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1 Locally Trivial Maps

Fix a space B. Recall that if f : X → B is a space over B and A ⊆ B, then we write
XA = f−1(A) ⊆ X and

fA : XA → A (1.1)

for the space over A obtained by restriction (i.e. pullback).

Definition 1 Let B be a space and f : X → B a space over B.

1) We say that f : X → B is trivial if there is a space F and a homeomorphism
X ∼= B × F over B, where B × F is the space over B defined by the projection
prB : B × F → B.

2) We say that f : X → B is locally trivial if each point b ∈ B is contained in an open
set U having the property that XU is trivial over U .

In the case that f is trivial, we call a choice of fiberwise homeomorphism X ∼= B × F a
trivialisation of f . If f is locally trivial, then we call a homeomorphism XU

∼= U ×F over
an open U ⊆ B, a local trivialisation of f . �

1



If f : X → B is trivial over U, V ⊆ B and U ∩ V 6= ∅, then the fibres of f over any
two points of U ∪ V are homeomorphic. In particular, if f is locally trivial, then its fibres
over any two points in the same connected component of B are homeomorphic. Thus if B is
connected, then we can unambiguously talk about the fibre of f . In any case, if f is locally
trivial and all its fibres are homeomorphic to F , then we say that f is locally trivial with
fibre F .

Proposition 1.1 Let B be a space. Then the full subcategory of Top/B on the (locally)
trivial maps is replete and closed under formation of products.1

Proof The first statement is that any map X → B which is isomorphic in Top/B to a
(locally) trivial map is itself locally trivial. The second statement is that if X → B and
Y → B are (locally) trivial, then so is their product X ×B Y in Top/B.

Proposition 1.2 If θ : A → B is any map, then the pullback functor Top/B
θ∗−→ Top/A

takes trivial maps to trivial maps and locally trivial maps to locally trivial maps.

Proof We check that θ∗(B × F ) ∼= A × F , and that if X → B is trivial over U ⊆ B, then
θ∗X is trivial over θ−1(U) ⊆ A.

Our interest in locally trivial maps is that they often turn out to be fibrations. In fact,
in the following sections we will pin down some precise conditions under which they are, and
for this we will need to introduce the idea of numerability. When the conditions are met it
will open up these examples to study by the tools we developed over the last two lectures to
study fibrations.

On the other hand, the theories of fibrations and of locally trivial maps are not the same.
There are fibrations which are not locally trivial, and locally trivial maps which are not
fibrations. Moreover, many of the theorems we proved for fibrations actually have strictly
stronger analogues in the world of locally trivial maps. To begin to appreciate the differences
between the two theories consider the following simple observation.

Proposition 1.3 If f : X → B is a locally trivial map, then it is open, and in particular a
quotient map.

Thus being locally trivial is a very special property of a map. We have already seen examples
of fibrations which are either not quotient maps, or which have nonhomeomorphic fibres over
the same connected component.

Example 1.1 Let X ⊆ R2 be the solid triangle with vertices (0, 0), (1, 0), (1, 0) and let
f : X → I be given by projecting onto the first coordinate. Then it is clear that f is a
fibration. However f is not locally trivial. All the fibres of f are homotopy equivalent since
it is a fibration (cf. Co. 3.6 Fibrations II ), but they are not all homeomorphic. The fibre of
1 is a point, but the fibre over any other t ∈ I is an interval. �

1Let C be a category and A ⊆ C a subcategory. Then A is said to be full if the morphisms between any
two of its objects are all the morphisms between those same objects in C. It is said that A is replete if
whenever x ∈ ob(C) is isomorphic to some a ∈ ob(A), it follows that x ∈ ob(A). It is said that A is closed
under products if C has products, and if whenever a, b ∈ ob(A), then a× b ∈ ob(A).
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Example 1.2 In Example 2.4 of Fibrations I we gave the example of the fibration Q→ Q,
where Q is the rationals in the discrete topology. This map is not locally trivial, since it is
not a quotient map. �

Example 1.3 The Long Ray L+ is constructed and discussed in more detail in the accom-
panying notes on paracompactness. It is a Hausdorff, locally-Euclidean space modeled on
the real line. In fact it satisfies all the requirements for it to be a smooth manifold other
than the requirement of second-countability. In particular L+ is not paracompact.

A locally trivial map over L+ which is not a fibration was constructed by P. Tulley in her
paper [11] (Example #7, pg. 107). While the example is actually not difficult to construct,
its strange features rely heavily on the pathological topological properties of the long ray. �

So, now that we have issued a warning to the reader to keep some distance between their ideas
of fibrations and of locally trivial maps, let us proceed, as promised, to try to understand
when we can conflate the two concepts. Our main results are achieved in the next section
after we discuss numerable bundles. Without the assumption of numerability the statements
are much less impressive, so the reader should consider the remainder of this section as a
warmup for what will follow.

Lemma 1.4 If f : X → B × [0, 1] is trivial over B × [0, 1
2
] and B × [1

2
, 1], then f is trivial

over B × I.

Proof Since (B× [0, 1/2])∩ (B× [1/2, 1]) = B×{1/2} ∼= B is nonempty, the locally-trivial
map has a well-defined fibre F . Write

X0 = XB×[0, 1
2

], X1 = XB×[ 1
2
,1], X01 = X0 ∩X1 = XB×{ 1

2
} (1.2)

and choose trivialisations

α0 : F ×B × [0, 1/2]
∼=−→ X0, α1 : F ×B × [1/2, 1]

∼=−→ X1. (1.3)

Here we break our normal conventions and write the fibres on the left. Now we have the
transition function defined by these trivialisations

α−1
0 α1 : F ×B × {1/2}

∼=−→ F ×B × {1/2} (1.4)

which is an isomorphism over B ∼= B×{1/2}. In this way we have a map α̃ : B → Homeo(F ).
Let

β : F ×B × [1/2, 1]→ F ×B × [1/2, 1] (1.5)

be the map
β(x, a, t) = (α̃(a)(x), a, t). (1.6)

Then β is an isomorphism over B × [1/2, 1] and satisfies

β|F×B×{1/2} = α0α
−1
1 |F×B×{1/2}. (1.7)
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Now consider the diagram

F ×B × {1
2
}

��

//

y

F ×B × [1
2
, 1]

��

β−1
// F ×B × [1

2
, 1]

α1

��
F ×B × [0, 1

2
]

α0
((RR

RRR
RRR

RRR
RRR

R
// F ×B × [0, 1]

**UUUUUUUUUU
X1

⊆
��

X0
⊆ // X.

(1.8)

The square is a pushout, and the solid part of the diagram commutes by construction. Hence
the dotted arrow can be filled in. Since X = X0 ∪X01 X1 we see easily that it is both a map
over B × I and a homeomorphism.

Proposition 1.5 If f : X → I is locally trivial, then f is trivial.

Proof By compactness we can cover I by finitely many open sets over each of which f is
trivial. Next we can choose a sufficently large integer n so that 1

n
is Lebesgue number for

this covering. Then f is trivial over each of the closed intervals [ i
n
, i+1
n

], i = 0, . . . , n− 1. We
take B = ∗ and repeatedly apply Lemma 1.4 to get the statement.

Proposition 1.6 If f : X → In is locally trivial for some n ≥ 0, then f is trivial.

Proof The argument is formally the same as 1.5. We covering In be finitely many open sets
which trivialise f and choose an integer N large enough to make n

N
a Lebesgue number for

the covering. Then f is trivial over each product[
i1
N
,
i1 + 1

N

]
× · · · ×

[
in
N
,
in + 1

N

]
, i1, . . . , in = 0, . . . , N − 1 (1.9)

and we get the statement with an iterative application of Lemma 1.4.

Corollary 1.7 Let f : X → B be a locally trivial map. Then f has the homotopy lifting
property with respect to all cubes In and discs Dn for all n ≥ 0.

Proof It suffices to show the statement for In. Assume given a homotopy G : In × I → B
and a map ϕ : In → X satisfying fϕ = G0. Now take the pullback of f along H and consider
the following diagram

In ϕ

""

in0

##

ϕ̃

##H
H

H
H

H

G∗X

pf

��

G̃ // X

f

��
In × I G // B.

p

(1.10)

Since the outer part of the diagram commutes the dotted arrow ϕ̃ completes uniquely.
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Now, the map pf in the diagram is locally trivial by 1.2, and hence completely trival by
Corollary 1.7. Thus we can find a homeomorphism

α : G∗X ∼= In × I × F (1.11)

over In × I, where F is the fibre of f over the connected component of B which meets
G(In × I). The composition αϕ̃ is then a map In → In × I × F of the form

x 7→ (x, 0, φ(x)) (1.12)

where φ : In → F is some map. Let H : In × I → X be the map

H : In × I (x,t)7→(x,t,φ(x))−−−−−−−−−→ In × I × F α−1

−−→ G∗X
G̃−→ X. (1.13)

Then f(H(x, t)) = G(x, t) and H(x, 0) = ϕ(x), so H is a solution to the initial lifting
problem.

Remark Maps which have the homotopy lifting property with respect to all cubes In,
n ≥ 0 are called Serre fibrations. It turns out that this requirement is equivalent to having
the homotopy lifting property with respect to all CW complexes [9], Pr. 3.3.5, pg. 85. Serre
fibrations play an imporatant rôle in many problems, but past a few comments will not be
of much interest to us. �

1.1 Fibre Bundles

In this brief section we discuss extra structure that can be imposed on locally trivial maps
over B. We will not make much use of these objects, so the reader wishing to skip ahead
may do so.

Let f : X → B be a locally trivial map. Then it is always possible to cover B with open
sets, over each of which f is trivial. An atlas for f is a particular choice of covering. More
formally:

Definition 2 An atlas for a locally trivial map f : X → B is a family A = {(Ui, αi)}i∈I
where the Ui ⊆ B are open sets which cover B, and each αi : Ui × F

∼=−→Ui
XUi

is local
trivialisation of f . We call the pairs (Ui, αi) charts for f . �

Suppose given two charts (Ui, αi), (Uj, αj) for f such that the intersection Uij = Ui ∩ Uj
is nonempty. We let

α i
j = α−1

j |Uij
◦ αi|Uij

: Uij × F
∼=−→ Uij × F. (1.14)

This is a fibrewise automorphism of the trivial overspace Uij × F given by the top line in
the following diagram

Uij × F
αi|
∼=
//

$$I
II

II
II

II
XUij

��

αj |−1

∼=
// Uij × F

zzuu
uu
uu
uu
u

Uij

(1.15)
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We call the α i
j the transition functions associated to the atlas A. Each α i

j has the form
(b, x) 7→ (b, α̃ i

j (b, x)) for some map α̃ i
j : Uij × F → F , and we check easily that for fixed

b ∈ Uij, the map F → F , x 7→ α̃ i
j (b, x) is a homeomorphism. Thus the adjoint of α̃ i

j is a
function Uij → Homeo(F ), which is continuous if F is locally compact. If F is not locally
compact then we may need to alter the topology on the homeomorphism group to achieve
this. If each of the maps Uij → Homeo(F ) takes values in a given subgroup G ⊆ Homeo(F ),
then we say that the atlas defines a G-structure on f : X → B, and call G the structure
group of A.

Definition 3 A locally trivial fibre bundle over B with fibre F is a pair of a locally
trivial map X → B with fiber F and a particular choice of atlas A for it. �

Some of the most frequently examples ofG-structures can be found amongst the following.

1) F = G is a locally compact topological group and the inclusion G ⊆ Homeo(G) is that
sending g ∈ G to the left translation map lg : h 7→ gh.

2) F = Kn is a vector space over K ∈ {R,K} and G = Gln(K) ⊆ Homeo(Kn).

3) F = Sn, andG = Homeo+(Sn) ⊆ Homeo(Sn) is the subgroup of orientation preserving
self-homeomorphisms.

4) F = M is a closed C∞-manifold and G = Diff(M) ⊆ Homeo(M) is the subgroup of
self-diffeomorphisms of M .

2 Numerably Trivial Maps

Let B be a fixed base space.

Definition 4 A locally trivial map f : X → B is said to be numberably trivial if it is
trivial over each member of a numerable covering of B. �

If f : X → B is locally trivial, then we say that an atlas A = {(Ui, αi)}I for f is numerable
if {Ui}I is numerable covering of B. Thus f is numerably trivial if and only if it admits
a numerable atlas. We call a fibre bundle (f,A) numerable if its atlas A is numerable.
According to Milnor’s Theorem (Partitions of Unity Theorem 4.1, see 3.1 below) any bundle
admits a countable atlas.

Proposition 2.1 If f : X → B is numerably trivial, then it is trivial over the members of
a countable numerable covering U = {Un ⊆ B}n≥1.

Without some assumptions on B not every locally trivial map will be numerably triv-
ial. Example 1.3 discusses one such map. However, from the characterising property of
paracompactness we have the following.

Lemma 2.2 Any locally trivial map f : X → B over a paracompact space B is numerably
trivial. All bundles over a paracompact space B are numerable.

6



Recall that all CW complexes and manifolds are paracompact. More generally all metric
spaces are paracompact. Thus in each of these cases the theory of locally trivial maps
outlined above is equivalent to the better behaved theory of numerably trivial maps.

We feel that we should stress, however, that there are numerably trivial maps over any
base space. For instance any trivial map is numerably trivial. Thus it is not useful to push
paracompactness to the forefront. For while paracompactness is not homotopy invariant,
there is a homotopy invariant way to transfer numerable structures between spaces. This is
explained more fully in the next section, and is a consequence of the fact, proven now, that
pullback respects numerable triviability.

Lemma 2.3 If U = {Ui}I is a numerable covering of B and θ : A → B is any map, then
θ∗U = {θ−1(Ui)}I is a numerable covering of A.

Proof The family θ∗U is certainly an open covering of A. If {ξi : B → I}I is a numeration
of U , then we claim the that the family

θ∗ξi = ξiθ : A→ I, i ∈ I (2.1)

is a numeration of U . Indeed, for a ∈ A we have∑
I

(θ∗ξi)(a) =
∑
I

ξi(θi(a)) = 1 (2.2)

so the θ∗ξi form a partition of unity on A. To see that the family {θ∗ξi}I is locally-finite
observe that

Supp(θ∗ξi) = θ−1ξ−1
i (0, 1] ⊆ θ−1

(
ξ−1(0, 1]

)
= θ−1(Supp(ξi)). (2.3)

Then if a ∈ A is any point, choose an open neighbourhood W ⊆ B of θ(a) such that W
intersects only finintely many of the sets Supp(ξi). Then a ∈ θ−1(W ) and

θ−1(W ) ∩ Supp(θ∗ξi) ⊆ θ−1(W ) ∩ θ−1(Supp(ξi)) = θ−1(W ∩ Supp(ξi)) (2.4)

is nonempty for only finitely many indices i ∈ I.

Given an overspace f : X → B and a map θ : A → B we can form the pullback θ∗X as in
the square

θ∗X

pf

��

// X

f

��
A

θ // B.

p
(2.5)

We know from Proposition 1.2 that if f is trivial over U ⊆ B, then pf is trivial over
θ−1(U) ⊆ A. Thus from the lemma we have the following.

Corollary 2.4 If θ : A→ B is any map, then the pullback functor A/Top
θ∗−→ B/Top sends

numerably trivial maps to numerably trivial maps.
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Recall that the product in Top/B of two maps f : X → B and g : Y → B is the fibred
product

X ×B Y = {(x, y) ∈ X × Y | f(x) = g(y)} (2.6)

equipped with the obvious map f ×B g to B. According to Proposition 1.2, if both f, g are
locally trivial, then so is f ×B g. More is true, however.

Lemma 2.5 Let {πi : B → I}I and {ρj : B → I}J be locally-finite partitions of unity on a
space B. Then the family

{πi · ρj | i ∈ I, j ∈ J } (2.7)

is a locally-finite partition of unity on B.

Proof Fix a point x ∈ X. Due to the assumptions of local-finiteness there exist neighbour-
hoods U, V ⊆ X of x and finite subsets E ⊆ I, F ⊆ J such that

1) πk(y) = 0 if y ∈ U and k 6∈ E

2) ρl(y) = 0 if y ∈ U and l 6∈ F .

Then the existence of E,F implies that the sum converges to unity as required∑
I×J

πi(x) · ρj(x) =
∑

(i,j)∈E×F

πi(x) · ρj(x)

=

(∑
i∈E

πi(x)

)(∑
j∈F

ρj(x)

)
(2.8)

= 1 · 1
= 1.

Moreover it is clear that U ∩ V is neighbourhood of x on which only finitely many of the
πi · ρj are non-zero. Thus we get the claim.

Proposition 2.6 The product in Top/B of two numerably trivial maps is numerably trivial.

Proof Assume that f : X → B is trivial over the members of a numerable open cover
U = {Ui ⊆ B}I and that g : Y → B is trivial over the members of the numerable open cover
V = {Vj ⊆ B}J . Set

W = {Wij = Ui ∩ Vj | i ∈ I, j ∈ J }. (2.9)

Then both f and g are trivial over the members of W . Let {πi}I be a numeration of U and
{ρj}J a numeration of V and put

σij = πi · ρj, i ∈ I, j ∈ J . (2.10)

Then by Lemma 2.5 the family {σij | i ∈ I, j ∈ J } is a locally-finite partition of unity on
B. For each i ∈ I and j ∈ J we have

(πi · ρj)−1(0, 1] =
(
π−1
i (0, 1]

)
∩
(
ρ−1
j (0, 1]

)
(2.11)

and since these cozero sets form a locally-finite family we can take closures (cf. Partitions
of Unity Lemma 1.1) to get

Supp(πi · ρj) = Supp(πi) ∩ Supp(ρj) ⊆ Ui ∩ Vj = Wij. (2.12)

In particular {σij}I×J is a numeration of W .
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3 The Homotopy Theorem for Locally Trivial Maps

In this section we will prove the Homotopy Theorem for Locally Trivial maps. The reader
should compare this to Theorem 3.5 in Fibrations II which is the the corresponding result
for fibrations.

The following important results were proved in §4 of the lecture on partitions of unity.
You should have worked through their proof there

Theorem 3.1 (Milnor) Let U = {Ui}i∈I be a numerable open covering of a space B. Then
there exists a countable, numerable open covering V = {Vn}n≥1 of B such that each Vn is a
disjoint union of open sets, each of which is contained in some Ui.

Proposition 3.2 (Stacking Lemma) Let B be a space and U = {Ui}i∈I a numerable open
covering of B × I. Then there exists a numerable open covering {Vj}j∈J of B, and a family
of non-negative real numbers {εj ∈ (0,∞)}j∈J with the property that for each j ∈ J and all
s < t ∈ I with t− s < εj, there exists i ∈ I such that Vj × [s, t] ⊆ Ui.

Corollary 3.3 Let f : X → B be a numerably trivial map. Then f admits a countable atlas.
In particular, any locally trivial map over a paracompact space admits a countable atlas

Proposition 3.4 Let B be a space and f : X → B× I a numerably trivial map. Then there
exists a countable numerable covering {Un}n∈N of B such that f is trivial over Un × I for
each n ∈ N.

Proof Choose a numerable trivialising covering {Vj ⊆ B× I}J for f . Then Proposition 3.2
says that there is a numerable covering {Wi ⊆ B}I of B and a family {εi ∈ (0,∞)}I such
that f is trivial over Wi × [s, t] whenever t − s < εi. But now Corollary 1.7 implies that f
is trivial over Wi × I for each i ∈ I. To go from here to the countable numerable covering
{Un}N is now a simple application of Milnor’s Theorem 3.1.

Proposition 3.5 Let B be a space and f : X → B × I a numerably trivial map. Define a
map θ : B× I → B× I by θ(b, t) = (b, 1). Then there exists a map Θ : X → X which makes
the diagram

X
Θ //

f

��

X

f

��
B × I θ // B × I

(3.1)

a pullback and which restricts to the identity on X|B×1.

Proof It suffices to consider the case that B is connected. For if we can prove the statement
when f is restricted to any connected component of B × I, then the family of maps so
produced will sum together to define Θ. Thus in the following we assume that B is connected
and write F for the fibre of f .

To begin use Proposition 3.4 to find a countable numerable covering U = {Un}n∈N of B
such that f trivial over each Un× I. Also, for each n ∈ N, fix once and for all a trivialisation

αn : Un × I × F ∼= B|Un×I . (3.2)
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Now let {ξn : B → I}n∈N be a numeration of U and write ξ = supN ξn. It was shown in
Partitions of Unity that ξ is continuous and strictly positive, so for each n ∈ N

µn =
ξn
ξ

: B → I (3.3)

is a continuous function whose support lies inside Un. Notice that supN µn = 1 throughout
B.

Now for each n ∈ N define a map θn : B × I → B × I by setting

θn(b, t) = (b,max{t, µn(b)}) . (3.4)

Then θn is the identity outside of Un × I and on all of B × {1}. Covering θn there is a map
Θn : X → X which is the identity outside of f−1(Un × I), and is defined here by

Θnαn(b, t, e) = αn(θn(b, t), e), (b, t, e) ∈ Un × I × F. (3.5)

Then Θn is the identity on all of X|B×{1}.
The maps in the last paragraph are constructed to make the following square commute

X
Θn //

f

��

X

f

��
B × I θn // B × I.

(3.6)

In fact it is not difficult to see that this square is a pullback. There is an induced map
X → θ∗nX into the canonical pullback, and a map in the opposite direction is constructed
with the help of the trivialisation αn.

Now form the composition

θ(n) : B × I θn−→ B × I θn−1−−→ . . .
θ2−→ B × I θ1−→ B × I. (3.7)

Since the covering U is locally-finite, for each point (b, t) ∈ B × I there is an N ∈ N such
that θ(N+k)(b, t) = θ(N)(b, t) whenever k ≥ 0. This implies that in the limit as n → ∞ the
θ(n) give a well-defined map B × I → B × I, which is continuous since it agrees locally with
some θN . In fact, since supN µn = 1 we see that

lim
n→∞

θ(n) = θ (3.8)

where θ is as in the theorem statement.
Now form the same constructions with the Θn. Define Θ(n) to be the composition

Θ(n) : X
Θn−→ X

Θn−1−−−→ . . .
Θn−2−−−→ X

Θ1−→ X. (3.9)

and set
Θ = lim

n→∞
Θ(n). (3.10)

Then Θ is well-defined and continuous for the same reason that θ is. Moreover Θ makes
the square (3.1) commute. Since all the squares (3.6) are pullbacks, we conclude from the
definition of Θ that (3.1) is a pullback. The last thing to check is that Θ restricts to the
identity over B × {1}, and this is true because so does each Θn.
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Given a numerably trivial map f : X → B × I write Xt = XX×{t}. We think of each Xt

as a space over B and of X as a family of spaces over B parametrised by t ∈ I. If θ is as in
3.5 and we let θ∗X be the canonical pullback in the square

θ∗X //

pf

��

X

f

��
B × I θ // B × I

p (3.11)

then we check that θ∗X ∼= X1 × I. Thus comparing (3.1) and (3.11) we get a fibrewise
isomorphism

X ∼= X1 × I (3.12)

over B × I. On the other hand, if we reverse the orientation on the interval in 3.5, then the
same argument gives a second fibrewise homeomorphism

X ∼= X0 × I. (3.13)

These arguments prove the following. Now X0 × I ∼= X ∼= X1 × I over B × I, so X0
∼= X1

over B. The following proposition summarises these arguments.

Proposition 3.6 Let f : X → B × I be a numerably trivial map. Write Xt = XB×{t},
considered as a space over B. Then there are fibrewise homeomorphisms

X0
∼= X1 (3.14)

over B.

With the hard work out the way, we can finally present the first important result of this
section. We call the theorem the homotopy theorem for numerably trivial maps.

Theorem 3.7 Let f : X → B be a numerably trivial map over a space B. Suppose given
a space A and homotopic maps α ' β : A → B. Then the two pullbacks α∗X → A and
β∗X → A are homeomorphic over A.

Proof Choose a homotopy G : α ' β and form the pullback pG : G∗X → A × I. Then
by Corollary 2.4, pG is numerably trivial so we can apply 3.6. This gives homeomorphisms
(G∗X)0

∼= (G∗X)1 over A. But

(G∗X)0 = G∗0X = α∗X (3.15)

and similarly (G∗1X) ∼= β∗X. Hence

α∗X ∼= β∗X (3.16)

over A.

The first obvious application of the homotopy theorem is the following observation.
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Corollary 3.8 A numerably trivial map over a contractible space is trivial. In particular,
any locally trivial map over a contractible paracompact space is trivial.

Thus we generalise Proposition 1.6 to contractible non-compact base spaces like Rn. Com-
paring these results gives some insight into what the assumption of numerability does for
us. The argument for 1.6 relied heavily upon the compactness of In to keep inductive gluing
arguments to a finite number of stages. The use of partitions of unity provide more powerful
tools that greatly streamline the gluing arguments.

With a little bit of thought we can generalise the last corollary.

Corollary 3.9 Let B be a space with cat(B) ≤ n. If f : X → B is numerably trivial, then
B can be covered by ≤ n+ 1 open sets, over each of which f is trivial.

Proof If U is an open subset of B and the inclusion i : U ↪→ B is null homotopic, then 3.7
implies that XU = i∗X is trivial over U . The conclusion follows immediately.

Example 3.1 Any numerably trivial map over a suspension B = ΣA is trivialisable over
the two cones C±A ⊆ B. Thus an atlas consisting of exactly two sets can be found for such
a map. A particular case is that of B = Sn. We discuss in detail in the next section the
process of clutching, which recovers the isomorphism type of a locally trivial map X → ΣA
from a particular choice of atlas. �

Example 3.2 Any locally trivial map over RP n of CP n can be trivialised over n+ 1 open
sets. Clearly the standard atlas of smooth charts will suffice. �

The reader should compare the Homotopy Theorem 3.7 with the corresponding result for
fibrations which was proved as Theorem 3.5 in Fibrations II. The extra structure provided by
the assumption of local triviality leads to improved statements. The comparison beteween
locally trivial maps and fibrations is now completed by the following result.

Theorem 3.10 A numerably trivial map f : X → B is a fibration.

Proof Assume given a space A and a lifting problem

A� _
in0

��

ϕ // X

f

��
A× I

G
//

;;w
w

w
w

w
B.

(3.17)

We need to show that the dotted arrow can be completed. The construction is essentially
that of Corollary 1.7. Thus we start with the pullback G∗X → A× I, which as a numerably
trivial map over A× I admits a fibrewise homeomorphism

G∗X ∼= (G∗X)0 × I ∼= G∗0X × I. (3.18)

The map ϕ : A→ X determines a section ϕ̃ of G∗0X → A. We let G̃ be the composite

G̃ : A× I ϕ̃×1−−→ G∗0X × I
∼=−→ G∗X → X (3.19)

where the last arrow is the canonical map. Then we check directly that G̃ solves the homotopy
lifting problem (3.17).

12



Corollary 3.11 Every locally trivial map with paracompact base is a fibration.

Notice that the numerability assumption on f was needed in the proof of (3.10) only to
ensure that the pullback map G∗X → A × I was numerable. Hence a generalisation of
Corollary 1.7 is available.

Corollary 3.12 A locally trivial map f : X → B has the homotopy lifting property with
respect to all paracompact spaces.

Proof If A is paracompact, then so is A × I, since I is locally compact Hausdorff. Since
all locally trivial maps over paracompact base are numerable, the proof of 3.10 now goes
through as written.

Remark Regular fibrations are defined and discussed in the exercise section of Fibrations
I. These are fibrations with the extra property that constant homotopies can be lifting to
constant homotopies. The reader can check that during the proof of 3.10, the generic solution
(3.19) obtained has the required properties.

Proposition 3.13 A numerably trivial map f : X → B is a regular fibration.

4 Examples

4.1 Covering Spaces

Definition 5 A locally trivial map f : X → B is said to be a covering projection if all
its fibres are discrete. The total space X of a covering projection f : X → B is said to be a
covering space of B. �

Covering projections are local homeomorphisms (compare 1.3) and stable under pullback.
The results of the last section show that a covering projection is a fibration if it is numerable
and in particular if its base is paracompact. In fact a stronger result is obtainable using
direct methods [10], Th. 3, pg. 67.

Proposition 4.1 Every covering projection is a fibration.

Clearly covering projections are regular fibrations. In fact they have the stronger unique
lifting property. That is, if f : X → B is a covering projection and α, β : A→ X are maps
which i) agree on at least one point in each component of A, and ii) satisfy fα = fβ, then
α = β. This is essentially true because the fibrewise product X ×B X is again a covering
space of B. Not all maps with the unique lifting property are covering maps. The example
in 1.2 is one such map.

The covering spaces of B are best behaved when B is connected, locally path-connected
and semi-locally simply connected. Under these conditions B has a so-called universal cover
f : X → B, characterised by the fact that the total space X is simply connected. Note
that all CW complexes and manifolds are are locally path-connected and semi-locally simply
connected.
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Example 4.1 The exponential p = exp(2π(−)) : R → S1 is a covering with fibre Z. Note
that it is the universal covering of S1. Here we view S1 ⊆ C and trivialise p over the two
subsets

U+ = S1 \ {1}, U− = S1 \ {−1}. (4.1)

The map p takes each interval (n, n + 1), n ∈ Z, bijectively onto U+, and the restriction
RU+ =

⊔
n∈Z(n, n+ 1). Let logn : U+ → (n, n+ 1) be the inverse to p|(n,n+1). Then the map

ϕ+ : U+ × Z→ RU+ , (z, n) 7→ logn(z) (4.2)

is the required trivialisation.
Similarly, pmaps each interval (n

2
, n+1

2
), n ∈ N, bijectively onto U−, and RU− =

⊔
n∈Z(n

2
, n+1

2
)

Let log′n : Un → (n
2
, n+1

2
) be the inverse to p|(n

2
,n+1

2
) and trivialise p over U− by setting

θ− : U− × Z→ RU− , (z, n) 7→ log′n(z). (4.3)

�

Example 4.2 For each integer n ≥ 1, the map pn : S1 → S1, z 7→ zn, is a covering
projection. The fibre of pn is Zn. Let p0 = p be the map from example 4.1. Then it is known
that the maps pn, for n ≥ 0 are, up to fibrewise homeomorphism, all the covering projections
onto S1 with connected total spaces. �

Example 4.3 If f : X → A and g : Y → B are locally trivial (numerably trivial), then so
is f × g : X × Y → A × B. Clearly, if f, g are covering spaces, then so is f × g. This is a
special case of the fact that the cartesian product of two fibrations is a fibration.

This idea gives a basic way to obtain new covering spaces from given ones. In favourable
circumstances it is possible to obtain all the interesting covering spaces in this manner. For
example the connected coverings of the torus are, up to fibrewise isomorphism, the maps

p0 × p0 : R2 → S1 × S1 (4.4)

and for m,n ≥ 1, the maps

p0 × pn : R× S1 → S1 × S1, pm × p0 : S1 × R→ S1 × S1 (4.5)

and for m,n ≥ 1 the maps

pm × pn : S1 × S1 → S1 × S1. (4.6)

Note that p0 × p0 is the universal covering of the torus. �

Example 4.4 Let f : X → B be covering projection onto a CW complex B. For simplicity
we will assume that X, and hence B, are connected. Then X has a canonical CW structure
for which f is a cellular map. In detail write Bn ⊆ B for the n-skeleton and set

Xn = XBn = f−1(Bn), n ≥ −1. (4.7)
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Then Xn ⊆ Xn+1 for each n and X =
⋃
n≥−1Xn. Here we understand B−1 = ∅ so that also

X−1 = ∅.
Now B0 is a discrete set of points and X0 = f−1(0) ∼= B0 × F , where F is the discrete

fibre of f . Thus X0 is obtained from X−1 by attaching 0-cells. Now assume that for some
n ≥ 0 we have shown that Xn is obtained from Xn−1 by attaching n-cells and consider the
following two diagrams⊔

E S
n //

ϕ

��
y

⊔
E D

n+1

Φ
��

Bn
// Bn+1

⊔
Ẽ S

n //

��

⊔
Ẽ D

n+1

��
Xn

// Xn+1

(4.8)

The left-hand square here is to be the presentation of Bn+1 as an adjunction space formed
by attaching (n + 1)-cells to Bn. The set E indexes the (n + 1)-cells of X. The right-hand
square is formed by pulling back f : X → B to the spaces in the left-hand square, as we
now explain more fully.

Since Dn+1 is contractible, on the top right of (4.8) we have

Φ∗X ∼=

(⊔
E

Dn+1

)
× F ∼=

⊔
E×F

Dn (4.9)

since F is discrete. Thus we set Ẽ = E × F and get the square on the right-hand side of
4.8. To see that this square is a pushout observe that the map from the canonical pushout
space to Xn+1 is a bijection over Bn and we can construct an inverse by gluing together maps
defined over local trivialisations. The conclusion is that Xn+1 is obtained Xn by attaching
(n+ 1)-cells.

It remains to show that X has the week topology with respect to the cells constructed
in the last paragraph. But this follows easily from the fact that f is a quotient map (cf. Pr.
1.3) and the fact that the inverse image of the closed cells of B are disjoint unions of closed
cells in X.

In a bit more detail we summarise the above discussion with the following.

Proposition 4.2 Let B be a connected CW complex. Assume that f : X → B is a connected
covering space with typical fibre F . Then X admits a CW structure with the following
properties.

1) For each n ≥ 0, the projection f maps each open n-cell of X onto an open n-cell of B.

2) For each n ≥ 0, each covering transformation α : X → X of f permutes the set of
n-cells of X.

3) If En denotes the set of n-cells of B, and Ẽn the set of n-cells of X, then there is a

bijection Ẽn ∼= En × F .

Since the proposition neatly describes the cells of the covering X it has a direct and intuitive
consequence.
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Corollary 4.3 Let f : X → B be a connected covering of a connected CW complex B.
Assume that X carries the CW structure granted by the Proposition 4.2. If B is finite and
X is k-sheeted, then X is finite and the Euler characteristics have the following relation

χ(X) = k · χ(B). (4.10)

4.2 Clutching

Example 4.5 We take the base space Sn and show how to construct locally trivial maps over
Sn with a given fibre F . Let Dn

+, D
n
− ⊆ Sn be the upper and lower hemispheres. Technically

it is necessary to work with open sets whose intersection has the form Sn−1 × (−ε, ε), but
for ease below we will work with closed discs with Dn

+ ∩Dn
− = Sn−1.

The input data in the construction will be a map

α̃ : Sn−1 → Homeo(F ) (4.11)

which we call a clutching function. For simplicity we will assume that F is locally compact
and that Homeo(F ) is equipped with the compact-open topology. More generally we could
equip Homeo(F ) with any cosplitting topology. Now form the pushout

Sn−1 × F
α

��
y

� � // Dn
+ × F

��
Dn
− × F // (Dn

+ × F ) ∪α (Dn
− × F )

(4.12)

where the top map is the obvious inclusion and α is the map

α(z, e) = (z, α̃(z)(e)), (z, e) ∈ Sn−1 × F. (4.13)

Then the projection onto the first factor turns

Xα = (Dn
+ × F ) ∪α (Dn

− × F ) (4.14)

into a locally trivial space over Sn. We say that Xα is formed by clutching. We show below
that any locally trivial map over Sn is of this form for some choice of α̃. Before this we will
be interested in the classification of the Xα. We show that up to fibrewise homeomorphism
Xα depends on α only through its homotopy class.

To see this we replace the clutching function with a homotopy α̃t : Sn−1×I → Homeo(F )
and run the same construction as before. In detail we form the pushout

Sn−1 × I × F

α′

��
y

� � // Dn
+ × I × F

��
Dn
− × I × F // (Dn

+ × I × F ) ∪α′ (Dn
− × I × F )

(4.15)

where now
α′(z, t, e) = (z, t, α̃t(z)(e)). (4.16)
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The pushout space here is a locally trivial space over Sn × I and we apply Proposition 3.6
to get that

Xα0
∼= Xα1 (4.17)

over Sn.
To see the other claim assume given a locally trivial map f : X → Sn whose fibre is F

and choose trivialisations

α+ : Dn
+ × F ∼= XDn

+
, α− : Dn

− × F ∼= X−. (4.18)

Both these maps induce trivialisations of XSn−1 and the composite α−|−1α+|Dn
+×F defines a

map
α̃ : Sn−1 → Homeo(F ). (4.19)

We form the space Xα as in (4.12) and use the following pushout diagram to induce a
fibrewise homeomorphism between X and Xα

Sn−1 × F
α

��
y

� � // Dn
+ × F

�� α+





Dn
− × F //

α− //

Xα

##H
H

H
H

H

X

(4.20)

�

Example 4.6 More generally than Example 4.5 we could consider locally trivial maps over
the (unreduced) suspension Σ̃A of a space A. To guarantee numerability we should place

some assumption on A. Paracompactness will do, since if A is paracompact, then so is Σ̃A.
Now in (4.12) we replace the northern and southern hemispheres with the upper and

lower (open) cones C̃± ⊆ Σ̃A whose intersection is A. Then given a suitable space F to act
as fibre, the clutching function takes the form

α̃ : A→ Homeo(F ). (4.21)

The remainder of the construction is now formally identical to when A = Sn. What results
is a locally trivial map

Xα → Σ̃A (4.22)

with fibre F . �
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