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Basic setup

Fix a field F .

Morel-Voevodsky: It is possible to talk about the homotopy theory
of “motivic spaces” over F , and also the associated stable
homotopy theory of “motivic spectra”.

(mot. spectra/C) −→ (spectra)

X 7→ X (C)

(mot. spectra/R) −→ (Z/2-spectra)

↑ ↑

(mot. spectra/Q)

↑

(mot. spectra/Fq)

(mot. spectra/Z)

?????

↗

↗

↘

↘



Basic setup

In motivic homotopy theory we have a bigraded family of spheres:

S1,1 = A1 − 0 S1,0 = �
�

�
�@

@
@

@ A1

A1 A1

For p ≥ q define Sp,q = (S1,1)∧(q) ∧ (S1,0)∧(p−q).

p is called the topological dimension of the sphere, and q is
called the weight.

We have the sphere spectrum S , and we can talk about πp,q(S).

Should probably write πp,q(S)F to keep track of the ground field.



Basic setup

πp,q(S)C // πp(S)

πp,q(S)Z

88rrrrrrrrrr
//
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:

πp,q(S)R

OO

// πp,q(S)Z/2

OO

πp,q(S)Q

OO

πp,q(S)Fq

Rough goal: Understand as much as we can about the different
spots in this picture, and the maps between them.

πp(S)



Review of ordinary stable homotopy groups

I πi (S) = 0 for i < 0 (connectivity)

I π0(S) ∼= Z (via the Hurewicz isomorphism)

I We have

i 0 1 2 3 4 5 6 7 8 9

πi Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240 (Z/2)2 (Z/2)3

gen 1 η η2 ν ν2 σ ησ, ?? ν3, ??

I The easiest elements to understand are the so-called Hopf
elements: η, ν, and σ.



Classical Hopf elements

I These are the elements 2, η, ν, and σ:
(i) S1 ' R2 − 0 −→ RP1 = S1  2 ∈ π0

(ii) S3 ' C2 − 0 −→ CP1 = S2  η ∈ π1

(iii) S7 ' H2 − 0 −→ HP1 = S4  ν ∈ π3

(iv) S15 ' O2 − 0 −→ OP1 = S8  σ ∈ π7

I The story stops here because there are no more division
algebras continuing the sequence R, C, H, O.

Relations between the Hopf elements:
I 2η = 0, ην = 0, νσ = 0
I 2ν2 = 0, ησ2 = 0
I η3 = 3 · 22ν (and hence 24ν = 0), ν3 = 3 · η2σ = η2σ
I 240σ = 0, 2σ2 = 0, σ4 = 0



The 2-localization of the stable homotopy groups:

We get an approximation to π∗(S)⊗ Z(2) via the Adams spectral
sequence:

2 η ν σ

ν2
ν3 = η2σ

σ2
σ3



Basic setup

πp,q(S)C // πp(S)

πp,q(S)Z

88rrrrrrrrrr
//

&&LLLLLLLLLL
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::
:

πp,q(S)R

OO

// πp,q(S)Z/2

OO

πp,q(S)Q

OO

πp,q(S)Fq

πp(S) X

πp,q(S)Z/2

Araki-Iriye, 1980s (p ≤ 13)





The Z/2-equivariant homotopy groups

For p ≥ q, Sp,q is the compactification of Rp−q ⊕ Rq
−.

Note that the fixed set of Sp,q is Sp−q.

Sn,0 is the n-sphere with trivial Z/2-action

S1,1 is the compactification of R−: 1−1

S2,1 is the compactification of R⊕ R− = C: so S2,1 ' CP1.



The Z/2-equivariant homotopy groups

Two useful maps:

ψ : πp,q(S) → πp(S) “forgetful map”

φ : πp,q(S) → πp−q(S) “restriction to the fixed set”

f : Sp,q → S0,0  f Z/2 : Sp−q → S0



The Z/2-equivariant homotopy groups

Let η : C2 − 0 → CP1 be the Hopf map.

This is a map S3,2 → S2,1, so η ∈ π1,1(S).

Note that ηZ/2 is the Hopf map R2 − 0 → RP1, which is
multiplication by 2. In other words, φ(η) = 2.

In particular, η is not a torsion class and is not nilpotent. This is
different than what we’re used to in classical algebraic topology.

NOTE: Actually, it will be better to set things up so that
φ(η) = −2. Don’t ask why.



The Z/2-equivariant homotopy groups

Another new feature is that we have nonzero groups in negative
dimensions:

ρ : S0,0 ↪→ S1,1 is essential: •• ↪→

Note that φ(ρ) = 1, so once again we deduce that ρ is not torsion
and not nilpotent.

However, this phenomenon is limited. All maps
Sa,b → S1,0 ∧ Sa,b ∧ Sc,d are null, by the usual argument.

It follows that πp,q(S) = 0 if p < 0 and q > p.



Picture of the equivariant homotopy groups πp,q(S)Z/2
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η3
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ρ3

ρ4

1, ρη, ρ2η2, ρ3η3, . . .



The group π0,0

We have the equivariant degree map:

Deg : π0,0(S) → Z2, Deg(f ) = (deg(f ), deg(f Z/2)).

This map is an injection, and its image consists of all pairs (a, b)
such that a ≡ b mod 2.

Notice that Deg(1) = (1, 1) and Deg(ρη) = (0,−2).

So 1 and ρη generate π0,0(S) ∼= Z2.

Notice that Deg(ρ2η2) = (0, 4) = Deg(−2ρη), so ρ2η2 = −2ρη.

In fact ρη2 = −2η, or ρη2 + 2η = 0.



The group π0,0

Let ε : S1,1 ∧ S1,1 → S1,1 ∧ S1,1 be the twist map.

Then ε ∈ π0,0(S), so it is a linear combination of 1 and ρη.

Deg(ε) = (−1, 1) = −(1, 1) + (0, 2), so ε = −1− ρη.

The relation ρη2 + 2η = 0 (previous slide) is equivalent to saying
εη = η.

π0,0(S) = Z〈1, ε〉



One more piece

Any non-equivariant map of spheres Sa → Sb can be regarded as
an equivariant map Sa,0 → Sb,0.

This gives maps πk(S) → πk,0(S).

The forgetful map ψ gives a splitting, so that

πk,0(S) ∼= πk(S)⊕ (????).
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Araki-Iriye computations



On to the motivic setting



On to the motivic setting

We now investigate the groups πp,q(S)F .

Morel’s theorems:

(1) Connectivity: πp,q(S) = 0 for q > p.

(2) ⊕nπn,n(S) can be determined explicitly (more on this in a
moment).



Motivic stable homotopy groups

p

q



Motivic stable homotopy groups

We again have the Hopf map A2 − 0 → P1, which is a map
S3,2 → S1,1. Get the element η ∈ π1,1(S).

Recall that S1,1 = A1 − 0. For every a ∈ F − {0} we have the
corresponding rational point of A1 − 0, giving a map

1

a

ρa : S0,0 ↪→ S1,1
↪→∗

•

The element ρ that we saw in the Z/2-setting is ρ−1.

We again have the twist map ε : S1,1 ∧ S1,1 → S1,1 ∧ S1,1.



Motivic stable homotopy groups

p

q

η

η2

η3

η4

η5

ρa

ρaρb

ρaρbρc

1, ε = −1− ρη

Work over Z to get close parallel with π∗,∗(S)Z/2



Motivic stable homotopy groups

Morel proved that
⊕

n πn,n is generated by the elements ρa, ε, and
η, subject to the following relations:

(i) εη = η, ερa = ρa−1 , ε2 = 1
(ii) ρη = −(1 + ε)
(iii) ρaη = ηρa, ρaρb = ρb−1ρa = ρbρa−1

(iv) ρaρ1−a = 0 (Steinberg relation)
(v) ρab = ρa + ρb + ηρaρb

π0,0
∼= GW (F ), the Grothendieck-Witt ring of quadratic forms /F

1 + ρaη ↔ (F , qa; qa(x) = ax2).

The maps π1,1
η−→ π2,2

η−→ π3,3 −→ · · · are all isomorphisms, and
these groups are all isomorphic to W (F ) (the Witt ring of F ).



Motivic stable homotopy groups

p

q

η

η2

η3

η4

η5

ρa

ρaρb

ρaρbρc

1, ε = −1− ρη

GW (F )

W (F )

W (F )

W (F )

[A1 − 0
(−)2−→ A1 − 0] = 1− ε

ρa2 = (1− ε)ρa

ηρa2 = η(1− ε)ρa = 0

F ∗-complexity

F ∗/(F ∗)2-complexity



Moving away from the 0-line

p

q

η

η2

η3

η4

η5

ρa

ρaρb

ρaρbρc

1, ε = −1− ρη

??????????????





Moving away from the 0-line

Two basic approaches:

(1) Write down explicit elements, and try to verify relations by
direct geometric construction.

(2) Use the motivic version of the Adams spectral sequence. This
only computes πp,q(S

∧
H), but this is still interesting.

Warning: We don’t know the groups πp,q(S) are finitely-generated,
and in fact in negative degrees they are usually not. The relation
between πp,q(S) and πp,q(S

∧
H) is difficult to pin down.



Constructing the geometric ν and σ

I The classical Hopf elements come from the division algebras
R, C, H, and O. How can this work over other fields F?

I Cayley-Dickson algebras: If A is an F -algebra with an
anti-involution x 7→ x∗ (so (ab)∗ = b∗a∗) and γ ∈ F , define

Adbl
γ = A⊕ A, (a, b)(c , d) = (ac + γd∗b, da + bc∗).

This again has an anti-involution given by (a, b) 7→ (a∗,−b).

I Given a sequence of constants γ1, γ2, . . . ∈ F , the doubling
process can be repeated to give a sequence of algebras

A1 = Adbl
γ1
, A2 = (A1)

dbl
γ2
, . . .

I Starting with A = R and doing this doubling process several
times (with γ = −1 in each case) produces the sequence R,
C, H, and O.



Motivic Hopf elements (continued)

I An algebra with anti-involution has a norm form N(x) = xx∗.

I Fact: If A is associative and commutative and normed in the
sense that N(xy) = N(x)N(y), then the algebras A1, A2, and
A3 are also normed algebras.
[Note: The Ai ’s are not necessarily division algebras.]

I Start with A = F and x∗ = x . Use the sequence where γ1 = 1
and all other γi = −1.

I One can check that A1 = A2 with (a, b)(c , d) = (ac, db),
(a, b)∗ = (b, a), and N(a, b) = ab.

I Then A2 = A4 with ????? and so on.



Motivic Hopf elements (still continued)

I Write Sn for the affine variety in An = A2n
defined by

N(x) = 1. When n ∈ {1, 2, 3}, multiplication in An gives maps

Sn × Sn −→ Sn.

I The “Hopf construction” on this pairing is the composite

Σ(Sn ∧ Sn)
χ−→ Σ(Sn × Sn) −→ ΣSn.

I Under our definitions the norm form on each An is split, so
Sn ' S2n−1,2n−1

. We have therefore produced maps

S2n+1−1,2n −→ S2n,2n−1
 hn ∈ π2n−1,2n−1 .

I h1 = η ∈ π1,1, h2 = ν ∈ π3,2, and h3 = σ ∈ π7,4.



Another table of the πp,q groups

1, ε

ρa

ρaρb

η

η2

η3

η4

ν

σ

ηtop η
2
top νtop σtop

p

q



Some useful notation

I Write AR = F , AC = A1, AH = A2, and AO = A3.

I These algebras have the “usual” properties: AC is
commutative, AH is only associative, and AO is neither.

I Exercise: AH ∼= M2x2(F ) with X ∗ = adj(X ) and
N(X ) = det(X ).

I Write SR, SC, SH, and SO for the quadric N(x) = 1 inside of
AR, AC, etc.

I Example: AC = A2 with the multiplication
(a, b)(c , d) = (ac, bd) and conjugation (a, b)∗ = (b, a).
Then N((a, b)) = (a, b)(b, a) = (ab, ab) = ab · 1AR .
So SC is the subvariety of A2 consisting of points (a, b) with
ab = 1. That is, SC ∼= A1 − 0 = S1,1.



The first Hopf relation

In the classical world we have 2η = 0, but in the motivic world this
is not true. Instead we have the relation

(1− ε)η = 0, or η = εη.

The proof follows from the commutativity of AC:

SC × SC
µ //

t
��

SC

SC × SC
µ // SC

Applying Hopf constructions shows immediately that εη = η. This
argument is due to Morel.

Moral: 1− ε plays the role of the 0th motivic Hopf element.



More on the first Hopf relation

A generalization of the previous argument shows that ην = 0 = νσ.

If A is associative and α ∈ A has norm 1, then (a, b) 7→ (a, αb) is
an endomorphism of Adbl .
We then define maps ei : S(Ai )× S(Ai+1) −→ S(Ai+1) by

α, (a, b) 7→ (a, αb).

and this leads to a big diagram (given for i = 1)

SC × SH × SH
∆×1 //

1×µ

��

SC × SC × SH × SH
1×T×1// SC × SH × SC × SH

e×e
��

SH × SH

µ

��
SC × SH

e // SH

A slightly painful analysis ends up showing ην = 0.



A new Hopf relation

One can use properties of AH to show that εν = −ν.
I Let c : AH → AH be the map (a, b) 7→ (a,−b). This is an

automorphism of the algebra, so we have the diagram

SH × SH
µ //

c×c
��

SH

c

��
SH × SH

µ // SH.

I Applying Hopf constructions gives that ν · c2 = c · ν.

I The map c : SH → SH can be seen (with some trouble) to
represent −ε.

I So ν · (−ε)2 = −εν, hence ν = −εν.



The next goal:

It is not possible that η3 = 12ν in the motivic world, as η3 ∈ π3,3

whereas ν ∈ π3,2.

The best guess is the relation η2 · ηtop = 12ν.

You might suspect that instead of 12 you need 3(1− ε)2, but the
relation εν = −ν from the previous page tells us that this is
unnecessary.

Our hope is to find some proof of this relation coming from
properties of Cayley-Dickson algebras. So far it is still a mystery.

Note: The failure of the relation η3 = 12ν in some sense explains
why the motivic η is not nilpotent!



A consequence

If we know 12ν = η2ηtop then we also know that 24ν = 0, because
2ηtop = 0.

The 24th power map A1 − 0 → A1 − 0 is 12(1− ε) in π0,0(S).

So ρa24 · ν = ρa · 12(1− ε)ν = ρa · 24ν = 0.

We therefore get groups with the “complexity” of F ∗/(F ∗)24, or
equivalently of F ∗/(F ∗)2 ⊕ F ∗/(F ∗)3.





Adams spectral sequence techniques

M2 = H∗,∗(Spec F ; Z2) = [KM
∗ (F )/2][τ ]

There is a tri-graded Adams spectral sequence

Ext
s,(t,u)
Amot

(M2,M2) ⇒ πt−s,u(S).

Let ρ = [−1] ∈ F ∗/(F ∗)2 = H1,1(Spec F ; Z/2). This is the image
of ρ ∈ π−1,−1(S) under the Hurewicz map.

IMPORTANT FACT: The only part of M2 that is relevant to Amot

are the elements τ and ρ. So the crucial cases to understand are
F = C and F = R.

If F = F 2 then ρ = 0, M2 = F2[τ ], and the Ext groups are easy to
compute:
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Motivic Adams spectral sequence when F = C



Adams spectral sequence techniques

Next, there is a Bockstein spectral sequence that allows one to put
the ρ’s back into the picture for the case F = R:

ExtAC(F2[τ ],F2[τ ])[ρ] ⇒ ExtAR(M2,M2).

The spectral sequence does not collapse at a finite page, and a lot
of bookkeeping is required, but the differentials can be completely
determined (Isaksen).

The patterns that show up are VERY close to what we saw in the
chart for π∗,∗(S)Z/2, for the portion of that chart below the p = q
line.

One finds the “Clifford periodicities” from the Z/2-equivariant
setting appearing in the pattern of differentials, but going off in
only one direction (the direction of negative weight).



Adams spectral sequence techniques

Based on this data we make the following conjecture for the 1-line:
as a module over the 0-line it is the quotient of[

⊕nπn,n(S)
]
〈ν, ηtop〉

by the relations

I εν = −ν, ην = 0, 2ηtop = 0

I η2ηtop = 12ν

I ρ4ν = ρ2ηtop

This completely matches with the π∗,∗(S)Z/2 groups, as well.



Adams spectral sequence techniques

We can also make conjectures for the first few “lines” beyond the
1-line, but they are more difficult to state and we are not yet sure
that all the elements predicted by the ASS are really there.

The Adams spectral predicts an element θ ∈ π0,−2(S) that is
non-torsion. In the Z/2-equivariant world it is easy to identify θ,
but the model is non-algebraic. We do not know if there is an
algebraic model for it.



F
U

N
D

A
M

E
N

T
A

L
S

O
F

M
O

T
IV

IC
S
T
A

B
L
E

H
O

M
O

T
O

P
Y

G
R

O
U

P
S

1
5

Z⊕ π4

Z/2⊕ π3

Z⊕ π2

Z/2⊕ π1

!"#$%&'()*+,-./0Z2

0

Z

Z/2

Z

Z/2

Z

Z/2

π3

π2

π1

Z

π2

π1

Z

π1

Z

(Z/2)2⊕π5

0⊕ π4

Z/4⊕ π3

Z/2⊕ π2

(Z/2)2⊕π1

)*+,-./0Z

0

Z/2

(Z/2)2

0

Z/4

Z/2

(Z/2)2⊕π6

Z/2⊕ π5

0⊕ π4

Z/8⊕ π3

(Z/2)2⊕π2

Z/2⊕ π1

Z

0

(Z/2)2

Z/2

0

Z/8

Z16 Z12 π7

(Z/2)2⊕π6

Z/12⊕ π5

Z/2⊕ π4

Z24⊕Z8⊕π3

Z/2⊕ π2

12345678Z/24

Z

Z/12

(Z/2)2

Z/12

Z/2

Z/2⊕ π8

Z/16⊕ π7

Z/2⊕ π6

0⊕ π5

Z/2⊕ π4

Z/8⊕ π3

0⊕ π2

0

Z

0

Z/2

0

0⊕ π9

Z/2⊕ π8

Z/16⊕ π7

Z/2⊕ π6

0⊕ π5

Z/2⊕ π4

Z/8⊕ π3

Z/2

0

Z

0

Z/2

0⊕ π10

Z/2⊕ π9

(Z2)2 ⊕ π8

Z16⊕Z2⊕π7

(Z2)2 ⊕ π6

0⊕ π5

Z/4⊕ π4

Z/8⊕ π3

Z/2

0

Z⊕ Z/2

Z/2

Z4Z240π11

Z/2⊕ π10

Z2Z240π9

(Z2)3⊕π8

Z240Z16Z2π7

Z/2⊕ π6

Z240 ⊕ π5

(Z/2)2⊕π4

!"#$%&'(Z480 Z12Z4

0

Z/240

Z⊕ (Z2)2

!

!

"

q

p

Araki-Iriye computations



Thank you!
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