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Summary

The first two chapters describe and develop some of the basics of Simplicial

set theory. They include a study of the category of finite ordinals and mono-

tonic functions, together with some related categories (particular note being

given to the monoidal structure), many of the basic technical results, and a

description of the functorial relation between simplicial sets and topological

spaces and small categories. There is also a section outlining those results in

the author’s MSc thesis which are to be used in later chapters.

Chapter three outlines a monoidal structure for simplicial sets based on

the monoidal structure of the category of finite ordinals, and obtains a tensor

product (⊗) for augmented simplicial sets which models the operation of join

on topological spaces. Using this, a simplicial model for the n-sphere, (Sn),

is defined, which have the property that Sp ⊗ Sq ∼= Sp+q+1.

Chapters four and five study the subdivision functor of Porter and Cordier

(Sd), prove that it may be described as the composite functor diagDEC,

and recall some of the theory of anodyne extensions. A similar concept,

called weak anodyne extension is defined. Most space is taken in technical

lemmas and combinatorial descriptions culminating in a proof that the unit

of “Nerve/Categorisation” adjunction ηSd4[n] is a weak anodyne extension

for each n, and that the filling scheme respects the cosimplicial structure.

The last chapter uses this, and the adjunctions, “Nerve/categorisation”

and “loopgroupoid/classifying-space”, to define a retraction from

GNerΠSd4[n] to GSd4[n] (where G is the loopgroupoid functor). Finally,

this retraction and some topological morphisms are used to describe a Van

Kampen type theorem for a functor which is a quotient of the loop groupoid

functor of the singular complex of a space.
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Introduction

It has always been a problem of homotopy theory to construct functors which

are easy to calculate with, yet still preserve sufficient homotopy information

to be interesting. The (Seifert-) Van Kampen Theorem is one of the earliest

theorems about the calculational use of such a functor. It states that the

fundamental group of a pointed space (W , ∗), π1(W , ∗), may be described as

the quotient of the free product of π1(U , ∗) and π1(V , ∗) by information in

π1(U ∩ V , ∗), where W = U ∪ W , where U , V and U ∩ V are all open path

connected subspaces of W and where ∗ ∈ U ∩ V . It is this theorem which

provides the main motivation for this thesis.

To work with topology, it also made sense to work with simplicial sets

(originally called Semi Simplicial Complexes), rather than directly with topo-

logical spaces. In this area, there is a lot of material: there are the two fun-

damental papers of D. Kan ([30] and [31]) defining the homotopical structure

of simplicial sets: the extension condition, Kan complexes, homotopy groups

of simplicial sets, the loop group functor and its right adjoint. J. Milnor (in

an unpublished paper, printed as part of [1]) comments that the loop group

of a simplicial set is homotopically equivalent to the loop space, provided the
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simplicial set is a Kan complex. There is the paper of Moore ([37]) studying

simplicial sets and Postnikov systems based on them. All these can in part

be seen as aspects of Whitehead’s view of Combinatorial Homotopy (see [43]

and [44]). Following the work of Quillen, in “Homotopical Algebra” ([39]),

in which he outlined the basic properties required of a category for it to sup-

port a homotopy theory, it became possible to study homotopy in a variety

of different categories.

Following more directly from Whitehead’s view, much work has been done

on the category of Crossed Complexes by Brown et al. There are a variety of

related algebraic categories which model n+ 1-types (Crossed n-cubes, Catn

groups, see the work of Porter, Loday, Ellis & Steiner, Gilbert et al.) which

generalise the crossed modules of Whitehead, and the crossed 2-modules of

Conduché (models for 2-types and 3-types respectively).

It made sense to try to find Van Kampen Type Theorems for the new

algebraic models, and so there are now Van Kampen Type Theorems for the

fundamental groupoid of a space (see [9]) and the fundamental crossed com-

plex of a filtered topological space (see [11]). The idea also became broader,

so that a Van Kampen Type Theorem now represents the preservation prop-

erties of the functor on more general pushouts.

The purpose of this thesis is to examine some of the phenomena arising

in the category of simplicial sets, and to see how they relate to operations

in other categories, (including topological spaces). The emphasis is on the

simplicial structure, rather than the topological. The aim is to describe a
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functor from topological spaces to simplicial groupoids which is a quotient of

the loop groupoid functor, and describe a Van Kampen Type theorem for this

functor. The point is that the (non-abelian) homology of the Moore complex

of the loop groupoid of a simplicial set yields the absolute homotopy groups

for the simplicial set. Thus, if a quotient of the loop groupoid functor can be

shown to satisfy a Van Kampen Theorem, and if the quotient has the same

homotopy type as the loop groupoid, it should be possible to calculate all

homotopy types of the union of two spaces for which all absolute homotopy

groups are already known.
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Chapter 1

Models for Simplices

1.1 Definitions

The basis for using simplicial sets to calculate topological invariants is the

link between the model for simplicial sets (that is, the category of finite or-

dinals and monotonic functions) and the affine simplices in the category of

topological spaces. The theory reproduced below is well known. There is one

other model of simplicial structure which will be useful in this thesis, and it

is dealt with also. One important note is that the labelling conventions are

different from those used by Mac Lane in [35].

Definition 1.1 (i)

The category of finite ordinals and monotonic functions will be denoted by

∆. The objects are the ordered sets {0, 1, · · · , n} for n ≥ −1, which will

be written as [n]. The object denoted by [−1] is the empty set. There is

precisely one morphism from [−1] to [n] for all n and no morphism from [n]
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to [−1] for any n ≥ 0. Thus [−1] is initial in the category ∆.

The morphisms of ∆ are generated (under composition) by functions

δn−1
i : [n− 1]→ [n] and σn+1

j : [n+ 1]→ [n]

where

δn−1
i (k) =

{
k if 0 ≤ k < i

k + 1 if n− 1 ≥ k ≥ i

σn+1
j (k) =

{
k if 0 ≤ k ≤ i

k − 1 if n+ 1 ≥ k > i

These morphisms obey the following identities:

δnj δ
n−1
i = δni δ

n−1
j−1 if 0 ≤ i < j ≤ n

σnj σ
n+1
i = σni σ

n+1
j+1 if 0 ≤ i ≤ j ≤ n

σn+1
j δni =


δn−1
i σnj−1 if i < j
id if i = j, j + 1

δn−1
i−1 σ

n
j if i > j + 1

These equations are standard and may be found in [24], [30], [36] and [35]

(among others!). It is clear from them that [0] is terminal in ∆.

There is a full subcategory of ∆, denoted ∆+ which does not have the

empty set as an object, but otherwise has all the objects of ∆.

Definition 1.1 (ii)

The affine n-simplex, which will be denoted by 4n, is the subset of Rn+1

defined by

{ (x0, x1, · · · , xn) ∈ Rn+1 |
n∑
i=0

xi = 1xi ≥ 0∀0 ≤ i ≤ n }
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There are continuous functions between the affine simplices generated

(under composition) by the continuous functions:

δn−1
i : 4n−1 →4n and σn+1

j : 4n+1 →4n

where δn−1
i (x0, · · · , xn−1) = (x0, · · · , xi, 0, xi+1, · · · , xn−1)

σn+1
i (x0, · · · , xn+1) = (x0, · · · , xi + xi+1, · · · , xn+1).

It is sometimes useful to consider the empty topological space as an affine

simplex. In such cases it will be denoted 4−1. Since the empty set is initial

in the category of topological spaces, it is initial in the subcategory of affine

simplices.

Definition 1.1 (iii)

The category of small categories and functors will be denoted by Cat. The

category, N+, is the full subcategory of Cat defined by the objects

obN+ = { [n] |n ∈ N}, where [n] is the category with objects the elements of

the set {0, 1, · · · , n} and a unique morphism from i to j iff i ≤ j. A functor

from [n] to [m] is then an order preserving map on the ordered set [n]. As

in the cases of finite ordinals and affine simplices, there are canonical maps

δn−1
i : [n− 1] −→ [n] and σn+1

j : [n+ 1] −→ [n]. These are defined as follows:

δn−1
i (!k,l : k → l) =


(!k,l : k → l) if 0 ≤ k ≤ l < i < n
(!k,l+1 : k → l + 1) if 0 ≤ k < i ≤ l < n
(!k+1,l+1 : k + 1→ l + 1) if 0 ≤ i ≤ k ≤ l < n

σn+1
j (!k,l : k → l) =


(!k,l : k → l) if 0 ≤ k ≤ l ≤ j ≤ n+ 1

(!k,l−1 : k → l − 1) if 0 ≤ k ≤ j < l ≤ n+ 1
(!k−1,l−1 : k − 1→ l − 1) if 0 ≤ i < k ≤ l ≤ n+ 1
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(Here, !k,l is the unique map from k to l, for k ≤ l.) These definitions make

it clear that [0] is the terminal object in N+.

The category N+ together with the empty category is denoted N; the

empty category (which shall be denoted [−1]) is initial in N.

Both the categories N+ and N are themselves small categories. It is clear

that they may be described as categories of directed sets, where [n] is now

the directed set {0 < 1 < · · · < n}, and morphisms are those set functions

which respect the ordering on the set.

In all cases, the categories ∆+, N+ and the set of affine simplices, the

superscripts on the δi and σj will generally be omitted.

There are obvious inclusion functors, ∆+ → ∆ and N+ → N.

The comment made earlier about Mac Lane’s notation may now be ex-

panded. Although the notation for the categories ∆+ and ∆ is Mac Lane’s

notation, the notation for the objects of all the categories described is not.

Where n is used here, Mac Lane uses n+1; thus Mac Lane denotes the empty

set by 0, 0 and40, respectively. Note that the category described here by [n]

may be better known to category theorists as n+1. (This is Mac Lane’s no-

tation: see [35]). There should not be too much confusion arising from this:

the reason for maintaining a different notation for the objects themselves is

to stay in keeping with the standard definitions of simplicial objects.

There is also a category ∆0 which is a wide subcategory of ∆+. It has

morphisms all monotonic functions which fix 0. This effectively means that
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there are no δ0 morphisms and the morphisms are generated by the δi and

σj where i 6= 0. This category is the model for contractible simplicial sets. It

has the property that [0] is both the terminal object (as it is for ∆+ and ∆)

and the initial object (as there is a unique morphism [0] → [n] for every n,

which takes the 0 to 0). There is, of course, a natural embedding ∆0 → ∆+

and a natural embedding ∆0 → ∆.

Two further comments will be made here, but dealt with later.

First, there is an inversion function on the category of finite ordinals which

reverses the order, that is, sends {0 < 1 < · · · < n} to {0 > 1 > · · · > n}.

This clearly yields a category which is equivalent to ∆+, but the isomorphism

between them is a set function which is not monotonic.

Secondly, it has already been noted that N is a small category, and the same

is clearly true of the category ∆ (which is essentially isomorphic to N). This

implies that all finite powers of the category ∆ (or of the category N) are

also small. In particular, this is true of the binary product ∆×∆.

1.2 Functors on the Models

Between the categories ∆ and ∆n (that is, the categorical product of n copies

of ∆) there are two important functors. These are the diagonal functor, ∂,

and the join functor, which is linked to the monoidal structure of ∆.
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1.2.1 The Diagonal

The diagonal functor ∂n : ∆ −→ (∆)n+1 is given by

∂n : ([p]
f→ [q]) 7→

(
([p], · · · , [p]) fn+1

→ ([q], · · · , [q])
)

, where ([p], · · · , [p])

is the product of n+ 1 copies of [p], and ([q], · · · , [q]) is the product of n+ 1

copies of [q]. The superscript on ∂ will be dropped when there is no ambiguity,

and will always be dropped in the case n = 1.

Proposition 1.2.1.1

The functor ∂n has neither left nor right adjoints.

Proof

From the theory of adjunctions, (see [35]), the functor ∂n has a left adjoint

if ∆ has (n + 1)-fold coproducts and a right adjoint if ∆ has (n + 1)-fold

products.

Consider the case of binary products: let [1]× [1] ∼= [n].

Then, ∆([1], [1])×∆([1], [1]) ∼= ∆([1], [n]) and specifically,

|∆([1], [1]) | × |∆([1], [1]) | = |∆([1], [n]) |

Now, |∆([1], [1]) | = 3 and |∆([1], [n]) | = (n+1)(n+2)
2

. Thus 9 = (n+1)(n+2)
2

,

so (n + 1)(n + 2) = 18. Since 3× 4 = 12 and 4× 5 = 20, there is no n ∈ N

such that (n + 1)(n + 2) = 18 and so [1] × [1] does not exist in ∆. Since

binary products do not exist in this case, then finite products do not exist in

general.
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Now consider the case of binary coproducts. Let [0] t [0] ∼= [m].

Therefore ∆([m], [r]) ∼= ∆([0], [r])×∆([0], [r]) and specifically,

|∆([m], [r]) | = |∆([0], [r]) | × |∆([0], [r]) |

Now |∆([0], [2]) | = 3 and |∆([m], [2]) | = (m+2)(m+3)
2

. Thus 9 = (m+2)(m+3)
2

,

that is 18 = (m+ 2)(m+ 3). As has already been shown, there is no integer

m with this property, and hence there is no binary coproduct of [0] and [0]

in ∆, and so finite coproducts do not exist in general in ∆. Therefore the

functor ∂n has neither left or right adjoints, for all n ≥ 1.

1.2.2 The Monoidal Structure

Definition 1.2.2 (i)

Let fi : [pi]→ [qi] for 0 ≤ i ≤ n. Define the “ordinal sum” functor,

orn : ∆n+1 −→ ∆, as follows:-

orn([p0], · · · , [pn]) = [
n∑
i=0

pi + n]

orn(f0, ··, fn) =



f0(k) if 0 ≤ k ≤ p0

f1(k − p0 − 1) + q0 + 1 if p0 + 1 ≤ k
...

...
... ≤ p0 + p1 + 1

...
...

...
fr(k −

∑r−1
i=0 pi − r) if

∑r−1
i=0 pi + r ≤ k

... +
∑r−1
i=0 qi + r

...
... ≤ ∑r

i=0 pi + r
...

...
...

fn(k −∑n−1
i=0 pi − n) if

∑n−1
i=0 pi + n ≤ k

+
∑n−1
i=0 qi + n ≤ ∑n

i=0 pi + n
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Note that any number of copies of [−1] (the empty set) may be added

into the sum without affecting it, as would be expected. As with ∂n, the

superscript on or will usually be dropped, and will always be dropped in the

case n = 1.

For the rest of this section it will be assumed that n = 1. The ordinal sum

is the join of two finite ordinals, and generates the monoidal structure on ∆.

The unit of the monoid is the unique map ! : [−1] → [0]; the multiplication

is the unique arrow σ0 : [1]→ [0].

For a study of this, see Mac Lane [35]. He describes the links between the

various categories defined in section 1.1 , shows that ∆ is a strict monoidal

category. He further proves that < ∆, !, σ0 > is universal in the sense that

for any monoid, < c, µ, η >, in a strict monoidal category, < B,⊗, e >, there

is a unique functor

F :< ∆, or, σ0 > −→ < B,⊗, e >

where F ([−1]) = c, F (σ0) = µ and F (!) = η.

Definition 1.2.2 (ii)

For two directed sets X and Y , X ∨ Y is defined as the disjoint union of the

elements, with a < b iff a < b ∈ X or a < b ∈ Y or a ∈ X and b ∈ Y . In the

case that X = [n], Y = [m], it is clear that [n] ∨ [m] ∼= [n+m+ 1].

There is also a join defined on affine simplices. This is the join on subsets

of a normed vector space. The join for topological spaces (which generalises
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that on subsets of a vector space and will be looked at later) is described in

some detail in [9].

Definition 1.2.2 (iii)

Let X and Y be subsets of a normed vector, V . Consider U ⊂ V , where

U = {rx+sy | r+s = 1, r, s ≥ 0x ∈ X, y ∈ Y }. If X and Y are placed in V

in such a way that no two lines in the set U cross (that is, they meet only at

endpoints) then the join of X and Y , written X ∗Y , is defined by X ∗Y = U .

Proposition 1.2.2.1

4p ∗ 4q ∼= 4p+q+1

Proof

Consider the vector space Rp+q+1 and the two compact convex subsets:

X = { (x0, x1, · · · , xp, 0, · · · , 0) |
p∑
i=0

xi = 1 }

Y = { (0, · · · , 0, y0, y1, · · · , yq) |
q∑
j=0

yj = 1 }

First note that X ∼= 4p and Y ∼= 4q. Furthermore, it is clear that no two

lines in the set U = { rx + (1 − r)y | 0 ≤ r ≤ 1, x ∈ X, y ∈ Y } intersect

except at endpoints. Thus X ∗ Y = U . However, U is the subset of Rp+q+1

given by

{ (rx0, · · · , rxp, (1− r)y0, · · · , (1− r)yq) |
p∑
i=0

rxi +
q∑
j=0

(1− r)yj = 1 }.

12



That is, U is the affine (p+ q + 1)-simplex. Therefore 4p ∗ 4q ∼= 4p+q+1.

Comment

The ordinal sum on the category ∆ models the join operation, ∗, on the affine

simplices in the same way that the finite ordinals model the affine simplices.

Since it has been noted already that ∆ and N are isomorphic categories, and

it is clear from the definitions above that the “isomorphism ” takes or to ∨,

then the same may be said of ∨ on the category N.

It has been mentioned already that reversing the order on an ordered set,

X gives an ordered set which is bijectively equivalent to X, but that there

is no monotonic function to express this fact. There is a similar problem

with or. Despite the fact that [n]or[m] ∼= [m]or[n] in Sets, there is no way

of obtaining the isomorphism from the morphisms of ∆+. The link between

these two “problems” is shown by the equation R([p]or[q]) = (R[q])or(R[p]),

where RX is the ordered set obtained by reversing the ordering on X. Given

this problem with ordinal sum, it is important to be aware and draw the

distinction between those cases when [p]or[q] is just the set {0, 1, · · · , p+q+1}

and when the cosimplicial structure of [p]or[q] is being used.

The functor or is also connected to the inclusion functor in : ∆0 −→ ∆,

(this comes from [18], and has also been covered in [20]). The functor in has

a left adjoint b : ∆ −→ ∆0 which is defined on objects by:-

b([n]) = [n+ 1]

13



and on morphisms by

b(f)(i) =

{
0 if i = 0

f(i− 1) + 1 if i ≥ 1

This may be rewritten as:-

b : (f : [n]→ [m]) 7→ ((id)or(f) : [0]or[n]→ [0]or[m])

The composite functor inb : ∆ −→ ∆ forms a monad in ∆ with unit

the unit of the adjunction (that is δn0 : [n] 7→ [n + 1]) and multiplication

in(σn+2
0 : [n+ 2] 7→ [n+ 1]) = σn+2

0 (since σ∗0 is the counit of the adjunction).

The algebras are simply the arrows σn+1
0 : [n+ 1] 7→ [n] where n ≥ 0.

It is possible to embed the category ∆0 in the category ∆+. The ad-

joint has the same description, the difference being that while [0] ∈ b(∆),

[0] 6∈ b(∆+). Further, the functor or : ∆+ ×∆+ → ∆+ is well defined. This

is useful to the extent that it is sometimes convenient to be able to move

between ∆ and ∆+ (and hence between augmented simplicial categories and

simplicial categories) and know that the adjunctions and associated monad

and comonad structures extend naturally.
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Chapter 2

Simplicial Categories

2.1 Preliminaries

Let C be a category. The following definitions are standard, and are noted

for completeness.

Definition 2.1 (i)

The category of simplicial objects in C is defined to be C∆+op

.

The category of augmented simplicial objects in C is defined to be C∆op
.

The category of contractible simplicial objects in C is defined to be C∆op
0 .

In a similar way, categories of multiple simplicial objects in C may be

defined. The most common of these are the bisimplicial categories.

Definition 2.1 (ii)

The category of bisimplicial objects in C is defined to be C(∆+×∆+)op
.
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Categories of augmented bisimplicial objects will be left for the moment.

Note that the opposite of a product of categories is the product of their

opposites.

When the above functor categories take values in the category of Sets

and functions, (denoted Sets) then their names and notations are somewhat

different.

Definition 2.1 (iii)

A simplicial set is a functor in Sets∆+

. The category of simplicial sets is

usually denoted SS.

Similarly there are contractible simplicial sets, augmented simplicial sets and

bisimplicial sets, and the respective categories are denoted CSS, ASS, and

BiSS.

The category of augmented bisimplicial sets is a little more complex: the

following three categories of contravariant, set-valued functors might all be

described as augmented bisimplicial sets:

Sets(∆×∆+)op

, Sets(∆+×∆)op

and Sets(∆×∆)op

.

This will be discussed in more detail in section 2.5 .

A simplicial set, X, has face and degeneracy maps based on the mor-

phisms δi and σj respectively (which were defined in the first chapter): for

x ∈ Xn, dni (x) = X(δn−1
i )(x) (in geometric terms, this is the face opposite

the ith vertex of x); similarly, sni (x) = X(σn+1
i )(x) (in geometric terms, this

is the degenerate simplex obtained by “doubling” the ith vertex). Normally,
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the superscripts will be left off the face and degeneracy maps.

The simplicial set which is called the n-simplex, 4[n], is the representable

functor, ∆(−, [n]). The simplicial set 4[n] will be referred to as the standard

n-simplex.

Definition 2.1 (iv)

A non-degenerate n-simplex of a simplicial set X is one which cannot be

written as six for some x ∈ Xn−1. Note that this implies the definition of

degenerate simplex (as one which can be written in the form six for some x).

A non-degenerate n-simplex will be called maximal if it cannot be written

as djy for any nondegenerate n + 1-simplex y ∈ X. A simplicial set is said

to be generated by a set of simplices {xi}i∈I if each simplex of X may be

expressed as si1 · · · sikdj1 · · · djlxi for some i ∈ I, for some k ≥ 0, l ≥ 0.

In this event, X may be written as < xi : i ∈ I >.

Definition 2.1 (v)

If X is a simplicial set, then the n-skeleton of X, sknX, is the simplicial set

generated by the m-simplices of X, for all m ≤ n.

It follows that if X ∼= sknX for some n ∈ N, then X is generated by

its maximal elements. Note that the standard n-simplex is generated by

the unique non-degenerate n-simplex of 4[n] which is the identity morphism

ιn : [n] −→ [n] ∈ ∆.

Definition 2.1 (vi)

A simplicial complex is a simplicial set, X, with the property that any non-
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degenerate simplex is completely defined by its vertices; that is, for a set

of n + 1 distinct vertices in X0, there is at most one n-simplex with those

vertices.

Definition 2.1 (vii)

Let 0 ≤ k ≤ n. Consider {xj ∈ Xn−1 s.t. 0 ≤ j ≤ n, j 6= k} where the xj

satisfy the property dixj = dj−1xi for i < j and i, j 6= k.

If, for all n, for all 0 ≤ k ≤ n and for all such sets, there exists x ∈ Xn such

that dix = xi, then X is called a Kan Complex.

If, for all n, for all 0 < k < n and for all such sets, there exists x ∈ Xn such

that dix = xi, then X is called a Weak Kan Complex.

2.2 Nerves

Definition 2.2 (i)

Recall the definition of the nerve of a small category. Let C be a small

category, and define a simplicial set NerC as follows:-

(NerC)0 = ob(C)

(NerC)1 = arr(C);

(NerC)n =

{
(x1, · · · , xn) | xi ∈ arr(C), dom(xi+1) = cod(xi)

1 ≤ i ≤ (n− 1)

}
For x ∈ (NerC)1, d1(x) = dom(x), d0(x) = cod(x)

and for y ∈ (NerC)0,, s0(y) = idy.

For (x1, · · · , xn) ∈ (NerC)n,

d0(x1, · · · , xn) = (x2, · · · , xn);
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dn(x1, · · · , xn) = (x1, · · · , xn−1);

di(x1, x2, · · · , xn) = (x1, · · · , xixi+1, · · · , xn) if 0 < i < n

s0(x1, · · · , xn) = (iddom(x1), x1, · · · , xn);

sn(x1, · · · , xn) = (x1, · · · , xn, idcod(xn))

si(x1, · · · , xn) = (x1, · · · , xi, idcod(xi), xi+1, · · · , xn) if 0 < i < n.

This may be described more compactly by saying (NerC)n = Cat([n],C),

and letting the natural functors between the objects of N+ describe the face

and degeneracy morphisms. This construction extends to a functor from Cat

to SS in the obvious way.

Proposition 2.2.1

4[n] ∼= Ner[n]

Proof

The Yoneda lemma states that NerCn
∼= SS(4[n], NerC). Therefore

Cat([n],C) ∼= SS(4[n], NerC)

If C is the category [n], this gives

SS(4[n], Ner[n]) ∼= Cat([n], [n])

Therefore the standard n-simplex, 4[n], may be described as Ner[n].

The functor Ner has a left adjoint Π: this is the process of “categorisa-

tion”. The classical description of this is constructive, however the definition

that will be used here is a coend, from which the constructive definition will

19



be derived. The coend description of Π arises directly from it being the left

adjoint to Ner.

As a notational convenience,
∫ [n] and

∫
[n] shall be written as

∫ n and
∫
n

respectively. Similarly (when occasion arises) the
∫ [p],[q] and

∫
[p],[q] shall be

written
∫ p,q and

∫
p,q respectively.

Proposition 2.2.2

ΠX ∼=
∫ n

Xn · [n]

Proof

Let X be a simplicial set, and let C be a small category, then:-

Cat(ΠX,C) ∼= SS(X,NerC) ∼=
∫
n
Sets(Xn, (NerC)n)

∼=
∫
n
Sets(Xn, Cat([n],C)) ∼=

∫
n
Cat(Xn · [n],C) ∼= Cat(

∫ n

Xn · [n],C)

As this is true for any small category C, it follows that ΠX ∼=
∫ nXn · [n].

Recall that [n] is the category with the (n + 1) objects {0, 1, · · · , n} and

a unique arrow for every i ≤ j. A functor from [n] to a small category C is

then precisely a chain of n composible maps in C. The δi morphisms in N

induce composition of the chain across the codomain of the ith morphism in

the chain, and the σj morphisms induce insertion of an identity morphism

between the jth and (j + 1)th morphisms in the chain.
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Thus, constructively, the functor Π takes a simplicial set X and con-

structs the category which has objects X0, arrows chains of 1-simplices,

and relations induced by the δ and σ maps in N: this is the free cate-

gory on the graph
d1−→

X1
s0←− X0
d0−→

with relations induced by d2xd0x ∼ d1x

for x ∈ X2, (d2d3x)(d0d3x)(d0d0x) ∼ d1d2x for x ∈ X3 and in general,

(d2d3 · · · dnx)(d0d3 · · · dnx) · · · (dj0dj+2 · · · dnx) · · · (dn−1
0 x) ∼ d1d2 · · · dn−1x,

for x ∈ Xn. This higher order information is essentially associativity infor-

mation.

Proposition 2.2.3

The relations given by the n-simplices, for n ≥ 3, are obtainable from the

relations given by the 2-simplices.

Proof

Let x ∈ X3. Since d3x ∈ X2, there is a relation

(d2d3x)(d0d3x) ∼ (d1d3x) = (d2d1x).

Since the relation must be preserved by composition, it follows that

(d2d3)(d0d3x)(d0d0x) = (d2d3)(d0d3x)(d0d1x)

∼ (d2d1x)(d0d1x) ∼ (d1d1x) = (d1d2x).

Thus the relations given by the 3-simplices are obtainable from the relations

given by the 2-simplices.

Next, assume the relations given by the (n− 1)-simplices are obtainable

from the relations on the 2-simplices. Then, for x ∈ Xn, dnx yields the
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relation (d2d3 · · · dn−1dnx)(d0d3 · · · dn−1dnx) · · · (dn−2
0 dnx) ∼ d1d2 · · · dn−2dnx,

which is obtainable from the relations on the 2-simplices.

So, (d2d3 · · · dnx) · ·(dj0dj+2 · · · dnx) · ·(dn−1
0 x) ∼ (d1 · · · dn−2dnx)(dn−1

0 x).

As dn−1
0 = d0d1 · · · dn−2 and d1d2 · · · dn−2dn = d2d1d2 · · · dn−2, then

(d2d3 · · · dnx) · · · (dj0dj+2 · · · dnx) · · · (dn−1
0 x)

∼ (d2d1d2 · · · dn−2x)(d0d1d2 · · · dn−2x)

∼ d1d1 · · · dn−2x = d1d2 · · · dn−1x.

Thus, by induction, all the relations are obtainable from the relations on

the 2-simplices.

Definition 2.2 (ii)

For any 0 ≤ k ≤ n, ∧k[n] is defined to be the subsimplicial set of 4[n]

generated by the simplices diιn for 0 ≤ i ≤ n and i 6= k. (Recall that ιn is

the unique nondegenerate n-simplex of 4[n]).

Proposition 2.2.4

Π(∧k[n]) ∼= [n] for 0 < k < n, and if 4 ≤ n, for 0 ≤ k ≤ n.

Proof

Consider ∧1[2]. It has two non-degenerate 1-simplices, d0i2 and d2i2, and

no non-degenerate 2-simplices. So Π(∧1[2]) has no relations, and is the free

category on the graph
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Clearly, this is [2].

Further, note that skn−2 ∧k [n] ∼= skn−24[n]. Therefore, for n ≥ 4,

sk1∧k [n] ∼= sk14[n] and sk2∧k [n] ∼= sk24[n], and so Π∧k [n] ∼= Π4[n] ∼= [n].

So, consider the case n = 3.

Now, sk1∧k [3] ∼= sk14[3], so Π(∧k[3]) is generated by the same elements

as Π(4[3]). As |sk2 ∧k [3]| = |sk24[3]| − 1, there is potentially one relator

missing, namely dki3. Had it been present, the 2-simplex dki3 would have

given the relation (d2dki3)(d0dki3) = (d1dki3). If k = 1 or 2, this may be

obtained from the other relations as follows:

k = 1

(d2d1i3)(d0d1i3) = (d1d3i3)(d0d0i3)

= (d2d3i3)(d0d3i3)(d0d0i3) = (d2d2i3)(d2d0i3)(d0d0i3)

= (d2d2i3)(d1d0i3) = (d2d2i3)(d0d2i3)

= (d1d2i3) = (d1d1i3) as required.

k = 2

(d2d2i3)(d0d2i3) = (d2d3i3)(d1d0i3)

= (d2d3i3)(d2d0i3)(d0d0i3) = (d2d3i3)(d0d3i3)(d0d1i3)

= (d1d3i3)(d0d1i3) = (d2d1i3)(d0d1i3)
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= (d1d1i3) = (d1d2i3) as required.

Thus, if k = 1 or 2, then Π(∧k[3]) ∼= Π(4[3]) ∼= [3].

Consider now the unit of the adjunction. Obviously the unit is the identity

on 0-simplices, and the unit takes each 1-simplex to the element of arr(ΠX)

which is the equivalence class containing it. In general, the unit takes

x ∈ Xn to ([d2 · · · dnx], [d0d3 · · · dnx], · · · , [dn−2
0 x]), where [w] is the element

of arr(ΠX) which is the equivalence class of w ∈ X1.

Lemma 2.2.5 Let X be a weak Kan complex, and consider x1, · · · , xn ∈ Xn

where d1xi = d0xi−1 for 2 ≤ i ≤ n. Then, there is a z ∈ Xn with the property

di−1
0 dn−ii+1z = xi for 1 ≤ i ≤ n.

Proof

This is a simple case of lemma 5.3.3: the machinery is more easily dealt with

in chapter 5 than here.

Proposition 2.2.6

If X is a weak Kan complex, the unit of the adjunction ηX is epic.

Proof

The category ΠX is a quotient of the free category on the graph which is the

1-skeleton of X. Thus, it is a quotient of the set

{X1 t (X1d0 ×d1 X1) t (X1d0 ×d1 X1d0 ×d1 X1) · · ·},
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(where (X1d0 ×d1 X1) is the set of words in X1 of length two, xy, with

d0x = d1y).

If X is a weak Kan complex, then any for any word xy ∈ (X1d0 ×d1 X1)

there exists z ∈ X2 such that d2z = x, d0z = y. But the relations give that

d2zd0z ∼ d1z and so xy ∼ d1z. Thus, by induction, the equivalence class of

any finite chain x1x2 · · ·xn contains an element of X1, so any arrow in ΠX

has a representative which is a 1-simplex of X. Therefore (ηX)1 is epic.

Given (f, g) ∈ (NerΠX)2 (so f, g ∈ arr(ΠX) and domg = codf) then

there are x, y ∈ X1, with [x] = f and [y] = g, and d0x = d1y and hence

z ∈ X2 with d2z = x, d0z = y. Thus (f, g) = (ηX)2(z).

Now, consider (f1, · · · , fn) ∈ (NerΠX)n. For each fi, there is an xi ∈ X1

with [xi] = fi, and thus d1xi = d0xi−1 (for 2 ≤ i ≤ n). Lemma 2.2.5 states

that given such a chain of simplices in a weak Kan complex, there is an ele-

ment z ∈ Xn with di−1
0 dn−ii+1z = xi (for 1 ≤ i ≤ n), and so

(f1, · · · , fn) = (ηX)n(z) and so (ηX)n is epic.

Since SS is a presheaf topos, the fact that each of the set morphisms

(ηX)n is epic, implies that (ηX) is epic.

Theorem 2.2.7

If X is a Kan complex, then ΠX is a groupoid, all fillers in NerΠX are

unique, and ηX is a Kan fibration.

Proof

If X is a Kan complex, then X is a weak Kan complex, and so by Proposi-
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tion 2.2.6 ηX is epic. Therefore, every arrow of ΠX is representable by a 1-

simplex of X. Consider an arrow f = [x] ∈ arr(ΠX). Since d1x = d1(s0d1x),

x and s0d1x form a 0-horn in X1, with s0d1x thought of as the 1-face.

Then, there exists y ∈ X2 with d1y = s0d1x and d2y = x. Then in ΠX,

[x][d0y] = [s0d1y]. Similarly, d0x = d0s0d0x, and so there exists z ∈ X2, with

d1z = s0d0x and d0z = x, and so in ΠX, [d2z][x] = [s0d0y]. Since [s0p] is an

identity, for any p ∈ X0, it follows that [d2z] = [d2z][x][d0y] = [d0y], and this

is a two sided inverse for f = [x]. It is therefore unique. Thus, every arrow

of ΠX has a unique inverse, and so ΠX is a groupoid.

Therefore, NerΠX is a Kan complex, since ΠX is a groupoid, and the

nerve of a small category is a Kan complex if and only if it is a groupoid.

Let ([a1], [a2], · · · , [an]) and ([a′1], [a′2], · · · , [a′n]) be two distinct fillers for

{ ηX(xi) }i 6=k in (NerΠX)n, where { ηX(xi) }i 6=k is a k-horn in (NerΠX)n.

Let If 0 < k < n, then

([a2], · · · , [an]) = ([a′2], · · · , [a′n]) = ηX(x0)

and ([a1], · · · , [an−1]) = ([a′1], · · · , [a′n−1]) = ηX(xn),

and so ([a1], · · · , [an]) = ([a′1], · · · , [a′n]) and the two fillers are equal.

If k = n, then k 6= 0 and so ([a2], · · · , [an]) = ([a′2], · · · , [a′n]) = ηX(x0).

Further, k 6= 1 and so [a1][a2] = [a′1][a′2] (from ηX(x1)). Therefore, since

[a2] = [a′2], and all elements have inverses, [a1] = [a′1] and so the two fillers

are (again) equal. A similar argument applies if k = 0.

Since X is a Kan complex, any k-horn in Xn has a filler. Further, the

image of the k-horn in (NerΠX)n has a unique filler which must be the image
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of any filler in Xn. Therefore for any commuting diagram of the form

∧k[n]
f−→ X

i ↓ ηX ↓
4[n]

g−→ NerΠX

the arrow g is uniquely defined, and so for any extension of f , f say, ηXf = g

by the uniqueness property. Thus, ηX is a Kan fibration.

Proposition 2.2.8

If X is a simplicial complex, the unit of the adjunction ηX is monic.

Proof

The unit of the adjunction is the identity on the 0-simplices of X. Consider

z, z′ ∈ Xn with ηn(z) = ηn(z′). Then the vertices of z and z′ are the same,

and since X is a simplicial complex, this implies that z = z′.

Since Ner is a right adjoint, it preserves all small limits (specifically,

products) and so NerC×NerD ∼= Ner(C×D).

Theorem 2.2.9

The composite ΠNer is the identity functor on Cat, εC : ΠNerC −→ C is

the identity natural transformation (where ε is the counit of the adjunction),

ηNerC : NerC −→ NerΠNerC is the identity, and Π(ηX) = idΠX , (where η

is the unit of the adjunction).

Proof

Consider a small category C. NerC is the simplicial set with 0-simplices the
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objects of C and 1-simplices the arrows of C. The higher order simplices

are chains of composible arrows. The category ΠNerC is then a quotient

of the free category on the graph UC (where U : Cat −→ Graphs is the

forgetful functor). The relations which specify the quotient are precisely the

composition information of the category C. Therefore, the functor, ΠNer is

the identity on Cat.

The counit of the adjunction takes an equivalence class in ΠNerC and

maps it to the composite of all its representative elements, and since the

composite is also a representative element, the counit is the identity trans-

formation.

Since the counit and unit satisfy the equationNer(ε(−))ηNer(−) = idNer(−),

it follows that ηNerC : NerC −→ NerΠNerC is also the identity.

Lastly, since (εΠX)Π(ηX) = idΠX , and εΠX = idΠX , then Π(ηX) = idΠX .

It is immediate that Π is full and Ner is faithful.

Theorem 2.2.10

The category Cat is monadic over SS.

Proof

Let SSNerΠ be the category of NerΠ-algebras. Beck’s monadicity theorem

states that the unique comparison functor, K : Cat −→ SSNerΠ is an iso-

morphism of categories if and only if the functor Ner creates coequalisers for

those parallel pairs of arrows f, g for which Nerf, Nerg have an absolute

coequaliser in SS.
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Let f, g : C → D and let h : NerD → X be an absolute coequaliser

for Nerf, Nerg. Thus Π(h) is a coequaliser for the pair ΠNer(f), ΠNer(g).

But, since ΠNer is the identity functor, Πh is the coequaliser for f, g and

so K is an isomorphism of categories.

Corollary 2.2.11

Every NerΠ-algebra has the identity as structure map.

Proof

The comparison functor K : Cat −→ SSNerΠ is defined on objects as

K(C) =< NerC, NerεC >.

Proposition 2.2.12

Let C be a small category and X a simplicial set. For any simplicial mor-

phism f : X −→ NerC, there exists uniquely f : NerΠX −→ NerC such

that fηX = f .

Proof

From theorem 2.2.9, εC = idC, ηNerC = idNerC and Π(ηX) = idΠX . Let

φX,C : Cat(ΠX,C) −→ SS(X,NerC) be the bijection (natural in X and C)

of the adjunction ΠaNer. Let f : NerΠX −→ NerC be such that fηX = f .

First,

Π(f) = Π(f)Π(ηX) = Π(fηX)) = Π(f).

Then

f = φ(φ−1(f)) = φ(εCΠ(f)) = φ(Π(f))
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= NerΠ(f)ηNerΠX = NerΠ(f) = NerΠ(f).

Thus, f = NerΠ(f) and so exists uniquely as claimed.

Corollary 2.2.13

Consider a k-horn in (NerC)n. It has a unique filler if either 2 ≤ n ≤ 3 and

0 < k < n or n ≥ 4 and 0 ≤ k ≤ n.

Proof

Consider X = ∧k[n]. Then proposition 2.2.4 proves that under the condi-

tions of the corollary NerΠ(∧k[n]) ∼= 4[n].

There is an important caveat about NerΠ as a functor: NerΠ does not

necessarily preserve homotopy type, and that specifically, for a simplicial

set, X, with non-trivial homotopy groups, it is possible for NerΠX to be

contractible, that is to have all homotopy groups trivial. However, if X

is contractible, then the simplicial sets X and NerΠX will have the same

homotopy type.

No proof of these comments will be given here: for a study of the category

of small categories as a homotopy category, and for homotopy inverses for

Ner, the reader is referred to the work of Fritsch, Latch, Quillen, Segal,

Thomason (see [23], [32], [40], [41], [42].)
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2.3 Simplicial Groupoids

This section is a brief resumé of some of the results of the author’s MSc

Thesis (see [20]). The work relies heavily on a variety of sources, chiefly [19],

[18], and [31]; reader’s are referred to [20] for full acknowledgements. The

results are quoted without proof.

Definition 2.3 (i)

The category of simplicial groupoids, SGpds, is the category of simplicial

objects in the category of groupoids.

Definition 2.3 (ii)

The category of simplicially enriched groupoids or simplicial groupoids with

a constant object of objects, SGpds∗, is the full subcategory of SGpds whose

objects are the simplicial groupoids with a constant object of objects (that

is, ob(Gn) is the same for all n, and the simplicial face and degeneracy maps

are the identity on the objects).

Definition 2.3 (iii)

The loop groupoid functor is a functor G : SS −→ SGpds∗ which takes the

simplicial set X to the simplicially enriched groupoid GX where (GX)n is the

free groupoid on the graph Xn+1
s,t−→ X0 where s = (d1)n+1 and t = d0(d2)n,

with relations s0x = id for x ∈ Xn. The degeneracy maps (usually denoted σ)

are given on the generators by σi(x) = si+1(x) for x ∈ Xn+1. The face maps

(usually denoted δ) are given on the generators by δi(x) = di+1 for x ∈ Xn+1

and δ0(x) = (d1x)(d0x)−1. It is clear that this is indeed a simplicially enriched
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groupoid, and that the groupoids at each level are free.

Definition 2.3 (iv)

The classifying space functor W : SGpds∗ −→ SS takes a simplicially en-

riched groupoid H to the simplicial set described by:

(WH)0 = ob(H0), (WH)1 = arr(H0) and for n ≥ 2

(WH)n =

{
(hn−1, · · · , h0) |hi ∈ arr(Hi)

and dom(hi−1) = cod(hi), 0 < i < n

}
.

The face and degeneracy maps between (WH)1 and (WH)0 are the source

and target maps and identity maps of H0, and the face and degeneracy maps

at higher levels are given as follows (where δ and σ denote face and degener-

acy maps in H):-

d0(hn−1, · · · , h0) = (hn−2, · · · , h0), dn(hn−1, · · · , h0) = (δn−1hn−1, · · · , δ1h1),

and for 0 < i < n,

di(hn−1, · · · , h0) = (δi−1hn−1, δi−2hn−2, · · · , δ0hn−ihn−i−1, hn−i−2, · · · , h0)

and

s0(hn−1, · · · , h0) = (iddom(hn−1), hn−1, · · · , h0), and for n ≥ i > 0,

si(hn−1, · · · , h0) = (σi−1hn−1, · · · , σ0hn−i, idcod(hn−i), hn−i−1, · · · , h0) .

Definition 2.3 (v)

The Moore complex of a simplicial groupoid, H, is the chain complex of

groupoids (NH, ∂) where (NH)0 := H0, (NH)n := ∩ni=1Kerδi for n > 0 and

∂n : (NH)n −→ (NH)n−1 is the restriction of δ0 to the subgroupoid (NH)n.

If H is a simplicially enriched groupoid, then (NH)n is a totally disconnected

wide subgroupoid of Hn for n > 0.
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Definition 2.3 (vi)

The functor DEC : SS −→ BiSS takes a functor X ∈ Sets∆+op

to the

composite functor Xor ∈ Sets∆+×∆+

. It is dealt with in more detail in

section 2.7.

Proposition 2.3.1

The loop groupoid functor is left adjoint to the classifying space functor; the

unit and counit are given as follows:

For X a simplicial set, and for x ∈ Xn

ηX(x) = (x, d0x, · · · , dn−1
0 x)

where x is x considered as an element of (GX)n−1.

For H a simplicially enriched groupoid, and for (hn, · · · , h0) ∈ (GWH)n

εH((hn, · · · , h0)) = hn

Proposition 2.3.2

A simplicial groupoid is a Kan complex.

Given a simplicially enriched groupoid, H, WH is a Kan complex.

Proposition 2.3.3

The classifying space functor from simplicially enriched groupoids to simpli-

cial sets may be expressed as the composite

W = ∇NER
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where NER : SGpds −→ BiSS takes a simplicial groupoid to the bisimplicial

set whose nth row is Ner(Gn), and where ∇ : BiSS −→ SS is the right

adjoint to the functor DEC.

Proposition 2.3.4

The nth homology groupoid of the Moore complex of the loop groupoid of a

simplicial set gives the (n + 1)th homotopy groupoid relative to the vertices:

that is,

Hn(NGX) ∼= πn+1(X∗, X0)

Specifically, the fundamental groupoid of X relative to the vertices X0 is given

by π1(X∗, X0) = (GX)0/δ0(Kerδ1).

Here Hn(NGX) is the nth homology group of the nonabelian chain complex

of groupoids, NGX; NGX is the Moore complex of the loop groupoid of X,

and πn(X∗, X0) is the nth homotopy groupoid of X∗ (where homotopy is “rel

the vertices, X0”).

Proposition 2.3.5

Given a simplicially enriched groupoid, H a crossed complex, CH , may be

defined in the following way:

(CH)n := (NH)n / ((NH)n ∩Dn)∂((NH)n+1 ∩Dn+1)

where Dn is the subgroupoid of Hn generated by the degenerate elements. The

boundary maps are induced by the chain maps of (NH, ∂).
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2.4 Conjugation

Mention has been made of the set function reversing the order of the finite

ordinals in ∆+. The effect of this on simplicial sets is “Conjugation”.

Definition 2.4 (i)

Given a simplicial set, X, ConjX (the conjugate of X) is defined by

(ConjX)n = Xn,

dni : (ConjX)n → (ConjX)n−1 = dnn−i : Xn → Xn−1 and

sni : (ConjX)n → (ConjX)n−1 = snn−i : Xn → Xn−1.

To check this is well defined is simple (if somewhat laborious): it is also

clear that (Conj)2X = X. However, there is in general no isomorphism

X → ConjX. In fact, in general, the only morphisms between a simplicial

set and its conjugate are the trivial morphisms taking X to some point in

ConjX (where a point is the subsimplicial set generated by a single vertex).

Clearly the two simplicial sets are geometrically equivalent in some sense,

just as the category ∆+ with the order inverted is essentially the same cate-

gory as ∆+; however, there is no functor between them to reflect this fact.

2.5 Augmentations

It has already been mentioned that it is desirable to be able to move between

∆ and ∆+ and so between augmented simplicial categories and simplicial

categories. While it is easy to see that in the model categories there is little
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difficulty, more care should be taken with functor categories.

For the purposes of this thesis, an augmentation of a simplicial set X, will

be defined as a morphism qX with domain X0, which is a weak coequaliser

for the pair d0, d1 : X1 −→ X0. The codomain of the augmentation will

be denoted by X−1. It is obvious that a simplicial set, together with an

augmentation and the codomain of the augmentation, form an augmented

simplicial set, that is a contravariant set valued functor from the category ∆.

Any simplicial set, X, has two natural augmentations. These arise as left

and right adjoints to the forgetful functor from augmented simplicial sets to

simplicial sets. The forgetful functor, U is the composition of the augmented

simplicial set with the inclusion functor ∆+ → ∆ (mentioned earlier).

Proposition 2.5.1

The left adjoint to the forgetful functor is obtained by augmenting a simpli-

cial set, X, by the coequaliser of d0, d1 : X1 −→ X0. The codomain of the

augmentation is called π0X.

The right adjoint to the forgetful functor is obtained by augmenting a simpli-

cial set, X, by the unique function with domain X0 and codomain ∗, the one

point set.

Proof

Let X be a simplicial set and Y be an augmented simplicial set, and denote

the left and right adjoints to U by LU and RU respectively.

An augmented simplicial set, Y , is a cocone under the diagram UY . In
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other words, any augmentation factors uniquely through the colimit of the

diagram UY , which is Y0 −→ π0UY . So the left adjoint to U must be

augmentation by the colimit of the diagram X, with (LUX)−1
∼= π0X. This

is indeed the case: given a morphism f∗ : X → UY , then

qY f0d
X
0 = qY d

Y
0 f1 = qY d

Y
1 f1 = qY f0d

X
1 .

Since π0X is the domain of the coequaliser for X1

d0→
d1→
X0 there is a unique

arrow f−1 : X−1 → Y−1 with f−1qX = qY f0 as required. This augmentation

will be referred to as the canonical augmentation.

In the case of the right adjoint, the only possible augmentation is the

unique map from X0 to the one point set, so that X−1 = ∗. Clearly, given

f∗ : UY → X, there is a unique arrow f−1 : Y−1 → X−1 since X−1 is

terminal in Sets; this unique arrow extends f∗ : UY → X to a morphism

in ASS. This augmentation will be referred to as the trivial augmentation.

The set π0X (which was implicitly defined by the last proposition) is the

set of path connected components, and it is well known that a simplicial

set may be written as the disjoint union of its path connected components.

Further, since any augmentation is a weak coequaliser of d1
0 and d1

1, any

two 0-simplices which map down to different elements of X−1 must be in

distinct path components. So, any augmentation must be a partition of the

set of path connected components. Thus any augmented simplicial set may

be considered as the disjoint union of a set of trivially augmented simplicial
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sets, {Xx |x ∈ X−1}, where Xx is the disjoint union of those path connected

subsimplicial sets of X which are augmented over x. Clearly, each Xx has

the trivial augmentation.

The trivial augmentation does not have so clear a geometric description

as the canonical augmentation. It may be thought of as a label for the space,

and as will be seen later, the singular complex functor from topological spaces

to augmented simplicial sets has the trivial augmentation. The algebraic ef-

fect of the trivial augmentation is to force and indeed enable the simplicial

set to be dealt with as a single entity, rather than being split into path con-

nected components. This comment will be made clearer towards the end of

chapter 3.

A bisimplicial set, Y , may be augmented horizontally (so that it is ex-

tended from a functor Y ∈ Sets(∆+×∆+)op

to a functor Yh ∈ Sets(∆+×∆)op

, or it

may be augmented vertically (so that it is extended to a functor

Yv ∈ Sets(∆×∆+)op

).

As in the simplicial case, there are two natural augmentations, the canon-

ical and the trivial, which are right and left adjoint to the forgetful functors.

The forgetful functors are induced by the embeddings:

(∆+ ×∆+) −→ (∆×∆+)

(∆+ ×∆+) −→ (∆+ ×∆)

In the horizontal case, the augmentations are obtained by augmenting

each row in turn with the respective augmentation, and in the vertical case

they are obtained by augmenting the columns in turn. The nature of the
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two simplicial adjoints ensures that the codomain of the augmentation is (in

all cases) a simplicial set, and that it is left or right adjoint to the respective

forgetful functor.

Once a bisimplicial set has been augmented, it may be further augmented.

The codomain of the augmentation will then be an augmented simplicial

set. Again, the canonical and trivial augmentations are defined by right

and left adjoints to the forgetful functors, which are in turn induced by the

embeddings:

(∆×∆+) −→ (∆×∆)

(∆+ ×∆) −→ (∆×∆)

Given a bisimplicial set Y it is possible therefore to augment both hori-

zontally and vertically. The set Y−1,−1 which results will be the trivial set in

all cases except when both augmentations are canonical, when the set will

be πh0π
v
0Y∗,∗. This is clearly isomorphic to πh0π

v
0Y∗,∗ since the horizontal and

vertical morphisms of a bisimplicial set commute. Generally, a functor in the

category Sets(∆×∆)op

will be referred to as a bi-augmented bisimplicial set.

2.6 Topology

Definition 2.6 (i)

The singular complex is defined for a topological space U by

(SingU)n = T op(4n,U)
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where the simplicial structure comes from the structure maps on the affine

simplices (see section 1.1).

Note that for X ∈ ob(Sets) and Y ∈ ob(C), for some category C, the

X-indexed copower of Y shall be denoted by X · Y (if it exists). If C = Sets

then X · Y ∼= X × Y .

Geometric realisation is the left adjoint to the singular complex functor.

It is written | − | : SS −→ T op. Thus for any simplicial set, X, and for all

topological spaces, U , T op(|X|,U) ∼= SS(X,SingU).

Proposition 2.6.1

|X| ∼=
∫ n

Xn · 4n

Proof

Let X be a simplicial set, and U be a topological space.

T op(|X|,U) ∼= SS(X,SingU)

∼=
∫
n
Sets(Xn, (SingU)n) ∼=

∫
n
Sets(Xn, T op(4n,U))∫

n
T op(Xn · 4n,U) ∼= T op(

∫ n

Xn · 4n,U)

Therefore geometric realisation has the coend description

|X| =
∫ n

Xn · 4n
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There are a number of different constructive definitions of geometric re-

alisation. The process is essentially the following: take one copy of 4n for

each non-degenerate n-simplex of X and glue them all together using the

face and degeneracy maps of the simplicial set X (see [35]). The following

constructive definition is from Curtis ([16]).

Definition 2.6 (ii)

Let X be a simplicial set. Define RX by:

RX = t
n∈N tx∈Xn 4n

x

Define an equivalence relation on RX as generated by the following relation:

writing (p, x) for (p0, · · · , pm) ∈ 4m
x and (q, y) for (q0, · · · , qn) ∈ 4n

y then

(p, x) ∼ (q, y) if either

dix = y and δi(q0, · · · , qn) = (p0, · · · pm) or

six = y and σi(q0, · · · , qn) = (p0, · · · pm).

Then |X| ∼= RX/∼ where RX/∼ has the identification topology. No

proof of this claim will be given.

In section 1.1, it was noted that the set of affine simplices {4n |n ∈ N}

could be extended to include the empty set 4−1. The singular complex of

a topological space, U, may then be augmented where the codomain of the

augmentation is SingU−1 = T op(4−1,U). Since the empty set is initial

in the category of sets, there is a unique function from the empty set as a
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topological space to any topological space. Thus, SingU−1 = {∗}, so Sing

as a functor to augmented simplicial sets has the trivial augmentation.

Thus, Sing to augmented simplicial sets is equivalent to taking Sing to

simplicial sets and augmenting trivially. The geometric realisation functor

(as the left adjoint to this Sing functor) is equivalent to taking the forgetful

functor on augmented simplicial sets, composed with the geometric realisa-

tion on simplicial sets.

This comes out of the coend formulation, since for any X−1,

X−1 · 4−1 = 4−1, that is, the empty set. Thus
∫ nXn · 4n (where

n ∈ N ∪ {−1}) is precisely |UX| (i.e. the same coend taken over n ∈ N).

2.7 Dec and Total Dec

This section is based on work of Duskin and Van Osdol (see [18]), and on work

in the author’s MSc Dissertation (see [20]). The adjunction ba in described in

subsection 1.2.2 gives rise to an adjunction between the two functor categories

Sets∆op

(which is ASS) and Sets∆op
0 (which is CSS).

The functor in∗ : ASS −→ CSS (which is obtained by composing

X : ∆op −→ Sets with in) takes an augmented simplicial set and strips

away the d0 morphisms from each level, and “forgets” the augmentation, qX ,

and its codomain, X−1.

The functor b∗ : CSS −→ ASS (obtained by composing Y : ∆op
0 −→ Sets

with b) takes a contractible simplicial set, strips away the s0 morphisms from

each level.
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Since ba in, it follows automatically that b∗ a in∗.

If the category ∆ is replaced by ∆+, there is a similar adjunction:

in∗ : SS −→ CSS is again obtained by composing the contravariant functor

X with in : ∆0 −→ ∆+, but the effect is simply to strip away the d0 mor-

phisms at each level, as there is no augmentation to throw away. Similarly,

b∗ is obtained by composing the contravariant functor Y ∈ obCSS with b;

the effect is to strip away the s0 morphisms from each level, and to discard

X0 and the morphism d1 : X1 −→ X0.

The category SS is monadic over CSS via the functor in∗: the triple is

T = (T, η, µ) where T = in∗b∗, the unit ηY : Y −→ in∗b∗Y is formed by

the s0 at every level and the multiplication µY : T 2Y −→ TY is formed

by d1 at each level (for Y a contractible simplicial set). The T -algebras are

then precisely the simplicial sets, since the conditions that a map be a T -

algebra structure map are fulfilled precisely by maps consisting of d0 at each

level, and the conditions for T -algebra morphisms are satisfied precisely by

simplicial set morphisms (see [18]).

Returning to augmented simplicial sets, the composite b∗in∗ is often

called Dec ; the definitions imply that for an augmented simplicial set X,

(DecX)n = Xn+1, di : (DecX)n → (DecX)n−1 = di+1 : Xn+1 → Xn and

si : (DecX)n → (DecX)n+1 = si+1 : Xn+2 → Xn+1; further, qDecX = d1.

There is a comonad structure on ASS, defined by Dec. This has counit d0

at each level (with qx : DecX−1 → X−1) , and comultiplication s0 at each

level.
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Given an augmented simplicial set, X, not only is DecX−1 = X0, but

in fact X0
∼= π0DecX and the quotient map is d1 : X1 −→ X0 (see [20] for

proof). It is clear that this is a split epic (the right inverse provided by s0).

The monad structure on ∆ (described earlier) lifts to the comonad struc-

ture on ASS defined by Dec. However, the algebras do not necessarily

lift to coalgebras; specifically, σ0 : [1] → [0] is an algebra for inb, but

s∗0 : X → DecX is not a coalgebra for Dec. In fact an algebra f : [n]→ [n−1]

will only lift to a coalgebra if f is the nth component of a natural transfor-

mation from inb→ Id. This means that the algebras σ0 : (inb)2[n]→ inb[n]

go to form a coalgebra s∗0 : DecX → (Dec)2X.

The cotriple resolution of the comonad on SS formed by Dec is the bisim-

plicial array, called Total Dec (and denoted DEC). This was defined by Il-

lusie (see [29]). This array has Xp+q+1 in the (p, q)th position, the horizontal

face and degeneracies are d0, · · · , dp and s0, · · · , sp and the vertical face and

degeneracies are dp+1, · · · , dp+q+1 and sp+1 · · · , sp+q+1. Thus the array has

two natural augmentations; one of the augmentations is made up of the d0

morphisms at each level, the other of dn+1 at the nth level; the codomains are

the same, namely the simplicial set X. It is clear from the description that

DEC is a functor from simplicial sets to bisimplicial sets. Therefore DEC is

well defined on ASS (the category of augmented simplicial sets) as a functor

with values in BiASS (the category of bi-augmented bisimplicial sets).

Given the description of b earlier, it will come as no surprise that the

ordinal sum, which is essentially a functor ∆ × ∆ −→ ∆ gives rise to the
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functor DEC : ASS −→ BiASS. Observe that the pth column of the array

DECX is the simplicial set X([p]or[−]) with face and degeneracies defined

by X(id[p]orδi) and X(id[p]orσi), respectively. The qth row is (similarly) the

simplicial set X([−]or[q]) with face and degeneracies defined by X(δiorid[q])

and X(σiorid[q]), respectively. Recall the comments made in section 1.1, that

R([p]or[q]) = R([q])orR([p]). This means that the qth row of DECX may be

described as Conj(Decq+1(ConjX)).

Thus DECX = Xor (for X either a simplicial set or an augmented simplicial

set).

2.8 The Diagonal on ASS

The functor ∂ (considered as a functor on either ∆+op or ∆op) may be com-

posed with any functor Y ∈ Sets(∆+×∆+)op

, (resulting in a functor

Y ∂ ∈ Sets∆+op

). Composition with ∂ is, then, a functor diag:BiSS −→ SS.

Given a bisimplicial set Y , diagY is the simplicial set given by:

(diagY )n = Yn,n

di : (diagY )n −→ (diagY )n−1 = dvi d
h
i : Yn,n −→ Yn−1,n−1

sj : (diagY )n −→ (diagY )n+1 = svjs
h
j : Yn,n −→ Yn+1,n+1

where dhi , s
h
j are the horizontal face and degeneracy maps, and dvi , s

v
j are the

vertical face and degeneracy maps of Y . Clearly it does not matter whether

the horizontal or the vertical map is taken first, as the horizontal and vertical

maps of a bisimplicial set commute.
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2.9 Right and Left Adjoints

It was noted (in section 1.1) that the category ∆n+1 was small, and it is well

known that the category of sets is complete and cocomplete. Thus, by the

theory of Kan extensions, the functors Dec, DEC and diag have left and

right adjoints. These may be written in terms of ends and coends.

Since this method of obtaining adjoints will be used frequently, the rele-

vant equations are quoted here (the proofs are in [35]).

For categories C,M and A and functors T :M−→ A and K :M−→ C,

if T has a left Kan extension along K, then it is given on objects by:-

(LanKT )(c) ∼=
∫ m

C(Km, c) · Tm

and if T has a right Kan extension along K, then it is given on objects by:-

(RanKT )(c) ∼=
∫
m
TmC(c,Km)

It is important to remember that simplicial (and bisimplicial) objects are

contravariant functor categories on ∆+ (or ∆+ × ∆+). Thus when dealing

with Kan extensions along or the categories C and M will be (∆+ ×∆+)op

and ∆+op respectively, and when dealing with Kan extensions along ∂, C and

M will be ∆+op and (∆+ ×∆+)op respectively.

First, consider the functor Dec. For a simplicial set X, the left adjoint to

Dec (which is described combinatorially in [18]) is the cone over the connected

components of X: it will be denoted CX. It is described by the coend∫ [p] Xp · 4([0]or[p]): although 4([0]or[p]) = 4[p + 1], 4([0]or[p]) highlights

the fact that the structure of the simplicial set depends on 4([0]or[p]).
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Combinatorially, CX is defined as follows:-

(CX)n = tnp=−1Xp

For x ∈ Xp, sni (x) =

{
spi (x) if 0 ≤ i ≤ p
x if p < i ≤ n

For x ∈ Xp, dni (x) =

{
dpi (x) if 0 ≤ i ≤ p
x if p < i ≤ n

where d0
0 is written for the

augmentation, qX .

Even when the codomain of the augmentation is not π0X, then the defini-

tion above still works, and the construction is a left adjoint in the category of

augmented simplicial sets. It is particularly useful to consider X augmented

over a single point, as then CX has the structure that might be naively

expected of a cone in simplicial sets.

Second, consider the functor DEC. The right adjoint to DEC (which is

described in detail in a number of places, for example [18] and [20]) is called

∇ and, for a bisimplicial set Y , is given by the end:-

(∇Y )n =
∫
p,q
Y ∆+([p]or[q],[n])
p,q

The left adjoint (which will be of some use later on) is given for Y , by:-

(4Y )n =
∫ p,q

∆+([n], [p]or[q]) · Yp,q

Now consider the functor diag. The right adjoint, in particular, has an

elegant description: given a simplicial set X, the set of n-simplices, Xn, is

given by SS(4[n], X); the right adjoint to the diagonal functor (which will

be called R for the moment) is then given by

(RX)p,q = SS(4[p]×4[q], X)
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The calculation is as follows:-

(RX)p,q =
∫
n
X(∆+×∆+)(([n],[n]),([p],[q]))
n

∼=
∫
n
Sets(∆+([n], [p])×∆+([n], [q])), Xn)

∼=
∫
n
Sets((4[p]×4[q])n, Xn)

∼= SS(4[p]×4[q], X)

Thus, (RX)p,∗ (that is the pth-column of RX) is the simplicial set X4[p],

and (RX)∗,q (that is the qth-row of RX) is the simplicial set X4[q].

Using this right adjoint, there is a coend definition of diag.

SS(diagX, Y ) ∼=
∫

[p],[q]
Sets(Xp,q, SS(4[p]×4[q], Y )

∼=
∫

[p],[q]
SS(Xp,q · (4[p]×4[q]), Y )

Thus diagX ∼=
∫ [p],[q] Xp,q · (4[p]×4[q]). This will be needed later.

Also, diag has a left adjoint (called for the moment L) given on objects

by the coend formula:-

(LX)p,q =
∫ [n]

(∆+ ×∆+)(([p], [q]), ([n], [n])) ·Xn

∼=
∫ [n]

∆+([p], [n])×∆+([q], [n])×Xn

∼=
∫ [n]

4[n]p ×4[n]q ×Xn
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2.10 Product

There is another (bi-augmented) bisimplicial set which is needed in this the-

sis. Given two (augmented) simplicial sets, then there is a (bi-augmented)

bisimplicial set which has pth column Xp×Y∗ (where Xp is thought of as the

constant simplicial set at Xp) and qth row X∗×Yq (where Yq is thought of as

the constant simplicial set at Yq). This construction will be called P (X, Y ).
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Chapter 3

Tensor product

The category of simplicial sets is Cartesian closed (indeed, it is a presheaf

topos), but the topos structure is based on the structure of the category

of sets. This chapter sets out a monoidal closed structure on augmented

simplicial sets, based on the monoidal structure of the category of finite

ordinals and monotonic functions.

3.1 Definitions

Definition 3.1 (i)

For augmented simplicial sets X and Y , define an internal-hom,

[X, Y ] ∈ ob(ASS) by [X, Y ]n−1 := ASS(X,DecnY ). The face and degener-

acy maps (and the quotient map to [X, Y ]−1) are all induced by the structure

of Dec∗Y as an augmented simplicial object in the category of augmented

simplicial sets.

Thus, given a simplicial morphism {fm}m∈N : Xm −→ (Decn+1Y )m (that

is an n-simplex of [X, Y ]),
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((di(f))m : Xm −→ (DecnY )m) = (difm : Xm −→ Ym+n) where 0 ≤ i ≤ n;

and

((si(f))m : Xm −→ (Decn+2Y )m) = (sifm : Xm −→ Ym+n+2) where

0 ≤ i ≤ n.

The codomain of the augmentation of [X, Y ] is the set of simplicial mor-

phisms from X to Y , and two 0-simplices f, g : X −→ DecY map to the

same element of ASS(X, Y ) when qY f−1 = qY g−1 and d0fn = d0gn for all

n ∈ N.

Definition 3.1 (ii)

The tensor product, ⊗, is formally defined so that together with the internal-

hom described above, ASS becomes a monoidal closed category. Thus for

each Y , the endofunctor (−) ⊗ Y is left adjoint to the endofunctor [Y,−]

which arises from the internal-hom. Thus for any three augmented simplicial

sets X, Y and Z, there is a bijection ASS(X⊗Y, Z) ∼= ASS(X, [Y, Z]) which

is natural in X and Z, and dinatural in Y .

The set of n-simplices of a simplicial set X (that is X([n])) is usually

denoted by Xn. Although X([m]or[n]) ∼= Xm+n+1 this notation does not

indicate how the simplicial structure varies with m and n. Therefore, define

Xm∨n := X([m]or[n]). Using the bijection which arises from the monoidal

closed structure, a more explicit description of ⊗ is obtained, by the following

calculation.

ASS(X ⊗ Y, Z) ∼= ASS(X, [Y, Z])
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∼=
∫
m Sets(Xm, ASS(Y,Decm+1Z))

∼=
∫
m Sets

(
Xm,

∫
n Sets(Yn, (Dec

m+1Z)n)
)

∼=
∫
m

∫
n Sets(Xm × Yn, (Decm+1Z)n)

∼=
∫
m

∫
n Sets(Xm × Yn, Zm∨n)

∼=
∫
m,n Sets(Xm × Yn, Zm∨n)

∼= Sets
(
Xm × Yn, ASS(4([m]or[n]), Z)

)
∼=
∫
m,nASS(Xm × Yn · 4([m]or[n]), Z)

∼= ASS(
∫m,nXm × Yn · 4([m]or[n]), Z)

This gives a coend definition for ⊗:

X ⊗ Y ∼=
∫ p,q

(Xp × Yq) · 4([p]or[q])

There is a further characterisation of ⊗:

X ⊗ Y ∼= 4P (X, Y )

This is clear from the definitions already given.

The combinatorial definition is as follows. The set of n-simplices is:-

n⊔
i=−1

Xn−1−i × Yi

the face maps are given by:-

dni (x, y) =

{
(dpix, y) if 0 ≤ i ≤ p

(x, dn−p−1
i−p−1 y)if p < i ≤ n

where (x, y) ∈ Xp × Yn−p−1, and d0
0 is the augmentation (of X or Y );

lastly, the degeneracies are:-

sn−1
i (x, y) =

{
(spix, y) if 0 ≤ i ≤ p

(x, sn−p−2
i−p−1 y)if p < i ≤ n− 1
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where (x, y) ∈ Xp × Yn−p−2.

This definition makes the connection between ⊗ and C very clear (and in

fact, if X−1 = ∗ then X ⊗4[0] is the cone over X) more generally, X ⊗4[0]

is the cone over the codomain of the augmentation. In the case that X and Y

are standard simplices, there is a characterisation, which will allow a further

description of ⊗ on all (augmented) simplicial sets.

Proposition 3.1.1

4[m]⊗4[n] ∼= 4([m]or[n])

Proof

ASS(4[m]⊗4[n], X) ∼= ASS(4[m], [4[n], X])

∼= [4[n], X]m ∼= ASS([n], Decm+1X)

∼= (Decm+1X)n ∼= X([m]or[n]) ∼= ASS(4([m]or[n]), X)

This is the required result.

Definition 3.1 (iii)

A functor from ∆+ to a category C, that is an object in C∆+
, is called a

cosimplicial object of C.

Similarly, a functor from ∆ to a category C, that is an object in C∆, is

called an augmented cosimplicial object of C.
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In particular functors from ∆+op × ∆+ to Sets are called cosimplicial

simplicial sets. As with bisimplicial sets, the two separate structures com-

mute. The particular example of a cosimplicial simplicial set is the rep-

resentable functor of Sets∆+op×∆+

, that is, the cosimplicial simplicial set

where the standard n-simplices are the simplicial structure, and the natu-

ral morphisms between them forms the cosimplicial structure. Consider the

functor or : ∆+ × ∆+ −→ ∆+. Just as in the simplicial set case, where

or∗ = DEC, there is a functor or∗ on cosimplicial simplicial sets which

yields a bicosimplicial simplicial set. This functor may be composed with

the functor 4[−] = ∆(−,−). The functor 4[−]or : ∆ × ∆ −→ SS is

then the bicosimplicial simplicial set which has (in the (p, q)th position of the

bicosimplicial array) the simplicial set 4[p]⊗4[q] ∼= 4([p]or[q]).

This, together with proposition 3.1.1, means that

X ⊗ Y ∼=
∫ p,q(Xp × Yq) · (4[p]⊗4[q]).

Note also, that if the functor 4[−] were composed with the composite

functor orδ then the result would be the diagonal of the bicosimplicial sim-

plicial category 4[−] ⊗ 4[−]: that is, {4[n] ⊗ 4[n]}
n∈N. This comment

may seem somewhat obtuse, but it will be useful in the next chapter.

Proposition 3.1.2

[X, [Y, Z]] ∼= [X ⊗ Y, Z]

Proof
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[X, [Y, Z]] ∼=
∫ m

ASS(X,Decm+1[Y, Z]) · 4[m]

∼=
∫ m (∫

n
Sets(Xn, [Y, Z]m∨n)

)
· 4[m]

∼=
∫ m (∫

n
Sets(Xn,

∫
p
Sets(Yp, Zm∨n∨p))

)
· 4[m]

∼=
∫ m (∫

n

∫
p
Sets(Xn × Yp, Zm∨n∨p)

)
· 4[m]

∼=
∫ m (∫

n,p
Sets(Xn × Yp, ASS(4([n]or[p]), Decm+1Z))

)
∼=
∫ m

ASS(
∫ n,p

(Xn × Yp) · 4([n]or[p]), Decm+1Z) · 4[m]∫ m

[X ⊗ Y, Z]m · 4[m] ∼= [X ⊗ Y, Z]

Corollary 3.1.3

(X ⊗ Y )⊗ Z ∼= X ⊗ (Y ⊗ Z)

Proof

Let W ,X,Y and Z be augmented simplicial sets.

ASS((W ⊗X)⊗ Y, Z) ∼= ASS(W ⊗X, [Y, Z])

∼= ASS(W, [X, [Y, Z]]) ∼= ASS(W, [X ⊗ Y, Z])

∼= ASS(W ⊗ (X ⊗ Y ), Z)
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Proposition 3.1.4

If X , Y and Z are augmented simplicial sets, then

(X t Y )⊗ Z ∼= (X ⊗ Z) t (Y ⊗ Z)

and X ⊗ (Y t Z) ∼= (X ⊗ Y ) t (X ⊗ Z)

Proof

It suffices to comment that colimits commute. However, a more explicit proof

will clarify things. Let W , X, Y and Z be augmented simplicial sets. Then:

ASS((X t Y )⊗ Z,W ) ∼= ASS((X t Y ), [Z,W ])

∼= ASS(X, [Z,W ])× ASS(Y, [Z,W ])

∼= ASS(X ⊗ Z,W )× ASS(Y ⊗ Z,W )

∼= ASS((X ⊗ Z) t (Y ⊗ Z),W )

and

ASS(X ⊗ (Y t Z),W ) ∼= ASS(X, [Y t Z,W ])

∼=
∫
n
Sets(Xn, ASS(Y t Z,Decn+1W ))

∼=
∫
n
Sets(Xn, ASS(Y,Decn+1W )× ASS(Z,Decn+1))

∼=
∫
n
Sets(Xn, [Y,W ]n)×

∫
n
Sets(Xn, [Z,W ]n)

∼= ASS(X, [Y,W ])× ASS(X, [Z,W ])

∼= ASS(X ⊗ Y,W )× ASS(X ⊗ Z,W )
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∼= ASS((X ⊗ Y ) t (X ⊗ Z),W )

This concludes the proof.

Recall from subsection 2.5 that an augmented simplicial set, X, may be

written as the disjoint union of subsimplicial sets, {Xx |x ∈ X−1}, where

y ∈ (Xx)n iff qX(d0)ny = x.

Corollary 3.1.5

If X and Y are augmented simplicial sets, then

X ⊗ Y ∼=
⊔

x∈X−1, y∈Y−1

Xx ⊗ Yy

Proof

This proposition highlights an interesting point: the cone in topological

spaces is always a path connected space, whereas the construction CX in

simplicial sets (section 2.9) is the cone over the augmentation. This means

that there is an extra “degree of freedom” when considering the cone in

simplicial sets. From the view of the “non-basepointed, non-connected ho-

motopy theorist” this is philosophically very nice. From another point of

view, it is another caveat to bear in mind. A similar situation arises with

the construction of topological join.
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3.2 Topological Join

The topological join is discussed in some detail in chapter 5, section 7 of [9].

Results proved there will be used here without proof: the notation for this

section is largely taken from there.

Definition 3.2 (i)

This definition is a generalisation of the concept of join for two suitable

subspaces of a vector space. Consider two topological spaces U and V , and

construct a set of 4-tuples (r, u, s, v), where u ∈ U , v ∈ V , r, s ∈ [0, 1] and

r + s = 1: in the case that r = 0, the u will be ignored, and in the case that

s = 0, the v will be ignored. This set will be suggestively called U ∗ V .

There are obvious projections from this set of 4-tuples:

pU : U ∗V → U , pV : U ∗V → V , pr : U ∗V → (0, 1] and ps : U ∗V → (0, 1]

which are termed the coordinate functions of U∗V . The first two are obviously

defined, the last two take a point (r, u, s, v) ∈ U ∗ V to r and s respectively.

Then the topological join of U and V is defined as the set U ∗ V together

with the initial topology with respect to the coordinate functions. Thus a

function with codomain U ∗V is a continuous function if and only if its com-

posite with each of the coordinate functions is continuous. (For definitions

of initial, final, and other topologies see [9]). The topological join of U and

V is written U ∗ V .

Since r + s = 1, the pair (r, s) defines the unit interval, and so U ∗ V

consists of one unit interval for every pair of points u ∈ U and v ∈ V , and
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this unit interval joins the point in U to the point in V in such a way that

it does not intersect with any of the other unit intervals so defined: this is

the vector space definition of join, and the “suitability” mentioned earlier is

precisely that the lines between the two subspaces do not intersect; (recall

proposition 1.2.2.1).

The set of points U ∗ V may be given the identification topology with

respect to the function U × V × I −→ U ∗ V ,

given by (u, v, x) 7→ xu+ (1− x)v

where 0 ≤ x ≤ 1, u ∈ U and v ∈ V .

Brown discusses the idea that topological join should be defined in this

way, but notes a major problem: in general, join defined with this topology

is not an associative operation. With respect to the initial topology, the join

operation is associative up to isomorphism.

However, in the case that U and V are compact Hausdorff spaces, the two

topologies coincide. In fact, if the category of topological spaces is replaced

with the category of k-spaces, then the two topologies on the join coincide;

however, the definition of product in the category of k-spaces is distinct from

that on the category of topological spaces, (see [9]). A full discussion of

k-spaces is not appropriate here, nor will more comments be made on the

results mentioned in this paragraph. Results proved by Brown in [9] will be

used without further proof, but will be quoted.

Now that it has been shown that the ordinal sum on finite ordinals mod-

els ⊗ on augmented simplicial sets, it is possible to prove a lemma which
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formalises the comment following proposition 1.2.2.1.

Lemma 3.2.1

|4[p]| ∗ |4[q]| ∼= |4[p]⊗4[q]|

Proof

Recall |4[m]| := 4m. Since 4[p] ⊗4[q] ∼= 4([p]or[q]) = 4[p + q + 1], the

isomorphism exists for each pair (p, q).

The isomorphism is natural in p and q if it commutes with the bicosim-

plicial structure of 4[−]⊗4[−] and 4∗ ∗ 4∗. Considering the structure on

4∗ and ∆ outlined in the first chapter, this is clear.

Thus, the tensor product on the representable functors in ASS models

the topological join on the affine simplices in the same way as the ordinal

sum on ∆.

The aim now is to extend this to simplicial sets X and Y to obtain a

result |X ⊗ Y | ∼= |X| ∗ |Y |. In general this will not be true:

|(4[0] t44[0])⊗4[0]| ∼= |4[1] t4[1]| ∼= 41 t41

is not path connected whereas

|4[0] t4[0]| ∗ |4[0]| ∼= (40 t40) ∗ 40

is path connected. However, under certain conditions, the theorem is true.
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Theorem 3.2.1.1

Let X and Y be trivially augmented simplicial sets. Then

|X ⊗ Y | ∼= |X| ∗ |Y |

Proof

The definition of geometric realisation which is most useful here is defini-

tion 2.6 (iii). Then

|X|∗|Y | :=


r[(p0, · · · , pm)x] s.t.

∑m
i=0 pi = 1 ,

∑n
i=0 qi = 1 ,

+ s[(q0, · · · qn)y] x ∈ Xm , y ∈ Yn , r + s = 1
pi, qi, r, s ≥ 0
and [−] denotes equivalence class


It should also be noted that if r = 0 that the point from |X| is ignored

and similarly if s = 0 the point from |Y | is ignored.

Define a map f : |X| ∗ |Y | −→ |X ⊗ Y | as follows:

f(r[(p0, · · · , pm)x] + s[(q0, · · · , qn)y]) 7→ [(rp0, · · · , rpm, sq0, · · · , sqn)x,y]

The problem of f being well defined revolves around the fact that if

r = 0, the point x is ignored. This means that for any y, it must be true

that (0, · · · 0, q0, · · · , qn)(x,y) ∼ (0, · · · 0, q0, · · · qn)(x′,y) for all x, x′ ∈ X. This

can only be true if the codomain of the augmentation of X is trivial. Simi-

larly the augmentation of Y must be trivial for the case s = 0. It is for this

reason that the simplicial sets X and Y must be trivially augmented, since

the equivalence relation given in definition 2.6 (iii) does not allow simplices
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which map down to distinct elements of X−1 to be identified. Other than

these two extreme cases, a moment’s thought will show that the function f

respects the relation and so is well defined. Continuity is also trivial. The

obvious inverse function is also continuous under the definition of the topol-

ogy on |X| ∗ |Y |. Thus the two spaces are homeomorphic.

Comment

It is not true that SingU ⊗SingV ∼= Sing(U ∗V). Consider the case where U

and V are both the one point set. Then SingU ∼= SingV ∼= 4[0] but Sing41

is not isomorphic to 4[1].

The join has particular uses. First, the join of a space X with a point P

is the cone under the space. There is a difference between the spaces X ∗ P

and P ∗ X as the first is (categorically) a cone under P and the second a

cocone over P ; in fact, if X is a compact Hausdorff space, then CX ∼= X ∗P .

Similarly there is a continuous bijection from SX (the suspension of X)

to X ∗ S0 which is a homeomorphism if X is a compact Hausdorff space.

Using these ideas, it is a simple step to the following result (proved in [9])

Sp ∗ Sq ∼= Sp+q+1.

This essentially says that the n-sphere in the category of topological spaces

is the join of n+ 1 copies of the 0-sphere.

The usual model for the n-sphere in simplicial sets is the simplicial set

with one nondegenerate n-simplex and one non-degenerate 0-simplex and
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all other simplices degenerate (see [7]). The tensor product of a p-sphere

with a q-sphere would then have one nondegenerate simplex in each of the

dimensions 1, p+ 1, q + 1 and p+ q + 1 and two nondegenerate simplices in

dimension 0. Thus tensor product will not preserve this set of models for the

spheres. However, there are models for the spheres in simplicial sets which

are respected by tensor.

The models are defined inductively. Clearly there is only one possible

description in simplicial sets for the 0-sphere, and that is S0 := 4[0] t4[0].

However, in augmented simplicial sets there are two possible models; one has

the canonical augmentation which has two points in the codomain, and the

other has the trivial augmentation, with the singleton set as the codomain.

If the former model is chosen, then a simple calculation shows that S0⊗S0 ∼=

4[1] t4[1] t4[1] t4[1].

However, if the trivially augmented model is chosen, S0 ⊗ S0 has four

non-degenerate 1-simplices connected to each other in a “diamond” as in the

following picture:-
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The tensor of product of three copies of S0 has eight non-degenerate 2-

simplices, twelve non-degenerate 1-simplices and six 0-simplices which join

together as an octahedron.
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So, S0 ∈ obASS shall denote the simplicial set 4[0]t4[0] together with

the trivial augmentation. It will be referred to as the simplicial 0-sphere.

Define the simplicial n-sphere, Sn ∈ obASS, as follows:-

Sn := S0 ⊗ · · · ⊗ S0︸ ︷︷ ︸
n+1

It is clear from the definition of tensor product and of the simplicial 0-sphere

that the simplicial n-sphere is a triangulation of the topological n-sphere. In

fact, theorem 3.2.1.1 gives explicitly that

|Sn| ∼= Sn
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Chapter 4

Subdivision

Any classical attempt to prove a Van Kampen would require a concept of

subdivision. This chapter will expound such a theory for simplicial sets.

4.1 Definitions

Definition 4.1 (i)

The ordinal subdivision of 4[n] (the standard n-simplex in simplicial sets)

is denoted by Sd(4[n]), and is defined as follows:-

Sd(4[n]) :=
∫ p,q

∆([p]or[q], [n]) · (4[p]×4[q])

Definition 4.1 (ii)

The ordinal subdivision of a simplicial setX is denoted by SdX and is defined

as follows:-

SdX :=
∫ n

Xn · Sd4[n]

This expands to

SdX :=
∫ n

Xn ·
(∫ p,q

∆([p]or[q], [n]) · (4[p]×4[q])
)
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These definitions are due to Cordier and Porter. Intuitively, each n-

simplex of X is replaced by a subdivided n-simplex, which is made up of a

set {4[p] × 4[n − p]}0≤p≤n where 4[p] × 4[n − p] has a face in common

with 4[p+ 1]×4[n− p− 1]. The following picture shows the case of n = 3;

it has two triangular prisms which meet up in a rectangular face, and two

tetrahedra - each one meeting one of the prisms at a triangular face.
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There is an elegant geometric definition. Cut the affine n-simplex, 4n

(defined by {(x0, x1, · · · , xn) ∈ Rn+1|∑n
i=0 xi = 1, xi ≥ 0} ) by the family of

affine hyperplanes defined by {∑r
i=0 xi = 1

2
| 0 ≤ r ≤ n−1}. Note that this is

also the set of affine hyperplanes defined by {∑n
i=r xi = 1

2
| 1 ≤ r ≤ n}. This

gives n affine hyperplanes.

66



Since the simplicial sets 4[p] × 4[q] split naturally into a set of (
n
p

)

n-simplices, Sd naturally splits the n-simplex into 2n n-simplices.
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It should be noted that there are important differences between this sub-

division and the barycentric subdivision - the latter adds a vertex “in the

middle” of every nondegenerate n-simplex, for all n ∈ N. The former adds a

vertex “in the middle” of every nondegenerate 1-simplex, but nothing more.

Further, the right adjoint to barycentric subdivision is the functor Ex∞,

which has the property that Ex∞X is a Kan complex (whatever the proper-

ties of X). This is not the case with the right adjoint to Sd (which is derived

later).

It is possible that definition 4.1 (ii) could give rise to a contradictory

definition of Sd4[n]; it is important to check, therefore, that

Sd(4[n]) ∼=
∫ m

4[n]m · Sd(4[m]),
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that is, that the two definitions agree on the simplicial set 4[n]. The follow-

ing proposition goes somewhat further.

Proposition 4.1.1

SdX =
∫ n

Xn ·
(∫ p,q

∆([p]or[q], [n]) · (4[p]×4[q])
)

∼=
∫ p,q

DECXp,q · (4[p]×4[q])

Proof

Consider SS(SdX, Y ) for any simplicial set Y . Then,

SS(SdX, Y ) ∼= SS
(∫ n

Xn ·
(∫ p,q

∆([p]or[q], [n]) · (4[p]×4[q])
)
, Y
)

∼=
∫
n
Sets

(
Xn, SS

(∫ p,q

∆([p]or[q], [n]) · (4[p]×4[q]), Y
))

∼=
∫
n
Sets

(
Xn,

∫
p,q
Sets

(
∆([p]or[q], [n]), SS((4[p]×4[q]), Y )

))
∼=
∫
p,q
Sets

(∫ n

(SS(4[n], X)×SS(4[p]⊗4[q],4[n])), SS((4[p]×4[q]), Y )
)

∼=
∫
p,q
Sets

(
SS(4[p]⊗4[q], X), SS((4[p]×4[q]), Y )

)
∼= SS(

∫ p,q

DECXp,q · (4[p]×4[q]), Y )

Since this is true for any Y ∈ SS, the proposition follows.

Corollary 4.1.2

(SdX) ∼= diagDECX

68



Proof

It was proved in the second chapter that for a bisimplicial set Y ,

diagY ∼=
∫ p,q

Yp,q · (4[q]×4[q]).

Replacing Y with DECX gives the result.

Since SdX = diagDECX the n-simplices of SdX are given by the set

X2n+1; the ith face map is given by:-

δi : (SdX)n −→ (SdX)n−1 = didn+1+i : X2n+1 −→ X2n−1

and the ith degeneracy map by:-

σi : (SdX)n −→ (SdX)n+1 = sisn+1+i : X2n+1 −→ X2n+3 .

It is trivial that these satisfy the simplicial identities.

To emphasise the (philosophical) difference between (Sd4[n])m and

4[n]2m+1, denote m-simplices of Sd4[n] by (2×m)-matrices,(
i0 · · · im
im+1 · · · i2m+1

)
.

The conditions on 4[n] imply that ik ≤ ik+1.

Since 0 ≤ ik ≤ n, the nondegenerate n-simplices of Sd4[n] are given by

matrices

(
i0 · · · in
in+1 · · · i2n+1

)
where i0 = 0, i2n+1 = n and for 0 < k ≤ n,

ik−1 = ik iff in+k = in+k+1−1 and ik−1 = ik−1 iff in+k = in+k+1 and there

are no other possibilities. Clearly there are no nondegenerate r-simplices for

r > n.

Using this it is possible to describe the nondegenerate n-simplices of
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Sd4[n] as degeneracies of the identity morphism ιn : [n]→ [n].

Proposition 4.1.3

The nondegenerate n-simplices of Sd4[n] are given precisely by the elements

of 42n+1 of the form sjnsjn−1 · · · sj0ιn, where jk < jk+1 for 0 ≤ k ≤ n − 1,

there is some r such that jr = n, and if there is some t (0 ≤ t ≤ n) such that

jt = p, then there is no k such that jk = n+ 1 + p (for 0 ≤ p ≤ n).

Proof

Note first that any element of 4[n]2n+1 must be of the form

sjn+l+1
· · · sj0dkl

· · · dk0ιn.

Clearly, the nondegenerate ones will have no face maps in them, thus they

must be of the form

sjnsjn−1 · · · sj0ιn.

Secondly, by use of the simplicial identities, the degeneracies may be re-

ordered so that jk < jk+1 (see [7]). When the composite degeneracy is in

this form, the suffices on each degeneracy denote those vertices in the final

2n + 2-tuple which are the same as the subsequent vertex. Thus, if there

are r and r′ such that jr + n + 1 = j′r, this means that both ijr = ijr+1 and

ijr+n+1 = ijr+n+2. Thus, putting the 2n+ 2-tuple in the matrix form(
i0 · · · ijr ijr+1 · · · in
in+1 · · · ijr+n+1 ijr+n+2 · · · i2n+1

)

it is evident that the jthr vertex is the same as the jthr+1. Thus the matrix

represents a degenerate simplex.
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Lastly, assume that there is no r such that jr = n; this means that the

last entry on the top row of the matrix representing the element is not equal

to the first entry of the second row of the matrix. Thus, for some 0 ≤ r < n,

the matrix has the form (
0 · · · r

r + 1 · · · n

)
.

This means that there are r points in the top row where the entry changes,

and so n − r points of no change. Therefore, for the matrix to represent a

nondegenerate simplex, there must be at least n− r points of change in the

bottom row. However, since the first entry of the bottom row is r + 1, there

can only be n− r− 1 points of change in the bottom row, thus there will be

some point in the matrix where both the top and bottom rows remain the

same, which is means it represents a degenerate element.

Since geometrically there are 2n nondegenerate n-simplices in Sd4[n],

they must be the 2n simplices not excluded by the above conditions.

This concludes the proof.

Consider the set of n-simplices of X, Xn; by the Yoneda Lemma it is pos-

sible to describe this set as SS(4[n], X). Using the fact that Sd = diagDEC,

it is then possible to describe the set (SdX)n as SS(4[n]⊗4[n], X).

Although the definitions and calculations in this section have dealt with

simplicial sets, they clearly extend to augmented simplicial sets. It clear that

SdX−1 = X−1, since (DECX)−1,−1 = X−1.
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Proposition 4.1.4

Let X be a simplicial set, then π0(SdX) = π0X.

Proof

Let q : X0 −→ π0X and p : (SdX)0 −→ π0(SdX) be the canonical quotient

maps. Then, qd0 = qd1 is a coequalising map for the pair d0d2 , d1d3. Thus,

there is a unique map f : π0(SdX) −→ π0X such that fp = qd0.

Consider x ∈ X1; p(s0d1x) = p(x) since d0d2(s0)2x = x and

d1d3(s0)2x = s0d1x; and p(x) = p(s0d0x) since d0d2(s1)2x = s0d0x and

d1d3(s1)2 = x.

Define a function g : π0X −→ π0(SdX) for y ∈ X0 by g : q(y) 7→ ps0(y).

To show this is well defined, take y, z ∈ X0 s.t. q(z) = q(y). This implies

∃ n ∈ N and wi ∈ X1, 0 ≤ i ≤ n s.t. y = dε0w0, d1−εi−1
wi−1 = dεiwi

1 ≤ i ≤ n, εi ∈ {0, 1} and d1−εnwn = z.

Then p(s0y) = p(w0) = p(w1) = · · · = p(wn) = p(s0z). Thus g is well defined,

and gq = ps0

Now ps0d0 = p, thus p = ps0d0 = gqd0 = gfp. Further,

fgq = fps0 = qd0s0 = q. Since p and q are both epic, these two equations

imply that fg = id and gf = id. Therefore, π0(SdX) = π0X. This is the

required result.

4.2 Sd and Sing

Let W be a topological space, and consider SdSingW . For every affine n-

simplex of W , Sd produces 2n affine n-simplices of W ; since (SingW)n is
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by definition the set of all possible affine n-simplices of W , it is tempting to

assume that (SdSingW)n is a subset of (SingW)n.

Consider the specific example of (SdSingW)0. By definition of Sd, this is

the set of affine 1-simplices in W . Each 1-simplex of SingW , as a 0-simplex

of SdSingW , represents the vertex which is the “midpoint” of the affine

1-simplex inW ; since SingW already contains every point of the space W, it

is tempting to assume that (SdSingW)0
∼= (SingW)0, and so

(SingW)1
∼= (SingW)0.

In fact this is not the case. It is possible for many of the 1-simplices of

SingW to have the same midpoint, but the functor Sd as a combinatorial

device will consider them as separate points. To bring the functor back

under some kind of topological control, it is necessary to form a quotient of

SdSingW .

Consider the cosimplicial topological spaces 4∗ - that is {4n}
n∈N - and

4∗ ∗ 4∗ - that is {4n ∗ 4n}
n∈N. The cosimplicial structure of 4∗ ∗ 4∗ is

the obvious one.

Define a cosimplicial morphism τ∗ : 4∗ −→ 4∗ ∗ 4∗; τn : 4n −→ 42n+1

is given by:-

τn(t0, t1, · · · , tn) 7→ (
t0
2
,
t1
2
, · · · , tn

2
,
t0
2
,
t1
2
, · · · , tn

2
)

(Note that although it is normal to denote the order of cosimplicial objects

by superscripts, the topological map on the affine n-simplex is denoted τn.)

Consider τ ∗∗ : SdSingW −→ SingW . This takes f : 42n+1 −→ W to
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fτn. Under this map, two affine 2n + 1-simplices, f 6= g in W are mapped

to the same affine n-simplex if they have the same “midpoint”. So if

f(
t0
2
,
t1
2
, · · · , tn

2
,
t0
2
,
t1
2
, · · · , tn

2
) = g(

t0
2
,
t1
2
, · · · , tn

2
,
t0
2
,
t1
2
, · · · , tn

2
)

then they are mapped to the same n-simplex of Im(τ ∗∗ ). Im(τ ∗∗ ) is a sub-

simplicial set of SingW , and is what might be expected geometrically of

subdivision in the singular complex.

To be more explicit, consider σ : 4n −→W , an n-simplex of SingW : by

an abuse of notation, σ will be allowed to denote both the topological map

given, and its image under the bijection of the adjunction | − | aSing.

Now, Sdσ : Sd4[n] −→ SdSingW is σ : 4[n]⊗4[n] −→ SingW , which

is σ : 4n∗4n −→W . Recall the description of the nondegenerate n-simplices

of Sd4[n], from proposition 4.1.3. They are of the form sjnsjn−1 · · · sj0in,

where jk < jk+1 for 0 ≤ k ≤ n − 1, and where there is some r such that

jr = n, and if there is some t, (0 ≤ t ≤ n) such that jt = p, then there is no

k such that jk = n+ 1 + p (for 0 ≤ p ≤ n).

For such a simplex, consider the subset of {0, · · · , 2n+ 1} whose elements

are not equal to jk for 0 ≤ k ≤ n. Label them φl for 0 ≤ l ≤ n, so that

φl < φl+1. Note that φn = 2n+ 1. For convenience, define φ−1 := −1.

The map Sdσ is defined by the action of σ on each of these nondegenerate

simplices, and therefore it is given by the maps

σ(sj0sj1 · · · sjn) : 4n ∗ 4n −→W ,
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(which is considered an n-simplex of SdSingW : here the sj are the topolog-

ical maps which induce the degeneracies in SingW).

Consider, therefore σ(sj0sj1 · · · sjn)τn : 4n −→W .

It takes the point (t0, t1, · · · , tn) of 4n to the point (u0, u1, · · · , un), where

ul =
1

2

φl∑
i=φl−1+1

ti for φl < n

ul =
1

2

 n∑
i=φl−1+1

ti +
φl−n∑
i=0

ti

 for φl < n&φl+1 > n

ul =
1

2

φl−n∑
φl−1+1−n

ti for φl > n

As an example, consider the four nondegenerate 2-simplices of Sd4[2].

These are s2s1s0i2, s3s2s1, s4s3s2 and s4s2s0. The simplices they produce in

42 are

A B

C

D

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
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A = ( t0+t1+t2+t0
2

, t1
2
, t2

2
),

B = ( t0
2
, t1+t2+t0+t1

2
, t2

2
),

C = ( t0
2
, t1

2
, t2+t0+t1+t2

2
)

and D = ( t0+t1
2
, t2+t0

2
, t1+t2

2
).

Thus τ ∗(Sdσ) maps the 2n copies of the affine n-simplex which go to

make up |Sd4[n]| into the affine n-simplex in precisely the way that would

be expected geometrically.

Definition 4.2 (i)

Let X be a simplicial complex, considered as a subsimplicial complex of

Sing(|X|). Clearly, SdX ⊂ SdSing|X|. If τ ∗∗ (SdX) ⊂ X and X is a Kan

complex, then X shall be called a Subdivision Complex.

4.3 Adjoints to Subdivision

It is now known that SdX = diagDECX. Since both DEC and diag have

left and right adjoints, it is immediate that Sd has both left and right ad-

joints. These, described earlier in the thesis, are given by left and right Kan

extensions: the object part of the composites of these adjoints (which are

the adjoints to Sd) are given below as the object parts of left and right Kan

extensions along the composite functor or∂ (the notation is Mac Lane’s, see

[35]).
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The left adjoint:-

Lanor∂X([n]) = Lanor(
∫ m

4[m]p ×4[m]q ×Xm)([n])

∼=
∫ p,q

4[p+ q + 1]n × (
∫ m

4[m]p ×4[m]q ×Xm)

∼=
∫ m

∆([n], [2m+ 1]) ·Xm

and the right adjoint:-

Ranor∂X([n]) = Ranor(SS(4[p]×4[q], X))([n])

∼=
∫
p,q
Sets(4[n]p+q+1,

∫
m
Sets(4[p]m ×4[q]m, Xm))

∼=
∫
p,q

∫
m
Sets(4[n]p+q+1 ×4[p]m ×4[q]m, Xm)

∼=
∫
m
Sets(

∫ p,q

(4[n]p+q+1 ×4[p]m ×4[q]m), Xm)

∼=
∫
m
Sets(4[n]2m+1, Xm)

There is an important observation to be made at this point. Let X be a

simplicial set, then SdXn
∼= SS(4[n], SdX) ∼= SS(4[n] ⊗ 4[n], X). Since

adjoints are unique up to isomorphism, this implies that

Lanor∂(4[n]) ∼= 4[n]⊗4[n].

This means that

(4[n]⊗4[n])m ∼=
∫ p

∆([m], [2p+ 1])×∆([p], [n])

∼=
∫ p,q

∆([p], [n])×∆([q], [n])×∆([m], [p+ q + 1]).
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It is not true in general, that Lanor∂X ∼= X ⊗ X. It is true in the

particular case of 4[n] because 4[n] is generated by a single n-simplex. It

does however give the following description of Lanor∂X:

Lanor∂X ∼=
∫ n

Xn · (4[n]⊗4[n])

4.4 Sd4[1]

Consider 4[1] with vertices labelled 0 and 1. Then Sd(4[1]) has vertices

4[1]1 - thus labelled by pairs ij where 0 ≤ i ≤ j ≤ 1. The one simplices are

then labelled ijkl where 0 ≤ i ≤ j ≤ k ≤ l ≤ 1 - that is 4[1]3. Then, given

δ0 and δ1 as described above, the 1-simplex ijkl runs from ik to jl. Now,

4[1] has one nondegenerate 1-simplex running from 0 to 1. For this simplex

to still exist after the subdivision has been taken, there would have to be

x ∈ 4[1]3 with d0d2x = s00 and d1d3x = s01 - that is a three simplex 0101.

(See the picture below).

t t
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1

1

Clearly this is not possible.

Corollary 4.4.1

The subdivision of a weak Kan complex is not necessarily weak Kan.
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Proof

Although 4[1] is a weak Kan complex, Sd4[1] is not weak Kan, since there

is no filler for the 1-horn x2 = 0001, x0 = 0111.

Although there is no cosimplicial simplicial morphism 4[−] −→ Sd4[−]

which models the topological cosimplicial morphism τ ∗∗ , (as has been seen

by the last example), there is a cosimplicial simplicial morphism 4[−] to

Sd(4[−]⊗4[−]) which does. This is the unit of the adjunction Lanor∂aSd.

The identity morphism id : 4([n]or[n]) −→ 4([n]or[n]) also denotes an

n-simplex of Sd(4[n]⊗4[n]). This n-simplex is therefore the unit of the ad-

junction, and further, since the unit of the adjunction is a natural transforma-

tion, it commutes with the simplicial structure of 4[n] to form a cosimplicial

simplicial morphism from 4[−] to Sd4([−]or[−]).

4.5 Sd in Cat

In the first chapter, it was noted that the standard n-simplices had a cate-

gorical model - namely the category N. Subdivision may be as easily defined

in Cat as in SS. This is more than just a categorical exercise - once a subdi-

vision of [n] is defined, it would be possible to take its nerve, and so obtain

a simplicial set which modelled the subdivision, but which was also a weak

Kan complex (it is a standard fact that the nerve of a small category is a

weak Kan complex, and that the nerve of a small category is a Kan complex

if and only if the small category is a groupoid).

Definition 4.5 (i) If C is a small category, then define
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Sd(C) :=
∫ p,q

Cat(([p] ∨ [q]),C) · ([p]× [q])

This is instantly expressible as∫ p,q

(NerC)p+q+1 · ([p]× [q])

Consider the case when C = [n] for some n ∈ N.

Noting that Cat([p] ∨ [q], [n]) ∼= ∆([p]or[q], [n]),

Sd[n] =
∫ p,q

∆([p]or[q], [n]) · ([p]× [q])

Since this a category, then its nerve

Ner(
∫ p,q

∆([p]or[q], [n]) · ([p]× [q]))

will be a weak Kan complex.

Compare this with Sd4[n], that is SdNer[n]:∫ p,q

∆([p]or[q], [n]) · (4[p]×4[q])

Since 4[n] ∼= Ner[n], and since Ner is a right adjoint, this may be rewritten

as ∫ p,q

∆([p]or[q], [n]) ·Ner([p]× [q])

There should be a link between these two definitions, and indeed, it arises as

the unit of the adjunction ΠaNer. Specifically,

ηn : SdNer[n]→ NerSd[n]

80



Proposition 4.5.1

Π(Sd4[n]) ∼= Sd[n]

Proof

Let C be any small category.

Cat(ΠSd(4[n]),C) ∼= SS(Sd(4[n]), NerC)

= SS(
∫ p,q

∆([p]or[q], [n]) · (4[p]×4[q]), NerC))

∼=
∫
p,q
Sets(∆([p]or[q], [n]), SS(Ner([p]× [q]), NerC))

∼=
∫
p, qSets(∆([p]or[q], [n]), Cat(([p]× [q]),C))

∼= Cat(
∫ p,q

∆([p]or[q], [n]) · ([p]× [q]),C)

= Cat(Sd[n],C)

Note that the proof relies on the fact that ΠNer = IdCat: see subsection 2.2

.

Corollary 4.5.2

Let C be any small category. For any simplicial morphism

f : Sd4[n] −→ NerC ∃! f : NerSd[n] −→ NerC s.t. fηSd4[n] = f .

Proof

The result follows from Proposition 4.5.1 and Proposition 2.2.12.
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Chapter 5

Extensions

5.1 Anodyne Extensions

Before addressing the main matter of this chapter, recall some of the basic

theory of Anodyne extensions, Kan complexes and Weak Kan complexes.

Definition 5.1 (i)

The simplicial set ∧k[n] is defined to be the subsimplicial set of 4[n] gener-

ated by the (n−1)-simplices d0ιn, d1ιn, · · · , dk−1ιn, dk+1ιn, · · · dnιn where ιn is

the unique non-degenerate n-simplex in 4[n]. For any n ∈ N, ∧k[n] is com-

monly known as a “k-horn”. There is a natural embedding i : ∧k[n] −→ 4[n].

Definition 5.1 (ii)

A simplicial set, X, is a Kan complex if every morphism f : ∧k[n] −→ X

(for all n, for all 0 ≤ k ≤ n) extends to a morphism f : 4[n] −→ X, with

fi = f .

This definition of a Kan complex is equivalent to definition 2.1 (vi).

Definition 5.1 (iii)
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An anodyne extension is an element in the saturated set of morphisms in SS

which is generated by the family of inclusions

{∧k[n]→4[n]|n ∈ N, 0 ≤ k ≤ n}

For a description of saturated sets and a study of anodyne extensions see

[25] . It is a property of anodyne extensions that if i : A→ B is an anodyne

extension, and f : A→ X is any simplicial morphism whose codomain, X, is

a Kan complex, then ∃f : B → X with fi = f . Thus anodyne extensions are

the class of simplicial morphisms along which any other simplicial morphism

(with codomain a Kan complex) may be extended; the exposition of this in

[25] is particularly elegant.

However, the class of Kan complexes does not include the standard

n-simplices (for n > 0). A wider class of complexes which satisfies some

extension conditions (and contains the standard n-simplices) is the class of

Weak Kan Complexes.

Definition 5.1 (iv)

A simplicial set Y is called a weak Kan complex if for any n ∈ N, and

0 < k < n, any simplicial morphism f : ∧k[n] → Y extends to a morphism

f : 4[n]→ Y with fi = f .

This definition of Weak Kan complex is equivalent to definition 2.1 (vi).

Let C be a small category. It is well known that NerC is a Kan com-

plex if and only if C is a groupoid; as a quick demonstration of this fact,
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consider f ∈ arrC. The pair x2 = f, x1 = iddomf form a 0-horn in

NerC1, while the pair x0 = f, x1 = idcodf , forms a 2-horn in NerC1:

-�
�
�
��

iddomf

f

0-horn

-

idcodf

2-horn

@
@
@
@R

f

If x = (f, g) is a filler for the 0-horn, then d2x = x2 = f and

d1x = f ·g = iddomf . Similarly, if x = (h, f) is a filler, then d0x = x2 = f and

d1x = h · f = idcodf . Thus for NerC to be a Kan complex, every morphism

must have a left and right inverse, which must therefore be unique and a two

sided inverse. The converse argument (that if C is a groupoid then NerC is

a Kan complex) is equally simple. The concept of Kan complexes is therefore

connected to the idea of the existence of inverses and composition. If C is

not a groupoid, then NerC is a weak Kan complex (a 1-horn in

NerC1 is simply a pair of composible maps, f, g ∈ arrC

�
�
�
��

f

1-horn

@
@
@
@R

g

and hence by definition of Ner there is a canonical filler. This idea gener-

alises to higher dimensions). Therefore the concept of weak Kan complex is

connected with composition without inverses.
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5.2 Extending Sd4[n]

The aim of the whole of this chapter is to give a proof of the following result:

given a cosimplicial simplicial set X where the simplicial set Xn
∗ is weak Kan

for all n, and given a cosimplicial simplicial morphism f : Sd4[−] −→ X,

then there is a cosimplicial morphism f : NerSd[−] −→ X extending f .

There is a sketch proof of the result in unpublished work of Porter. Es-

sentially, this claims that the morphism ηSd4[n] : Sd4[n] −→ NerSd[n] is a

weak anodyne extension (see definition 5.3 i) for each n, and it is possible

for the filling to be compatible with the cosimplicial structure.

In fact, in Porter’s description, the subdiagonal of 4[−] ×4[−] is used

in place of NerSd[−] but as the description of NerSd[−] below shows, they

are the same cosimplicial simplicial complex.

Recall (see [39]) that a fibration in the category of simplicial sets is a Kan

fibration, a cofibration is a monic, and a weak homotopy equivalence is a map

which induces an isomorphism of homotopy groups. It follows that ηSd4[n] is

monic (see proposition 2.2.8) and a weak homotopy equivalence (since both

Sd4[n] and NerSd[n] are contractible, and so have trivial homotopy groups).

Therefore, if Xn is a Kan complex for each n, then for each n

ηXn : Xn −→ NerΠXn is a Kan fibration (see theorem 2.2.7) and so if

there is a cosimplicial simplicial morphism f : Sd4[−] −→ X, then each

of the simplicial morphisms fn : Sd4[n] −→ Xn may be extended to

a simplicial morphism fn : NerSd[n] −→ Xn, with fn = fnηSd4[n] and
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ηXnfn = NerΠ(fn), by the Quillen model category structure of SS.

This result is not the main theorem with the weak Kan condition replaced

by a Kan condition, as the extensions are at each level, not over the whole

structure.

It should be stressed that the main reason for attempting to prove the

theorem as stated (with the weak Kan condition rather than the Kan con-

dition) is that it is possible, and since it is more general, it is a preferable

result. It is also constructive, in that the inductive method of proof gives an

indication of how to build such fillers explicitly.

Before starting, consider the structure of the two simplicial sets, Sd4[n]

and NerSd[n]. Notice first, that 4[n] is a simplicial complex - that is, the

non-degenerate m-simplices are defined as (m + 1)-element subsets of the

vertex set. Recall the notation for an m-simplex of Sd4[n] is(
i0 · · · im
im+1 · · · i2m+1

)

where (i0, · · · , im, im+1, · · · , i2m+1) is a (2m+1)-simplex of4[n], and that the

pth vertex of this m-simplex is

(
ip

im+p+1

)
.

The m-simplices of NerSd[n] may be described by the matrix(
i0 · · · im
j0 · · · jm

)

where (i0, · · · , im), (j0, · · · , jm) are both m-simplices of 4[n], and ik ≤ jk for

all k. The pth vertex of this m-simplex is

(
ip
jp

)
.
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It is clear that the vertices of Sd4[n] and NerSd[n] are the same. There-

fore, to describe both Sd4[n] and NerSd[n], consider the diagram:-

(
0
0

) (
0
n

)

(
n
n

)

where the vertex

(
i
j

)
is on the ith row, in the jth column. The vertices

have a natural partial order on them, given by

(
i0
j0

)
≤
(
i1
j1

)
when

i0 ≤ i1 and j0 ≤ j1 and further

(
i0
j0

)
<

(
i1
j1

)
when i0 ≤ i1 and j0 < j1 or

i0 < i1 and j0 ≤ j1. A “path” in the diagram is defined to be a sequence of

vertices which is strictly increasing.

Note first, that Sd4[n] is a simplicial complex, so that a particular set

of vertices uniquely defines a non-degenerate simplex, and second that both

Sd4[n] and NerSd[n] are contractible, so that in this case the problem of

NerΠ not preserving homotopy type is avoided.

Then, the non-degenerate simplices of Sd4[n] are given by paths which

lie entirely in a rectangle, and the n-simplices are the maximal paths in any
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(p × q)-rectangle, where p + q = n. Thus a non-degenerate m-simplex is

described by a (2×m) -matrix

(
i0 · · · im
im+1 · · · i2m+1

)
where (i0, · · · , i2m+1) is

a (2m+1)-simplex of4[n], and

(
ik

im+k+1

)
<

(
ik+1

im+k+2

)
for all 0 ≤ k < m.

Similarly, the non-degenerate simplices of NerSd[n] are all paths in the

diagram. Thus a non-degenerate m-simplex is described by a (2×m)-matrix(
i0 · · · im
j0 · · · jm

)
where

(
ik
jk

)
<

(
ik+1

jk+1

)
.

Note that the n-simplex

(
0 1 · · · n
0 1 · · · n

)
is in NerSd[n] but not in

Sd4[n], and also, that NerSd[n] has c(n + 1) 2n-simplices - where c(n)

is the nth Catalan number. The nth Catalan number is usually defined as the

number of different bracketings of the word a1a2 · · · an, but there are other

descriptions, one of which is the number of maximal paths under the diagonal

of an (n− 1)× (n− 1)-grid (that is a grid with n vertices on each side). For

a description of Catalan numbers, and some of their properties and uses see

[8] and [27].

As an example, consider Sd4[4]. It may be described by the diagram:
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(
0
0

) (
0
1

)

(
1
1

)

(
0
2

)

(
1
2

)

(
2
2

)

(
0
3

)

(
1
3

)

(
2
3

)

(
3
3

)

(
0
4

)

(
1
4

)

(
2
4

)

(
3
4

)

(
4
4

)

The simplices of Sd4[4] are those paths which lie entirely in a particular

rectangle - specifically, the non-degenerate 4-simplices are(
0 0 0 0 0
0 1 2 3 4

)
,

(
0 0 0 0 1
1 2 3 4 4

)
,

(
0 0 0 1 1
1 2 3 3 4

)
,(

0 0 1 1 1
1 2 2 3 4

)
,

(
0 1 1 1 1
1 1 2 3 4

)
,

(
0 0 0 1 2
2 3 4 4 4

)
,(

0 0 1 1 2
2 3 3 4 4

)
,

(
0 1 1 1 2
2 2 3 4 4

)
,

(
0 0 1 2 2
2 3 3 3 4

)
,(

0 1 1 2 2
2 2 3 3 4

)
,

(
0 1 2 2 2
2 2 2 3 4

)
,

(
0 0 1 2 3
3 4 4 4 4

)
,(

0 1 1 2 3
3 3 4 4 4

)
,

(
0 1 2 2 3
3 3 3 4 4

)
,

(
0 1 2 3 3
3 3 3 3 4

)
,(

0 1 2 3 4
4 4 4 4 4

)
,
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The simplices of NerSd[4] are all the paths of the diagram, and specifi-

cally include the following 8-simplices:(
0 0 0 0 0 1 2 3 4
0 1 2 3 4 4 4 4 4

)
,

(
0 0 0 0 1 1 2 3 4
0 1 2 3 3 4 4 4 4

)
,(

0 0 0 1 1 1 2 3 4
0 1 2 2 3 4 4 4 4

)
,

(
0 0 0 0 1 2 2 3 4
0 1 2 3 3 3 4 4 4

)
,(

0 0 1 1 1 1 2 3 4
0 1 1 2 3 4 4 4 4

)
,

(
0 0 0 1 1 2 2 3 4
0 1 2 2 3 3 4 4 4

)
,(

0 0 0 0 1 2 3 3 4
0 1 2 3 3 3 3 4 4

)
,

(
0 0 0 1 2 2 2 3 4
0 1 2 2 2 3 4 4 4

)
,(

0 0 1 1 1 2 2 3 4
0 1 1 2 3 3 4 4 4

)
,

(
0 0 0 1 1 2 3 3 4
0 1 2 2 3 3 3 4 4

)
,(

0 0 1 1 2 2 2 3 4
0 1 1 2 2 3 4 4 4

)
,

(
0 0 0 1 2 2 3 3 4
0 1 2 2 2 3 3 4 4

)
,(

0 0 1 1 1 2 3 3 4
0 1 1 2 3 3 3 4 4

)
,

(
0 0 1 1 2 2 3 3 4
0 1 1 2 2 3 3 4 4

)
,

To help keep control of the extension, certain definitions will be necessary.

Definition 5.2 (i)

The weight of a vertex,

w : { vertices of Sd4[n]} −→ N, is defined by

w

(
ir
jr

)
=

{
ir if r ≤ n

n− jr if r ≥ n.

Definition 5.2 (ii)

The depth of a 2n-simplex of NerSd[n],

d : {2n− simplices of NerSd[n]} −→ N, is defined by

d :

(
i0 · · · im
j0 · · · jm

)
=

2n∑
r=0

w

(
ir
jr

)
.

This depth function counts the number of squares in the grid (pictured above)

90



which lie under the path described by the 2n-simplex in question.

Definition 5.2 (iii)

Let x be a 2n-simplex in NerSd[n] of depth r (for 1 ≤ r ≤ n(n − 1)/2),

a 2n-simplex of depth (r − 1) will be called a predecessor of x if it differs

from x at one vertex - that is, if they share a common (2n− 1)-simplex. The

number of predecessors of x will be denoted p(x). The number of predecessors

a simplex has is the number of “steps” the path representing it has in the

diagram (irrespective of the height of the steps).

Thus, a path in the diagram may be uniquely described by the vertices

at which the path turns from the vertical to the horizontal - the number

of these vertices being the number of steps, and therefore the number of

predecessors of the 2n-simplex described by the path. It may be helpful to

consider the Hasse diagram of the set of 2n-simplices, where the relation is

“is a predecessor of”. The following is such a diagram for the case n = 4,

with the 2n-simplices denoted pictorially by the paths which represent them,

and each arrow is to a 2n-simplex from one of its predecessors.
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Depth 0

?

Depth 1

@
@R

�
�	

Depth 2

�
�	

@
@R

�
�	

@
@R

Depth 3

? ? ?

���
��

HHH
Hj

Depth 4

? ?

HH
HHj

��
���

��
���

HH
HHj

Depth 5

?

��
���

HH
HHj

Depth 6

More will be said on this in the proof of the main theorem.

If use is to be made of the cosimplicial structure ofNerSd[−] and Sd4[−],

then some idea of it is needed. Consider the diagram used to describe the

two simplicial sets NerSd[n] and Sd4[n]. The image of the cosimplicial

morphism induced by the morphism δi ∈ ∆ is the subdiagram on all those

vertices

(
j
k

)
for which j 6= i and k 6= i. Before attempting to prove the

main general result, consider the first few cases.

Lemma 5.2.1

92



Let X be a cosimplicial simplicial set where Xn is a weak Kan complex

for each n, and let f : Sd4[−] −→ X be a cosimplicial simplicial mor-

phism. Then, there exists a 2-truncated cosimplicial simplicial morphism

f : tr2(NerSd[−]) −→ tr2(X) which extends tr2(f). Here tr2 is the trunca-

tion of the cosimplicial structure at the 2-cosimplices.

The lemma essentially states that the general result holds up to the 2-

cosimplices.

Proof

In this proof, reference will be made to lemma 5.3.1, which will not be proved

until the next section. The lemma, which is not difficult, states the following:

If Y ⊂ 4[n+1] is generated by a set of n-faces of ιn+1, which includes the 0th

and (n+1)th faces, and does not include all the faces, then for any morphism,

f , from Y to a weak Kan complex, there is a morphism from 4[n+ 1] with

the same codomain, which extends f .

Note that NerSd[0] ∼= Sd4[0] ∼= 4[0], and that NerSd[1] ∼= 4[2] and

Sd4[1] ∼= ∧1[2]. Thus, f
0

= f 0 and f
1

is defined by the weak Kan property of

X1, and the two must match up over the cosimplicial structure since f
0

= f 0.

The case n = 2. The morphism f
2

is defined on the four non-degenerate

2-simplices of Sd4[2] by f 2, that is(
0 0 0
0 1 2

)
,

(
0 0 1
1 2 2

)
,

(
0 1 1
1 1 2

)
, and

(
0 1 2
2 2 2

)
, and further, it is

defined on three more non-degenerate 2-simplices of NerSd[2] by inducting

up the coskeleton of X; these are
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(
0 0 1
0 1 1

)
,

(
0 0 2
0 2 2

)
and

(
1 1 2
1 2 2

)
.

Consider the 4-simplex of NerSd[2]:

(
0 0 0 1 2
0 1 2 2 2

)
.

As already shown, f
2

has been defined over four of its 2-simplices (those

not containing

(
1
1

)
). Using lemma 5.3.1, it is possible to extend f

over the 3-simplices

(
0 0 0 1
0 1 2 2

)
and

(
0 0 1 2
1 2 2 2

)
. If it were not for

the 2-simplex

(
0 0 2
0 2 2

)
the extension would now be easy to define over(

0 0 1 1 2
0 1 1 2 2

)
by using lemma 5.3.1 once again. Instead, a little care

must be taken: f may be extended over the three simplex

(
0 0 0 2
0 1 2 2

)

since f

(
0 0 0
0 1 2

)
, f

(
0 0 2
0 2 2

)
and f

(
0 0 2
1 2 2

)
have all been defined,

but f

(
0 0 2
0 1 2

)
has not, and so the first three simplices form a simplicial

2-horn in X2.

Thus f has been defined over three of the 3-simplices which are faces of(
0 0 0 1 2
0 1 2 2 2

)
, including the 0th and 4th. Thus lemma 5.3.1 allows f to

be extended to cover the 4-simplex itself.

Now consider the simplices of

(
0 0 1 1 2
0 1 1 2 2

)
over which f has already

been defined. Certainly it covers the 3-simplex

(
0 0 1 2
0 1 2 2

)
since this is

the only 3-simplex present in both 4-simplices. It also covers the three sim-

plices

(
0 0 1
0 1 1

)
,

(
0 1 1
1 1 2

)
, and

(
1 1 2
1 2 2

)
. Therefore it is possible

to extend f to cover

(
0 0 1 1
0 1 1 2

)
and

(
0 1 1 1
1 1 2 2

)
since for each of
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these 3-simplices f has been defined over three faces (including the 0th and

3rd in each case). This means that f may be extended to cover the three

of the 3-simplices which are faces of

(
0 0 1 1 2
0 1 1 2 2

)
, namely the 0th, 2nd

and 4th. Therefore the f may be defined as stated.

As may be seen by this part of the theorem, the problem is not in having

too few simplices over which f is already defined, but in having too many. It

is also clear that to attempt to prove the main result using the “bare hands”

approach of lemma 5.2.1 would be impractical.

It is necessary to define and develop a concept of weak anodyne extension,

which will have the same property with respect to weak Kan complexes that

anodyne extensions have with respect to Kan complexes. The next section

does precisely that.

5.3 Weak Anodyne Extensions

Definition 5.3 (i)

A Weak Anodyne Extension is a morphism i : Y → X which is obtainable by

a finite sequence Y
i1→ Y1

i2→ Y2 · · ·Yn−1
in→ Yn = X where there is a pushout

diagram
∧k[m] ↪→ 4[m]

↓ ↓
Yj −→ Yj+1

for all 0 < j < n, for some 0 < k < m.

This definition lacks the categorical elegance of the definition of anodyne
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extension ([25]), and it may be possible to redefine the definition of weak

anodyne extension along the same lines. However, the definition given here

is sufficient for the purposes of this thesis.

The following technical lemmas prove that the embedding

Y −→ 4[n + 1] is a weak anodyne extension, for certain subsimplicial sets,

Y , of a standard n+ 1-simplex.

Lemma 5.3.1

Let Y ⊂ 4[n+1] be generated by the n-simplices, dγj
ιn+1 for 0 ≤ j ≤ r, where

1 ≤ r ≤ n, γj < γj+1 for 0 ≤ j ≤ r − 1. Then the inclusion Y −→ 4[n+ 1]

is an anodyne extension, and if γ0 = 0, γr = n + 1, then the inclusion is a

weak anodyne extension.

Proof

The proof is by induction. First consider the case n = 1. In this case, r = 1

and so (γ0, γ1) ∈ {(0, 1), (0, 2), (1, 2)}. Therefore Y is a k-horn ∧k[2], (for

0 ≤ k ≤ 2), and so the result is trivial (as in all three cases, the embedding

of Y in 4[2] is an anodyne extension, and it is a weak anodyne extension in

precisely the case k = 1).

Next, assume that the result is true for all m < n and for all 1 ≤ r ≤ m.

Consider a set as described in the statement of the lemma. If r = n then the

simplices constitute a k-horn ∧k[n + 1] for some k (since there is precisely

one k with k 6= γj for all 0 ≤ j ≤ n) and so the result is (again) trivial.

Then assume r < n. Let s be the smallest integer not equal to any of the
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γj. Consider the following set of (n− 1)-simplices:

dγj
dsιn+1 for γj < s and dγj−1dsιn+1 = for γj > s.

These simplices are a set of faces of the n-simplex < dsιn+1 >. Note

that the face d0dsιn+1 is present iff γ0 = 0 and the face dndsιn+1 is present iff

γr = n+ 1. Further, these simplices generate Y ∩ < dsιn+1 >⊂< dsιn+1 >.

Thus, by induction, the embedding is an anodyne extension, and is weak

anodyne if the 0th and nth faces are present in the set.

So, Y −→ Y ∪ < dsιn+1 >:= Y1 is an anodyne extension, and is a weak

anodyne extension when the faces d0ιn+1 and dn+1ιn+1 are both present in

the set of generators of Y .

If r + 1 = n, then Y1
∼= ∧k[n + 1] for some k; if not, repeat the process

with a new s. Thus, it is possible to obtain a chain of anodyne extensions

Y → Y1 → · · · → Yn−r ∼= ∧k[n + 1] for some k, and these extensions are all

weak anodyne extensions if the generators of Y include the faces d0ιn+1 and

dn+1ιn+1. Thus the lemma is proved.

Lemma 5.3.2

Let Y be the subsimplicial set of 4[n + 1] generated by two simplices

x = dα0 ιn+1 and y = dβn+2−βιn+1, where 1 ≤ α, β ≤ n and α + β ≤ n + 1.

Then the inclusion i : Y −→ 4[n+ 1] is a weak anodyne extension.

Proof

Let n = 1. Then α = β = 1 and the subsimplicial set generated by x and y
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is ∧1[2]. The embedding of this into 4[2] is weak anodyne. Then, assume

the lemma has been proved for all cases up to n − 1. The case α = β = 1

has been dealt with by lemma 5.3.1.

Consider the case α ≥ β ≥ 1. Then d0y and x are in the standard

n-simplex generated by d0ιn+1. The subsimplicial set generated by x and

d0y embeds into the standard n-simplex generated by d0ιn+1, and since

dα−1
0 (d0ιn+1) = x, and d0d

β
n+2−βy = dβn+1−βd0y, the embedding is a weak

anodyne extension.

Then, d0ιn+1 and y are n-simplices with d0y = dnd0ιn+1 and so the sub-

simplicial set generated by them embeds into 4[n + 1] by a weak anodyne

extension. (The case β ≥ α ≥ 1 is conjugate to this).

Lemma 5.3.3

Let Y be the subsimplicial set of4[n+1] generated by the simplices x0, · · · , xk,

where xi is an mi-simplex, d
αi−1

0 xi−1 = dβi
mi−βi+1xi for 1 ≤ i ≤ k−1, βi, αi > 0

for all i and m0 +
∑k
i=1 βi =

∑k−1
i=0 αi + mk = n + 1. Then the inclusion

Y −→ 4[n+ 1] is a weak anodyne extension.

Proof

The case k = 1 has been dealt with by lemma 5.3.2. Assume that the lemma

has been dealt with for all k for all m < n + 1, and for m = n + 1 for all

cases up to k − 1.

Then, given Y generated by x0, · · · , xk as described in the statement of
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the theorem, the subsimplicial set generated by x0, · · · , xk−1 embeds into

the subsimplicial set generated by dβk
mk−βk+1ιn+1, and by the inductive as-

sumption this embedding is a weak anodyne extension. Then, the simplicial

set generated by xk and dβk
mk−βk+1ιn+1 satisfy the conditions of lemma 5.3.2.

Corollary 5.3.4

Let X be the simplicial complex with vertices 0 < 1 < · · · < 2n , generated

by the n-simplices (s, s + 1, · · · , s + n) for 0 ≤ s ≤ n, and let X ′ be the

2n-simplex (0, 1, · · · , 2n). Then the natural inclusion i : X −→ X ′ is a weak

anodyne extension.

Proof

Consider the pair of simplices (s, s+ 1, · · · , s+n), (s+ 1, s+ 2, · · · , s+n+ 1)

for any 0 ≤ s ≤ n − 1. The pair satisfies the conditions of lemma 5.3.1,

with r = 1 and γ0 = 0, γ1 = n. Thus the embedding of the pair into the

n+1-simplex (s, s+1, · · · , s+n+1) is a weak anodyne extension. Thus there

is a weak anodyne extension from X to the simplicial complex generated by

the n+ 1-simplices (s, s+ 1, · · · , s+ n+ 1) for 0 ≤ s ≤ n− 1. Repeating the

process inductively extends the simplicial complex X to X ′ as required.

Let X be the simplicial set which is the 2n-simplex on the vertices(
0
0

)
,

(
0
1

)
· · ·

(
0
n

)
,

(
1
n

)
, · · ·

(
n
n

)
. The corollary effectively proves

that Sd4[n] −→ Sd4[n] ∪X is a weak anodyne extension.
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Lemma 5.3.5

Let Y ⊂ 4[n + 1] be generated by the n-simplices dγj
ιn+1, for 0 ≤ j ≤ r,

where 1 ≤ r ≤ n, γj ≤ γj+1 for 0 ≤ j ≤ r−1. The embedding Y −→ 4[n+1]

is a weak anodyne extension if there is some c, γ0 < c < γr, with c 6= γj for

all 0 ≤ j ≤ r.

Proof

Consider the case n = 1. In this case, the conditions require that Y be

generated by precisely two 1-simplices. If one of them is d0ι2 and the other

d2ι2, then the conditions are satisfied for weak anodyne extension: if not,

then the conditions fail (but anodyne extension is possible).

Now, assume that the lemma is true for all n < m. Let Y be generated

by the m-simplices dγj
ιm+1 for 0 ≤ j ≤ r, where 1 ≤ r ≤ m, and assume

that there is some c where γ0 < c < γr and c 6= γj for all 0 ≤ j ≤ r.

If γ0 6= 0, then consider the simplices d0dγj
ιm+1 = dγj−1d0ιm+1. These

(m−1)-simplices form a set of generators for Y ∩ < d0ιm+1 >⊂< d0ιm+1 >,

and since c − 1 6= γj − 1 and γ0 − 1 < c − 1 < γj − 1, they satisfy the con-

ditions of the lemma, and so by induction, Y ∩ < d0ιm+1 >−→< d0ιm+1 >

is a weak anodyne extension, and so Y −→ Y ∪ < d0ιm+1 > is a weak

anodyne extension. Thus, it is possible to extend Y by weak anodyne ex-

tensions to a simplicial subcomplex Y ′ ⊂ 4[m+ 1] where Y ′ is generated by

d0ιm+1, dγ0ιm+1, dγ1ιm+1, · · · , dγrιm+1.

If γr 6= m+1, then consider the simplex dmd0ιm+1 = d0dm+1ιm+1 together

with the simplices dmdγj
ιm+1 = dγj

dm+1ιm+1. These (m − 1)-simplices form
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the generators of Y ′∩ < dm+1ιm+1 > and they satisfy the conditions of the

lemma (since 0 ≤ γ0 < c < γr and c 6= 0 and c 6= γj for 0 ≤ j ≤ r). Thus

it is possible to extend Y ′ by a weak anodyne extension to a simplicial set

Y ′′ ⊂ 4[m+ 1], where Y ′′ is generated by the m-simplices d0ιm+1, dm+1ιm+1

and dγj
ιm+1 for 0 ≤ j ≤ r, 1 ≤ r ≤ m.

Since 0 6= c and m + 1 6= c, it is still true that none of the generators is

dcιm+1, and so by lemma 5.3.1 Y ′′ −→ 4[m+1] is a weak anodyne extension,

and so Y −→ 4[m+ 1] is a weak anodyne extension.

Lemma 5.3.6

Let Y ⊂ 4[n+ 1] be generated by the following simplices:

dα0 ιn+1 (for 1 ≤ α ≤ n), dβn+2−βιn+1 (for 1 ≤ β ≤ n), dγj
ιn+1 (for 1 ≤ j ≤ p,

0 ≤ p ≤ n and 0 < γj < γj+1 < n + 1) and dρk
dκk

ιn+1 (for 1 ≤ k ≤ q,

0 ≤ q ≤ n
2
, 0 < ρk < ρk+1 < n+ 1, 1 < ρk + 1 < κk < n+ 1),

where p = 0 implies the set of n-simplices is empty, q = 0 implies the set of

n − 1-simplices is empty, all the ρk,κk and γj are distinct, 2q + p < n and

the (n− 1) and n-simplices are maximal in Y . If there is a c, 0 < c < n+ 1

such that the cth vertex of ιn+1 is a vertex of all the generators of Y , then

Y −→ 4[n+ 1] is a weak anodyne extension.

Proof

If both p = 0 and q = 0, then the lemma reduces to lemma 5.3.2, and so is

proved. If n = 1, then Y ∼= ∧1[2], and so the lemma is trivial. Note, the

conditions on ρk and κk imply that q = 0 unless n ≥ 4.
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Assume the lemma is true for 1 ≤ n < m and consider Y ⊂ 4[n + 1]

as described. Consider Y ∩ dκqιn+1. The conditions on the vertex, c, imply

that the simplices dα0 ιn+1 and dβn+2−βιn+1 span the vertices of 4[n+1]. Thus,

either α ≥ κq or n+ 2− β ≤ κq.

If α ≥ κq and κq < n + 2 − β, then Y ∩ < dρ1ιn+1 > is generated

by dα0 ιn+1 = dα−1
0 dκqιn+1, dβn+1−βdκqιn+1, the n − 1-simplices dγj

dκqιn+1 for

γj < κq, dγj−1dκqιn+1 for γj > κq, dρqdκqιn+1 and the n − 2-simplices

dρk
dκk

dκqιn+1 for 1 ≤ k ≤ q − 1. If c < κq then the cth vertex of dκqιn+1

is in all the simplices described, and if c > κq, then the (c − 1)th vertex of

dsqιn+1 is in all the simplices described.

In neither case is it an end vertex (i.e. 0 < c < n or 0 < c− 1 < n which

ever is applicable), and further, β < n because if β = n, then dn+1−βdκqιn+1

would be a vertex, whereas the existence of c implies it is at least a 1-simplex.

Lastly, the number of n−3-simplices is q−1, and the number of n−1-simplices

is p+1 and 2(q−1)+(p+1) = 2q+p−1 < n−1 as required by the conditions

of the Lemma.

Thus, Y ∩ < dκqιn+1 >−→< dκqιn+1 > is a weak anodyne extension (by

induction) and so Y −→ Y ∪ < dsqιn+1 >:= Y1 is a weak anodyne extension.

If κq > α and κq ≥ n + 2 − β, then the generators of Y ∩ < dκqιn+1 >

are the same as before, except that dα0 ιn+1 is replaced with dα0dκqιn+1 and

dβn+1−βdκqιn+1 is replaced with dβn+2−βιn+1 = dβ−1
n+2−βdκqιn+1. The problem

now is the possibility that α = n, but just as before, the existence of the

vertex c means that this is not a problem. Thus, Y1 may be defined as above,
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and Y −→ Y1 is a weak anodyne extension.

Lastly, if κq ≤ α and κq ≥ n + 2 − β, then the first two generators of

Y ∩ < dκqιn+1 > become

dα0 ιn+1 = dα−1
0 dκqιn+1 and dβn+2−βιn+1 = dβ−1

n+2−βdκqιn+1,

and so Y1 may be defined as before.

Then, Y1 is generated by a set of simplices as described by the initial con-

ditions, except that there is one more n-simplex, and one less

n− 1-simplex. Continuing this process, it is possible to define a set chain of

weak anodyne extensions Y → Y1 → · · · → Yq, where Yq is generated by the

p+ q n-simplices dγj
ιn+1 (for 1 ≤ j ≤ p) dρk

ιn+1 (for 1 ≤ k ≤ q) and the two

simplices dα0 ιn+1, and dβn+2−βιn+1.

If c = 1, then dα0 ιn+1 is maximal, and further must be d0ιn+1. Consider

Yq∩ < dβ−1
n+3−βιn+1 >. It is generated by a set of (n + 2 − β)-simplices in-

cluding the 0th and (n+ 3− β)th faces, and so

Yq∩ < dβ−1
n+3−βιn+1 >−→< dβ−1

n+3−βιn+1 > is a weak anodyne extension.

So Yq −→ Yq∪ < dβ−1
n+3−βιn+1 > is a weak anodyne extension. Clearly this

process may be continued, extending the system to Y ′ generated by the n-

simplices d0ιn+1, dn+1ιn+1, dγj
ιn+1 and dρk

ιn+1 and specifically missing the

face

d1ιn+1. Thus, by lemma 5.3.1 Y ′ −→ 4[n+ 1] is a weak anodyne extension,

so Y −→ Yq −→ Y ′ −→ 4[n+ 1] is a chain of weak anodyne extensions.

If, rather c = n, the conjugate argument works, that is dβn+2−βιn+1 must
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be dn+1ιn+1, and the induction is defined on dα0 ιn+1.

In the case 1 < c < n, then Yq∩ < d0ιn+1 > is generated by a suitable

system of simplices and the (c − 1)th vertex of d0ιn+1 (0 < c − 1 < n) is in

all the simplices generating Yq∩ < d0ιn+1 >.

Thus, Yq −→ Yq ∪ Yq∩ < d0ιn+1 > is a weak anodyne extension, and

similarly, (Yq ∪∩ < d0ιn+1 >)∩ < dn+1ιn+1 > is generated by a suitable set

of simplices, and the cth vertex of dn+1ιn+1 (0 < c < n) is in all the simplices

generating (Yq ∪ ∩ < d0ιn+1 >)∩ < dn+1ιn+1 > and so

Yq −→ Y ′ −→ 4[n+ 1] is a weak anodyne extension.

This completes the proof of the lemma.

One more lemma of this form is needed before moving on to the next

section, where they are put into practice.

Lemma 5.3.7

Let Y ⊂ 4[n+ 1] be generated by the following simplices:

x0, x1 · · · , xl (for l ≥ 1),

dγj
ιn+1 (for 1 ≤ j ≤ p, 0 ≤ p ≤ n and 0 < γj < γj+1 < n+ 1)

and dρk
dκk

ιn+1 (for 1 ≤ k ≤ q 0 ≤ q ≤ n
2
, 0 < ρk < ρk+1 < n+ 1,

1 < ρk + 1 < κk < n+ 1),

where p = 0 implies the set of n-simplices is empty,

q = 0 implies the set of n− 1-simplices is empty,

all the ρk, κk and γj are distinct,

xi is an mi-simplex (where mi ≥ 1 for 0 ≤ i ≤ l),
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x0 = dn+1−m0
m0+1 ιn+1, xl = dn+1−ml

0 , d
αi−1

0 xi−1 = dβi
mi+1−βi

xi

(for 1 ≤ i ≤ l, where αi ≥ 1, βi ≥ 1,
∑l−1
i=0 αi+ml = m0 +

∑l
i=1 βi = n+1

and m0 + ml ≥ n + 1), where all these generators with the exception of x0

and xr are maximal in Y and 2q + p < n.

If for each pair xη, xη+1 there is a cη,
∑η−1
i=0 αi + 1 < cη <

∑η
i=0 αi +mi+1

such that the cthη vertex of ιn+1 is a vertex of dγj
ιn+1 for 1 ≤ j ≤ p and dρk

dκk

for 1 ≤ k ≤ q, then Y −→ 4[n+ 1] is a weak anodyne extension.

Proof

If l = 1, the proposition reduces to lemma 5.3.6 . Consider a system as

described, and assume that the proposition holds for any similar system

with either a smaller n or a smaller l.

Consider x0 and xl. They have at least one common vertex. If ρ1 is not

the only common vertex of x0 and xl, then define Y ′ := Y ∩ < dρ1ιn+1 >.

Then, Y ′ is generated by (xi ∩ dρ1ιn+1) (for 0 ≤ i ≤ l), dγj
dρ1ιn+1 (for

γj < ρ1), dγj−1dρ1ιn+1 (for γj > ρ1), dκ1−1dρ1ιn+1 and dρk−1dκk−1dρ1 (for

2 ≤ k ≤ q).

These generators satisfy the conditions of the proposition: in particular,

the xi still intersect as before, because it is assumed that ρ1 is not the only

connecting vertex for x0 and xl; there are now q−1 (n−2)-simplex generators

and p + 1 (n − 1)-simplex generators (and 2(q − 1) + p + 1 < n − 1 as

required). Thus, Y ′ −→< dρ1ιn+1 > is a weak anodyne extension, and

therefore Y −→ Y ∪ < dρ1ιn+1 > is a weak anodyne extension.

If ρ1 is the only vertex common to both x0 and xl, then define
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Y ′ := Y ∩ < dκ1ιn+1 >. The definition of (n − 1)-simplex and n-simplex

generators is a little more involved, the proof is essentially the same.

Define Y1 := Y ∪ < dρ1ιn+1 > in the first case, and

Y1 := Y ∪ < dκ1ιn+1 > in the second. The generators xi may be altered

by this, in particular, the generators x2, · · · xl−1 may become redundant, and

the generators x0 and xl may be subfaces of larger simplices. However, they

will still meet (in fact, the overlap may be increased) and so the Y1 will still

be generated by a set of simplices which satisfies the conditions.

This process may then be continued, so that there is a chain of weak

anodyne extensions, Y −→ Y1 · · · → Yq, where Yk := Yk−1∪ < dρk
ιn+1 >

if ρk is not the only vertex common to x0 and xl (where these are taken to

be the modified x0 and xl of Yk−1), and where Yk := Yk−1∪ < sκk
ιn+1 >

otherwise.

Thus Yq will be generated by a set of n-simplices, dγj
ιn+1 (for 1 ≤ j ≤ p),

(for each 1 ≤ k ≤ q) either dρk
ιn+1 or dκk

ιn+1, and a set of overlapping

simplices, x0, · · · , xl′ (where l′ ≤ l). We will assume that the notation for

Yq alters from that of Y , so that all the n-simplex generators will be dγj
ιn+1

for 1 ≤ j ≤ p + q, and the overlaps of the xi’s (which will be described as

mi-simplices) will be described by the αi’s and βi’s as before.

Then, consider Y ′′ := Yq∩ < dα0
0 ιn+1 >. If α0 ≥ γ1, then xl overlaps all

the xi for 1 ≤ i ≤ l′ − 1, which means that l′ = 1, and so the theorem is

reduced to lemma 5.3.6.

Otherwise, if α0 + 1 6= γ1, then Y ′′ will be the simplicial subset of
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< dα0
0 ιn+1 > generated by the simplices x1, · · · , xl, together with the

(n − α0)-simplices dγj−α0d
α0
0 ιn+1. This set of generators satisfies the condi-

tions of the theorem, and so by induction, Yq −→ Yq∪ < dα0
0 ιn+1 > is a weak

anodyne extension. But Yq∪ < dα0
0 ιn+1 > is generated by the n-simplices

dγj
ιn+1 together with x0 and dα0

0 ιn+1, and so there is a weak anodyne exten-

sion Yq∪ < dα0
0 >−→ 4[n+ 1] by lemma 5.3.1, again.

If γ1 = α0 + 1, then Y ′′ is generated by the n−α0-simplices dγj−α0d
α0
0 ιn+1

(for 2 ≤ j ≤ p+q) and by the simplices x2 and dα0+1
0 ιn+1 = dα0

0 dγ1ιn+1. There-

fore, again, the extension is reduced to lemma 5.3.6, and so

Y ′′ −→< dα0
0 ιn+1 > is a weak anodyne extension, and so

Yq∪ < dα0
0 >−→ 4[n+ 1] is a weak anodyne extension.

This completes the proof of the proposition.

It is now possible to prove the main result. It must be said that while

it lacks both the “bare hands” approach of lemma 5.2.1, and the technical

messiness of the lemmas from the last section, it could in no way be described

as elegant.

5.4 The Main Result

Theorem 5.4.1 Let X be a cosimplicial simplicial set where Xn is a weak

Kan complex for each n, and let f : Sd4[−] −→ X be a cosimplicial

simplicial morphism. Then, there exists a cosimplicial simplicial morphism
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f : (NerSd[−]) −→ X which extends f .

Proof

Lemma 5.2.1 proved that it was possible to define the extension up to the

second level. Therefore, assume that f has been defined over trn−1NerSd[−]

and consider level n (where n ≥ 3).

By means of the n− 1 coskeleton (the images of

NerSd(δi) : NerSd[n − 1] −→ NerSd[n]) f
n

may be defined for a large

amount of the structure of NerSd[n].

In lemma 5.2.1, f
2

was defined over the 2n-simplex of depth 0 before it

was defined over the 2n-simplex of depth 1. This will be a principle for the

general case, that f must be defined on the 2n-simplices of depth less than

r before they are defined on those of depth r. This will ensure that before

f is defined on a 2n-simplex, it is defined on all its predecessors. Thus, the

process must start with the 2n-simplex of depth 0.

Therefore, consider the simplices of

(
0 0 · · · 0 1 · · · n
0 1 · · · n n · · · n

)
over

which f
n

has been defined. These are all the n-simplices of Sd4[n], (of

which there are n+ 1), together with the n− 1 2n− 2-simplices which come

from extending over the coskeleton, that is:(
0 · · · 0 0 · · · 0 · · · i− 1 i+ 1 · · · n
0 · · · i− 1 i+ 1 · · · n · · · n n · · · n

)
for 0 < i < n.

Consider this in the notation of proposition 5.3.7: n is 2n− 1, the xi are

the n-simplices arising from Sd4[n], and the simplices dρk
dκk

ι2n are those

arising from NerSd[n − 1], where ρk = k, κk = n + k and 1 ≤ k ≤ n − 1.

Since the nth vertex is common to all these generators, the embedding of the
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subsimplicial set generated by these simplices into the 2n-simplex of depth

0 is a weak anodyne extension, and so f may be extended over it.

Next, consider the 2n-simplex of depth 1. In this case, f is already

defined on the n-simplices

(
0 · · · 0 1
0 · · · n− 1 n− 1

)
,

(
1 1 · · · n

n− 1 n · · · n

)

and

(
0 · · · 0 1 1 · · · i
i · · · n− 1 n− 1 n · · · n

)
(for 1 ≤ i ≤ n− 1),

on the (2n− 2)-simplices(
0 · · · 0 0 · · · 0 1 1 · · · j − 1 j + 1 · · ·n
0 · · · j − 1 j + 1 · · · n− 1 n− 1 n · · · n n · · ·n

)

(for 2 ≤ j ≤ n−2), and on the 2n−1-simplex

(
0 · · · 0 1 · · · n
0 · · · n− 1 n · · · n

)
.

Again, the generators satisfy the conditions of proposition 5.3.7, although

this time there is no vertex common to all the simplices. In fact, the (n−1)th

vertex of ι2n is common to all the simplices except

(
1 1 · · · n

n− 1 n · · · n

)
, and

the (n+ 1)th vertex of ι2n is common to all the simplices except(
0 · · · 0 1
0 · · · n− 1 n− 1

)
.

Thus the embedding of the subsimplicial set generated by these simplices

into the 2n-simplex of depth 1 is a weak anodyne extension, and so f may

be further extended, so that is defined on it.

Now, consider x, a general non-degenerate 2n-simplex of NerSd[n], and

assume that f has been defined over all the simplices of less depth than x: in

particular, over all its predecessors. Note, that it does not matter in which

order the simplices of a certain depth are dealt with, as the simplices common

to two 2n-simplices of the same depth are contained in a 2n-simplex of less

depth.
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Let Y ⊂< x > be generated by the simplices of < x > on which f has

been defined up to that point: if it can be shown that Y −→< x > is a

weak anodyne extension (by proposition 5.3.7), then f can be extended over

x and so over the whole of NerSd[n].

As has been noted earlier, x is determined by the vertices of NerSd[n]

where the path describing x turns from the vertical to the horizontal. Assume

that x turns at the vertices:

{(
γ′j
γ′′j

)
| 0 ≤ γ′j ≤ γ′′j ≤ n, 1 ≤ j ≤ p

}
.

Note that each of x’s predecessors intersects x in a (2n− 1)-simplex, and

the missing vertex in each of these faces is one of the turning points of x, so

that in the notation of proposition 5.3.7, γj = γ′j + γ′′j .

Then, δk(NerSd[n− 1]) intersects x in a (2n− 2)-simplex for 0 < k < n,

precisely when k 6= γ′j, γ
′′
j for all 1 ≤ j ≤ p.

Further, δ0(NerSd[n− 1]) and δn(NerSd[n− 1]) give x0 and xl (so long

as x has depth greater than 1), and m0,ml ≥ n (and so x0 and xl will always

connect with each other).

Lastly, Sd4[n] intersects with x in the n-simplices ψm,n, for γ′p ≤ m ≤ γ′′1 ,

where ψm,n is the nondegenerate n-simplex of x which has initial vertex the

mth vertex of x, and final vertex the (m + n)th vertex of x. Note that these

simplices only occur when γ′p ≤ γ′′1 . Otherwise, the simplices common to x

and Sd4[n] are contained in the simplices already described.

It only remains to show that there are suitable common vertices for these

simplices so that proposition 5.3.7 may be used. A moment of thought will

show that

(
0
γ′′1

)
is common to all except x0, which is

(
0 · · · γ′p
0 · · · n− 1

)
,
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and that

(
γ′p
n

)
is common to all except xl, which is

(
1 · · · n
γ′′1 · · · n

)
.

Therefore, so long as γ′p ≤ γ′′1 , this will be sufficient (as in this case, l ≥ 2).

If it is not the case, then l = 1, and a common vertex for all the generating

simplices is required. Note that if p = 1, then γ′p = γ′1 ≤ γ′′1 . Thus, if l = 1,

then p ≥ 2.

Now consider the vertex

(
γ′1

γ′′1 + 1

)
. This vertex is clearly common to

all the 2n− 1-simplices on which f is already defined. It is also common to

all the 2n − 2-simplices which derive from δkNerSd[n − 1] since these are

only relevant when k 6= γ′j, γ
′′
j for 1 ≤ j ≤ p. Lastly, it is common to both x0

and x1, since 1 ≤ γ′1 ≤ n− 1 and 1 ≤ γ′′1 + 1 ≤ γ′′2 ≤ n− 1.

This concludes the proof of the theorem.
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Chapter 6

A Van Kampen Type Theorem

The aim of this chapter is describe how the ideas of subdivision and extension

outlined in the last two chapters may be used to obtain Van Kampen type

results in the category of simplicially enriched groupoids.

It should be stressed at this point that the classical Van Kampen theorem,

and similar results in the literature all deal with topological data, rather

than with topological spaces: the classical Van Kampen Theorem deals with

pointed spaces, the Van Kampen for the fundamental groupoid deals with

spaces with a set of base points (see [9]), the Van Kampen Theorem for

crossed complexes deals with filtered topological spaces (see [11]), and the

Van Kampen Theorem for catn-groups deals with n-cubes of spaces (see

[13]). It is also noticeable that strong connectivity conditions are needed in

all cases. However, these results do make the actual calculation of homotopy

invariants for certain types of data easier.

The main result of this chapter is simply about the preservation of certain

pushouts in the category of topological spaces by a functor which is a quotient
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of the loop groupoid functor. It does not give an explicit way of calculating

homotopy types of particular spaces; it is best thought of as a staging post

between the loop groupoid functor (which does not satisfy such a theorem)

and the fundamental constructions mentioned in the last paragraph (which

do). Subtler questions, for example the particular place of CW-complexes

and free objects in relation to this work, will not be discussed, since the

theory is not yet in an advanced enough state to be able to handle such

question.

Before starting, recall the cosimplicial topological morphism

τ∗ : 4∗ −→ 4∗ ∗ 4∗ defined by

τn(t0, t1, · · · , tn) = (
t0
2
,
t1
2
, · · · , tn

2
,
t0
2
, · · · , tn

2
)

which was introduced in section 4.2.

It induced a cosimplicial simplicial morphism τ ∗∗ : SdSingW −→ SingW ,

which took a subdivided simplex in SdSingW to what was geometrically

expected of a subdivision.

It will also be necessary to work with three different adjunctions:

| − | aSing (introduced in section 2.6), ΠaNer (introduced in section 2.2)

and GaW (introduced in section 2.3). Although the unit and counit of the

|−| aSing adjunction will not be explicitly needed, the units of the other two

adjunctions will be. To avoid confusion, the following convention has been

adopted: η and ε shall denote the unit and counit of the GaW adjunction

respectively; the unit of the ΠaNer adjunction will be denoted by λ. The
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counit is always an identity, and will be ignored.

Further, given a topological space W and a simplicial set X, then

σ ∈ SS(X,SingW) will also be used to denote the bijective image in

T op(|X|,W), as well as the subspace σ(|X|) ⊂ W .

6.1 Preliminaries

Let W = U ∪ V , where U and V are open path-connected topological sub-

spaces of W such that U ∩ V is open. This means that the commuting

diagram
U ∩ V −→ U

↓ ↓
V −→ W

is a push out in the category of topological spaces.

For the rest of this chapter, a “Van Kampen type theorem” is a theorem

about the preservation of this pushout in topological spaces by some functor

from topological spaces to an algebraic category. As noted at the beginning

of this chapter, this is a very specific use of the term. It is justified on the

grounds that this chapter is a move towards connecting the general properties

of the loop groupoid functor with the special (and powerful) properties of

fundamental constructions.

The loop groupoid functor is a left adjoint, and so preserves all colimits

in simplicial sets. However, the singular complex functor from topological

spaces to simplicial sets is a right adjoint, and it does not preserve pushouts.
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Specifically, the pushout of the diagram:

Sing(U ∩ V) −→ SingU
↓

SingV

is
Sing(U ∩ V) −→ SingU

↓ ↓
SingV −→ SingU ∪ SingV

and in general , SingU ∪ SingV 6= SingW .

Further, SingW is a Kan complex, for any W . This is because there is a

retraction in T op, r : 4n −→ |∧k [n]|, and so for any arrow f : |∧k [n]| −→ W ,

there is a “filler”, that is the arrow fr. However, in general SingU ∪ SingV

is not Kan.

The problem of obtaining a Van Kampen Type theorem for a functor

which factors through the singular complex functor, is essentially the problem

of inverting the unique morphism, (defined by the pushout) which embeds

SingU ∪ SingV into SingW .

It has been noted already that |NerSd[n]|, |Sd4[n]| and |4[n]| are all

contractible. It turns out that there are retractions from |NerSd[n]| onto

each of the other two spaces.

6.2 Retractions

Recall that |4[n]| ∼= 4n := {(t0, · · · , tn) |∑n
i=0 ti = 1 , ti ≥ 0}.

Now |Sd4[n]| comprises (as was noted earlier) 2n copies of 4n glued

together into a “larger” copy of 4n. However, it will be easier to think of
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Sd4[n] as it was first defined: Sd4[n] ∼=
∫ p,q ∆([p]or[q], [n]) · (4[p]×4[q]).

In this way, |Sd4[n]| ∼=
∫ p,q ∆([p]or[q], [n]) · (4p ×4q).

Similarly, recall (section 5.2) NerSd[n] ∼= Subdiag(4[n] × 4[n]) (the

subdiagonal of 4[n]×4[n]), and so |NerSd[n]| ∼= Subdiag(4n ×4n). This

is the topological space {(x, y) |x, y ∈ 4n and x ≤ y }.

Note that for two n-simplices x ≤ y if and only if
∑a
i=0 xi ≤

∑a
i=0 yi for

all 0 ≤ a ≤ n.

As an example, consider the square 4[1]×4[1].

(1,0),(1,0)

(1,0),(0,1)

(0,1),(1,0)

(0,1),(0,1)

-�
�
�
�
�
�
�
�
�
�
�
��6
-
6

The subdiagonal is the lower triangle, and this is defined by

{((x, 1− x), (y, 1− y)) |x ≤ y }.

So , for x = (x, 1− x) and y = (y, 1− y), x ≤ y means x ≤ y.

Proposition 6.2.1

Recall that ∂ denotes the diagonal embedding, and so ∂ : 4[n] −→ NerSd[n]
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is the map which sends the vertex i to the vertex

(
i
i

)
. Then, let |∂| :

4n −→ |NerSd[n]| be the map induced by ∂ : 4[n] −→ NerSd[n].

Then there is a morphism Avn : |NerSd[n]| −→ 4n, such that Avn is a

retraction, and Avn|∂| = id4n.

Proof

The map |∂| : 4n −→ |NerSd[n]| is given by |∂| : x 7→ (x, x). Then define

Av : |NerSd[n]| −→ 4n by Av : (x, y) 7→
x+ y

2
.

It is clear that Avn|∂| = id4n .

Before proving a similar proposition for |NerSd[n]| and |Sd4[n]|, it will

be necessary to describe the map |λn| : |Sd4[n]| 7→ |NerSd[n]|, which is in-

duced by λSd4[n]. (Recall that λ∗ denotes the unit of the adjunction ΠaNer.)

The definition of |Sd4[n]| implies that it consists of a set of (p, q) prisms,

one for each distinct pair (p, q) with p+ q = n. Recall the picture of “paths”

in the step diagram, from section 4.1. The n-simplices of Sd4[n] all lie in

the (p× q) -rectangles, for p+ q = n, and the rectangles clearly represent the

prisms.

The vertex

(
i0
j0

)
in NerSd[n] represents the vertex

((0, · · · , 0︸ ︷︷ ︸
i0

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i0

), (0, · · · , 0︸ ︷︷ ︸
j0

, 1, 0, · · · , 0︸ ︷︷ ︸
n−j0

))

in |NerSd[n]|. Since both NerSd[n] and Sd4[n] are simplicial complexes,

the embedding of the (p, q) prism, (4[p] × 4[q]), into NerSd[n] may be
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described by specifying to which vertices of NerSd[n] the vertices of the

prisms are sent.

So consider the vertices of the (p, q)-prism. If p = 0, the prism is an

n-simplex, and its vertices correspond to the vertices

(
0
j

)
for 0 ≤ j ≤ n. If

p = 1, the vertices of the prism are

(
i
j

)
where 0 ≤ i ≤ 1 and 1 ≤ j ≤ n. In

general, the vertices of the (p, q) prism are

(
i
j

)
where 0 ≤ i ≤ p ≤ j ≤ n.

In order to denote how the prisms match up, denote the geometric

(p, q)-prism as ((0, · · · , 0︸ ︷︷ ︸
q

, x0, · · · , xp), (y0, · · · , yq, 0, · · · , 0︸ ︷︷ ︸
p

)),

where
∑p
i=0 xi = 1 and

∑q
j=0 yj = 1.

Since the point described in this way is clearly an element of 4n ×4n,

it is clear that |λn| merely considers the point of the prism as an element of

|NerSd[n]| .

Corollary 6.2.2

Avn|λn| : ((0, · · · , 0︸ ︷︷ ︸
q

, x0, · · · , xp), (y0, · · · , yq, 0, · · · , 0︸ ︷︷ ︸
p

))

7→ (
y0

2
, · · · , yq + x0

2
,
x1

2
, · · · , xp

2
).

Proof

This is clear.

This means that for each prism of |Sd4[n]|, only one point of the image of

Av|λn| is a vertex in4n, that is the vertex where x0 and yq “meet”. The first
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diagram of the geometric subdivision in section 4.1 shows this phenomenon

clearly, (for the case n = 3).

Thus, the composite map Av|λn| embeds the prisms of the subdivided

simplex |Sd4[n]| into 4n in precisely the way described by the picture in

section 4.1.

It follows that the composite |τ ∗(Sdσ(Sd4[n]))| (that is the image in

W) must be the same as σAv|λn|(|Sd4[n]|) as it too takes |Sd4[n]| to the

geometric subdivision of σ(4n) in W .

Corollary 6.2.3 Let σ : 4n −→ W. Then σAvnλn : |Sd4[n]| −→ W is a

subdivision of σ. Thus, given an n-simplex in SingW there is a subdivision

in SingW.

Proposition 6.2.4

There is a morphism rn : |NerSd[n]| −→ |Sd4[n]|, such that rn is a retrac-

tion, (that is rn|λn| = id|Sd4[n]|), Avn|λn|rn = Avn, and rn|∂|Avn = rn.

Proof

Define a function rn|NerSd[n]| −→ |Sd4[n]| as follows:

rn((x0, · · · , xn), (y0, · · · , yn)) :7→

(( 0︸︷︷︸
q

, x′q, xq+1 + yq+1, · · · , xn + yn), (x0 + y0, · · · , xq−1 + yq−1, y
′
q, 0︸︷︷︸

p

))

where

q−1∑
i=0

(xi+yi) < 1,
q∑
i=0

(xi+yi) ≥ 1, x′q = 1−
n∑

i=q+1

(xi+yi) &y′q = 1−
q−1∑
i=0

(xi+yi)
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As
q∑

1=0

(xi + yi) tends to 1 from below for some q, the value of y′q+1 tends

to 0, and x′q+1 tends to xq+1+yq+1, while if
q∑
i=0

(xi + yi) tends to 1 from above,

the value of y′q tends to xq + yq, while the value of x′q tends to 0: at the point
q∑
i=0

(xi + yi) = 1, y′q = xq + yq, and x′q = 0. Thus, rn is continuous.

First,

rn|λn|((0, · · · , 0︸ ︷︷ ︸
q

, x0, · · · , xp), (y0, · · · , yq, 0, · · · , 0︸ ︷︷ ︸
p

))

= rn((0, · · · , 0︸ ︷︷ ︸
q

, x0, · · · , xp), (y0, · · · , yq, 0, · · · , 0︸ ︷︷ ︸
p

))

= ((0, · · · , 0︸ ︷︷ ︸
q

, x′0, · · · , xp), (y0, · · · , y′q, 0, · · · , 0︸ ︷︷ ︸
p

))

where x′0 = 1−
p∑
i=1

xi = x0 and y′q = 1−
q−1∑
i=0

yi = yq

and so rn|λ| is the identity map.

If ((x0, · · · , xn), (y0, · · · , yn)) ∈ |∂|(4n)|, then xi = yi for all i, and the for-

mula becomes

rn((x0, ··, xn), (x0, ··, xn)) 7→

((0, · · · , 0︸ ︷︷ ︸
q

, x′q, 2xq+1, ··, 2xn), (2x0, ··, 2xq−1, 2xq − x′q, 0, · · · , 0︸ ︷︷ ︸
p

))

where
q−1∑
i=0

xi <
1

2
,

q∑
i=0

xi ≥
1

2
, & x′q = 1− 2

n∑
i=q+1

xi

Then

Avn|λn|rn((x0, · · · , xn), (y0, · · · , yn))
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= Avn|λ|(( 0︸︷︷︸
p

, x′q, xq+1 + yq+1, ··, xn + yn), (x0 + y0, ··, xq−1 + yq−1, y
′
q, 0︸︷︷︸

q

))

= (
x0 + y0

2
, · · · , xq−1 + yq−1

2
,
x′q + y′q

2
,
xq+1 + yq+1

2
, · · · , xn + yn

2
)

= Avn((x0, · · · , xn), (y0, · · · , yn)).

That is, Avn|λn|rn = Avn.

Then

rn|∂|Avn((x0, · · · , xn), (y0, · · · , yn))

= rn(
x0 + y0

2
, · · · , xn + yn

2
), (

x0 + y0

2
, · · · , xn + yn

2
)

= (( 0︸︷︷︸
q

, x′q, xq+1 + yq+1, · · · , xn + yn), (x0 + y0, · · · , xq−1 + yq−1, y
′
q, 0︸︷︷︸

p

))

= rn((x0, · · · , xn), (y0, · · · , yn))

for
q−1∑
i=0

(xi + yi) < 1 &
q∑
i=0

(xi + yi) ≥ 1.

That is rn|∂|Avn = rn.

Corollary 6.2.5

Avn|λ|rn|∂n| is the identity on 4n.

rn|∂|Avn|λn| is the identity map on |Sd4[n]|.

Proof

Avn|λ|rn|∂n| = Avn|∂| = id4n

rn|∂|Avn|λn| = rn|λn| = id|Sd4[n]|.

As an example, consider the case n = 1.

r1((x, 1−x), (y, 1−y)) 7→
{

((x+ y − 1, 2− x− y), 1)) for 1 ≤ x+ y ≤ 2
((1, (x+ y, 1− x− y)) for 0 ≤ x+ y ≤ 1
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These clearly match up when x+ y = 1.

The corollary implies that 4n ∼= |Sd4[n]|.

Thus, if σ : 4n −→W , there is a subdivision σAv|λn| : |Sd4[n]| −→ W ,

which composes back to σ. That is, for any simplex in SingW there is

a specific subdivided simplex (arising from the bijection of the | − | aSing

adjunction), having the property that by composing it with rn|∂|, the original

simplex is recovered.

Recall the following theorem.

The Lebesgue Covering Theorem 6.2.1

Let W be a compact metric space, and let {Uα : α ∈ A} be an open cover of

W, then ∃ β > 0 s.t. if V ⊂ W and diam V < β, then V ⊂ Uα for some

α ∈ A.

Note: The supremum of all such β is called the Lebesgue Number of the

Cover.

Proof

This is a standard topological result, and the proof may be found in [9].

Corollary 6.2.2

Let U and V be open path-connected topological subspaces of W, where

U ∪ V = W. Then for any σ : 4n −→ W, there is an s such that all the

affine n-simplices of |Sd2s4[n]| have diameter less than β, and so each is

contained entirely in either U or V.
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Note that the last result is equally true when the topological maps

σAvn|λ| and (rn|∂|)∗ are used in place of Sd(σ) and τ .

Thus given a simplex in SingW , there is a subspace of SingU ∪ SingV ,

namely (τ ∗)sSdsσ(Sds4[n]).

Consider for the moment, that s = 1 is sufficient for this purpose, that is

that one subdivision will split the simplex σ so that the constituent simplices

lie entirely in either SingU or SingV . Now, there is a subspace of SingW ,

namely σAvn(NerSd[n]) which contains both σAvnλn(Sd4[n]) and σ(4[n]),

and it is contractible.

Now, consider G(SingU ∪ SingV). It should be possible to construct an

algebraic image of G(4[n]) ⊂ G(SingU ∪SingV) which uses the elements of

the image of G(σAvnλn).

6.3 Working with G

Theorem 6.3.1

There is a cosimplicial simplicial groupoid morphism

θ : G(NerSd[−]) −→ G(Sd4[−])

with the property θ∗G(λSd4[−]) = idGSd4[−].

Proof

Consider, the morphism ηSd4[n] : Sd4[n] −→ WG(Sd4[n]). Since for any

simplicially enriched groupoid, H, W (H) is a Kan complex, then the cosim-
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plicial simplicial set WG(Sd4[−]) has the property that each

simplicial set WG(Sd4[n]) is weak Kan. Thus, using theorem 5.4.1 (the

main result of chapter 5), there is an extension

ηSd4[−] : NerSd[−] −→ WG(Sd4[−])

such that ηSd4[−]λSd4[−] = ηSd4[−].

Using the GaW adjunction, the morphism

εG(Sd4[−])G(ηSd4[−]) : GNerSd[−] −→ GSd4[−]

has the property that εG(Sd4[−])G(ηSd4[−])G(λSd4[−]) = idG(Sd4[−]). Thus

εG(Sd4[−])G(ηSd4[−]) is a retraction in cosimplicial simplicially enriched

groupoids. That is, εG(Sd4[−])G(ηSd4[−]) is left inverse to G(λSd4[−]).

Define θ∗ := εG(Sd4[−])G(ηSd4[−]).

Note that this implies that GNerSd[−] ∼= Kerθ∗ ×G(λ∗Sd4[−]).

Recall that ∂n : 4[n] −→ NerSd[n] is the diagonal embedding of 4[n]

into NerSd[n]: (this is most clearly defined by considering NerSd[n] as the

subdiagonal of 4[n]×4[n]).

Recall that the subdivision of an n-simplex consists of 2n n-simplices

which “fit together”; explicit pictures for this are given in chapter 4. Each

such simplex is a morphism4[n] −→ SingW , and so they define a morphism

ρ : Sd4[n] −→ SingW .

Definition 6.3 (i)
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Consider a pair , (X, ρ), where X is a set of 2n generators of GSingWn−1,

which (considered as n-simplices of SingW) can be collectively described as

ρ : Sd4[n] −→ SingW . Note that this means that ρ describes the way in

which the simplices “fit together”, and so forms a pasting scheme for the set.

Then, the algebraic composite of (X, ρ) is given by

G(ρ)θnG(∂n) : G(4[n]) −→ GSingW .

The following picture describes the various morphisms:

GSd4[n]

GNerSd[n]

G4[n]

GSingW
6

G(∂n)

6
θn

PPPPPPPPPPPPq

G(ρ)

-
G(ρ)θn

��
��

��
��

��
��1

G(ρ)θnG(∂n)

Note that if σ : 4n −→ W , then τn(Sdσ) is a “pasting scheme” for the

2n simplices which make up the subdivision of σ.

It will clarify the idea to consider an example of this definition. So,

consider the case n = 1. That is, construct the map ηSd4[1]. Note that

Sd4[1] ∼= ∧1[2] and NerSd[1] ∼= 4[2].

Example 6.3 (ii)

The generators of Sd4[1] are the 1-simplices s1s0i1 and s2s1i1 where i1 is the

generator of 4[1]. The morphism ηSd4[1] acts as the identity on 1-simplices.
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The filler for this pair in WG(Sd4[1]) is the 2-simplex (s4s2s1s0i1, s2s1i1).

This filler is, in fact, uniquely defined. Thus, the 2-simplex (s1s0i1, s2s1i1) in

NerSd[1] is mapped to (s4s2s1s0i1, s2s1i1) by ηSd4[1].

The image of 4[1] in NerSd[1] is generated by the 1-simplex

(s1s0i1)(s2s1i1), the composite of the two generators of Sd4[1].

Using the adjunction, θ1 is defined on the nondegenerate generator of

(GNerSd[1])1 by (s1s0i1, s2s1i1) 7→ (s4s2s1s0i1) = σ0(s1s0i1) ∈ (GSd4[1])1.

Note that in (NerSd[1])2, λ(s4s2s1s0i1) = (s1s0i1, s2s0i1) and s2s0 is the de-

generacy from (Sd4[1])0 to (Sd4[1])1. Thus θ1 identifies the

nondegenerate 2-simplex of NerSd[1] with the degeneracy of its 2-face.

Therefore, the map εG(η) takes the generators of the (GNerSd[1])0 to

(GSd4[1])0 as follows:

s1s0i1 7→ s1s0i1, s2s1i1 7→ s2s1i1 and (s1s0i1)(s2s1i1) 7→ (s1s0i1) · (s2s1i1).

This is deceptive - the element (s1s0i1)(s2s1i1) in (GNerSd[1])0 is a genera-

tor, and is distinct from the composite element

(s1s0i1) · (s2s1i1) ∈ (GNerSd[1])0.

Thus, the algebraic composite of the elements which form a copy of the

simplicial set GSd4[1] in GSingW is the standard composite in the groupoid

GSingW0. Of course, for general n this “composition” will not be as neat as

it is for n = 1.

It is possible to construct a splitting function (not a morphism) for the
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embedding G(SingV ∪ SingV) −→ GSingW . For an element

(σ) : (4[n]) −→ SingW ,

there is some (iterated) subdivision which has the property that its n-simplices

are in SingU ∪SingV . This set of simplices forms the image of the (iterated)

subdivision of 4[n] for which there is an algebraic composite. (If necessary,

the algebraic composite of a set of algebraic composites must be taken). This

choice of an element in G(SingU ∪ SingV) forms the splitting function.

The aim now is to construct a quotient of GSingW under which both

the embedding G(SingU ∪ SingV) −→ GSingW and the splitting function

become identity morphisms.

If the quotient identifies the two morphism G(σ) and G(σAvnλn)θnG(∂),

then it will identify all algebraic composites of subdivisions with the original

G(σ), and since the Lebesgue Covering Theorem states that there is some

finite subdivision of σ which sits in SingU ∪ SingV , then the quotient will

identify G(SingU ∪ SingV) with GSingW .

Lemma 6.3.2

For g ∈ GSingW, ((G∂n)(g))−1 ((Gλn)θn(G∂)(g)) ∈ Kerθn.

Proof

θnG(λn) = id.

Let σ : 4n −→ W , and consider σAvn : |NerSd[n]| −→ W . The

bijective image of this map under the | − | aSing is also written σAvn. Now
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σAvn∂n = σ, and so,(∫ n

SingWn ·G(σAvn)
)
G(∂n) = G(σ) : G(4[n]) −→ GSingW

where
∫ n SingWn ·G(σAvn) : GNerSd[n] −→ GSingW .

Write Ψ :=
∫ n SingW ·G(σAvn).

Note
∫ n SingWn · GSd4[n] ∼= G (

∫ n SingWn · Sd4[n]) ∼= GSdSingW .

Then, the morphism

∫ n

SingWn · θn :
∫ n

SingWn ·GNerSd[n] −→
∫ n

SingWn ·GSd4[n]

takes GNerSd[n]σ to θnGNerSd[n] in GSdSingW . Note that∫ n SingWn ·GSd4[n] = GSdSingW .

Consider the following pushout diagram:

∫ n SingWn ·GNerSd[n] GSingW

∫ n SingWn ·GSd4[n]

∫ n SingWn · θ

Ψ

?

-

G′W-
?

This defines a functor G′ : T op −→ SGpds∗: if f :W −→W ′, then G′(f)

is defined to be the unique arrow arising from the pushout in the obvious
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commuting cube. It is clear from the definition that G′W is a quotient of

GSingW .

This next result is the central aim of the thesis.

Theorem 6.3.3

The functor G′ preserves the pushout

U ∩ V −→ U

↓ ↓
V −→ W

Proof

First note that
∫ n(SingU∪SingV)n·GNerSd[n] is the pushout of the diagram

∫ n(SingU ∩ SingV)n ·GNerSd[n]
∫ n SingVn ·GNerSd[n]

∫ n SingUn ·GNerSd[n]
?

-

Similarly, since both G and Sd are left adjoints, G(SingU ∪SingV) is the

pushout of the diagram

G(SingU ∩ SingV) −→ GSingV

↓ ↓
GSingU −→ G(SingU ∪ SingV)

and GSd(SingU ∪ SingV) is the pushout of the diagram:

GSd(SingU ∩ SingV) −→ GSdSingV

↓ ↓
GSdSingU −→ GSd(SingU ∪ SingV)
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Write G′(U ∪ V) for the pushout of the diagram

∫ n(SingU ∪ SingV)n ·GNerSd[n] G(SingU ∪ SingV)

∫ n(SingU ∪ SingV)n ·GSd4[n]

∫ n(SingU ∪ SingV)n · θ

Ψ

?

-

G′(U ∪ V)-

?

It follows that G′(U ∪ V) is also the pushout of the diagram

G′(U ∩ V) −→ G′V

↓ ↓
G′U −→ G′(U ∪ V)

Now to prove the theorem, it is necessary to prove that the morphism

G′(U ∪ V) −→ G′W induced by G(SingU ∪ SingV) −→ GSingW , and also

by the pushout property of G′(U ∪ V) is an isomorphism.

Since G′W is a quotient of GSingW , each generator of G′W has a preim-

age that is a generator of GSingW . So, for σ ∈ SingWn, there is a generator

[G(σ)] ∈ G′W which is the equivalence class of G(σ) under the quotient.

Then, G(σAvnλn)θnG(∂n) is the algebraic composite of the subdivision

of σ, (which is assumed to be in G(SingU ∪ SingV), without loss of gener-

ality: see the paragraphs following the proof of theorem 6.3.1). Note that

G(σAvn)G(∂n) = G(σ), since Avn∂n = id. Therefore, there is a splitting

function for G′(U ∪ V) −→ G′W , which takes [G(σ)] = [G(σAvn∂n)] to

[G(σAvnλn)θnG(∂n)].

So consider (G(σAvn∂n))−1 (G(σAvnλn)θnG(∂n)). This is in the kernel of
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θn, by lemma 6.3.2, and so in the kernel of
∫ n SingWn ·θn. Thus, the element

is the identity in GSd(SingW), and hence in G′(W). This is precisely the

required result, that [G(σAvnλn)θnG(∂n)] = [G(σAvn∂n)] = [G(σ)] in G′W .

Thus the splitting is the identity function, so the embedding is the identity

morphism, and G′W ∼= G′(U ∪ V).

This shows that G′ satisfies a Van Kampen Type Theorem.

There is one remaining problem, which needs a “constructive” proof:

ideally G′W and GSingW should have the same homotopy type.

Recall that GNerSd[n]
θn

−→ GSd4[n] is split by G(λn). It follows that

the morphism

∫ n

SingWn · θn :
∫ n

SingWn ·GNerSd[n] −→
∫ n

SingWn ·GSd4[n]

is split by the morphism

∫ n

SingWn ·Gλn :
∫ n

SingWn ·GSd4[n] −→
∫ n

SingWn ·GNerSd[n]

and the kernel of

∫ n

SingWn · θn :
∫ n

SingWn ·GNerSd[n] −→
∫ n

SingWn ·GSd4[n]

is
∫ n SingWn ·Kerθn.

Therefore the quotient map, induced by the pushout, which takes

GSingW to G′W is split (since the pushout preserves splittings), and the

kernel of the quotient map is Ψ(
∫ n SingWn ·Kerθn).
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Thus to show that G′W and GSingW have the same homotopy type it is

necessary to prove that Ψ(
∫ n SingWn ·Kerθn) is contractible. Although it is

not unreasonable to believe this to be true, time constraints have prevented

further investigation, and a proof will not be provided in this thesis. However,

the next proposition shows that G′ is not trivial.

Proposition 6.3.4

The fundamental groupoid π1(SingW , (SingW)0) is a quotient of G′(W)0.

Further, theorem 6.3.3 implies the Van Kampen Theorem for the fundamental

groupoid (where homotopy is rel the base points).

Proof

To avoid confusion, write di for the face operators of SingW , and δi for the

face operators of GSingW .

G′W is a quotient of GSingW , so

(G′W)0
∼=

(GSingW)0

Q

for some normal subgroupoid Q ⊂ (GSingW)0.

Also, the fundamental groupoid π1(SingW , (SingW)0) is π0(GSingW),

([20] et al) that is,

π1(SingW , (SingW)0) ∼=
(GSingW)0

δ1
0(Kerδ1

1)

The aim is to show that the Q ⊂ δ1
0(Kerδ1

1).
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Recall that δ1
0(Kerδ1

1) is generated by elements of the form

(δ1x)(δ0x)−1 for x ∈ SingW2 (see [20]).

Now, theorem 6.3.3 shows that the equivalence relation represented by Q

is generated by identifying each 1-simplex, σ with the“algebraic composite”

of the two 1-simplices, σ1 and σ2, which comprise its subdivision (and so

d0σ1 = d1σ2). Further, example 6.3 (ii) shows that the “algebraic composite”

of two such elements is the normal groupoid composite in GSingW .

Define a 2-simplex of SingW as follows:

z : (t0, t1, t2) 7→ σ(
2t0 + t1

2
,
t1 + 2t2

2
)

This element has σ1, σ and σ2 as 2, 1 and 0 faces, respectively. Thus,

(δ1z)(δ0z)−1 is an an element of δ1
0(Kerδ1

1) which identifies σ with (σ1)(σ2),

which is precisely the generating relation for Q.

Thus Q ⊂ δ1
0(Kerδ1

1), and π1(SingW) is a quotient of G′(W)0.

Now consider π0(G′W). Clearly there is an epimorphism from

π0(GSingW) onto π0(G′W). Let x, y ∈ (GSingW)0, so [x], [y] ∈ (G′W)0.

If [x] ∼ [y] in π0(G′W), then there is [z] ∈ (G′W)1 with δ0[z] = [x] and

δ1[z] = [y]. Thus, [δ0z] = [x] and [δ1z] = [y]. Thus Qδ0z = Qx and

Qδ1z = Qy, where Qx denotes (as usual) the coset of x under the quotient

Q.

However, the elements which generate Q are trivial under π0, as the first

part of this proof demonstrates, and so elements in the same Q-coset are

equivalent in π0(GSingW).
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Therefore x ∼ δ0z ∼ δ1z ∼ y, and so [x] ∼ [y] ∈ π0(G′W) implies that

x ∼ y ∈ π0(GSingW). Thus the epimorphism is also a monomorphism, and

hence an isomorphism.

Thus theorem 6.3.3 implies the Van Kampen Theorem for the fundamen-

tal groupoid.

In Conclusion

Given a simplicial set, X, it is possible to build a filtered topological space

|X|n, by taking the realisation of the n-skeleton for each n. The fundamental

crossed complex of this construction is:-

· · · → {πn(Xn, Xn−1, p)}p∈X0 → · · · → {π2(X2, X1, p)}p∈X0 → π1(X1, X0)

It is also possible to construct a crossed complex from a simplicial set by

passing to GX (the loop groupoid), taking the Moore complex, NGX, and

factoring (NGX)n by ((NGX)n ∩ Dn)d0((NGX)n+1 ∩ Dn+1), where Dn is

the subgroupoid of (GX)n generated by the degenerate elements. There are

two methods of proof, one a combinatorial proof by Porter, the other a proof

which shows that

(NGX)n
((NGX)n ∩Dn)d0((NGX)n+1 ∩Dn+1)

∼= {πn(Xn, Xn−1, p)}p∈X0 ,

by Carrasco and Cegarra. Thus, fundamental crossed complex of a simplicial

set may be obtained by passing through simplicially enriched groupoids.
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Now, recall that the construction of θ was as εGSd4[n]G(ηSd4[n]) and

(Sd4[n])m consists entirely of degenerate elements for m > n. Thus, the

elements of G(Sd4[n])m are all generated by degenerate elements for m ≥ n;

in particular for n = m. Therefore, the image of θn is a degenerate element.

Thus, when the Moore complex is divided out by degenerate elements,

the identification collapses the filling constructed between a simplex and its

subdivision, and so the fundamental crossed complex may be seen to satisfy

a Van Kampen Type Theorem for any skeletally filtrated topological space.

This is not a proof, of course, however time constraints have prevented

further investigation on these lines.

However, it suggests that when algebraic models can be thought of as

arising as quotients of the loop groupoid, then they should satisfy a Van

Kampen Theorem, so long as the quotient identifies those elements which

the pushout diagram for G′ identifies.
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Glossary of Notation

The page number given is the first occurrence of the notation.
Categories

∆ Finite Ordinals and monotonic maps 4
∆+ Non-empty Finite Ordinals 5
4n The affine n-simplex 5
Cat Small categories 6
N Finite Totally Ordered Sets 6
N+ Non-empty Finite Totally Ordered Sets 6
∆0 Non-empty Finite Ordinals 7

and monotonic maps which fix 0
Sets Sets and functions 15
SS Simplicial Sets 15
CSS Contractible Simplicial Sets 15
ASS Augmented Simplicial Sets 15
BiSS BiSimplicial Sets 15
4[n] The Standard n-simplex 15

Simplicial Complex 16
Kan complex 16,72
weak Kan complex 16,73

SGpds Simplicial groupoids 28
SGpds∗ Simplicial groupoids 28
BAiSS BiSimplicial Sets 35
T op Topological Spaces 35

Sets∆+

Cosimplicial Sets 47

Operations and Constructions
or Ordinal Sum in ∆ 10
∨ Join in N 10
∗ Topological Join 11, 51
skn the n-skeleton construction 16
ιn the unique nondegenerate n-simplex of 4[n] 16,72

maximal simplex 16
∧k[n] the generic k-horn 20
ConjX Conjugation 31
π0X connected components of X 32

the canonical augmentation 33
the trivial augmentation 33

X · Y The X indexed copower of Y 36
CX The cone over the codomain 42

of the augmentation
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P (X, Y ) bisimplicial array of X × Y 43
[X, Y ] “internal-hom” construction 44
⊗ tensor product 45
Sn the n-sphere 55, 56
4∗ cosimplicial space of affine simplices 64
4∗ ∗ 4∗ cosimplicial space 64

of the join of affine simplices
Anodyne extension 72
weak Anodyne extension 83
Lebesgue number 107

Functors
∂ diagonal embedding of ∆ in ∆×∆ 8

used for embedding 4[n] 102
into Subdiag(4[n]×4[n])

in inclusion of ∆0 in ∆ 12
b left adjoint to in 12
Ner Nerve 17
Π Categorisation Functor 18
G the loop groupoid functor 28
W the classifying space functor 28
N the Moore Complex functor 29
Sing Singular Comples Functor 35
| − | Geometric realisation 36
in∗ functor induced by in 38
b∗ functor induced by b 38
DEC Total Dec 40
diag diagonal of a bisimplicial set 41
LanKT left Kan extension of T along K 41
RanKT right Kan extension of T along K 41
∇ right adjoint to DEC 42
4 left adjoint to DEC 42
Sd ordinal subdivision functor 57
τ∗ embedding of 4∗ in 4∗ ∗ 4∗ 64,99
τ ∗∗ functor induced by τ∗ 64,99
Sd subdivision in Cat 70
λn the unit of the adjunction ΠaNer 99,103
Avn retraction of |NerSd[n]| onto 4n 102
rn retraction of |NerSd[n]| onto |Sd4[n]| 104
θn retraction of GNerSd[n] onto GSd4[n] 108, 109
Ψ definition 112
G′ quotient of GSing 113

138



Bibliography

[1] J. F. Adams
ALGEBRAIC TOPOLOGY - A STUDENT’S GUIDE

C. U. P., L.M.S. Lecture Note Series 4, 1972 1

[2] M. Artin & B. Mazur On The Van Kampen Theorem
Topology, Vol. 5 pp.179-189, 1966

[3] M. Artin & B. Mazur ETALE HOMOTOPY
Springer Lecture Notes in Maths, 100, 1969

[4] N. Ashley Simplicial-T-complexes and Crossed Complexes
Dissertationes Math. 265, 1978

[5] M. A. Batanin The Coherent Categories with respect to the Monad
and Coherent ProHomotopy Theory
Preprint, Universitetskiy Prospect, 4 Novosibirsk-90, c.1990

[6] A. Blakers Some Relations between Homology and Homotopy Groups
Annals of Maths, 49(2) pp.428-461 1948

[7] A. K. Bousfield & D. M. Kan Homotopy Limits, Completions and
Localizations
Springer Lecture Notes in Maths, 304, 1972 63, 70

[8] W. Breckenridge, H. Gastineau-Hills & A. Nelson Lattice paths and
Catalan Numbers
Sidney Preprint pp.1-15 1990 88

[9] R. Brown TOPOLOGY
Ellis Horwood, 1988 2, 12, 58, 59, 62, 112, 122

[10] R. Brown & P. J. Higgins On the Algebra of Cubes
J. P. A. A., 21, pp.233-260, 1981

[11] R. Brown & P. J. Higgins Colimit Theorems for Relative Homotopy
Groups
J. P. A. A., 22, pp.11-41, 1981 2, 112

139



[12] R. Brown & P. J. Higgins The Classifying Space of a Crossed Complex
U. C. N. W. preprint, 1990

[13] R. Brown & J.-L. Loday Van Kampen Theorems for Diagrams of
Spaces
Topology, Vol. 26 no. 3 pp.311-335, 1987 112

[14] P. Carrasco Complejos Hipercruzados: Comologia y Extensiones
Cuadernos de Algebra, Granada no.6, 1987
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