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Abstract

It is well-known that a Hausdorff space is exponentiable if and only if
it is locally compact, and that in this case the exponential topology is the
compact-open topology. It is less well-known that among arbitrary topo-
logical spaces, the exponentiable spaces are precisely the core-compact
spaces. The available approaches to the general characterization are based
on either category theory or continuous-lattice theory, or even both. It
is the main purpose of this paper to provide a self-contained, elementary
and brief development of general function spaces. The only prerequisite
to this development is a basic knowledge of general topology (continuous
functions, product topology and compactness).

But another connection with the theory of continuous lattices lurks in
this approach to function spaces, which is examined after the elementary
exposition is completed. Continuity of the function-evaluation map is
shown to coincide with a certain approximation property of a topology
on the frame of open sets of the exponent space, and the existence of a
smallest approximating topology is equivalent to exponentiability of the
space. We show that the intersection of the approximating topologies
of any preframe is the Scott topology. In particular, we conclude that a
complete lattice is continuous if and only if it has a smallest approximating
topology and finite meets distribute over directed joins.

1 Introduction

A topological space X is called exponentiable if for every space Y there is a
topology on the set Y X of continuous maps X → Y such that for any space A
there is a natural bijection from the set of continuous maps A×X → Y to the set
of continuous maps A → Y X . This is elaborated in Section 2. It is known that
a space is exponentiable if and only if it is core-compact, in the sense that any
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given open neighbourhood V of a point x contains an open neighbourhood U
of x with the property that every open cover of V has a finite subcover of U .
Moreover, if X is an exponentiable space and Y is any space, then the open sets
of the function space Y X are generated by the sets

{f ∈ Y X | every open cover of f−1(V ) has a finite subcover of U},

where U and V range over open sets of X and Y respectively.
In applications of function spaces Y X to analysis, the spaces X and Y are

usually Hausdorff, and this is the level of generality often considered in books
on topology [3, 5, 14]. In this case, the exponential topology coincides with the
more familiar compact-open topology. Moreover, for Hausdorff spaces, core-
compactness is the same as local compactness.

However, in applications of topology to algebra via Stone duality [11] and
to the theory of computation [1, 17, 19, 20, 21], non-Hausdorff spaces arise
frequently. In the case of the theory of computation, where function spaces play
a fundamental rôle, the exponential topologies have alternative descriptions [15].

Even if one is interested only in Hausdorff spaces, the non-Hausdorff ones
may occasionally play an instrumental rôle in their study. For instance, spaces of
continuous functions with values on a non-Hausdorff space have recently been
used to obtain Hausdorff compactifications of spaces of continuous functions
with values on a completely regular space [6].

The above characterization of the exponentiable spaces and the exponential
topology has a long history, which is discussed in detail by Isbell [10] and goes
back to at least 1945 with the work of Fox [7]. The first general solution is
implicit in the work of Day and Kelly [2], who characterized the spaces X for
which the function q × idX : Y × X → Z × X is a quotient map for every
quotient map q : Y → Z. By virtue of the Adjoint Functor Theorem [16], such
spaces coincide with the exponentiable spaces — see Isbell [10] for details. Day
and Kelly’s characterization amounts to the fact that the open sets of X form
a continuous lattice in the sense of Scott [20] — but continuous lattices were
introduced independently of the work of Day and Kelly. The above formulation
of the characterization has been promoted by Isbell [10].

An alternative proof of the characterization is the following. For core-
compact spaces, one shows directly that a certain topology known as the Isbell
topology yields an exponential [10, 9]. Conversely, as observed by Johnstone
and Joyal [12], if X is an exponentiable space and L is an injective space, then
the exponential LX is also an injective space; by considering the case in which
L is the Sierpinski space, one sees that the open sets of X have to form a con-
tinuous lattice, because the injective spaces are characterized as the continuous
lattices under the Scott topology [20].

It is the main purpose of this paper to provide a self-contained, elementary
and brief development of the characterization of the exponentiable spaces as the
core-compact spaces. In particular, we refrain from appealing to results from the
theories of continuous lattices [8] and categories [16]. The only prerequisite to
this development is a basic knowledge of general topology (continuous functions,
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product topology and compactness). Separation axioms are not needed. We
hope that instructors and students of topology will find this development useful.
Although there are one or two embellishments, the ingredients of the proofs are
certainly not original.

When we wrote this elementary account in mid 1999, we were not aware of
any such development in the literature. After we publicly advertised it, Fred
Linton kindly let us know that Eilenberg had written a manuscript of the same
kind [4], which apparently is expected to be published as part of collected works.
The methods that we use are different, although naturally there are common
ingredients. Eilenberg’s method is to consider the largest topology on the set of
continuous functions for which certain probe maps are continuous. In contrast,
our method is to consider the smallest topology on the lattice of open sets of
the exponent space which satisfies a certain approximation condition. In this
sense, our method is closer to that used by Day and Kelly to characterize the
quotient maps that are preserved by products [2].

But another connection with the theory of continuous lattices lurks in this
approach to function spaces, which is examined after the elementary exposition
is completed. Continuity of the function-evaluation map is shown to coincide
with the approximation condition referred above, and existence of a smallest
approximating topology is equivalent to exponentiability of the space. We show
that the intersection of the approximating topologies of any preframe is the Scott
topology. In particular, we conclude that a complete lattice is continuous if and
only if it has a smallest approximating topology and finite meets distribute over
directed joins. As far as we know, these results are new.

This paper is organized as follows. We formulate the exponentiability prob-
lem in Section 2. We then reduce it to a simpler problem in Section 3, which is
solved in Section 4. To conclude the solution of the exponentiability problem in
Section 5, we reformulate the solution obtained by the reduction process as the
solution stated in the opening paragraph of this introduction. Up to this point,
basic knowledge of general topology is the only prerequisite. We finish the paper
by considering lattices more general than topologies in Section 6. Only in this
last section, we assume some familiarity with the theory of continuous lattices.
A small amount of repetition arises by postponing this material to the end of
the paper. In a more logical development, this could be included at the place
of Lemma 4.5, replacing it, but this would defeat our purpose of providing a
self-contained development of function spaces, and, moreover, the result for the
special case of the lattice of open sets of a topological space has a shorter proof.
In order to also have a self-contained presentation of the continuous-lattice as-
pects, we have taken care of making the last section logically independent of
the previous.

Achim Jung is gratefully acknowledged for comments and questions on a
previous version of this paper.
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Notation and terminology

The lattice of open sets of a topological space X is denoted by OX. A topol-
ogy T on a given set is weaker than another topology T ′ on the same set if
T ⊆ T ′. In this case we also say that the topology T ′ is stronger than the
topology T .

2 Topologies on spaces of continuous functions

For topological spaces X and Y , we denote by

C(X, Y )

the set of continuous maps from X to Y . The transpose g : A → C(X,Y ) of a
continuous map g : A×X → Y is defined by

g(a) = ga

where ga ∈ C(X, Y ) is given by

ga(x) = g(a, x).

More concisely, we write the definition of the transpose as g(a)(x) = g(a, x). A
topology on the set C(X, Y ) is called

1. weak if continuity of g : A×X → Y implies that of g : A → C(X, Y ),

2. strong if continuity of g : A → C(X,Y ) implies that of g : A×X → Y ,

3. exponential if it is both weak and strong.

Thus a topology on C(X,Y ) is exponential if and only if it makes the transpo-
sition operation g 7→ ḡ into a well-defined bijection from the set C(A × X,Y )
to the set C(A,C(X, Y )). More standard terminologies for weak and strong are
splitting and conjoining respectively. Our terminology is justified by Lemma 2.2
below.

Lemma 2.1 A topology on C(X,Y ) is strong if and only if it makes the eval-
uation map

εX,Y : C(X, Y )×X → Y
(f, x) 7→ f(x)

into a continuous function.
Proof The transpose ε : C(X, Y ) → C(X, Y ) of the evaluation map is con-
tinuous for any topology on C(X, Y ) because ε(f)(x) = f(x) for all x and hence
ε(f) = f . This shows that evaluation is continuous if the topology on C(X,Y )
is strong. Conversely, assume that evaluation is continuous for a given topology
on C(X,Y ) and let g : A×X → Y be a map with a continuous transpose g : A →
C(X, Y ). Then g is also continuous because it is a composition ε ◦(g × idX) of
continuous maps as g(a, x) = g(a)(x) = ε(g(a), x) = ε ◦(g × idX)(a, x), where
idX : X → X is the identity. ¤
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Lemma 2.2 1. Any weak topology is weaker than any strong topology.

2. Any topology weaker than a weak topology is also weak.

3. Any topology stronger than a strong topology is also strong.

In particular, there is at most one exponential topology; when it exists, it is the
weakest strong topology, or, equivalently, the strongest weak topology.
Proof Only (1) is not immediate. Endow C(X, Y ) with a weak and a strong
topology, obtaining spaces W(X, Y ) and S(X,Y ) respectively. By Lemma 2.1,
the evaluation map ε : S(X,Y )×X → Y is continuous, and, by definition of weak
topology, its transpose ε : S(X, Y ) → W(X,Y ) is continuous. But we have seen
that ε(f) = f . Therefore O = ε−1(O) ∈ O S(X, Y ) for every O ∈ OW(X, Y ). ¤

A space X is called exponentiable if the set C(X,Y ) admits an exponential
topology for every space Y . In this case, the set C(X, Y ) endowed with the
exponential topology is usually denoted by

Y X

and referred to as an exponential. The problem tackled in Sections 3–5 is to de-
velop a criterion for exponentiability and an explicit construction of exponential
topologies.

3 Topologies on lattices of open sets

In this section we reduce the exponentiability problem to a simpler problem,
which is solved in the next. It turns out that there is a single space S with
the property that X is exponentiable if and only if C(X, S) has an exponential
topology. Moreover, in this case, the exponential topology of C(X, Y ) is uniquely
determined by the exponential topology of C(X, S) and by the topology of Y in
a simple fashion.

The Sierpinski space is the space S with two points 1 and 0 such that {1}
is open but {0} is not. It is easy to see that the map f 7→ f−1(1) is a bijection
from C(X, S) to OX. A topology on OX is exponential if it is induced by an
exponential topology on C(X, S) via the bijection. Explicitly, this means that
it is strong in the sense that the graph

εX = {(U, x) ∈ OX ×X | x ∈ U}
of the membership relation is open, and weak in the sense that for each W ∈
O (A×X), the function W : A → OX defined by

W(a) = {x ∈ X | (a, x) ∈ W}
is continuous.

If T is a topology onOX, the topology on C(X,Y ) generated by the subbasic
open sets

T (O, V ) = {f ∈ C(X, Y ) | f−1(V ) ∈ O},
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where O ranges over T and V ranges over O Y , is referred to as the topology
induced by T .

Lemma 3.1 Let X be a topological space and T be a topology on OX.

1. The topology T is weak if and only if it induces a weak topology on C(X,Y )
for every space Y .

2. The topology T is strong if and only if induces a strong topology on C(X,Y )
for every space Y .

3. The topology T is exponential if and only if it induces an exponential
topology on C(X, Y ) for every space Y .

Proof Item (3) is an immediate consequence of (1) and (2), and the impli-
cations (1)(⇐) and (2)(⇐) follow from the fact that C(X, S) endowed with the
topology induced by T is homeomorphic to OX endowed with T .

(1)(⇒): To show that g : A → C(X, Y ) is continuous for C(X, Y ) endowed
with the topology induced by T , it is enough to show that g−1(T (O, V )) is open
for O ∈ T and V ∈ O Y . Let W = g−1(V ). Since T is weak, W : A → OX is
continuous for OX with T . Thus, in order to conclude the proof, it suffices to
show that g−1(T (O, V )) = W

−1(O). This is equivalent to saying that g(a) ∈
T (O, V ) if and only if W(a) ∈ O. But we have that g(a) ∈ T (O, V ) if and only
if (g(a))−1 (V ) ∈ O. Therefore, the chain of equivalences x ∈ (g(a))−1 (V ) ⇔
g(a, x) ∈ V ⇔ (a, x) ∈ g−1(V ) ⇔ (a, x) ∈ W ⇔ x ∈ W(a) concludes the proof.

(2)(⇒): In order to show that the evaluation map is continuous, let V be
an open neighbourhood of εX,Y (f, x) = f(x). Then x ∈ f−1(V ), which shows
that (f−1(V ), x) ∈ εX . Since εX is open in OX ×X for OX endowed with T ,
there are O ∈ T and U ∈ OX such that (f−1(V ), x) ∈ O × U ⊆ εX . Hence
(f, x) ∈ T (O, V )×U . But if (g, u) ∈ T (O, V )×U then (g−1(V ), u) ∈ O×U ⊆ εX .
Hence u ∈ g−1(V ), i.e., εX,Y (g, u) = g(u) ∈ V , which shows that εX,Y is
continuous. ¤

We have thus obtained the promised reduction.

Corollary 3.2 A space X is exponentiable if and only if OX has an exponen-
tial topology. In this case, the exponential topology of C(X, Y ) is the topology
induced by the exponential topology of OX.

4 Spaces with exponential topologies on the lat-
tices of open sets

The discrete and indiscrete topologies of OX are strong and weak respectively.
We begin by improving these bounds. A set O ⊆ OX is called Alexandroff open
if the conditions U ∈ O and U ⊆ V ∈ OX together imply that V ∈ O. It is
immediate that the Alexandroff open sets form a topology.

Lemma 4.1 The Alexandroff topology is strong.
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In particular, any open set in a weak topology is Alexandroff open.
Proof If (U, x) ∈ εX then (U, x) ∈ {V ∈ OX | U ⊆ V } × U , which is a
product of an Alexandroff open subset of OX with an open subset of X, and
this product is clearly contained in εX . ¤

An Alexandroff open set O ⊆ OX is called Scott open if every open cover
of a member of O has a finite subcover of a member of O. For example, for any
subset Q of X, the Alexandroff open set {V ∈ OX | Q ⊆ V } is Scott open if
and only if Q is compact. Again, it is easy to check that the Scott open sets
form a topology.

Lemma 4.2 The Scott topology is weak.
Proof Let W ⊆ A×X be open, let a ∈ A and let O ⊆ OX be a Scott open
neighbourhood of W(a). By openness of W in the product topology, for each
x ∈ W(a) there are Ux ∈ OA and Vx ∈ OX with (a, x) ∈ Ux × Vx ⊆ W . Since
W(a) is the union of the sets Vx and since O is Scott open, the union V of finitely
many such Vx belongs to O. Let U be the intersection of the corresponding open
sets Ux. Clearly, U is a neighbourhood of a. To conclude the proof, we show
that W(u) ∈ O for each u ∈ U . To this end, it is enough to show that V ⊆ W(u),
because O is Alexandroff open and we know that V ∈ O. Let v ∈ V . Then
v ∈ Vx for some x ∈ W(a). Since u ∈ Ux, we have that (u, v) ∈ Ux × Vx ⊆ W .
Therefore v ∈ W(u). ¤

Having improved the bounds, we now have a closer look at strong topologies.
Let T be a topology on OX. For opens U, V ∈ OX, we write U ≺T V to
mean that V belongs to the interior of the set {W ∈ OX | U ⊆ W} in the
topology T . The following characterization, which is an immediate consequence
of the definition of interior, is the criterion used in the proofs below.

Lemma 4.3 The relation U ≺T V holds if and only if V ∈ O for some O ∈ T
with U ⊆ W for all W ∈ O.

Notice that

1. U ≺T V implies U ⊆ V ,

2. (a) U ′ ⊆ U ≺T V implies U ′ ≺T V ,
(b) U ≺T V ⊆ V ′ implies U ≺T V ′, provided T is weaker than the

Alexandroff topology,

3. ∅ ≺T W , and U ≺T W and V ≺T W together imply U ∪ V ≺T W .

Notice also that for a topology T weaker than the Alexandroff topology, the
relation U ≺T U holds if and only if the set {V ∈ OX | U ⊆ V } is open.
Hence, in this case, the relation ≺T is reflexive if and only if T is the Alexandroff
topology, in which case U ≺T V if and only if U ⊆ V . Therefore the following
generalizes the fact that the Alexandroff topology is strong.

Lemma 4.4 A topology T on OX is strong if and only if it is approximating,
in the sense that for every open neighbourhood V of a point x of X, there is an
open neighbourhood U ≺T V of x.
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Notice that this is equivalent to saying that every open set V is the union of
the opens U ≺T V .
Proof Assume that T is strong and let V be an open neighbourhood of a
point x of X. Since these two conditions mean that εX ⊆ OX×X is open with
respect to T and that (V, x) ∈ εX , there are O ∈ T and U ∈ OX such that
(V, x) ∈ O × U ⊆ εX . Hence, if (W,u) ∈ O × U then u ∈ W . Therefore U ⊆ W
for every W ∈ O, which shows that x ∈ U ≺T V . Conversely, assume that
T is approximating and that (V, x) ∈ εX . Then x ∈ V and there is U ≺T V
with x ∈ U . Let O ∈ T with V ∈ O and U ⊆ W for all W ∈ O. Then
(V, x) ∈ O × U ⊆ εX , which shows that εX is open and hence that T is strong.

¤
This is used in order to prove the following.

Lemma 4.5 The Scott topology is the intersection of the strong topologies.

Therefore it is the strongest weak topology.
Proof Being weak, it is contained in the intersection. Conversely, for each
C ⊆ OX, let TC be the set of all Alexandroff open subsets O of OX with
the property that if C covers a member of O then C has a finite subcover of a
member of O. This is easily seen to be a topology on OX, and, by construction,
the Scott topology is the intersection of all such topologies. To conclude the
proof, it suffices to show that they are strong. Assume that x ∈ U ∈ OX. If
x 6∈ ⋃ C, then {V ∈ OX | U ⊆ V } ∈ TC , and so x ∈ U ≺TC U . If, on the other
hand, x ∈ U ′ for some U ′ ∈ C, then {V ∈ OX | U ′ ∩ U ⊆ V } ∈ TC , whence
x ∈ (U ′ ∩ U) ≺TC U . Therefore TC is strong by Lemma 4.4. ¤

We have thus obtained a characterization of the spaces with exponential
topologies on their lattices of open sets.

Corollary 4.6 A space X has an exponential topology on OX if and only
if the Scott topology of OX is approximating, in which case the exponential
topology is the Scott topology.

The topology on C(X,Y ) induced by the Scott topology of OX is known as the
Isbell topology. Combining Corollaries 3.2 and 4.6, the following characterization
of exponentiable spaces is obtained.

Theorem 4.7 A space is exponentiable if and only if the Scott topology of its
lattice of open sets is approximating. Moreover, the topology of an exponential
is the Isbell topology.

The definition of exponentiability quantifies over all topological spaces. The
criterion provided by this theorem reduces exponentiability of a space X to an
intrinsic property of X. A related criterion, which avoids considering a topology
on the topology OX of X, is developed in the next section.

In the remainder of this section we digress slightly from our main goal.
For X an exponentiable space, we regard OX as a topological space under the
exponential topology. (Then OX is homeomorphic to the function space SX .)
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By the above corollary, OOX is the Scott topology of OX. The following is
an application of Theorem 4.7.

Proposition 4.8 If X is an exponentiable space then so is OX.
Proof It is enough to show that the Scott topology of OOX is approximat-
ing. Assume that V ∈ V ∈ OOX. It suffices to conclude that V ∈ U ≺ V
for some U ∈ OOX. By exponentiability of X, we know that OOX is an
approximating topology on OX. Hence, by Scott openness of V, there is some
V ′ ≺ V in V. The open set V ′ induces a set W = {W ∈ OOX | V ′ ∈ W},
which is easily seen to be Scott open. By definition of V ′ ≺ V , there is some
U ∈ OOX with V ∈ U and V ′ ⊆ U for all U ∈ U . Hence U ∈ U implies U ∈ W
for any W ∈W because W is Alexandroff open. This shows that U ⊆ W for all
W ∈W, and, because V ∈W, we conclude that U ≺ V. ¤

The following, which generalizes the fact that finite intersections of open sets
are open, is an entertaining application of Corollary 4.6 and Proposition 4.8.

Proposition 4.9 If X is an exponentiable space and Q ⊆ OX is compact,
then

⋂Q is open.
Proof Because OOX is a strong topology on OX as X is exponentiable,
the set W = {(x,U) ∈ X × OX | x ∈ U} is open, and, because OOOX is a
weak topology on OOX as the space OX is also exponentiable, its transpose
W : X → OOX is continuous. It is clear that W(x) = {U ∈ OX | x ∈ U}. By
compactness of Q, the set U = {U ∈ OOX | Q ⊆ U} is open, and hence so is
W
−1(U). But x ∈ W

−1(U) if and only if W(x) ∈ U if and only if x ∈ U for all
U ∈ Q if and only if x ∈ ⋂Q, which shows that

⋂Q = W
−1(U). ¤

Nachbin considers a similar result with different hypotheses [18]. Keimel
and Gierz show that the pointwise meet of a compact set of extended real-
valued lower semicontinuous functions defined on a locally compact space is
itself lower semicontinuous [13]. As it is discussed in the next section, locally
compact spaces are exponentiable. It follows that, for X locally compact, their
result generalizes the above proposition, because a set is open if and only if its
characteristic function is lower semicontinuous.

5 Core-compact spaces

Our next goal is to avoid explicit references to the Scott topology in the criterion
for exponentiability given in Theorem 4.7. The tools used for that purpose are
Lemmas 5.1 and 5.2 below, which are really pieces of continuous-lattice theory
specialized to the lattice of open sets of a topological space. Readers who are
familiar with continuous lattices can jump directly to Theorem 5.3.

For open sets U and V of a topological space X, one writes U ¿ V , and
says that U is way below V , to mean that every open cover of V has a finite
subcover of U . For example, this is the case if there is a compact set Q ⊆ X with
U ⊆ Q ⊆ V . If X is locally compact, in the sense that any neighbourhood of a
point contains a compact (not necessarily open) neighbourhood of the point, it
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is easy to show that the converse also holds. Notice that this relative notion of
compactness enjoys the following properties.

1. U ¿ V implies U ⊆ V ,

2. U ′ ⊆ U ¿ V ⊆ V ′ implies U ′ ¿ V ′,

3. ∅ ¿ W , and U ¿ W and V ¿ W together imply U ∪ V ¿ W .

Although the relations U ≺Scott V and U ¿ V don’t coincide in general, they
do for exponentiable spaces.

Lemma 5.1 For open sets U and V of a space X,

1. the relation U ≺Scott V implies U ¿ V ,

2. if the Scott topology of OX is approximating then the relation U ¿ V
implies U ≺Scott V .

Proof Assume that U ≺Scott V . Then there is a Scott open neighbourhood O
of V such that U ⊆ W for all W ∈ O. By Scott openness, any open cover of V
has a finite subcover of a member of O and hence of U . Therefore U ¿ V .
Conversely, assume that the Scott topology of OX is approximating and that
U ¿ V . Since V is the join of the opens V ′ ≺Scott V , we have that U ⊆ W
where W is a union of finitely many V ′ ≺Scott V . Since W ≺Scott V , we conclude
that U ≺Scott V . ¤

A space X is called core-compact if every open neighbourhood V of a point x
of X contains an open neighbourhood U ¿ V of x. Again, this is equivalent
to saying that every open V is the union of the opens U ¿ V . By the above
observations, every locally compact space is core-compact.

Lemma 5.2 Let X be a core-compact space.

1. If U ¿ W in OX then U ¿ V ¿ W for some V ∈ OX.

2. The set ↑↑U def= {V ∈ OX | U ¿ V } is Scott open.

3. If O ⊆ OX is Scott open and V ∈ O then U ¿ V for some U ∈ O.

4. The sets ↑↑U for U ∈ OX form a base of the Scott topology of OX.

5. If U ¿ V then U ≺Scott V .
Proof (1): The open set W is the union of the open sets V ¿ W , and, in
turn, each open set V ¿ W is the union of the open sets V ′ ¿ V . Hence W
is the union of the collection C of open sets V ′ for which there exists an open
set V with V ′ ¿ V ¿ W . Since C is closed under the formation of finite unions,
we have that U ⊆ V ′ for some V ′ ∈ C. By definition of C, there is an open V
with V ′ ¿ V ¿ W and hence with U ¿ V ¿ W .

(2): The set ↑↑U is clearly Alexandroff open. If W ∈ ↑↑U then V ∈ ↑↑U for
some V ¿ W by (1), which shows that every open cover of a member of ↑↑U has
a finite subcover of a member of ↑↑U .
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(3): The open set V is the union of the open sets U ¿ V , and such open
sets are closed under the formation of finite unions.

(4): This is an immediate consequence of (2) and (3).
(5): ↑↑U is a Scott open set with V ∈ ↑↑U and U ⊆ W for all W ∈ ↑↑U . ¤
We have thus obtained an alternative characterization of the exponentiable

spaces and an alternative construction of the exponential topology which don’t
rely on the Scott topology.

Theorem 5.3 A space is exponentiable if and only if it is core-compact. More-
over, if X is a core-compact space and Y is any space then the topology of the
exponential Y X is generated by the sets

{f ∈ Y X | U ¿ f−1(V )},

where U and V range over OX and O Y respectively.
Proof If X is exponentiable then OX has an exponential topology and hence
it is core-compact by Theorem 4.7 and by Lemma 5.1. Conversely, if X is
core-compact then OX has an exponential topology by Theorem 4.7 and by
Lemma 5.2(5), and hence it is exponentiable. For the second part, it is easy to
see that if T is a topology on OX with a base B then the topology on C(X,Y )
induced by T has as a subbase the sets T (O, V ) for O in B. The result then
follows from the fact that the sets ↑↑U for U ∈ OX form a base of the Scott
topology of OX if X is core-compact, and from the fact that the Isbell topology
is induced by the Scott topology. ¤

We finish this section by briefly considering exponentiable Hausdorff spaces.
For open subsets U and V of a Hausdorff space, if U ¿ V then U ⊆ Q ⊆ V for
some compact set Q — see [8]. It follows that a Hausdorff space is core-compact
if and only if it is locally compact. Moreover, if X is a locally compact Hausdorff
space, then the exponential topology of Y X is generated by the sets

{f ∈ Y X | f(Q) ⊆ V },

where Q and V range over compact subsets of X and open subsets of Y
respectively. That is, the exponential topology is the compact-open topol-
ogy [3, 7, 14]. The reason is that in this case the Scott topology of OX has
the sets {U ∈ OX | Q ⊆ U} as a base and that the condition Q ⊆ f−1(V ) is
equivalent to f(Q) ⊆ V .

6 Locating the Scott topology

The proof of Lemma 4.5 identifies the Scott topology of the lattice of open sets
of a topological space as the intersection of the approximating topologies. It is
the purpose of this last section to extend this from lattices of open sets to more
general posets.

Scott defined a complete lattice to be continuous if its Scott topology is
approximating [20]. Many extensions of this notion to posets more general than
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complete lattices have been considered in the literature. In all such extensions,
directed sets play a major rôle. Recall that a subset ∆ of a poset is called
directed if it is non-empty and any two members of ∆ have an upper bound
in ∆. The results of this section apply to posets with binary meets and directed
joins in which the former distribute over the latter. Such a poset is known as
a preframe. (Strictly speaking, a preframe is required to have all finite meets,
not just binary meets — but the meet of the empty set, a top element, plays no
rôle in our development.) For example, the topology of any topological space
is a preframe (and, in fact, a frame — a complete lattice in which finite meets
distribute over arbitrary joins).

Let P be a poset. A subset U of P is called Alexandroff open if it is an
upper set (that is, u ∈ U and u ≤ x together imply x ∈ U) and it is called Scott
open if it is Alexandroff open and every directed set with join in U actually
intersects U . For example, the Scott topology of the natural order of the real
line is the topology of lower semicontinuity (the topology for which the non-
trivial open sets are the intervals (a,∞)). The Scott relation of P is defined by
x ≺ y if and only if y belongs to the interior of the principal filter

↑x = {u ∈ P | x ≤ u}

in the Scott topology. The poset P is called continuous if its Scott relation is
approximating, in the sense that, for any x ∈ P , the set {u ∈ P | u ≺ x} of
approximants of x is directed and has x as its join. This is the original definition
given by Scott for the case in which P is a complete lattice. An alternative
formulation that occurs more often in the literature involves a certain way-
below relation ¿, which has already occurred in the above development for
the lattice of open sets of a topological space — but this is not needed for the
purposes of this section.

More generally, following the pattern of Section 4, for any topology T on a
poset P , we write x ≺T y to mean that y belongs to the interior of ↑x in the
topology T , and in this case we say that x is an approximant of y with respect
to T . This is equivalent to saying that there is a neighbourhood U ∈ T of y
such that x ≤ u for each u ∈ U . The following properties are easily verified.

1. x ≺T y implies x ≤ y.

2. (a) x′ ≤ x ≺T y implies x′ ≺T y.

(b) x ≺T y ≤ y′ implies x ≺T y′ if T is weaker than the Alexandroff
topology.

3. (a) If ⊥ is a least element then ⊥ ≺T x.

(b) If u and v have a least upper bound then u ≺T x and v ≺T x together
imply u ∨ v ≺T x.

In particular, if the poset has joins of upper bounded finite sets, then the set of
approximants of any element is directed. But, in the absence of such a condition,
there is no reason why this should be the case.
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Example 6.1 Add a top element > and two minimal elements a and b to a
discretely ordered infinite set. Then a and b are approximants of > with respect
to the cofinite topology, but there is no approximant above a and b. ¤

We thus explicitly require directedness in the following definition. We say that
a topology on a poset is approximating if every element of the poset is the di-
rected join of its approximants. Notice that the stronger the topology, the more
approximants any element has, and hence, in a poset with bounded finite joins,
any topology stronger than an approximating topology is itself approximating.

The Alexandroff topology is always approximating, but in a rather uninter-
esting way, as the approximation relation coincides with the (reflexive) partial
ordering. Here we consider order-consistent topologies, that this, those whose
specialization ordering coincides with the ordering of the poset. Recall that,
by definition, the relation x ≤ y holds in the specialization order of a topol-
ogy T if and only if x ∈ U ∈ T implies y ∈ U . It follows that the Alexandroff
topology is the strongest order-consistent topology. In particular, the Alexan-
droff topology is the strongest approximating topology amongst those which are
order-consistent. The weakest order-consistent topology is generated by the sets
{u | u 6≤ x}, where x ranges over arbitrary elements of the poset. Since such
sets are Scott open, it follows that the Scott topology is between this and the
Alexandroff topologies. In particular, we conclude that any topology between
the Scott and the Alexandroff topologies is order-consistent.

The proof of the following generalizes that of Lemma 4.5. There are two main
differences. The first is that the absolute notion of weakness is not available in
this general setting, and hence a different argument is needed to show that
any approximating topology contains the Scott topology. The second is that,
by virtue of the above observations, sets of approximants have to be explicitly
shown to be directed.

Theorem 6.2 1. The Scott topology of any poset is weaker than any ap-
proximating topology.

2. The Scott topology of a preframe is the intersection of the order-consistent
approximating topologies.

(It follows that the Scott topology of a preframe is the intersection of all ap-
proximating topologies, but it is the stronger result involving fewer topologies
that is relevant to the theory of continuously ordered sets.)
Proof (1): Let T be an approximating topology and x be a member of a
Scott open set U . By definition of approximation, the set of approximants of x
is directed and hence, by definition of Scott openness, there is some u ≺T x
in U . By definition of ≺T , there is a neighbourhood V ∈ T of x with u ≤ v for
all v ∈ V . Since U , being Scott open, is Alexandroff open, we conclude that V
is contained in U . And since x is arbitrary, we conclude that U is a union of
members of T and hence that it is itself a member of T .

(2): By (1), it suffices to construct a family of order-consistent approximating
topologies that has the Scott topology as its intersection. For each directed lower
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set I let TI be the collection of all Alexandroff open sets U , except those such
that the join of I belongs to U but I doesn’t intersect U . Such collections TI

are easily seen to form topologies, and, by construction, their intersection is the
Scott topology. Since they are between the Alexandorff and the Scott topologies,
they are order-consistent. To see that TI is approximating, we consider two cases
for an arbitrary element x. (i) x 6≤ ∨

I: Then ↑x ∈ TI and hence x ≺TI x, which
shows that x is trivially the directed join of its approximants. (ii) x ≤ ∨

I: For
i ∈ I we have that ↑ i ∈ TI and hence, for any u, the relation i ≺TI

u holds if
and only if i ≤ u. In particular, x∧ i ≺TI

x for any i ∈ I because x∧ i ∈ I as I is
a lower set. Conversely, if v ≺TI

x, then x belongs to the interior of ↑ v, which,
being Alexandroff open by definition of TI , has to then have

∨
I as member

because x ≤ ∨
I, and hence also some i ∈ I as a member, again by definition

of TI . Thus v, being below a member of I, is itself in I. Since v = x ∧ v,
we conclude that the approximants of x are those elements of the form x ∧ i
for i ∈ I. In particular, they form a directed set because I is directed. By
the preframe distributivity law and the fact that x ≤ ∨

I, we conclude that∨{x ∧ i | i ∈ I} = x ∧∨
I = x. ¤

It is well-known that continuity of a poset with finite meets and directed joins
implies the preframe distributivity law. Hence the following is an immediate
consequence of the theorem.

Corollary 6.3 A poset with binary meets and directed joins is continuous if
and only if it satisfies the preframe distributivity law and has a smallest approx-
imating topology.

In the Compendium of continuous lattices [8, pages 43–45], it is shown that
the way-below relation of a preframe is the intersection of the approximating
auxiliary relations. However, this and the theorem just proved are not corollar-
ies of each other. In fact, the translation from topologies to auxiliary relations
doesn’t preserve or reflect intersections as, in general, neither the Scott topol-
ogy induces the way-below relation nor is the Scott topology recoverable from
knowledge of the way-below relation alone.

An assumption such as distributivity in the above theorem and corollary
cannot be removed, as the following example shows.

Example 6.4 Consider two disjoint copies N and N′ of the set of natural
numbers under their natural order, with elements denoted by 0, 1, 2, . . . and
0′, 1′, 2′, . . . respectively. To make this into a complete lattice, add bottom and
top elements ⊥ and >. Let T be an order-consistent approximating topology.
For all x 6= >, the condition x ≺T x holds, and thus ↑x is open because T ,
being order-consistent, is weaker than the Alexandroff topology. Then {>} =
↑ 0 ∩ ↑ 0′ is open as well, and so all upper sets are open, and hence T is the
Alexandroff topology. Therefore the Alexandroff topology is the only order-
consistent approximating topology. But {>} is not Scott open, and hence the
Scott topology is strictly weaker. It follows from the theorem that the preframe
distributivity law cannot hold. An explicit instance of the failure is

∨{0′ ∧ n |
n ∈ N} = ⊥ 6= 0′ = 0′ ∧∨

N. ¤
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We finish by considering an alternative formulation of approximation, first
considered by Scott for the Scott topology of a complete lattice. For this, we
need to assume joins of directed sets, as before, and meets of all non-empty
sets, not just the finite ones. Since such posets automatically have joins of finite
upper bounded sets, we don’t need to worry about checking directedness of sets
of approximants.

Lemma 6.5 A topology T on a poset with non-empty meets and directed joins
is approximating if and only if every element x of the poset is the limit inferior
of its neighbourhoods, in the sense that

x =
∨
{
∧

U | x ∈ U ∈ T}.
Proof It is clear that the meets are of non-empty sets and that the join is
of a directed set. Assume that T is approximating. It is enough to conclude
that x ≤ ∨{∧ U | x ∈ U ∈ T}, because the other inequality always holds. To
establish the inequality it is enough to show that y ≤ ∨{∧ U | x ∈ U ∈ T} for
all y ≺T x, because x is the join of its approximants. By definition of y ≺T x,
there is a U ∈ T with x ∈ U and y ≤ u for u ∈ U . Hence y ≤ ∧

U by definition
of meet, and we are done. Conversely, x ∈ U implies

∧
U ≺T x because

∧
U ≤ u

for all u ∈ U by definition of meet, and, if the equation holds, x is join of some,
and hence all, of its approximants. ¤

This gives rise to a characterization of continuity that doesn’t refer to the
Scott topology or the way-below relation.

Theorem 6.6 A poset with non-empty meets and directed joins is continu-
ous if and only if it satisfies the preframe distributivity law and has a smallest
topology for which every element is the limit inferior of its neighbourhoods.
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