \chi_a$ $G^i_{\mu\nu} = 2\partial_{[\mu}A^i_{\nu]} + gf^{ijk}A^j_{\mu}A^k_{\nu}$ EoM based kinetic term: kinetic term (alt) kinetic term (alt) kinetic term (alt) $(\mathcal{L}' eq \mathcal{L}'^\dagger)$ kinetic term (alt) $(\mathcal{L}' \neq \mathcal{L}'^{\dagger})$ kinetic term (alt) $(\mathcal{L}' \neq \mathcal{L}'^{\dagger})$ $(\mathcal{L}' \neq \mathcal{L}'^{\dagger})$ $(\mathcal{L}' \neq \mathcal{L}'^{\dagger})$ kinetic term kinetic term kinetic term $\mathcal{L}' = -\frac{1}{2}\phi \Box \phi$ $\mathcal{L}' = \frac{1}{2} A^{\mu} (g_{\mu\nu} \Box - \partial_{\mu} \partial_{\nu}) A^{\nu}$ $\mathcal{L}' = -\frac{1}{2}\Phi^{\mathsf{T}}\Box\Phi$ $\mathcal{L}' = \psi^a \, \mathrm{i} \partial_{a\dot{a}} \overline{\psi}^{\dot{a}} + \overline{\chi}_{\dot{a}} \, \mathrm{i} \overline{\partial}^{\dot{a}a} \chi_a$ $\mathcal{L}' = -\phi^{\dagger} \square \phi$ $\mathcal{L}' = A^{\dagger \mu} (q_{\mu\nu} \Box - \partial_{\mu} \partial_{\nu}) A^{\nu}$ $\mathcal{L}' = -\Phi^{\dagger} \Box \Phi$ $\mathcal{L}' = \chi^a i \partial_{a\dot{a}} \overline{\chi}^{\dot{a}}$ $\mathcal{L}' = \mathcal{L} + \frac{1}{2} \partial_{\mu} (\phi \, \partial^{\mu} \phi)$ $\mathcal{L}' = \mathcal{L} + \frac{1}{2} \partial_{\mu} (A_{\nu} F^{\mu\nu})$ $\mathcal{L}' = \mathcal{L} + \frac{1}{2} \partial_{\mu} (\Phi \, \partial^{\mu} \Phi)$ $\mathcal{L}' = \mathcal{L} + \partial_{\mu} (\phi^{\dagger} \, \partial^{\mu} \phi)$ $\mathcal{L}' = \mathcal{L} + \partial_{\mu} (\Phi^{\dagger} \partial^{\mu} \Phi)$ $\mathcal{L}' = \mathcal{L} + \partial_{\mu} (A^{\dagger}_{\nu} F^{\mu\nu})$ Optional quadratic terms (mass and gauge fixing): mass term mass term mass term quadric term quadratic term $+\frac{1}{2}m^2A_{\mu}^iA^{i\mu}$ $-\frac{1}{2}m^2\phi^2$ $-m^2 \phi^{\dagger} \phi$ $-\frac{1}{2}\left(m\chi^a\chi_a+m^*\overline{\chi}_{\dot{a}}\overline{\chi}^{\dot{a}}\right)$ $+\frac{1}{2}m^{2}A_{\mu}A^{\mu}$ $+ m^2 A^{\dagger}_{\mu} A^{\mu}$ $-m^2 \Phi^{\dagger} \Phi$ $-\left(m\psi^a\chi_a+m^*\overline{\chi}_{\dot{a}}\overline{\psi}^a\right)$ $-\frac{1}{2}m^2\Phi^{\mathsf{T}}\Phi$ $-\frac{1}{2}m(\chi^a\chi_a + \overline{\chi}_{\dot{a}}\overline{\chi}^{\dot{a}}) \qquad \text{for } m = m^*$ $-m(\psi^a \chi_a + \overline{\chi}_{\dot{a}} \overline{\psi}^{\dot{a}}) \qquad \text{for } m = m^*$ gauge fixing term gauge fixing term For the general mass term, For the general mass term, gauge fixing term $-\frac{1}{2}\Phi^{\mathsf{T}}M\Phi$, $-\Phi^{\dagger}M\Phi$. $-\frac{1}{2}\zeta(\partial_{\mu}A^{i\,\mu})(\partial_{\nu}A^{i\,\nu})$ $-\frac{1}{2}\zeta \left(\partial_{\mu}A^{\mu}\right)^{2}$ $-\zeta (\partial_{\mu}A^{\dagger\mu})(\partial_{\nu}A^{\nu})$ where M is a positive definite where M is a positive definite Possible self-interaction terms: real matrix with k distinct Hermitian matrix with k dismixed term mixed terms (+hc) ghost term for QCD cubic term cubic term eigenvalues m_i each with detinct eigenvalues m_i each with $-(A_{\mu}A^{\mu})(\partial_{\nu}A^{\nu})$ $-(A^{\dagger}_{\mu}A^{\mu})(\partial_{\nu}A^{\nu})$ generacy n_i $(k \leq n = \sum n_i)$ degeneracy n_i $(k \leq n = \sum n_i),$ $-\frac{1}{3!}\mu\,\phi^3$ $-\mu \, \phi^{\dagger} (\phi^{\dagger} + \phi) \phi$ $\partial^{\mu}\eta_{i}[\partial_{\mu}\tilde{\eta}_{i}+g_{s}f^{ijk}\tilde{\eta}^{j}A_{\mu}^{k}]$ the internal symmetry group is, the internal symmetry group is. quartic term quartic term $= \partial_{\mu}\tilde{\eta}^{i}\partial^{\mu}\eta^{i} + g_{s}f^{ijk}(\partial^{\mu}\tilde{\eta}^{i})A^{j}_{\mu}\eta^{k}$ quartic term quartic term $O(n_1) \times \cdots \times O(n_k)$. $U(n_1) \times \cdots \times U(n_k)$. $-(A_{\mu}A^{\mu})^{2}$ $-(A_{\mu}^{\dagger}A^{\mu})^{2}$ $\Psi_{\mathbf{M}}(x) = \begin{pmatrix} \chi_{a}(x) \\ \overline{\chi}^{\dot{a}}(x) \end{pmatrix}, \ \Psi_{\mathbf{M}}^{\dagger} = \begin{pmatrix} \overline{\chi}_{\dot{a}} \\ \overline{\chi}^{\dot{a}} \end{pmatrix},$ $\Psi_{\mathbf{M}}(x) = \begin{pmatrix} \chi_{a}(x) \\ \overline{\chi}^{\dot{a}}(x) \end{pmatrix}, \ \Psi_{\mathbf{M}}^{\dagger} = \begin{pmatrix} \overline{\chi}_{\dot{a}} \\ \overline{\chi}_{\dot{a}} \end{pmatrix}^{\mathsf{T}},$ $\overline{\Psi} = \Psi^{\dagger}_{\mathbf{M}} \beta = \begin{pmatrix} \psi^{a} \\ \overline{\chi}_{\dot{a}} \end{pmatrix}^{\mathsf{T}},$ $\overline{\Psi}_{\mathbf{M}} = \Psi_{\mathbf{M}}^{\dagger} \beta = \begin{pmatrix} \chi_{a} \\ \overline{\chi}_{\dot{a}} \end{pmatrix}^{\mathsf{T}},$ $\gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu}_{a\dot{b}} \\ \overline{\sigma}^{\mu\dot{a}\dot{b}} & 0 \end{pmatrix}, \ \beta = \begin{pmatrix} 0 & \delta_{a}^{b} \\ \delta^{\dot{a}}_{\dot{b}} & 0 \end{pmatrix}$ $-\frac{1}{4!}\lambda\phi^4$ $-\lambda (\phi^{\dagger}\phi)^2$ ghost term for QED Note: There can be other internal symmetries (in addition to those Note: The self-interaction terms for vector fields lead to inconcoming out of mass term degeneracy). $\partial_{\mu}\eta \, \partial^{\mu}\tilde{\eta}$ sistencies unless their coupling constants are precisely chosen on the basis of a special type of symmetry, which must involve several vector fields. This symmetry underlies the non-Ahelian gauge Free-field examples (with propagators): Massive neutral spin-0 Massive charged spin-0 / KGF Massless neutral spin-1 (Maxwell) Massive neutral spin-1 (Proca) $(\mathcal{L} \neq \mathcal{L}^{\dagger})$ Majorana Lagrangian $(\mathcal{L} \neq \mathcal{L}^{\dagger})$ Dirac Lagrangian $\mathcal{L} = \frac{1}{2}\phi \left(-\Box - m^2\right)\phi$ $\mathcal{L} = \phi^{\dagger}(-\Box - m^2)\phi$ $\mathcal{L} = \frac{1}{2} A^{\mu} \Big(g_{\mu\nu} \Box - (1 - \zeta) \partial_{\mu} \partial_{\nu} \Big) A^{\nu}$ $\mathcal{L} = \frac{1}{2} A^{\mu} \Big(g_{\mu\nu} (\Box + m^2) - \partial_{\mu} \partial_{\nu} \Big) A^{\nu}$ $\mathcal{L} = \overline{\Psi}_{\rm M} (i\gamma^{\mu}\partial_{\mu} - m)\Psi_{\rm M}$ $\mathcal{L} = \overline{\Psi}(i\gamma^{\mu}\partial_{\mu} - m)\Psi$ Legend: $\mathcal{L}^{\dagger} = \mathrm{i} \partial_{\mu} \overline{\Psi} (\gamma^{\mu} - m) \Psi$ $g_{\mu\nu}$: Minkowski metric, diag(1,-1,-1,-1)Meson propagator: Meson propagator: Massive vector propagator: Photon propagator: μ, ν, \dots : (World) tensor indices $\mathcal{L}' = \operatorname{Re} \mathcal{L} = \frac{1}{2} \overline{\Psi} i \gamma^{\mu} \overleftrightarrow{\partial}_{\mu} \Psi - m \overline{\Psi} \Psi$ $i\Delta_{\rm F}(k) = \frac{1}{k^2 - m^2 + i\varepsilon^+}$ $\mathrm{i}\Delta_{\mathrm{F}}(k) = \frac{\mathrm{i}}{k^2 - m^2 + \mathrm{i}\varepsilon^+}$ α, β, \dots : Four-component (Dirac) spinor indices $iD_{F}^{\mu\nu}(k) = \frac{-i\left(g^{\mu\nu} - \frac{\zeta - 1}{\zeta}k^{\mu}k^{\nu}\right)}{k^{2} + i\varepsilon^{+}}$ $iD_{\rm F}^{\mu\nu}(k) = \frac{-i\left(g^{\mu\nu} - \frac{1}{m^2}k^{\mu}k^{\nu}\right)}{k^2 - m^2 + i\varepsilon^+}$ $=\mathcal{L}-\frac{1}{2}\mathrm{i}\partial_{\mu}(\overline{\Psi}\gamma^{\mu}\Psi)=\mathcal{L}'^{\dagger}$ $a, b, ..., \dot{a}, \dot{b}, ...$: Two-component (Weyl) spinor indices $\partial_{a\dot{a}} := \sigma^{\mu}_{a\dot{a}} \partial_{\mu}, \quad \overline{\partial}^{\dot{a}a} := \overline{\sigma}^{\mu\,\dot{a}a} \partial_{\mu}$ Dirac fermion propagator: Stückelberg Lagrangian $\zeta = 1$: Feynman gauge $(\xi = \zeta^{-1} = 1)$ $\zeta \to \infty$: Landau gauge $(\xi = \zeta^{-1} = 0)$ $\mathcal{L} = -\frac{1}{2}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}(\partial_{\mu}\phi + mA_{\mu})(\partial^{\mu}\phi + mA^{\mu})$ Gauge-fixing $\phi = 0$, yields the Proca action. Possible interaction terms: **Prescription** for building a consistent Lagrangian: Yukawa coupling (Spinor) QED (Spinor) QED 1. The Lagrangian must be real modulo total derivative (required by CPT invariance). $-q \overline{\Psi} \Psi \phi$ $-e \overline{\Psi} \gamma^{\mu} \Psi A_{\mu}$ $-e \overline{\Psi} \gamma^{\mu} \Psi A_{\mu}$ Scalar QED 2. All the added terms must be Lorentz-invariant. 3. All the added terms must be of dimension less or equal M⁴. $+e \phi \partial^{\mu} \phi^{\dagger} A_{\mu}$ Scalar QED Yukawa coupling

 $+e \phi \partial^{\mu} \phi^{\dagger} A_{\mu}$

 $+e\left(\phi^{\dagger}\phi\right)\left(A_{\mu}A^{\mu}\right)$

 $-g\,\overline{\Psi}\Psi\,\phi$

N.b. Any interaction of higher dimension than M⁴ leads to a nonrenormalizable theory.

 $[S] = \mathsf{M}^0, [\mathcal{L}] = \mathsf{M}^4, [\partial_u] = [\phi] = [A_u] = \mathsf{M}^1, [\Psi] = [\chi_a] = \mathsf{M}^{3/2}, [F_{uv}] = \mathsf{M}^2.$

dimension of a Lagrangian density is M⁴.

Hence, ignoring all the constants, the dimension of any term must be at most M⁴ since the

 $+e\left(\phi^{\dagger}\phi\right)\left(A_{\mu}A^{\mu}\right)$