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High-/Level Languages
> How could we construct high-level quantum
programs?
» How could we compile a high-level program down to [rcuits

a mized architecture?
rdware
> How to take advantage of the presence of quantum

circuits, and of the computation power they provide?




Conventions for Quantum Pseudocode

LANL report LAUR-96-2724
E. Knill

knill@lanl.gov, Mail Stop B265
Los Alamos National Laboratory
Los Alamos, NM 87545

June 1996

Abstract

A few conventions for thinking about and writing quantum pseu-
docode are proposed. The conventions can be used for presenting any
quantum algorithm down to the lowest level and are consistent with
a quantum random access machine (QRAM) model for quantum com-
puting. In principle a formal version of quantum pseudocode could be
used in a future extension of a conventional language.

Note: This report is preliminary. Please let me know of any sugges-
tions, omissions or errors so that 1 can correct them before distributing
this work more widely.
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A Brief Survey of Quantum
Programming Languages

Peter Selinger

Department of Mathematics, University of Ottawa
Ottawa, Ontario, Canada K1N 6N5
selinger@mathstat.uottawa.ca

Abstract. This article is a brief and subjective survey of quantum pro-
gramming language research.

1 Quantum Computation

Quantum computing is a relatively young subject. It has its beginnings in 1982,
when Paul Benioff and Richard Feynman independently pointed out that a
quantum mechanical system can be used to perform computations [I1} p.12].
Feynman’s interest in quantum computation was motivated by the fact that
it is computationally very expensive to simulate quantum physical systems on
classical computers. This is due to the fact that such simulation involves the
manipulation is extremely large matrices (whose dimension is exponential in the
size of the quantum system being simulated). Feynman conceived of quantum
computers as a means of simulating nature much more efficiently.

The evidence tn this dav is that cnantum comnuters ean indeed nerform
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A Survey of Quantum Programming Languages:
History, Methods, and Tools

Donald A. Sofge. Member, IEELE

Abstract— Quantum computer programming is emerging as a
new subject domain from multidisciplinary research in quantum
computing, computer scicnce, mathematics (especially quantum
logic, lambda calculi, and linear logic), and engineering attempts
to build the first non-trivial quantum computer. This paper
briefly surveys the history, methods, and proposed tools for
programming quantum computers circa late 2007. It is intended
to provide an extensive but non-exhaustive look at work leading
up to the current state-of-the-art in quantum computer
programming. Further, it is an attempt to analyze the needed
programming tools for quantum programmers, to use this
analysis to predict the direction in which the field is moving, and
to make ions for further D of quantum
programming language tools.

Index Terms— quantum computing, functional programming,
imperative programming, linear logic, lambda calculus

1. INTRODUCTION
HE importance of quantum computing has increased
significantly in recent years due to the realization that we
are rapidly approaching fundamental limits in shrinking the
size of silicon-based integrated circuits (a trend over the past

However, existing classical (non-quantum) programming
languages lack both the data structures and the operators
necessary 1o easily represent and manipulate quantum data.
Quantum computing possesses certain characteristics that
distinguish it from classical computing such as the
superposition of quantum bits, entanglement, destructive
and the 1 g theorem. These differen
must be thoroughly understood and even exploited in the
context of quantum programming if we are to truly realize the
potential of quantum computing. We need native quantum
computer programming languages that embrace the
fundamental aspects of quantum computing, rather than
forcing us to adapt and use classical programming languages
and techniques as ill-fitting stand-ins to develop quanfum
computer algorithms and _ simulations. Ultimately, a
successful quantum programming language will facilitate
easier coding of new quantum algorithms to perform useful
tasks, allow or provide a capability for simulation of quantum
algorithms, and facilitate the cxecution of quantum program
code on quantum computer hardware.

II. ORIGINS AND HISTORY OF QUANTUM COMPUTING

ANOTHER SURVEY
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Quipper: A Scalable Quantum Programming Language

Alexander S. Green

Dalhousic University
agreen@mathstat.dal.ca

Peter Selinger
Dalhousie University
selinger@mathstat.dal.ca

Abstract

The field of quantum algorithms is vibrant. Still, there is currently
a lack of programming languages for describing quantum compu-
tation on a practical scale, i.c., not just at the level of toy prob
lems. We address this issue by introducing Quipper, a scalable, ex-
pressive, functional, higher-order quantum programming language.
Quipper has been used to program a diverse set of non-trivial quan-
tum algorithms, and can generate quantum gate representations us-
ing trillions of gates. It is geared towards a model of computation
that uses a classical computer to control a quantum device, but is
not dependent on any particular model of quantum hardware. Qui
per has proven effective and easy to use, and opens the door towards
using formal methods to analyze quantum algorithms

Keywords Quipper: Quantum Programming Languages

Categories and Subject Descriptors D3.1 [Programming Lan
guages]: Formal Definitions and Theory

1. Introduction

The carliest computers, such as the ENIAC and EDVAC, were
both rare and difficult to program. The difficulty stemmed in part

Peter Lel'anu Lumsdaine
Institute of Advanced Studies
p.Llumsdaine@gmail.com

Neil J. Ross
Dalhousie University
NeilJR.Ross@Dal.Ca

Benoit Valiron

University of Pennsylvania
benoit.valiron@monoidal.net

‘This paper is a stepping stone owards meeting this challenge
We approach quantum computation from a programmer’s perspec-
tive: hiow should one design a programming language that can im-
plement real-world quantum algorithms in an efficient, legible and
maintainable way? We introduce Quipper, a declarative language
with a monadic operational semantics that is succinct, expressive,
and scalable, with a sound theoretical foundation.

When we speak of Quipper being “scalable”, we mean that it
20es well beyond toy algorithms and mere proofs of concept. Many
actual quantum algorithms in the literature are orders of magnitude
‘more complex than what could be realistically implemented in pre
viously existing quantum programming languages. We put Quipper
to the test by implementing seven non-trivial quantum algorithms
from the literature:

o Binary Welded Tree (BWT). To find a labeled node in a
graph [4]
Boolean Formula (BF). To evaluate a NAND formula [2]. The
version of this algorithm implemented in Quipper computes a
winning strategy for the game of Hex
o Class Number (CL). To approximate the class group of a real
quadratic number field [8]

QUIPPER
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QUIPPER

» Quantum circuits can be constructed and manipulated within a fully-fledged
functional programming language, namely HASKELL.

» Quantum Circuit Construction

mycirc2 :: Qubit -> Qubit -> Qubit
-> Circ (Qubit, Qubit, Qubit)

Qubit -> Qubit -> Circ (Qubit, Qubit) mycire2 a b c = do

mycirc ::
mycirc a b = do il mycirc a b
a <- hadamard a = with_controls c $ do
b <- hadamard b —H] mycirc a b
(a,b) <- controlled_not a b mycirc b a > >
return (a,b) mycirc a ¢ [0
return (a,b,c) ‘ . u

*» Quantum Circuit Transformation

timestep Qubit -> Qubit -> Qubit
-> Circ (Qubit, Qubit, Qubit)
timestep a b ¢ = do a D
mycirc a b H =
‘controlled‘ (a,b) . .

gnot ¢
reverse_simple mycirc (a,b)

return (a,b,c)



A Categorical Model for a Quantum Circuit
Description Language (Extended Abstract)

Francisco Rios and Peter Selinger

Dalhousie University
Halifax, Canada

Quipper is a practical programming language for describing families of quantum circuits. In this
paper, we formalize a small, but useful fragment of Quipper called Proto-Quipper-M. Unlike its
parent Quipper, this language is type-safe and has a formal denotational and operational semantics.
Proto-Quipper-M is also more general than Quipper, in that it can describe families of morphisms in
any symmetric monoidal category, of which quantum circuits are but one example. We design Proto-
Quipper-M from the ground up, by first giving a general categorical model of parameters and state.
The distinction between parameters and state is also known from hardware description languages. A
parameter is a value that is known at circuit generation time, whereas a state is a value that is known

PROTO-QUIPPER-M
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Boxed Circuits

Modifies the underlying circuit
Labels

o Turns a function into a circuit
» Formalization of a fragment of \JUIPPER.

» Linear lambda calculus with constiucts to manjpulate circuits
M,N :=---| 0| (£,C,0) | apply(M, N) | boxg M.
The usual constructions from lin-

ear A\-calculi:

» Abstractions and applications;
» Linear products;

» Linear coproducts.



PROTO-QUIPPER-M, by Example

let (g, a) = apply(qinity, *) in
let (¢',a’) = apply(CNOT, {g,a)) in

1 /

let ¢" = apply(H,q’) in (¢",a’)
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let {¢’,a’) = apply(CNOT, (g, a)) in 0) — ¢

/! /

let ¢"" = apply(H,¢') in {¢",d’)



PROTO-QUIPPER-M, by Example

let (g, a) = apply(qinitz, ) in 0) —P— o
— let (¢, a") = apply(CNOT, {g,a)) in

/" /

let ¢" = apply(H, ¢') in (¢", a’)




PROTO-QUIPPER-M, by Example

let (q,a) = apply(qinitp, *) in |0) 4 a’

let (¢, a’) = apply(CNOT, (g, a)) in B
"o 10) q

— let ¢ = apply(H, ") in (", d)
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PROTO-QUIPPER-M: Operational Semantics

> Big-step
> Call-by-value

M (C,V)

<
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PROTO-QUIPPER-M: Type System

Qubit | Bit | (T, U).
-+ | Qubit | Bit | (A, B) | Circ(T,U).

QFM:A

Types of Labels

Types of Term Variables



PROTO-QUIPPER-M: Type System

Qubit | Bit | (T, U).
-+ | Qubit | Bit | (A, B) | Circ(T,U).

QOFM:A

l @,Fl;Qll—M:Circ(T,U) @,F%QQ"NZT
a
PP 8 T, T9;Q1, Qo F apply (M, N) : U

. QM : (T —U)
0
I'; Q = boxy M : Circ(T,U)
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teleport :: Qubit -> Qubit -> Qubit -> Circ Qubit
teleport b a q = do
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b <- gate_X b ‘controlled‘ y

b <- gate_Z b ‘controlled‘ x

return b
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Teleportation

teleport :: Qubit -> Qubit -> Qubit -> Circ Qubit
teleport b a q = do
a <- gnot a ‘controlled‘ g
— q <- hadamard q
(x,y) <- measure (q,a)
b <- gate_X b ‘controlled‘ y
b <- gate_Z b ‘controlled‘ x

return b
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Teleportation

teleport :: Qubit -> Qubit -> Qubit -> Circ Qubit
teleport b a q = do

a <- gnot a ‘controlled‘ q

q <- hadamard q

(x,y) <- measure (q,a)

b <- gate_X b ‘controlled‘ y

b <- gate_Z b ‘controlled‘ x

— return b

=
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Teleportation with Dynamic Lifting

teleport :: Qubit -> Qubit -> Qubit -> Circ Qubit
teleport b a q = do

a <- gnot a ‘controlled‘ q

q <- hadamard q

(x,y) <- measure (q,a)

(u,s) <- dynamic_lift(x,y)

b <- if s then gate_X b else return b

b <- if u then gate_Z b else return b

return b
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teleport :: Qubit -> Qubit -> Qubit -> Circ Qubit
— teleport b a q = do

a <- gnot a ‘controlled‘ q

q <- hadamard q
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(u,s) <- dynamic_lift(x,y)
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return b
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Beyond Uniform Dynamic Lifting

» In the previous example, the various branches induced by dynamic lifting are
uniformly typed, both in the term and in the circuit.

» There are cases in which uniformity does not hold, at least if we want to be
modular.

» Measurement-based quantum computing:

» It would be nice to allow for the wildest forms of dynamic lifting, without
imposing any restriction.
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Our Contribution

A Conservative Extension of PROTO-QUIPPER-M...
... Capturing a Very General form of Dynamic Lifting. ..
... And Enjoying Type Soundness



Concrete Categorical Model of a Quantum Circuit
Description Language with Measurement

Dongho Lee G4
Université Paris-Saclay, CentraleSupélec, LMF, France & CEA, List, France

Valentin Perrelle &
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Benoit Valiron 24

Université Paris-Saclay, CentraleSupélec, LMF, France

Zhaowei Xu &
Université Paris-Saclay, LMF, France

—— Abstract
In this paper, we introduce dynamic lifting to a quantum circuit-description language, following
the Proto-Quipper language approach. Dynamic lifting allows programs to transfer the result of
measuring quantum data — qubits — into classical data — booleans — . We propose a type system

and an operational semantics for the language and we state safety properties. Next, we introduce a
concrete categorical semantics for the proposed language, basing our approach on a recent model
from Rios&Selinger for Proto-Quipper-M. Our approach is to construct on top of a concrete category

of cirenite with m, a Kleicli ino ag a cide effort the actinn of retriovine
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Proto-Quipper with dynamic lifting

Peng Fu, Kohei Kishida, Neil J. Ross, Peter Selinger
April 28, 2022

Abstract

Quipper is a functional programming language for quantum computing. Proto-Quipper is a family of
languages aiming to provide a formal foundation for Quipper. In this paper, we extend Proto-Quipper-
M with a construct called dynamic lifting, which is present in Quipper. By virtue of being a circuit
description language, Proto-Quipper has two separate runtimes: circuit generation time and circuit
execution time. Values that are known at circuit generation time are called parameters, and values that
are known at circuit execution time are called states. Dynamic lifting is an operation that enables a state,
such as the result of a measurement, to be lifted to a parameter, where it can influence the generation of
the next portion of the circuit. As a result, dynamic lifting enables Proto-Quipper programs to interleave

PROTO-QUIPPER-Dyn
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Lifting Trees

v
= YN\
€ €

» One can associate objects to the leaves of any lifting tree.

» This way, lifting trees become mathematical representation of an object whose
identity depends on the value of one or more lifted variables

» The objects one attaches to the lifting tree’s leaves may be anything: terms,
values, types, etc.



Lifted Types
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Manipulating Lifted Objects
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Manipulating Lifted Objects
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Manipulating Lifted Objects
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Minor variation on PROTO-QUIPPER-M € K(TERMS)
M,N :=-=-|letz =M in p.
A B:=---| A—o ] la| Circl(T,~).
Q. M:«a
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PROTO-QUIPPER-K: Operational Semantics
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Type Soundness

Subject Reduction
If F M : o and 3C, ¢.M |} (C, ¢), then F (C, ¢) : .

Proof. By induction and case analysis on the last rule used to derive M | (C, ¢).

Progress
If - M : «, then either 3C,¢.M |} (C,¢) or M 1.

Proof. We prove that if F* M : o and AC, ¢.M || (C, ¢), then M f. We proceed by

coinduction and case analysis on M.
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Future Work

Understanding the monadic status of our branching effect.
Studying the relationship between branching and regular circuits.
Giving a denotational account of PROTO-QUIPPER-K.
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