The final result of our calculation is:

e ) s
{68 ’662]¢c FTLEY Bty s Y & Bpes

which is Eq. (IIL.2.70a} of the text,

(131.2.A18)
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CHAPTER II1I.3

SUPERGRAVITY IN SUPERSPACE AND THE RHEONOMY PRINCIPLE

TIT.3.1 - From Space-~time to superspace

Let us briefly review the logic of the previous chapter. Our aim
was local, vather than global, supersymuetry invariance. This required
the intreoduction of the spin 3/2 field ¢u vhich "gauges" the super-
symmetry charge Q. Hence the problem of comstructing W=! supergravity,
that is the "gauge" action of the N=1 supersymmetry algebra, was turned
into the problem of coupling the Rarita Schwinger field to Einstein
gravity. Utilizing first crder formalism, namely treating the spin
connection w:b as an independent field, the sbove problem has a
unique solution, up to a one parameter freedom, which can be reabsorbed

into the normalization of ¢p.

The solutien is given by the action (II1.2,18) and the free para-

meter is a. It remained to be seen that {III1.2.18) is indeed invariant

" against suitable supersymmetry transformations. Fixing a=4, we showed

that the resultiag action (IIL.2.54) is invariant under thé transforma-
tions (I11.2.55,56,61) or (III.2.62) in second order or first order

formalism, respectively.
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Our study of these transformaticns made marnifest that they are
not gauge transformations of the super Poincard algebra. Equations
(III.2.55,56,61) reduce to a true representation of the ¥=1 super
Poincaré algebra only in their linearized form and on the free fields

satisfying the linearized field equatioms.

&t this point, the structural difference between Yang-Mills

theories and supergravity theories should be clear to the reader.

The action of the former theories is fixed by the requirement of
invariance ageinst a set of local transformations which is given a
priori (the gauge transformations). In the latter theories the set of
local transformations against which the action should be invariant is
not known a priori and is actually engineered in such a way as to

befit the action.

4 classical way out of this vicious cirele is provided by the time
honoured but very cumbersome method of the Noether coupling. Ir this
approach the Lagrangian and the supersymmetry transformation rules which
befit it ere determined at the same time. One starts from a linearized
action invariant under global supersymmetry transformations and uses a
recursive procedure in the gravitational coupling constant k= Y&re in
otder to determine the needed additions to the Lagrangian and to the

transformation rules.

The reason why in the previous chapter we were able to avoid such
a lengthy construction is purely accidental and limited to the N=1 case.
We were just lucky that the coupling of a spin 3/2 field to gravity is

a problem with a enique and easy solutionm.

We cannot expect such an easy life in the case of higher ¥ or

higher dimensional supergravities,

This is why we are now going to reconsider the theory we just
derived from a different and more formal viewpoint. Our aim is that of
devising a better and more algorithmic setup for the construction of all
supergravity theories. The key point in this programme is obviously a

more satisfactory understanding of the supersymmetry transformation

rules (111.2.55,56,61 or 62¢). This is achieved, as in the case of

rigid supersymmetry (see Part Two), through the concepts of superspace

and superfisids. B

We plan to extend, in an appropriate way, our space-time fields
V:, wu, wih to fields (actually i{-forms) defined over superspace. In

this way we shall be able to reinterpret the supersymmetry transforma-

tions (IT1I.2.62) as superspace Lie derivatives. This is fully analogous

to what we did in Chapter II.6 (Section II.6.3) for the rigid Wess-

Zumino multiplet.

The principle of rheonomy, already discussed in Chapter Il.6,
makes the extension from space-time to superspace uniquely defined
and consequently allows for a geometrie interpretation of the super-
symmetry rules., To summarize this principle in ome sentence: we demand
the 8-dependence of every superfield to be determined by the x-dependence

of all the superfields in our stock.

When the principle of rheonomy is exploited to get rid of unwanted
degrees of freedom we can idemtify supergravity with the geemetric
theory of superspace in the same way Einstein gravity is the geometric

theory of space-time.

Indeed the pair of !-forms (Va,@) once extended to superspace
can be viewed a8 a single object EA, the supervielbein, namely a local
cotangent frame en MAIA. More genevaily uAE (wab,va,w) constitute

an intrinsic reference frame in the cotanpent plane tc the soft super

Poincaré group.

111.3.2 -~ Gecometry of superspace

A5 stated, our aim 1s to show that supergravity can be naturally
interpreted as a theory in superspace or, better, as the theory of

superspace.

In order to arrive at this interpretation we reconsider the super-

space structural eguations given in Chapter IL.3.

We start with the Osp(4/1) Maurer~Cartan equations defined in

(r1.3.27) in terms of the left invariant [-forms:
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7 | oab JoE:] g ( 3.1
b= - + I1i.3.1
Bedbn, =87 eV vd0
where TA E(Jab, Pa, Q) are the generators of Osp(4/1} (the super

b
Poincaré group) and 3A=w(ga

mapifold Ospl4/1). Rigid superspace is defined by the structural

equations (II1.3.27) obtained by restricting the Maurer-Cartan equations

) %a’ 3} js defined on the rigid group

to the coset space
K% = 0sp(a, 13 /50(1,3) . (171.3.2)

We assume that the fields SA transform as gauge flelds under Loreats

transformations. This means that Osp(1/4) has been given the structure

of a fiber bundie ? with RA/A as base space and $0(1,3) as fiber:

STy = p (Y4, s00,3) . (111.3.3)

The soft superspace, Mﬁld, is defined by the new i-forms

A PP 2 7 (117.3.4)
A LA

which are not left invariant. Then the structural equations of the

soft superspace define the curvatures as the deviation of the l.h.s.
of the Maurer~Cartan equations from zero, and are given by Eqs.
(11.3.27) with (&%, R%, ) #0. Let us revrite them here for

convenience!
gh _,ab _ @& ch _ @ab (171.3.52)
R = dw P w = |
o gvd -1y %y (111.3.5b)
2
o = G4 (111.3.5¢)

or in a compact notation

A_ A, 1 A B C (III.3.6)
R=dy" + 7 Cge ¥~ ¥
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where

A b
e %, %L o (F11.3.7)

According to cur approach to the study of local geometry given in
Chapter 1.3 (Va, y) represent a basis of I-forms at each point P

of the cotangent plane to MQIA: T; (MAIQ

Y. They constitute the so-
called supervieibein basis. The spin’connection wab is the gauge
connection of the Lorentz grouwp which is the structural group acting

on ‘I‘: oy,

) "wéiffynatively one may start with the soft group manifold

G =0sp(4/1) formally deseribed by the same equations {IIT.3.5) where
now, however, the fields uA depend on the coordinates of the whole
§. In this case it is natural to interpret the triplet ”A z(wab, Va,
¥} as a local (super)-vielbein frame spanning a cotangent frame on
?; (8} (see the discussion in section 1.3.7). Impesing on & the
fiber bundle structure {S0(1,3)~horizontality of R#)

Mﬁ/&

gz ot s001,3) (IT1,3.8)

one retrieves the structural equations defining Mdla.

d-differentiation of both sides of (II1.3.5) gives the Bianchi

identities (II.3.77) which once more we rewrite here for completeness:

wr® = g (111.3.9a)

Grd 4 g3 =19 .y =0 : (I11.3.9b)
I _ab

I/ - =

JXES SN q:z.3.9c)

Let us now derive the G-gauge transformations of uA'E(wab, Va, 9y,
where G=08pl{if&). The quickest way to write them explicitly is to
recall that the Bianchi identities (III.3.9) are squivalent to the
statement that the G-covariant derivative of the adjoint multiplet of

A,
the curvatures R~ 1is zero



A B ¢

(8) A -
¥R g ¥ - R=0 (TI1.3.10)

zd RA i+ C
where the operator V has been defined in (1.3.126-127). 4 G-gauge
transformation of the field uA is given by the G-covariant derivative
of ¢ uhere & isa parameter in the adjoint of representation of
G:

6£gauge) Whay et {IIT.3.11)

In our case G=0spll/4) and EAE (sab, ea, ¢%). The Lorentz content

of the ¥ derivative, when acting on the adjoint multiplet, can be read

off directly from the explieit form of the Blanchi idemtities (I11.3.9).

We obtain:

5{828) T o (geyab o o (I11.3.122)
(gauge) .a a _ a ab L8

BE Vo= (Ve) = @& 4+ ¢ Vb - i¥ve (111.3.12%)
(gauge) . _ s 1 &b

62 W= Vg E Fg + L e Y, Yo {IIT.3.12¢)

Here ¥ and &% vepresent the Osp(4/1) snd 50(1,3) covariant deriva-
tives respectively. In particular, if etz 0, 0, e we get the

explicit form of a gauge supersymmetry transformation:

5, W w0 (III.3.13a)
8, R v (I11.3.13b)
3, 9= 2c . (I111.3.13c)

Setting instead:

aA @ (eab, 0, 0) or ¢ = (0, ea, 0}

PRI YU
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yields the form of a Lorentz or of a translation gauge transfermation

respectively: ,
8 = g™ ' (111.3.142)
5V =y (11.3.4b)
5y = -i« 2 Y ¥ (I11.3.14e)
8 = 0 (II1.3.15a)
s v = aef (II1.3.15b)
59=0. (111.3.15¢)

Let us also write down the transformation law of uA under
(infinitesimal) diffeomoxphisms. It will be of the utmost importance
in the following for the interpretation of supersymmetry. It is
better to work with soft 1-forms uA on &, without imposing a priori
the fiper bundle structure (III.3.8). This allows & wmified descrip-
tion of the 50(1,3) geuge transformation (III.3.12) and of the super-

space diffeomorphisms.

Let '
1 ab a x x A=
- - H 111.3.16
e= ¢ Dyte D +ED=e Dy { )
be a general tangent vector on ¢ with f)A dual to
Bpy = 8d (111.3.17)
" (DA} = 5A .

Here and in the following we denote by DA(éA) the tangent vector
on the soft group manifold dual to the (non) left-invariant i-forms
0A(GA), according to the nomenclature introduced im Fart II. The

symbels 'E‘AE {Jab, Pa’ Qu) wiil be reserved to the abstract Lie algebra

o~

o
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generators; (when thought as vector fields they are left~invariant and

D, = ?A) . Explicitly

oG -6 WPBY =B =0 (111.3.18a)
2,y = 62 B,y = v3H ) = .3.18b
A {Db) Gb ;v (Dbc) v (Da} ] (IT1.3 )
w“(ﬁﬁ) = é‘; ;B =) = 0 (T11.3.18¢)

An infinitesimal diffeomorphism on uA is given by the Lie

derivative (see (I.1.227}):
déélff‘) N o elaraend. (111.3.19)
Alternatively, using Bq. (I.3.136), we may write

6£d1ff.) A : A @b it e ot v

£ 260 RABC u® (111.3.20)

and by meking the Loreatz conteat explicit we find

g - @e)® + ¢| &P . (I11.3.21a)
E: a a

1, Vo= (Te) +e| R (111.3.21b)

oY= Ve ele. (111.3.21¢)

Tet us now impase the S0{1,3}-horizontality condition on the s

649

5 =0 (111.3.22)

so that € assumes the fiber bundle structure (II1.3.8). Taking

=€ab 5ab Eq. (I11.3.20) becomes:
A
1t = et (II1.3.23)

that is, we ohtain the S0(1,3) gauge transformation (TIL.3.11) and
Bab S Dab .

On the other hand if e=e¢® §a+'5§ Eqs. (II1.3.21) describe a
diffeomorphism in superspace w44 uhich cannot be interpreted as a
pure Q- and Pa~gauge transformation (IIL.3.13-14), unless we also impose

the further herizontality comstraints EEJRAWﬂﬁu RA==0. However if

these conditions were to be imposed, the fields uA would have a
trivial {factorized} dependence on the superspace coordinates (x“, 8%
and the soft (super)}-coset é;’SO(i,Z&)-GMMLt

superspace G/S0(1,3) E]R&/é.

would reduce to the rigid

Therefore in the construction of a physical theory we need non-
vanishing curvature-terms in the r.h.s, of {IIL.3.21). In this way
the fields uA can exhibit a nom trivial (= dynamical) dependence on

their argumentis.

T11.3.3 - The rheonomy prinmciple

In order to relate the previous formal apparatus describing

(local) superspace geometry with supergravity theory we make the

ab a4

fundamental assumption that the fields w™ , V' and ¥ introduced in

previous chapter for the space~time description of supergravity are

the same fields entering the structural equatioms (II1.3.5).
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The problem with this identification is that the soft I-forms
yA E(wab, Va, ¥} are defined om MAI& {or G) while the fields used

in Chapter II1I.2 are defined only on space-time MA.

If supergravity theory were invariant under the gauge super-
symmetry transformations (IIL.3,13), then one could factorize the 6~
dependence of the superfield uA(x,e) through a Q-gauge transformation
in the same way as, starting with the I-forms uA(x,B,n}, defined on
the whole &, one can factorize the dependence on the 30{1,3) para~-

meters nab through a Lorentz gauge transformation.

However we know from the discussion of D=4 B=1 supergravity on
space~time that, while uAE (mab, v, W) undergoes gauge transformation
under the action of the Lorentz subgroup, the transformation properties
under the Q and P_ generators are definitely non-gauge. (Notice that
the non gauge invariance under Qa implies the non gauge invariance
under Pa because of the relation {Ea’ aﬁ} = i{C Ya)ug Pa). The fact
that the supersymmetries (and the translations) are not gauge trans-
formations implies, as we have already observed at the end of the pre-

vious section, that uAE (Va, mab’ ¢} =must have a non trivial dependence

on the & {and x)~coordinates of the superspace Mélé.

The impertant point coming ocut of this discussion is that the
identification of the soft 1-forms (III.3.4) with the fields of super-
gravity requires that the space-time fields Vi{x}, ¢3(X), m:b(x}
considered in the previous chapter be interpreted as the space-time

boundary values of the superspace superfields yA= pA(x,e); more

precisely the 1-forms

y2 = V:{x) dx (I11.3.24a)
IAERO) ax¥ (I11.3.25b)
WP = w:b(x) s (111.3. 24¢)
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are the boundary value at 8% =0 of the restriction, on the bosenic
cotangent plane, of the corresponding 1-forms in superspace; namely:

ks

Vi) = V08|, (111.3.25a)
d6=0
PG = 9ix,0) |4, {I11.3.25b)
48=0
2 () = 5% (x,9) 8=0 (IIT.3.25¢)
d6=0
where(*)
v3(x,8) = vz{x,e) axt + V;(x,e) a6° {1I1.3.263)
bx,8) = 4 (0,8 ax + g (x,0) dg® (171.3,26b)
w0 (x,0) = mib(x,e) axt o+ mgb(x,s) as® . (111.3.26¢c)

To give a precise meaning to the ideatification of the space-time field
of supergravity with the l-forms satisfying Egs. (111,3.5), we have to
specify the mapping which extends the purely space~time configurations

described by (111.3.25) to configurations on the vhole superspace.

The extension mapping

V) » vix,8) (111.3.27a)
rh; P{x) + Pp(x,8) (I11.3.27h)
W) > 02 (x,8) (111.3.27¢c)

) Since we make scarce use of the spinerial coordinate indice§ we
will denote them in this section by a lower case Greek letter Vlth a
bar while the unbarred Greek indices will be reserved to describe
iatrinsic fermionic indices.
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is called the rheonomic extension mapping according to the same nomen-

clature used in the rigid supersymmetric case. The knowledge of this
mapping is essential in order to interpret the thecry based on the
superspace fields (IT11.3.26} as a space—time theory. Indeed the intro~
duction of the superfields (x 8) = (v3(x,8), w(x,8), w? (X 8)}
increases the number of the physical degrees of freedem, since each
component in the §-expansion oflthe superfield represents an a priori

new x-space field.

In order to have the same physical content of the space—time
theory we must be able to determine all the fields contained in the
g-expansion of the superfield p (x 6), and all its dé-components, in
terms of its space-time restriction Hy {x 0)dx". This is what the

knowledge of the rheonomic mapping (III 3.27) amounts to.

Let us now explain what are the conditions to be imposed on the

uA's in order that the mapping (II1.3.27) be completely determined.

Following the same procedure given in the rigid case (Chapter
11.6), we consider the diffsomorphic mapping generated by the Lie

derivative §_ (IIL.3.20) with e=c® 3/06% .

Ia this case (III.3.20) becomes:

WAlx,e ¢ 60) = ub0x,0) + bW Ax,8) = whx,0) + ()" + el =

u

By + et 28 B, (111.3.28)

where dZL = (d6°, ax™y. In genersl, the mapping (111.3.28) is not
rheonemic since, in order to compute uA(u, 8+ 66) from, say,

8= 80 0, ¢0=0, we need a complete set of Cauchy data: not oaly the
8=0 space—tlme configuration u (x 0) but alsc the "normal deriva~

rives” 3/26" M Ay, e}je 0"

Equivalently, one way substitute the normal derivatives with

The last statement is justified by the following ldentity:

Y
&

3 A 3 A u & LA
wnerery 8 Y o
e v{x,8) " B (2,0) dx /367 du
fr=dg=0 B=d6=0
- Fph 14 B CL M
= 9/087] [(R)), > Sy g, el - lg=as=0
A _ 1A
= 2(Rm - =G u- B )éZ =
a¥ g BC M B=do=0
_ apph | A B ¢
= 2085, (,0) = 2 Cpo Ha(x,0) 1(x,0)) dx’ (111.3.29)

where we have used %q. (IIL.3.6).

The knowledge of uA(x,O) and B/BB“ uA(x,O) is thus equivalent
to the knowledge of ui(x,o} and RgL(x,O).

The coneept of rheonomy can now be introduced as follows. Let us

assume that the "outer™ components RéL can be expressed algebraically

in terms of the purely space-time or inmer components R

A Al B
R, = =y By {I11.3.30}

Y]
where the C“LIB are constant tensors and, according to our conven-—
tions, u,v are space-time (busonlc) coordinate indices, & is a

spinorial index associated to the 6% coordinate amd Lz (&,u); A

and B are super-Lie algebra indices.

Then, recaliing that

A a1 B oC
Ry = 2L M) * 3 cgc TN (111.3.31)

we recognize that when (IT1.3.30) holds the knowledge of 2 purely space~
time configuration: {ug(x,ﬁ); aupﬁ(x,O)} determines in a complete way
the extension mapping {IIL.3.27). Indeed, inserting (IT1.3.30} into
{111.3.28) we find

A - A i Aluv B L
Sut(x,0) = (V)" + 2 ¢ C&L!B Ruv(x,G) az™ . (I11.3.32}
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Therefore the complete 6-dependence of the superfield yA(x,e) can be
recovered starting from the initial purely space-time (8=0) configura-
tion In other words by (x 0} and the space-time tangent derivatives

¥, (x ¢ (or equlvalently uu(x,O} and Riv(x,O), by (II1.3.29))
constltute a complete set of Cauchy data on M4 onee (111.3.30) is
satisfied. Indeed the space-time normal derivatives 3/38 uA(x,O) are
ué]{x,O} via Egs. (I1I.3.30)
and (III.3.29}. 1In Fig. II1.3.1 we have depicted this fact.

¢ @

8= 66 W W00 =480, 00 + 0P (x,0)

co T T A A
0 (uu(x,O), Ruv{x,ﬂ))

expressible in terms of uA(x,O} and 2
H

Fig. ITI.3.I

The set of constraants (T11.3.30) which relate the ipmer RA and

the outer R"L components of the curvatures RA are named rheonomic
constraints. The preperty expressed by (II1.3.30) will be referred to
as "rheonomy" and a theory admitting a set of rheonomic constraints is
likewise named rheonomic. What we have shown is that the physical
content of a superspace rheonowmic theory is completely determined by

means of a purely space-time description.

Alternatively, if we regard the Lie derivative as the generator

of the functional change of uA at the same coordinate point:
4 _ A
2=t 0 - 0 (111.3.33)
then the rheonomic mapping (111.3.32) can be rewritten as follows:

5,0y = ()t s 2 6B Al p ﬁv(x,o) azt . (111.3.34)

aL|B
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Written in this form the rhecnomic mapping maps a space-time confipura-

tion into a new space-time configuration. (See Fig. IIL.3.11). In

particular if the theory describid by the uA—fields (the action, or its
equations of motion) is imvariant under superspace diffeomorphisms,
then it can be restricted to space-time and (III1.3.34) will appear as

a symmetry transformstion of the space-time theory.

NEW SUPERSPACE (OR SOFT
DIFFECMORPHISH GROUP MANIFOLD}
CONFIGURATION

SUPERSPACE {OR SOFT i
GROUP MANIFOLD)

CONFIGURAT ION P —
]

A

yP(x,8) s LR
RESTRICTION
RHEONOMY TO %-SPACE

e ¥ | e -
X~SPACE CONFIGURATION SUPERSTMVETEY NEW X-SPACE CONFIGURATION

w0 uAx,00

Fig. I11.3.I1

Since E° is a spinorial parameter, the rheonomic mapping
vealized on space-time field configurations will be identified as a

supersymmetry transformation. In the following we shall need the

expression of Theonomic comstraints using intrinsic components of the
curvatures; it is clear that the property of rhecnomy does mot depend
on the particular basis chosen for the I-forms: the coordinate basis
used above {d%a, dx"} and the anholonomic supervielbein basis

v®, 4®1 are equally visble. Indeed we can write:

A _ A B L

KL= P g °
_ A La.b A ga B A B LY 171.3.35a)
=R VRV 2R Vo Ry VY {

A _ A B C_

Ruv e AR
Y N A pa B, oA B Y (I11.3.35b)
=R, vp V,+ 2R vu vyt RBY ¥,

é'd-l i
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so that an algebraic relation of the type (I11,3.30) among the holo~
; a . .
nomic cuter and luner components RQL and Ruv implies an analogous
PP A . s
relation among the intrinsic components Ric and Rmn' Explicitly we

can write

b _ 'A|ue B (111.3.36)
RmC - cuC B “mn

where the C''s are constant anholonomic tensors (they are in faet the
C's appearing im (II1.3.30) evaluated in the intrinsic basis).

In this way we can rewrite the supersymmetry.transformations as

follows

#

R O e L)

o A ¢
(re)t 4 2 5° R (6,00 b

@ Ajm RBn(x,O) yt (111.3.37)

AL
(ve)” *+ 2 & Cuelp R

H

e A A A_ A B C
where we used £=€ED, u (Du) ~53 and K ﬂRBC oy .
It is in this intrinsic form that the supersymmetry transforma-

tions will appear in supergravity theories.

One might wonder whether the transformations (II1.3.37) (or
(IT1.3.32)) close zn algebra. At the first glance ome could think
that this should be the case, since (I11.3.37) are Lie derivatives and
as such they should obey the algebra (I.1.239). Indeed if we do not
impose (or derive) any rheonomic comstraint of the type {(I11.3.36) then

the Lie algebra (I.1.239) does certainly close.

The existence of rhecnomic constraints, however, changes the
situation. Demamnding the closure of the Lie derivatives is equivalent
to demanding the integrability of the rheonomic constraints and this
imposes new constraints on the imner (S space-time) components of the
curvatures.

To understand this point one obshrves that the Lie derivatives

close an algebra

Bb7

Ix ; zEZ] = 2[81’62] (I11.3.38)

provided they are consistently defined, namely, provided the operator

used in their definitions is a true exterior derivative: d2 =0, If

one uses the equivalent form
A A A
Bout = (Te) 4 £|K (IT1.3.39)

checking that dz=20 amounts to checking that the Bianchi identiries

are satisfied by the curvatures RA.

Now, in presence of the constraints (¥I1.3.36) the Bianchi
identities loose the character of identities and become integrability
equations for the constraints. Since the rheonomic constraints express
each cuter component Ric in terms of the inner ones Rin then the
Bianchi-integrability equations are equations among the space-time
components of the curvatures which must be valid everywhere in super-
space and in particular on the restriction to the gpace~time hyper-

surface.

Hence we reach the conclusion that the supersymmetry transforma-
tions (II1.3.37) close an algebra only if the space-time curvatures
Rgn satisfy certain integrability equations given by the Bianchi

identities.

From a physical point of view these equations cannot be anything
else than the space-time equations of moticn of the theory.(*) Any
different equation of motion weuld be inconsistent with the RBianchi

identities.

Summaxizing, in a rheonomic theory we expect that the super-

symmetry transformations (IIE.3.37) close sn algebra only on the on-

shell configurations of the fields uA(x,O}. We will see an explicit

* - .

) 0f course, this Is true in the absence of auxiliary fields {these
are indeed introduced te obtain an coff-shell closure of the super-
symmetry algebra, see Chapters II.6 and 1II.8).
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example of this mechanism in the next sectios. From the rheoncmic
lifting point of view, Eq. (I11.3.32), this state of affairs means

that we can 1ift to superspace only those configurations which are

solutions of the x-space field equations. Arbitrary configurations of

the x-space fields cannot be lifted to superspace,

At this point we can enlarge our scheme by observing that the

horizontality constraint {(1I1.3.22)

<A A
Eaﬂk = 0 R(ab)c = 0 (I11.3.40)

which allows for the restriction of the soft I-forms uA defined on

the whole soft G to the base space Mél&

£G/H, can also be thought of
as a "rheonomic" constraint relating the cuter H-components of the
curvatures to the other superspace components

A _ A[DF B
Rp,c ® Cnejs For = 0 (111.3.41)

This case is degenerate since zll the constants C:::'s are zero.
{Here B and {C,D,F} are indices in the tangent plane te H and

&/u respectively). In this way one can think of uA(x,O) as a I-form
which has been restricted first to superspace, by imposing the horizon-
tality constraints (II1.3.40) and them to the physical space~time by
imposing the rheoncmic comstraints (1311.3.36). The rhecnomic mapping
and the M-Lorentz tyansformations reconstruct the full dependence of

HA‘=ﬂA(X,5,n) on the 6% and nab variables respectively.

The Lie derivative formula

A
2 utem = 0t s gfrt (111.3,42)
with €= aab ﬁab +e® ﬁa +% D supplemented with the horizontality and

the rheonomic constraints gives, in ome stroke, the Lorentz gauge
transformations (g% =g"=0):

b =t (111.3.43)

(e Dab}
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the peneral diffeomorphisms on space-time {eab= g% = 1y
2 it e et e PR (111.3.44)

a8 »~
(e Da)
. ab_ a_
and the supersymmetry transformations (g5 =¢"=()

8 Aot e2 cﬁé‘[“; R (171.3.43)
We previously peinted cut that the closure of the supersymmetry glgebra
in general requires further constraints on the space-time components

RA , and that these constraints are to be identified with the space-
time equations of motion, On the other hand the closure of the pauge
transformaticns {II1.3.43) and of the space-time diffeomoxphisms

(111.3.44) does not give further constraints.

This is the main difference between supersymmetry and all the

ather symmetries so far considered in physical theories.

in the sbove discussion we had in mind the D=4 super Poincazd
group Osp(l,4), which is the basis of the simplest supergravity
theory.

gur procedures, however, cau be easily generalized to any super-
group in any space~time éimension D. The superspace will be given by
G/M, G being the supergroup and H the factorized subgroup which

should always coutain the Lorentz group s0(i,D-13.

Hence we can sumparize the results of our discussion In the
following statements:

a) Starting witk a set of l-forms on the coset G/% (or, more
generally, on ) the theory can be interpreted as a space-time theory
on MD if it is rheonomic, that is if the curvatures satisfy the

constraints (II11.3.36) {and, en G, also the horizomtality constraints

{I11.3.40)).

b} Suppose the theory invariant under superspace” (or G-)diffeo~

morphisms. Then, besides Lorentz and space~time coordinate imvariance,

we also have invariance under a set of supersymmetry transformations.

=
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These transformations close an algebra only on the on-shell configura-

tions of the physical fields.

in the next two sections we will examplify the above discussion in the

case of N=l D=4 supergravity.

We conclude this section by remarking that the concept of rheo-
nomy in superspace has an interesting analogy with the concept of
analyticity., This was already pointed out in the rigid supersymmetry
case: the analogy remains valid also in our more general context of a

soft superspace M&fﬁ_

Indeed according to Eqs. (IX1.3,30) and {II1.3.32) the rheonomy
constraints (II1.3.30) ere equivalent to constraints between 3/ax"
(inner} and 3/28%  (outer). derivatives of uA(x,O). This is analogous
to the Cauchy-ﬁiemann equations for an amalytic function flx+1iy).

Considering the correspondence:

A a
£Oxy) » w(x,0%)
we see that there is a nice analogy between rheonomic cemstraints in
superspace and the Cauchy-Riemann equations relating the x- and y-

derivatives of a function in the complex plane.

Furthermore, just as the analyticity of a functien allows for its
determination in the whole complex plane, cnce its boundary value on
any line (say y=0) is given, in the same way we have found that
rheonomy allows the reconstruction of the superfield potential gA(x,B)
{via the extension mapping (I11.3.27)) from its boundary value {say

8 =0).
e are thus led to regard the rhecnomy of uA as a kind of

analyticity in superspace.

-

ool

1I1.3.4 - An extended actiom principle

It follows from the above general discussion that, if a super-
space formulation of supergravity exists, it must be a rheonomic one.
Tndeed a rheonomic theory in superspace canrbe restricted to space-time
and, vice versa, a purely space-time theory can be extended to super-
space if it is rheonomic. Since supergravity on space-time does exist
(it was derived in Chapter IIY.2) then the corresponding superspace

theory should ke rheonomic.

The natural starting point for the construction of such a theory
is an action principle defined in superspace {or in the whole @). The
ssgential requirement is that the variational principle should encom-
pass, as eguations of motion, both the proper space-time equations and
the rTheonomic constraints necessary for a consistent reduction to

space~time.

The approach we shall follow in constructing such a variationel
principle in superspace is the so-called Mgroup manifold approach”.
1t was so named since one usually starts with fields which are I-
forms defined over a soft group manifold G; this is not, however, the
relevant point. As we stressed many times, one could equally well and
more simply start with flelds which are defined over superspace, i.e.
over the coset of the soft group manifold modulo the factorized gauge

group, usually taken te be 50(1,3).

What is really important in this approach is the fact that the
rheonomic constraints together with the space-time equations can be
derived as sectors of a single set of exterior field equations in super-
space. For this to be possible it is necessary to use a suitable

extended variational principle.

We begin by observing that the x~space and superspace formulations
have complementary and, apparently, mutually exclusive advantages: in
x-space one never has to worry about unwanted degrees of freedom and the
Lagrangisn, without further ado, makes sense as 2 conventional field
theery, yet the supersymmetry transformations are awkward things

deprived of a good interpretation. In superspace, 9m the other hand,
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the transformation rules are given "a priori" as diffeomorphisms, but
the Lagrangian is not found in 2 simple and clean way and there are

problems in giving the x-surface & privileged role.

Here we would like to find a formulation which encompasses the
two traditional ones. More precisely, we would like a formulation in
terms of superfields where, however, the Lagrangian is integrated on &
4-dimensional surface. This apparently difficult programme can be
carried through in a very simple way, at the price of using a generalized
action principle. This generalization was already introduced for pure
gravity on the soft Poincaré group (see Chapter 1.4} and for the Wess-
Zumino model and super Yang-Mills theory on rigid superspace (see
Chapter 11.9). )

Let us recall the main idea: wusually one is accustomed to actions

of the type

5= f #($) (111.3.48)
g

where Q is a manifold of dimension n and ¥ is a scalar density,
namely a form of maximum degree (¥ =n-form) constructed with the
fields ¢im ¢i(x) which are p~forms on the space {. In this way the
action § =S{¢] is a functional of the field configurations only. A
natural generalization of equation (I.6) is obtained if we consider
as Lagrangian ¥(¢} a form of degree D<N (¥=D-form). Ia this case

we can write:

5 =3[s, u] = J SN0 (II1.3.47)

where MD is a D-dimensional submanifold of & (MDC 2. In this way
the action becomes a functional both of the field configurations 4(x)
and of the surface MB embedded in 0. We can then consider the
classical equaticns of motion obtained by demanding that § be minimal,
both with respect to variations of the fields and of the surface MD'
These egquations are rather complicated and may be non local if i”D ig

chosen at random. Suppose, however, that the fields {¢i} are a set
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of exterior forme of various degrees p and that the Lagrangian is
gbtained from {@i} using only the diffeomorphism-invariant operations
of exterior alpgebra, namely the exterior derivative d&: $-+d¢ and the
wedge product: .t (¢l, ¢2)-+¢§ ,¢2. 1f these conditions hold, then

any deformation of the surface MD can be compensated by 2 diffeo-
morphism of the fields {¢i}. This has the very simple implicaticn

that the complete set of variational equations associated to the action
(111.3.47) is given by the usual esquations of motion obtained by varying

(111.3.47) in the fields on.a fixed surface:

i

=0 (I11.3.48)

@
b=
P

i

with the proviso that these exterior algebra equations hold not only on

MD but on the whole Q-space.

Using the generalized action principle we were able o derive in
Chapter 1.4, as a rather academic example, the Lorentz gauge transforma~
tions of the fields from the H-horizontality of the curvatures om the
{soft) Poincaré manifold 150(1,3). For rigid supersymmetric theories,
however, (Wess—Zumino and super Yang-Mills Lagrangians) the generalized

action principie was instead used to derive the rheonomic constralnts,

rivatives in

generating the supersymmetry transformations as Lie de
superspace. In that case we started for simplicity with fields cn the

rigid superspace Osp(i/4y /50(1,3}. (The 50(1,3) factorization could

have been obtained by considering fields on the whole group manifeld

0sp{i/4)).
We will sse that these mechanisms work also in the case of super-

gravity. The rheonomic constraints (and, if we like, alse the $0(1,3)-

horizontality constraints) generating supersymmetry (and 50(},3) gauge}

transformations will be obtained from the generalized action principle

on superspace {or, more generally, om the soft group manifold).

As already stressed some. lines above, we can go through these

A : " H
derivations only if the action (I11.3.47) 1is "gaometrical. By this

term we mean that it is constructed out of exterior forms, using the
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diffeomorphic invariant operations d (exterior derivative) and .
(wedge product), In particular we exclude the Hodge duality cperator *.
There are two good reasons for this exclusion. The first is the lack
0f a satisfactory extension of the * operation from bosonic manifelds
to supermanifolds. The second is that the Hodge dual implicitly
involves the notion of a "metric' and of the dimensionality of the

base space.

An equatiom on exterior forms where the Hodge cperator appears
makes sense only if we specify the menifold on which it holds. On the
other hand an equaticn on exterior forms involving only the 4 and .
operations makes sense on any manifold and it is our privilege to
extend it smoothly from a smaller to a larger one. This is precisely
what we need in 2 rheouomic theory. The field equations in these
theories are exterior form equations. Restricted to the x-space they
yield the usual equations of motion while extended to the whole super-
space they give, as an extra bonus, the rheonomi,c constraints on the

superspace curvatures.

(ne may wonder how this miracle can happen. The answer is that
the "correct" rheonomic constraints and the "correct" field equations
are very close relatives. They are both implied by the Bianchi identi-
ties of the supergroup {or free differential algebra) and are, in a
sense, an intrinsic property of the supergroup. It is mot surprising,
therefore, that the action which gives the "correct” field equations
provides also the "correct" rhecmomic comstraints upon extension of
these field equations to the whole superspace. We will come back to

this issue later on.

We just emphasize that from this viewpoint supersymmetry behaves
in the same way as the ordinary gauge symmetries. Indeed the “inter—
actions”, namely the terms in the Lagrangian, are fully determined by

the chosen symmetzy principle.

As a final remark we notice that the exclusion of the Hodge dusl
operator necessarily implies the use of first-order formalism for all
the fields: the derivative ¢a of a gealar field ¢ or the field

strength F - of a spin one field A “will be introduced as independent

T

Ly]e )

objects and will be independentcly varied in the action. Such a
procedure should already be familiar to the reader from Chapters L.5,
I1.6 and IT.9.

I1%.3.5 ~- D=4, N=1 supergravity and rheonomy

At this point we should derive a suitable rheonomic superspace

Lagrangian for N=1, D=4 supergravity.

A set of rules for such constructions will be given in section
I11.3.7. Here we take a different approach. Regarding the Lagrangian
as God-given we just work out the consequences of its field equations

when they are implemented on the whole superspace.

Actually, anticipating the results of section II1,3.8, we have

that the x-space Lagrangian given in Eq. (I11.2.18) csn be equally weil

used as superspace rheonomic Lagrangian. It just suffices to extend

(I11.2.18) to superspace via the mapping

NA(X,O}i o HA(X,G) (11%.3.49)

dé=

ab’ ¢) are the soft I-forms setisfying the

where the fields qu (Va, W
structural equatioms (IIZ.3.5). We stress that this extension is
possible because the action (IIT.2.18) is already in first order form,
the Hodge dual being already excluded., Hence there is no obstruction
to the rheonomic extension mapping

A 3 A
050 | 4500 > Louperspace ¥ (6801 (1T13.50)

space~time
The Lagrangian being obtained via this simple procedure we now show that
the use of the extended variational principle yields, besides the usual

equations of motien, also the rheononmic constraints.

Let us consider once more Eq. (ILI.2.18) where mab, V2, ¢ are
now the soft {-forms of Osp(4/1) and RA==(Rab, Ra, p) the corres-

ponding eurvatures (see Eq. {1I7.3.5)). The extended action is:

D=h, N=l _ [

ﬁextended -

ab ¢ 4 - a
JMcé{R A gaquw g!;,.\(SYapAV]
4 (131.3.51)
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where M4 is a bosonic hypersurface floating in Osp(1/4). Since the
Lagrangian is "geometrical” in the sense previously discussed, the
equations of motion have the same form as in the space~time approachl
(III.2.E§i“Ef:,25). The only difference is that now they hold on the

whole OQsp(i/4) wmanifold. TFor cempleteness let us rewrite these equa~

tions:
[ d
2t hea -V =0 (I11.3.52a)
2 ¢ Rab v 4 4 i . .0
abed . “YgTg 0= (II1.3.52b)
BYg Ty P s Vg y v LR =0 (111.3.52
S'm " 5 'm " * « 3 C)

In order to work out the content of these 3-form equations on © we

espand the curvatures RA on the intrinsic 2-form basis on G&:

RE= Roo b . (111.3.53)
where
uA A uB - {va ) Vb, 2 ) wbc’ wab ) cé’ ve . wa’
ab @ a
I ¥ wB} . (111.3.54}

Then we must impose the vanishing of the coefficients of ail the
independent 3-form monomials on G.

Let us first consider the 3-forms which contain at least one epin

. ab . _— .
comnection » , that is the projection along monomials of the type

Wwo.w, W w .V .V
w,w .V w. V.
WA PR R {IT11.3.55)

. . b .. . . .
It is clear that simce no bare w® -field is present in the Lagrangian

{and therefore in the equations of motion (31I.3.52)), these projections

]
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;s s ab
alvays have coefficients containing at least one w” -component of the

curvatures, namely: RA{ﬁab, 53), Hence one obtains:
A > > A _
R ,,D)=0 « R = 0 Bz {ab, a, e}  (II1.3.56)

This is fully analogous to what happens in pure gravity (see Eq.
(1.4.52)).

The result just obtained, namely the 50(l,3)-factorization, is a
kinematical comstraint which is a straightforward consequence of the
50(},3)-gauge invariance of (II1.3.41) forbidding the presence of the
bare mab field in the Lagrangian. As such it is not of physical
relevance. We can just start with an $0(1,3)-factorized set of fields
and curvatures in MA/4==6§§%szYJSD(&,3) obeying the gauge preperties
(I11.3.12).

Then, instead of implementing the action principle on the whole

414

: 4
150(1,3), we can take M as the embedding space for M, namely

Db, N=c11 . I ¥ . (IT1.3.57)
extende 4/4

MACM

The embedding equations of motien (I1I11.3.52} ave then to be thought as
restricted to MAIA and we should analyze them only with respect to
the supervielbein set of 2-forms:
2 b, & o, L0 8 11.3.58)
AR AT AN M S MR (I11.3.
the 80(1,3)-gauge invariance of the uA's being guaranteed a priori by

the fiber-bundle structure of g.

The reason why we discussed the possibility of cbtaining the
horizentality Eqs. (I117.3.56) and hence the fiber bundle structure
G=0(E/s0(1,3), 50(1,3)) from the action principle extended to the
whole © is that, as already stressed in the previous section, Egs.
(131.3.56) on € are quite analogous to the rheonomic conditions we
are going to obtain from the superspace analysis of the equations of

motion. The rheomomic conditions are responsible for the supersymmetry

.

o

—
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of the theory. Furthermore the possibility of starting directly from
g justifies the denomination of (soft) group memifold approach given
to our action principle and is satisfactory from a purely formal point
of view.

In the following chapters, when examining higher D~dimensional
supergravity theories, unless explicitly stated, we shall always start
with fields already defined on superspace, the coset of the appropriate
soft super group & modulo S0{1,D-1} (or modulo a suitable extension

thereof).

Let us now proceed to the superspace analysis of the 3-form
equaticns (II1.3.52).

Let us expand pY in the intrinsic {super)-vielbein basis

2, 4} of w4

A_ A 2 b A o a A @ [
R = Rab v o+ 2 Rda [/ MR A RGB o (111.3.59)

Notice that Ria is a spinor if A 1is a bosonic index (RA ERab, i)
and a matrix if A is also spinorial (RA 2p). Vice versa Riﬁ is a

matrix for A bosonic and & spinor-valued matrix for A fermionic.

Therefore we rewrite (III,3.5%) as follows:

R0 - Rig v e ézb o VL Py (111.3.602)
R = R;c W v s 62 gV g LBy (111.3.605)
pmo VL W any v ea, u® (T11.3.60c)
ab . et o "
where Bahic, 6a¥c are spinor-tensors, Kab¢=—Kba, t?* and B are

4x4 matrices in gpinor space and o isa Majorana=spinor-valued
4x4 matrix in the same space.

let us first comsider the (¥} projection of the equations
(IT1.3.52). Equation (II1.3.52a) yields 0=0, while (I¥I.3.525) and
(III.3.52¢) immediately imply:

;i‘e.wm«w-«gﬁ-n.

6oy

(I11.3.6%)

We now consider the projestion w¢V. Equation (III.3.522) is fulfilled
using (IIT.3.61). Equation {311.3.52b) gives a relation between K20

and HC, namely:

- ab ¢ = c _
29 K9 ¥ Eabcd + 54, yS Td Hc g .V =0 . (III.3.82)
Equation {1T1.3.52¢) implies
=a
8 =20 (II1.3.63)

where (III.3.61) has been used.

Coming now to the projection $VV we find that Eq. (II1.3.52a)

is again satisfied us?ng (111.3.61). Equation (IIL.3.52b) gives &
abjec

relation between & and P b
I T G LR S ISR w0,
(111.3.64)
Equation (III,3.52c) relates Hc to RZC:
R N A R R B, V. vWeo0.  (II1.3.65)

Finazlly the VVV-projection gives the propagation equations {T1IT.2.28,
. ab _a .

34) for the space-time components Rcd’ Rbc’ and P in the same

way as in Chapter 1I1.2 (Eqs. ITI.2.28, 33, 34).

For completeness we rewrite them here

R;n = 0 (I11.3.662)
81 vy, Uy et = 0 (II1.3.665)
™ - MR =0, (1T1.3.66¢)
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These equations are valid on the whole M4/4 (that is on any slice

& = const of MZ’M), in particular at 6=0,

It is mow easy to detexmine the outer components of the curva~

tures. Using (IIT.3.66a) im Eq. (II1.3.65) one finds

H,=0 (I11.3.67a}

and this, ipserted into Eq. (III.3.62) implies

ab
K =0. {IZ1.3.67b)

Therefore the only non trivial relation among the curvature components
is Eq. (III.3.64).

Let us solve it explicitly. We set

a b_ 1 abed r s _ _abed
vV .V = - 7 € €drs vV .V z¢g ch (111.3.68)
where ncd is a 2-form defined by (III.3.68). We obtaia:
—ab fepg - ab
B &P T 2By Yo e T =0  (IIL3.69).

It follows that:
P4 _ 4 cla zplm | pars .
R R Al N (I11.3.70)

Contracting g and & one obtains

spe _ 1 pgrs -

TwTTE T P Vg {111.3.71)
Substituting into (I11.3.70) one finally finds:

“b¢ _ _ pars - _dp almse o

O e B vg g m 8 e vy, - (111.3.72)
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Llet us summarize the results of our analysis of the superspace equations
of motion. First of ail their cuter projections have provided a set of

algebraic equations among the cufvatures components:

g -ki=0 «0®=H =0 {111.3.73a)
af c c

~ab _ _abrs . [a blmst -

@c = - g Prg Y5 Tq éc £ Pop Y5 ¥y (I131.3.73b)

Equivalently we can say that the parametrization of the curvatures

along the intrinsic basis vd §) is givem by:

ab _ab _¢ 4 _ .abrs -
B = Rcd Vo,V o+ (~¢ B Y5 Y,
- gla Plmst TR A (111.3.74a)
c gt 'S5 ‘w7
g = R;n T {111.3.74b)
3 P (111.3.74¢)

ab .a . . .
where Rcd’ Rmn and Pab satisfy the inner equations (111.3.66).

Equations (I71,3.73) fit the gemeral defirition of rheonomic
constraints as given in Eq. (I11.3.30). Indeed we see that all the

outer components of the curvatures defined in (I11.3.60) namely:

A~ =, . 8 2 ab  a 3.75
R (D, Dy) = x*, &, g O o 0, B} (I11.3.75}

are given in terms of the immer {or space~time) compongnts

Am = o rpdb o8 111.3.76)
BD s Dd) EAR 40 Ry ch} {

5 ; A 2 _
(BB is a gemerie tangent vector dual to w end D 1s the super

symmetry charge duwal to ).

Actually in the present case the rheonomy property is trivial for

b s
all the outer components (IZ1.3.75) except 63PI% This is the only

P

i~



672

one to be ron zero and it is expressed by Eq. (III.3.73b) ia terms of
. : abjc
the innmer curvature Pape (We note that if also 8 | were zero then
we would get a complete factorization of the 8°-coordinates and hence

aiso of the xﬁ-coordinates, thus obtaining a trivizl theory).

Secondly, the space-time projection of the superspace equations
(III.3.52) gives the differential equations (III.3.66). Since the
theory is rheonomic they can be restricted to space-time 0% =0) and
therefore they coincide with those found in the purely space-time
approach {see Eqs, (II1.2.34)). It is then clear that the physical
content of the theory derived from our superspace Lagrangian coincides
with that of the purely space~time theory of Chapter IIL.2. In the
next sections we shall gain a deeper understanding of the theory relying

on the superspace formulation.

1IT.3.6 - Rheonomic constraints and Bianchi identities

It is clear that the rheonomic differential constraints {IT1.3.73-
74) most satisfy integrabiiity conditions. Expressed in terms of the
curvatures RA the integrability cendition d2= ¢ is simply given by
the Bianchi identities (IT1.3.9). Now we want to show that, as was

anticipated in Seet. 1II.3.4, the integrability conditions of the rheo-

nomic constraints (1f1.3.73-74) are the space~time field equations
namely the eguations (ITI.3.66). To show this we simply insert the

rheonomic parametrization of the curvatures (III.3.60) (using also

(II1.3.73a)) into the Bisnchi identities (IXI.3.9). We obtain

@%R;E Voo™ - 9)(6§b ¥ .V =0 (111.3.772)
-ig.yte VLoV =0 (311.3.77b)

s éib BT = 0 (111.3.77¢)
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Let us examine the §VV content of the torsion-Bianchi, Eq. (III.3.77b).

Using R;nﬁ=0 and the rheonomy constraint (III.3.64) we find that

(I11.3.77b) reduces to an algebraic equation:

« 1 t , )
LR I R P L N R A (111.3.78)
wvhere we have set
Pab = Eabed Ped - {1I1.3.79)

The second term in (III.3.78) is proportional to the 1.h.s., E?, of
the gravitino field equation (II1.3.66b}. Indeed

{II%.3.80)

Moreover, utilizing the following identity (whose proof we postpone to

the end of this section):

i, L ionm
p&b * wé' YS pab - 4 b 'Yab Em (IEI.3.85)

We can express g in term of § and E ; hence Eg, (1I1.3.78)
ab ab m

becomes:
A DT .
2 15 Yn Pra 2 Yo Pua "7 Ya 5 P
sl sy vy Py B . (111.3.82)
2 "[m “n]a " Ta m p

Now the 1.h.s. of (ITI.3.82) can be rewritten as follows:

Lo s b s Ll
2 T5 Yo Pra * 2 Y5 Yo Pan * 2 Ty ¥ Pop © AR Y[a pmn]
. 3 s
w ! - = =
S Y[a an} 27%aY Tan Es
p_3 s
= -~y v vy _E (II1.3.83)

. Y5 Eamnp B 2 'a’'s ‘mn
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where again we made use of {III.3.81) and of the dual of (III.3.80).

Hence the ($VV) torsion-Bianchi becomes:

i g AP E? _ % Ya «;P Ym Ep - % 5{“‘ 6“]3 +
!
.1 ¥ 4P B = 0. (I11.3.84)

E =0 (111.3.85)

that is the space-time gravitine equation.

To get the space-time Einstein equation we consider the Riemamn-

Bianchi identity (III.3.77a). Explicitly we have

5 pab n ab , = n n, . .ab n
R ol D il S IR AN AR e

.7 maib iz @b - 0o,
1!),.9@?‘ zlﬂGn 0oLy g =0 (111.3.86)
where we used

2

2vt = &

TR (111.3.87)

P | e

since R®=0.
QR;Q and '.@,Gab , Tust be further decomposed along the super-
space basis (V°, ¢).

1f we consider the 99V content of (II1.3.86) we obtain

n abrs -

ab
R tE lp“YSYnBrsqJ

S RGN
4+ 5TS [a"{‘ S5 Y B b 52] =0 (III.3.88)

where we used the explicit form of @ablc and we defined Brs as the

y-compenent of @prs
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Do = Do VB b, (I11.3.89)

Oa the other hand the explicit value of Brs cen be obtained from the

WV projection of the gravitino-Bianchi identity (I1I.3.77¢):
; m o on o, . ~ o m n
Do)V oV vdp .y v,V
1 ab n
- - 11.3.90
*4“"ab“’"Rmnvm“V 0 (1 )

from which it follows (YVV-sector):

i ab
= = . . III.3.9]
an 4 Yeb “mn ¢ ’

Inserting this value in Eq. (I11.3.88) we have:

ab _ 1 (abrs N trs[ée b]}Pq]Jf,y%ﬁvnze .

[R!Ln 4 & enpqﬂ. & tpql 6n Rrs

(111.3.92;

Ve may now set to zero the quantity inside the brackets and perform the

straightforward algebra. One arrives at:

[a bl _glaghl _Llgbg. 3.93
LR SRR LA LR (111.3.93)

a an nm

= d H .

where K b R b 2 RERT O

Decomposing the second term imte symmetric and antisymmetric
parts we get the following two eguations:

ETA S B T (II1.3.942)
n n &

4
3 a%a I laedog (171.3.94)

b
2B 0] "7 %% T
Contracting a with 2 in (II1.3.%4a, b) we get, respectively

- (111.3.95)
Rab Rba

and

T

L T P T

-~

—

ot SN

N
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3 b
(R -
5 (

Lsbgyegp, (111.3.96)
it 2 n

Equation (II1.3.95) tells us that the Ricei tensor is symmetric, while

Eq. (IIT.3.96) is the wanted Einstein equation.

The other projections of the Bianchi identities ($11.3.77) give

either the space-time identities satisfied by the Riemann temsor

a . (I11.3.97)
R [o]ma] = ©

o ngb (1£1.3.98)
@9 {2 R ms] 0

or reproduce previous results.

Summarizing: the projection of the equations of motion in super-

space along the various 3-forms monomiais do not give independent equa-

tions. In particular the inner or space~time propagation equations of

the physical fields Va, wu are just a consequence of the outer egua-
H

tions defining the rheonomic constraints of the theory.

Proof of the identity (IT1.3.81);

From (III.3.71) written in the two equivalent forms:

rst

= (111.3.99}
Ep Y5 Tr Ep Pst

st .
PR + 2
,‘LYPY pst IO ppt

one finds

P o - o3 o5F (II11.3.100a)
Y E, oy ey,

- Bop o oag b {111.3.100b)
2 EE Yy ¥ Em 4i Pyr

. b st
ab Ym Em . - 21 Ya s

i1

or BT Al yg Py

t
- 1i7.3.101
+2p, -4 Yy ¥ Qa]t) . {111,3.101)

e
i

i
A
ik
]
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Substituting the r.h.s. of (IIL.3.100b} into (II1.3.101) after some

y-matri® rearrangements one gets the identity (IIL.3.81).

I11.3.7 ~ Gn~shell supersymmetry

In the previous two sections we discussed the rvetrieving of the
rheonomic constraiats from the analysis of the outer equations of
motion. We have seen that the rheonomic constraints imply the propa-

gation equations of the space-time fields.

Let us now turn our attention to the main goal of the superspace
approach to supergravity, namely the understanding of how the rheonomic
constraints define the rheonomic mapping and, consequently, the space-
time supersymmetry transformations rules. In this section we confine
ourselves to the symmetries of the equations of motion, (on-shell super-
symmetry), postpoming to Sect. IIT.3.8 the discussion of the action

invariance.

Let us consider the superspace equaticns of motien (IIL.3.52),
Since they are written in terms of forms they arve invariant under

superspace diffeomorphisms generated by the Lie derivative ie pA.

Hence the rhecnomic mapping (III.3.32) is a symmetry of the super-

space equations of motion., The explicit form of (I¥1.3.37) is easily

found utilizing the rheonomic perametrization of the curvatures,
(IT1.3.74). 7Indeed from {III.3.74a, 72} and (III.3.662) one easily

gbtains:

e =2 TV R 25y f 28 e S (111.3.102a)
rs c 8]
gr¥-0 (111.3.102b)
B r s
elp=2e o,V {I1I.3.162c)

: Li4
wvhere & 1is a general tangent vector to M /
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Since the equations of motion on G imply the horizontality conditions
A . .
ab|R =0 {111.3.56), the expressions (III.3.102) are alse valid on &

if we take

and make use of both the rheonomic constraints {I11.3.73-74) and the

horizontalit i .3.56). zD
crizontziity comstraints (III.3.56) (Dab Dab)

Inserting (I11.3.102) into the general expression (I1II.3.21) one
finds:

s ™= w2t VR 425y 0y
£ re C

—ab c

+ 2 GC eV (111.3.103a)

5, vE = (76)° (111.3.103b)

S

S 4 =Te 2 efp v (II1.3.103¢)

rs

where Szb is defined by Eq. {III.3.72).

Specializing ¢ we find the possible symmetries of the equations
of motion:
ab

i} If e=¢ Dab we get {I¥I1.3.12a) namely an $0(!,3)-gauge trans-

formation. Of course this iz also a symmetry of the action.
ii) If ¢ =g? ﬁa from (III.3.103) we get the anhclonomized form of

an infinitesimal diffeomorphism on space-time:

ab ab ¢

s 0P a2 ¥Ry y e (111.3.104a)
€ Irs c

§ v =9¢t (111.3. 164b)
s =2 ¢ P y® (II11.3.104c)
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where we used Eqs. (III.3.12) for the Osp(1/4} covariant deriva-
tive (Va)A. ¥otice that no rheoncmic constraint enters in

{I11.3.104). Moreover the ftransformations (IT11.3.95) are also a

symmetry of the action (IT1I.3.51). Indeed not only the Lagrangian,

but alse the integration surface is left <dnvariant by the space-
time diffeomorphisms, so that every item entering the action

functional is inveriant against this type of symmetry.

iii) Let us now consider a purely superspace transformation

e 2ED {I11.3.105)

so that the rheomomic constraints come iato pley. In this case

Egs. (I11.3.103) become:

5 o= (7 42 5ib g v° (111.3.1062)
£

g vt = (ve)? (IT1.3.106b)
e

8y = Ve (171.3.106c)

and using (II1.3.12) we get

s WP o28® eyt (111.3.107a)
[
§ Vi=iEyt e (1I1.3.107b)
£
§ v=%e (111.3.107¢)
£

where Gib is defined in (III.3.72}.

The idea that the Thecnomic constraints generate a purely space-time
symmetyy of the theory is examplified in Eqs. (I11.3.107). Indeed by
considering the Lie derivative from the active point of view, namely
as the functiomal change of uA at the same coordinate point, we see
that (I1I.3.107) represents a supersymmetry trensformation leaving the

space~time equations of motion (111.3.66}) invariant.
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hs we expligined in Sect. ITI.3.4, checking the closure of the
supersymmetry algebra is equivalent to checking the Bianchi identities
in presence of the rheonomic constraints. In Sect. IIL.3.6, we showed
that the equaticns of motion are implied by the Bianchi's. Hence we
conclude that the supersymmetry transformations close an algebra on

the on-shell configurations.

The present example verifies the general statements made in

Seet. III.3.3.

111.3.8 = Action invariance and off-shell supersymmetery

The supersymmetry transformation laws (II1.3.107) close an algebra

only on the on-shell configurations.

Furthermore, for the time being, they are only symmetries of the
field equations: indead the action is not necessarily invariant against
these transformations. It is then a natural question to ask whether the
laws (IXI.1.107) can be modified, via suitable on-shell vanishing addi-

tions, so that they become genuine symmetries of the action funetional.

To answer this question we take a more gemeral viewpoint and we
consider when a geometrical action like (II.3.47) is invarient with

respect to general diffeomorphisms in superspace.

In our setup the invariance of the action does not eoincide with

the invariznce (modulo total divergemces) of the Lagrangian,

This is so because even if & remained invariant the integration
velume MD would anyhow change under a fermionic diffeomorphism.
Indeed MD is mapped into itself by an inner (space-time) diffeomer-
phism, but it is distorted into a neighbouring surface by any infinite-

simal traisformation in the &-directions.

Therefore the bosonic coordinate transformations are always
symmetries of the action, without further specifications, while the
fermionic diffeomorphisms are symmetries of the action only if the

action does not depend on the choice of the integration surface MD.

B3]
It is easy to see when this happens. Using Stoke's theorem we

can write:

Ji{MB + 6M§) - JV{MD) = J d¥ (111.3.108)

ft
where MD-FéMD is the new integration hypersurface after the infinite-
simal diffeomorphism and 2 is the (super} volume contained between the

two surfaces, see Fig, III.3.III. (We are assuming that superspace is

naturally compactified along the space-time diractions).*
h

g% HD/A

Fig., 111.3.111

Hence the diffeomorphisms in superspace are an off-shell iavariance of

the genmeral geometrical action (IIL.3.46) if:
d¥ = 0 (T11.3.109)

that ig if ¥ is & closed form in superspace. As an exercise let us
check that the supergravity Lagrangian (II11.3.51) is not a ciosed form.
We easily find:
N T % I

In D-dimensions superspace is the coser &/H, G being the

soft super Poincaré group in D dimensions, H=350(1,D) and A=the
number of fermionic generators of the Lie algebra &.
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~— o ? o
89 Lvgv e . @V (111.3.110)

(where we traded d for 9 when acting on a Lorentz invariant temsor

contraction).

Using the definition {II1.3.5b) ané the Bjanchi identities
(I11.3.%9a, ¢} one finds:

ab & d

c
~ RV
Eabed *

"= . Lab -
4¥ = 2R TUPEE S S A

+ 40 . an--“ ab B
Ts Vg P Vo dg Y Ty ¥RV

- m .o -
Ali’n'YB"fman‘Zlﬁﬁysympﬂwn-rmlp‘
(111.3.111)

Now, using
Yo ¥ ¥, = vo2 8f +ie" c
5 ab = Vs [a Y] Le oY1) (II1.3.112)

we get:

- 4 i [+
Yoo ¥s Yy Y ¥ 1 IR I (111.3.113)

£
mabe

’ t s
Here we used the fact that ¢ .9 is a symmetric temsor in the spinor
indices while Cysya is an antisymmetric one, and therefore
bygy ¥ =0.

In the same way we find

A R (I11.3.114)

since a spinorial i-form anticommutes with a spincrial 2-form and

CYSYm is antisymmetric.

By virtué of the Fierz identrity (III.2.26) it follows that

- - mo, ;H - ® o
Yo Yo Yy 0 » LIPS N F .t .y ¢=0.
(111.3.115)

Hence {(I1I11.3.110) becomes:

. ab ¢ d - m _
d¥ =28 LR .V €ped T 4p . Yo Yy P - v

R RS (111.3.116)

This result impiies that the supersymmetry transformations, being cuter
diffeomorphisms supplemented with the rheonomy constraints, cannot be
an off-shell invariance of the action. This confirms our previous
statements, and is in 1line with the results of the purely space-time
approach, where we found that the supersymmetry transformations close

an algebra only on the on-shell fields. However, in the gpace-time

gpproach of Chapter 111.2, we found that even if supersymmetry does not

olose an off-shell algebra, nevertheless it is an invariance of the

action. (*)

The invariance of the space~time Lagrangian under supersymmetry
can be retrieved also in the present framework. ¥rom an active point
of view the supersymmetry variation of the action is given in terms of
the contraction f._‘d.f_’ along a spinorial tangent vector € =g Dj

indeed computing the Lie derivative bowe find:

se,v:{ X4 J (cla+aeh ¥

W '
[ gld ¥ (III.3.117)
i

since we can ¢iscard the total derivative term aej¥).

*) Here we distinguish between the words *iavariance” and “symmetry”.
A set of infinitesimal transformations constitute an "invariance" if
they leave the action invariant; however they may mot close an off-
sheil algebra. 4 set of transformations will instead be a "symmetry”
if they both leave the action invariant and close an o

ff~sheil algebra.
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Therefore the action is supersymmetry invariant if

eld¥=0. (111.3.118)

Applying this condition to (ILI.3.116) we get:
d ab ¢ d
lag=2gle® kS vle, 2R LRt e e
. a - =
+BElp vy T T EE g SR

- - m
+4¢Ay5Ym_€_Jp»Rm+4¢~YYp~ER
(I11.3.119)

where we made use of the properties:

{I11.3.120a)

el =0
gt =

(111.3.120b)

foliowing from e=e D,

Prom Eq. (111.3.119) we see that in general we can make the action

A
invariant by imposing suitable comstraints on the outer components R

so that gld¥ =0. Let us distinguish two cases:

a} suppose we work in first order formalism, that is we do not
. . a T
implement the (space-time) equation Rmn-O; then gjdi?-0 is

achieved if

{11z.3.121a)

elo = 0

¥ =0 (1I1.3.121D)

and if

2elR® Ve FAE s < O (II1.3.122)

e

Writing

EJREb w3 aab Vc

o (I11.3.123)

we see that the YV projection of Eq. (IT1.3,122) ceincides with Eq.
(1I1.3.64), 1f ¢ dis replaced by .
solution (II1.3.72).

Therefore we get the game

Moreover, using the parametvization (II1.3.6C), the two equations
(II11.3.121) imply

(111.3.124)

and these equations, together with the solution {III.3.72), define the
same rheonomic constraints already derived from the equations of moticn

(111.3.73~74). MHeuce we codclude that the action (I1I.3.51} is

invariant, in first order formalism, against the same set of Lrans-

formations which form a closed symmetry algebra for the equations of

motion. In this way we have given the proof of Eqs. (II1.2.62).

This conclusion is not so trivial as it might seem at first

sight. Indeed in off-shell extending the on-shell transformation laws

(111,3,107) there is an ambiguity which is proportional to the left-

hané side of the equations of motion. What we have verified is that

this ambiguity is zero in first order formalism.

indeed, if we now consider second order formalism, implementing

, a
the equation Rmn= 0, we get:

b)Y gld¥ =0 iff

el =0 (II1.3.125a)
tlo=0. (I11.3.125b)
In this case we have

ele® 2 5 u® = chain rule (111.3.126)
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and 6e wab is given by the chain rule. It was explicitly computed in

Eg. (111.2.61), and we rewrite it here for completeness:

- = = J(F v ]
55 CRY (seceond-order) i€ Yo Pab 2t Y[a pb}m}v .
(111.3.120)

Wotice that we used the identification:

=g gV
T v[a vb] 2,4, - (1I1.3.128)
Comparing {(II1.3.127) with the first-order law (131I1.3.107a) we see
that the two are different.

According to the previous discussion this difference must be
proportional to the l.h.s. of an equation of motiom since both are off-
shell extensions of the same on-shell symmetry. (Actually the first
order law coincides, as we have just seen, with the on-shell symmetry

of the space-time field equations}.

The verification of the last statement is an immediate conse-
quence of the equations (II1.3.80) and (11%.3.81). Using these egua-
tions it is immediate to show that the difference between the two laws
(II1.3.107a) and (II1.3.127) is given by:

{6§1rst order _ 6iecond order}wab =92 F Yc[a b .

25ab .
£ E

+ i (III.3.129)

5 Yes 2
vhere E° is the 1.h.s. of the gravitine space-time Eq. {IT13,3.66b);
on-shell the two transformation laws coincide, as anticipated.

This concludes our discussion on the relation between the super-
space formulation of D=4 N=1 supergravity and the space-time approach

given in Chapter IIIL.2.

I11.3.9 - Building rules for supergravity Lagrangians

So far we have considered the superspace formulation of N=1, D=4

supergravity, taking the Lagrangisn (IXI.3.5]) as given.
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Tt is time to see how this Lagrangian can be retrieved from a

convenient set of general rules.

As we are going to see the Kuilding rules utilized im part I to
derive the Einstein-Cartan Lagrangian of general relativity will suffice

to our needs provided we add the reguirement of rheonomy.

The reason is not hard to understand. Our geometrical treatment
of N=1, D=4 supergravity relies on its being the "gauge” theory of the
super Poincaré group Osp(l,4) in the same fashion as gravity is the

"gauge" theory of the Poincaré group I50(1,3).

Hence the same considerations used in pure gravity should apply
to supergravity provided we make the replacements ISO(l,S)-»5§5?TTzT
and HAE (wab, Va)'*HA'E(mab. v?, ¥). TPurthermore we must add the
requirement of rheonomy in order to obtain a theory interpretabie on
space~time. (It will turn out that in the case of D=4, N=1 super-
gravity the rheonomy requirement follows automatically from the other
principles but this is only an accident).

Since all we are going to say can be applied to more general
theories than N=] supergravity, we will reformelate the building rules
used in part I in 2 more general setting. We shall leave uspecified

the super-Lie algebra we start from and the number D of space-time
dimensions.

This ailows to give a formulation of the building rules easily

adaptable to more genersl svpergravity theories (N>1 oxr D>4).
Let us then start with a super-Lie algebra G:
¢ (117.3.130}

(7,0 78] = S e
and recall the Maurer-Cartan equatioms (see Egs. (11.3.27)):

(111.3.131)

) For higher dimensional supergravities we wil} have to enlarge the
concept of (super)-Lie algebra to that of free differvential algebraj

see Chapter 1III.6.
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vhere GA are a set of left-invariant 1-forms dual to the left
invariant genmerator TA
A A
g {?B) = GB . (1¥1.3.132)
Since we are going to discuse supergravity theories, we always assume

that & contains the Poincaré or the anti de Sitter algebra in D
dimensions, IS0{1,D~1} or S0(2,D-1) respectively.
Next we introduce the soft I-forms u= uA TA defined on the soft

group manifold & which are not left~invariant and we denote by ﬁA

the tangent vectors dual to uB {soft generators)
Ay A
n (DB) = 6B . (111.3.133)

By replacing o with y® the L.h.s. of (II1.3,131) is no longer zero

. A
and defines the curvatures of the ¥ 's:

{III.3.134)

Correspondingly the ﬁA tangent vectors satisfy the seft algebra

defined in (I1.3.132).

The integrability condition d2==ﬂ on (IIT.3.134) gives rise to

. . Pt A
the Bianchi identities on the R :

VRA £ dRA + CA uB R RC =0

BC {II1.3.135)

where V is the G-covariant derivative.

Furthermore we make also the assumption (always verified in the

%nown theories) that & has the following structure:

E=HoekK (1IT.3.136}

K=19D . (1II.3.137)

ettt

S ST T R R S
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where ¥ is a Bose-subalgebra and X a subspace, further split in a
Bose subspace ¥ and a subspace D with the following propervies:

w8 cr; [H,1] cx; [B,Dlcd {I17.3.138)

Lilcn (111.3.139)

fI,n]co (I11.3.140)

o, DlczemMzBCB (111.3.141)
Equation (I1I.3.138) says that H is a subalgebrs and that T and D
span two of its representations. Equation (ITI.3.13%3) says that
B=1@®H is a Bose subalgebra of & and that B/H is a symmetric
space. FEguation (IIL.3.140} says that 0 carries a representation not
only of H, rather of the full B and finally Eq. (TII.3.141) says

that alse G/B is a symmetric space.

This splitting of & din a triple is the heart of the whole
rheenony framework and deserves a special nomenclature. It is the

following one:

i

gauge subalgebra

¥ = inner space (Its dimension is equal to the number of
space~time dimensions., dim E = D).
T = ovuter space.

As far as the indices are comcerned, 4,B,... will run en &, H, H',
B owill run on B and K, ¥, K" will run on X being, therefore,
split in the foliowing way: K={I,0} where I, I',I" runon I and
6, 0', 0" on O.

This same decomposition holds when we turn the Lie algebra B
ints a soft one: E-&., Indeed the structure of the algebra gererated

by the soft generators 5A is the same as that generated by the left-

invariant ones D,. Accordingly we maintain the same kind of nctations
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and nomenclature alse in the soft case. Therefore we can decompose
(11%,3.134) as follows:

where

t 11
FLU B B

+ E'CH’H" oL (I11.3.1422)
RE= g™ 1, % g #0 % (111.3.142b)
2=2® 0, 8 (TI1.3.142¢c)
@{H) is the H-covariant derivative.

Now the key observation is the following. If the fields and the

field-strengths of the physical theory are td be interpreted geometri~

celly in terms of the uA‘s and RA's just introduced, then the equations

derived from the action principle (and the action itself) canmot violate

any of the symmetries and of the properties implied by the definition of

the curvature, Eqs. (III.3.134), and by the Bianchi identities, Eqs.

(I¥1.3,135}. Hence the Lagrangisn must be constructed in a way compa=

tible with these properties and these symmetries. Let us list them:

i)

ii)

coordinate invariance: this is an obvious consequence of the

fact that (ITI.3.134~135) are exterior form equationms involving
only the two diffeomorphic fnvariant operations, namely the

exterior product and the exterior differentiation,

The exclusion of the Hodge dual: this point was already discussed

in previous sections. It is essential if we want to preserve our
freedom of extending or vestricting the manifold on which the

fundamental field equations are to be enforced.

For example, if HCG is a subgrowp of & and (I.3.131,
134-135) are K~gauge invariant, then it is possible to interpret
(111.3.134) as structure equations for the forms uAE (ug, uK)
defined on the coset manifold G/H. We may also restrict
(III.3.134-135) to the space-time manifold (imner directions)

and they will hold on this manifold as well.

Sy

iii) Rigid scale iavariance: the decompesition (IIL.3.138-i41) is

iv)

jovariant under the following rescalings of the generators

3
-1 o
?ﬁ -+ TH; T =+ W TI; ?0 > W T0

{I11.3.143)
1

H I 0
where w#0 is the scaling factor. We demote by W, uw, ¥ ,H
the 1-forms dual to the soft generators EH’ ﬁl’ ﬁo and by k-,
RI, RO their curvatures. Bquations {ITI.3.134) and (II1.3.135)

are invariant under the substitutions

uH - uH; uI > qu; uD + w% U {111.3.144a)
o wawh et i, (T11.3. 144b)

Yor example, Eqs. (I1II1.3.5) and ($1I1.3.9) are iavariant under the

rigid rescaling:

ujab ab {1¥1.3.1452)

a a
LI Vo> ouV g

t s Wé b

ab ab

R+ &% I R (111.3.145b)
.

Ra > wR?;

H-gauge invariamce. K is a subgroup of G vwhich admits S0(1,D),

i.e. the Lorentz group, as al factor; HW=507),D)eH'. Eguations
{I11.3.134-135) are gauge invariant under H as a comsequence of
the fact that T and D are both represeatations of M, (Egs.

(I11.3.139-140)).

Therefore we can decompose {III.3.134-135) in their H-content
and the resulting set of equations is explicitly eovariant with

respect to H. TFor example in the gravity case (G= 130(1,3)}

and in the Nel D=4 supergravity case {G «0spll,4)) Eqs. {I.4.11),

(I.4.12) and (II1.3.3), (111.3.9) are covariant under S50{1,3)

1.
gauge-transiormations gince in both cases H=50(1,3) (H'=1). We

o ) i
will see that in more complicated supergravities H #1 and it is

usually given by a U{1)-group.
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A e
v) R' =0 satisfies Eqs, (¥F1.3.134~135): indeed in this case they

reduce to the Maurer-Cartan equations of € for the left-
invariant forms UA and to the Jacobi identities for the struc—

ture constants, respectively,

The fundsmental properties of the defining equations {ITI.3.134~
135) being listed, we now require that the action and the field equa-
tions of the theory based on (IIL.3.134-135) should respect the symme-
tries and the properties expressed by i) -v). This leads to the

following building rules:

A: GEOMETRICITY

By this we mean that the Lagrangian should be a D-form constructed

cut cf the soft [-forms uA (and, if necessary, also of some O~forms

defined on ©) using only the diffeomorphic invariant cperations d

and ., with the exclusion of the Hodge duality operator. Specifically

we say that a theory is strongly geometrical if its Lagrangian can be
constructed using only the uA j~forme. Otherwise, when O-forms are

also needed, the theory is peometrical "tout-court".

Let us first comment about the pogsible appearance of O-forms.
The introduction of O~form fields is obviously necessary if we want to
couple supergravity multiplets to matter multiplets containing spin 0 or
1/2-fields and if the supergravity multiplet itself comtains such fields
{in D=4 this happens for N>2). The study of supergravity Lagrangians
containing spin zero and spin 1/2 fields will be the main goal of Part
Iv.

In this part we restrict our attemtion to Lagrangians containing

gravitational multiplets lower beounded by spin one.

The extension of the building rules to more general cases will be

discussed when needed.

We poiat out that the exclusion of the spin 1/2 and spin 0 fields
from & fundamental higher dimensional Lagrangian does not exclude their
appearance, through the Kaluza-Klein mechanism, in the lower dimensional
effective tﬁeory after dimensional raéuction. This will be discussed in

detatl in Part V.
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It must be said that even in stronglf geometrical theories, whers
all the fields are gauge potentials of a Lie algebra or of a free
differential algebra (see Chapter I1IL.6), O-forms are most of the time
needed to construct the kinetic term of the spin one fields, avoiding
in this way the Hodge dual. ‘The relevant procedure, which is just first
order formalism for gauge fields, was extensively discussed in Chapter
I.5. It relies on the introduction of a O-form Fob which, through its
own equation of motion, is identified with the vielbein-vielbein compo-
nent of the field strength

a b

Frdi+ A, AwF ¥V .,V +more.

zb
As seen in Chapter II.9, while discussing super Yang-Mills theo-

ries, L plays an important role also as Lagrange multiplier of the

rheonomic constraints on F. Indeed the rheonomic parametrization of

the curvature F is enforced as an equation of motion by the GFab—

variation of the Lagrangian. This will continue to be true in the local

supersymtetric case and also when ¥ sits in the gravitational multiplet

of curvatures rather than being part of the matter multiplets.

The only exceptions to this state of affairs are two theories, D=3,
W2 and D=6, ¥=! supergravity where the “spin one" fields of the graviton
multiplet acquire a kinetic term without the use of ar additicnal O~
form.{*) In these cases the role usually played by Fab is taken over
by the torsion, that is by the nonm-metric part of the spin connection.
in these theories the first order formulaticm of the gravitational sector
already suffices te build up a kinetic term also for the spin one fields.
Such a mechanism is very elegant and economical, but it is unfortunately
limited to the two theories in gquestion., Indeed it can be yealized only

under very special conditions. Tt will be discussed in detail in later

chapters.

*) Hence D=5, N=2 and D=6, N=l are the only “strongly geometrical”
theories besides D=4, N=1.



Anyhow, with a geometrical Lagrangian ¥ (in the sense discussed

above), the acticn is obtained by integrating ¥ on a D-dimensicnal

hypersurface M immersed in the soft menifold &, according to the

D
extended action principle introduced in Seet. I1IT1.3.4.

{(I11.3.146)

Assuming for the rest of this sectiom that the Lagrangian ¥ is not

only geometrical, but also stronply geometrical, we see that principle

A impties that ¥ shouid be a polynomizl (in the exterior algebra

sense) in the curvatures RA.

Indeed since:

A_A_1 & B

R A T (I111.3.1472)
A__ A B C

R == € LR (II1.3.1475)

then in the absence of CO-forms the most general Lagrangian H(uA, duA)

can be expanded as follows:

: D A B -
¥= A( ). A Vin Dy LR vig By,

A B o0 (D-6)

+R R LR, ABC o (171.3.148)

where the coefficients have the general form

=g, . (111.3.149

Byee ey a)
A

(0-2) : Ap-2

N =g B e . (111.3.1438)

A BA v Ay,

(D-4) A Apeg

v ¢ B . (111.3.149

AB ABA .. .B c)
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and the C's are constants.

Notice that the degree of the polynomial in B is at most [p/2]
since ¥ is a D-form. We shail see that for ordinayy supergravity
theories ¥ is always a polynomial of degree 2 in the RA'S, for any D.
This is to be expected since, otherwise, one would obtain space-time

propagation equations of order greater than 2 (and products of more than

[+

4 y-fields at one point: for example Ra,\Rh ~ R would contaln wéw

terms).

This rule will be violated by D=10 Anomaly Free Supergravity (4FS}
which is discussed in Part VI.

The reason is that AFS, because of its relation to the super-
string, is no longer a second order theory as all the other models
discussed in this book, rather it is a higher derivative field theory.
A lot of movel features do appear in this case whose discussion is

postponed to Part Vi,

Considering now the property iv} of the Egs. (IIT.3.134-135) we

establish the second building rule, namely:

B) H-GAUGE INVARIANCE

The Lagrangisn in (I1I,3.146) must be H~invariant, B being a

subgroup of G with S0(1,D} as a factor: H=50(t,D) x§'. (For D=12n

ve will restriet $0{i,D) to its comnected part so that parity is
conserved}.

T¢ implement principle B on the Lagrangian given by (III.3.148-
1693, we notice that each term in {I11.3.148) must be an H-scalar; in
particular the indices A, B, ... runaing in the G-adjoint representation

must be saturated in 2 H-invariant way. Furthermore the polynomials 4,

Var Vi’
2} the coefficients C , C ,+o. must be con~
Ai"'AB AAI...AD_Z

gtructed using only H-invariant tensorsj

etc. defined by (II1.3.149) must have the following properties:

ST T

B N T T

N

P

Pl

P



696

b) Bare uﬁ gauge fields can appear in the polynomials
(TII.3.149) only if their global coefficient in the Lagrangian
is an H-covariant closed D~1 form. (The curvatures RA may, of
course, contain uH-fields since, by definition, they are H-gauge

covariant ohjects).

Statement a) is obvious. To prove statement b) let us suppese, for
simplicity, that (III.3.148) cortains uH linearly; then we can split
¥ as follows:

F= Fyar, W (111,3.150)

where Eb is the part that does not contain the bare uH field and

H ,
Ty v is the rest (P, is a (D~1)~form}. Using (IIL.3.20) and the

H
horizontality condition (II1.3.22), we have

sull = we)l (1IL.3.151)

with e=g" DH an infinitesimal parameter, and we find the following

gauge variation for ¥:

- H 3
S =8 g Ty * Ty o &g
£ € I
B'  E' H "
= CH'H [ ?H" PN FH . Ve
- B i D-1 By _ g M
- CH!H H FHII B (=D (V(FHE )] VFHE Y.

{I11,3.152)

Since V(YHEH) Ed{PHEH) the action is invariant under the gauge

variation if:

H 1

2 OH H p-1 Hy _
{LH;H e Tywaw - (-7 g e 1=0. (111.3.153)

How, Vfﬁ cannot contais the uH"connection as a factor since FH’ and

therefore V?H, are good H-tensors. “It follows that the two terms
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inside the curly bracket vanish separately. For the first term this

would imply TH £0 contrary to the hypothesis, and we conclude that no
H : P : . .

bare } -commection can appear in the Lagrangian. This conclusion, how-

ever, fails when the first term is zero, that is when H contains an

abelian subgroup (a U{l)-factor).

In this case, performing a U(l) gauge transformation of parameter

s', Eq. {111.3.153) takes the following form

Jvl g (1I1.3.154)

or, equivalently:
ar, = 0 . (T11.3.156b)

We will encounter this situation in the constyuction of D»>4&

supergravity theories where such U{1)}-closed forms do actually exist.

When rules A and B have been implemented generally one is left
with several different terms corresponding to the possible Lorentz
invariant D-forms one may comstruct out of the uH and RA's, each being
multiplied by an unknown constant coefficient. Usually ome obtains a
dramatic reduction of the number of the possible terms entering ¥ by

considering property iii). Let us state the third building Tule:

C) HOMOGENEOUS SCALING LAW

Each term in the Lagrangian must scale homogeneously under the

scaling law (IIL.3.144); in perticuler in D~dimensions each term must

scaie as {WDMZ], the scale-weight of the Binstein term. Indeed the

equations of motion o superspace give relations among the various
curvature components which have to be independent of w. Otherwige
they would be inconsistent with the Bianchi identities which are
independent of w. (For example in D=4, N=i supergravity both the
inner equations (III,3.66) and the outer equations (III1.3.73-74) {the
rheonomic constraints) are independent of w). Now equationms of motion

independent of w vequire that all the terms in the Lagrangian should
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scale homogeneously under (II1.3.144), In particular any super-

gravity Lagrangian containg the Einstein term (see Sect, II7.5.48)

. d-
which scales as w 2, so that rule € is justified.

Now property v} of the Bianchi identities lesds to the fourth
building rule:

D)  VACUUM EXISTENCE

The field equations on the G (or G/H) marifold should admit
. A
the solution R =0 (the "vacuum"), and therefore be zt least linear

in the curvature 2-forms RA.

In order to implement this requirement in the superspace equa~
tiens of motion derived from the action (I11.3.1486), we use formulae
AITL.3.148-149),

Assuming for simplicity that the polynomial is of degree 2 in
A :
the R we find:

&y

¥
é—f = J@%'+ Vo # (——€-+ 2 VvLB} - RB +
Sy 8u by
Sy
AB A B
+ T - R .R =10 (¥11.3.155)
By
where we have used
A A
SR = V(&) (111.3.156)

so that, by partial integration:

A

. 6K A

V‘(\:A N 5uA} + Vv, . 6y

A

A
IO " IR s (111.3.157)

[
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A
From (I11.3.155) we see that in order for R = 0 to be a
solution of the field equations we sust have

M

Shogy =0 at 24 =0, (171.3.158)
A A
Sy
One could ask whether principle D is not too restrictive. We may
argue as follows. Suppose Eq. (IIT.3.158) is not verified. This means
that RA = 0 is not a solution. Ther we have two cases: either there
are no solutions at all or there is a sctution of the type:

A

Palpt BOC (I11.3.159)

;
EFBC“ -~ ¥

where FABC are comstants. Indeed the field equations are algebraic
equation; for R%BC {with constant coefficients) and therefore either
they have no solution or have constant solutions. Bringing the r.h.s.

of Bq. (III.3.159) to the l.h.s. we can say that the solution {IIL.3.159)
is given by §%¥=0, where ﬁ% is the curvature of a new group whese

A
structure constants are BC BC*

A ,A 1 A A B C (I11.3.160)
B® = gy +~£(CBC FBC}u AU

This means that we could just start over again and rewrite our
Lagrangian in terms of the curvatures of a G algebra and now RA =0
would be a solution. Hence there is no loss of generality im asking
that RA==9 should be a2 solution.

We observe now that, since one has already imposed rule €, the
equations of motion canpot contain terms of zero order in the curvatures
2. Therefore, by projecting on an intrinsic basis of (D~1)-forms on
KeH, EBgs. (II1.3.153) become algebraic equations for the intrinsic

A
components K'po, where

daph B (111.3.161)

e
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with no G-order term. Then, according to the splitting (II1.3.136-141)
of the G superalgebrs, the intrimsic components RABC are separated

in the following groups:

A

{RAEH'; RAHE; RAHO} F Ry (111.3.162)
{RAoo'; 2y} = . (IT1.3.163)
: (I11.3.164)
R

The first group RAHB is given the name of gauge components, the

second group RAOK is given the name of outer components, finally
RAII‘ are called the inner components. Then our fifth buildiag rule

can be stated as follows:

E) RHEONOMY (AND BORIZONTALITY)

We assume that the outer components (and gauge compoments) obey

respectively the following equations of motion:

A AlTET B

R * Cols B or (311.3.165)
(RAHB - 0) . (111.3.166)

We have put the horizontality equations between brackets since they do
not appear as field equations when we start with a G which is given

"a pricri" the fiber bundle structure:
&= G(d/m, W) . (II1.3.167)

Tn this case we formulate the theery directiy on the superspace G/H

. 1t Coss A
and the horizontality conditions are part of the definition of and
g on the coset G/H. The curvatures 8% therefore have only X-

components and Eq. (III.3.185) sufficds, 1f, on the other hand, we

Q1

choose to start with the fields defined on & then {(III.3.168) is

required to be a field equation.

This, however, s always satisfied if we have already imposed
rule B, namely the H-gauge invarisnce of the Lagrangian. Indeed it is
easy to convince oneself that from a gauge invariant Lagrangisn we
cannot obtain field equations with bare H-connection uH. Hence, while
projecting on the (P~1)-~basis containing at least one pH we always
get the horizontality conditions. Thus, when {(IIT.3.166) holds, we can

show that the dependence of the uA from the pauge parameter n is

given by
uH(n,x,G) = [g"[(n)dg(n)]H + g-l(n)uﬂ(x,a}g(n) (111.3.168a)
Fono = [, we (IT1.3.1685)

and therefore the dependence on the gauge parameters is factorized as
it must be on the coset G/H (gee also Part I from {I1.3.142) to
(1.3.148)).

Hence the essential requirement in the rule E is the validity
of Eg. (II1.3.165) (where the C's are not all zero}. We notice that
Eg. (I¥1.3.165) is obviously eguivalent to a rheonomic parametrization
of all the curvatures RA in the superspace élﬂ, namely, {III.3.165)

is equivalent to

R R II,V ~ v + COI”;B 7 v ~ ¥
fIr' B o 0
+ CgO'iB R 7t [ (I11.3.16%)

where for concreteness we assumed that the inner directions are
. . I .1 . ,
spanned by the vielbein W £V, and that the outer directions are

spanned by the gravitino's uGE wG (0 being a spinor index).

We have already expiained the meaning of the rheonomic conditions
for the space time interpretation of N=1, D=4 supergravity. The same

considerations apply here to the more general set-up we are discussing.
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(It is sufficient to substitute N

and M4 with a D-dimensional (bosonic) hypersurface M

54

h immersed in

G/H, comventionally the &%=0 surface),

The important point of the discussion given in Sect. II1.3.3 is

‘that, when rheonomy (and H-horizoeatality) hold, the Lie derivative

A A A
Bow = (7e) + gX (113.3.170)

provides a unified description of all the symmetry transformations,

i.e, H-gauge transformations, M.D-diffeomcrphisms and supersymmstry
transformations.

Indeed setting

i (II1.3.17%)

the three types of transformations are geserated by the D, D, and

By

B 1

respectively. Explicitly we obtain

A_ oA B C A
Ea } (Ve) " + 2 ¢ u R B0
JRPEY I I' A (1" o] al11' B
(ve)® +2¢ u R TUN 2 i CGI"]B K 7'
0 0' A1’ B
+ 2 y Coots Ry - (111.3.172)

Taking successively = eH, EI, ao we find the H-gauge traansformation

A, HA
Logu = ()

(311.3.173)
£
the MD-diffeomorphisms
A, T4 I 1' A
Lou = (W) 26y R -
£
™ 0 A4jII' B
s26 CgI"|B L. (II1.3.174)

with the general superspace G/H
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and the supersymmetyy transformations:

08, , 0.1 AIT' B 0 o Az’ B
= (Ve )" +2 ¢ u COL"IB Y oL +2¢g u CGO’!B R 11!

(I11.3.175}

We stress that the knowledge of the rheonomic parametyization (111.3.168)
is equivalent te giving the supersymmstry transformations of atl the

fields.

We also stress that the supersymmetry transformations (I1I.3.175)
close an algebra only on the on-shell space-time configurations of the
fields, namely on the uAI (on*shell)(x’o). Henceforth these trans—
formations are, in general a symmetry only of the equations of motion.

Care is needed to promote them to symmetries of the action.

These subtleties have already been discussed in previous sections

in the particular case of N=1, D=4 supergravity.

Let us recall the main argument. The Lie derivatives L close
an algebra if d2== 0 or equivaleatly if g8t % 0. Since the curvatures
components are given by the rheonomic parametyization (III.3.169), the
Bianchi identities imply differential comstraints on the inner compo~

nents RA entering (III.3.169). These differential constraints

I’ X
are, by definition, the space-time equations of motion of the theory.
Indeed the space~time equations derived from the Lagrangisn must
be consistent with the Bianchi identities and therefore must coincide
with the differential constraints implied by the rheonomic parametriza~

tion of the curvatures.
Finally, let us comment on the meaning of our building rules.

The reader might have developed the impression that the rules
A, B, C, D, E, are like the axioms of a mathematical theory defining
the type of structures one likes to comsider. If this were the case
we would have the possibility of relaxiug some of the axioms enlarging
in this way our huntimg ground. This does not happen here. For
instance, the reader has certainly considered the question whether the

1ast rule (rheonomy) can be relaxed and whether superspace theories

P L .

—

P e R T

R T e

P . B e N
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not interpretable on space-time mzke sense. They den't, Actually they
do mot even exist. Indeed no example of a Lagrangian can be produced
whose associzted field equations leave some of the outer curvature com=
ponents undetermined, Tf the Lagrangian is chosen at random then the
field equations are simply incomsistent and no golution can be found
except the trivial one where everything i zero. Lf the Lagrangian is
consistent, namely if it yields a consistent set of field equations for

the curvatures, then it is alse the only rheonomic one.

The reason for this is simple. What we are actually trying to
obtain is a locally supersymmetric Lagrangian for a multiplet of fields

which constitute a representation of supersymmetry.

From the algebraic theory of superalgebra representaticns, dis-
cussed in Chapters II.4 and II.5 we know a priori which theories do
exist and with which spectrum of fields. The only problem is to con~
struct the unique sypersymmetric Lagrangianm. Relying on the geometri-
cal interpretation of the supersymmetry transformations, closely related

to the Bianchi identities, rules 4, B, C, D, E provide, more than a set

of axioms, & description of all the properties characterizing the unique
gupersymmetric Lagrangian. Hence they furnish a practical way of deriv-
ing this latter. Furthermore they naturally lead to & nice formulation
of ¥ in geometrical rerms. What must be rejected ig the idea that

rules 4, B, €, D, E could be regarded as independent requirements.
rules f, Ty Mo Ve D

Taken tegether they are just synonymous to & single word: local
supersymmetry. Faken separately they are meaningless.

Tn particular to complete the picture and avold a possible source
of paradoxes, an example of which will be discussed in Chapter III.7,
one should add a sixth building rule which refines those listed above.

1t is the following:

F} COMPLETENESS OF THE FIELD EQUATIGNS

We have seen that the variationgl equations associated to the

Lagrangian give:
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a) when enforced on space-time, the field equations of the physical
fields
b) when extended to superspace, the rheonomic coamstraints.

We have also seen that the rheonomic constraints yield, through the
Bianchi identities, relations on the physical fields identifiable as
field equations. Obvicusly the two sets of equations of motion, those
derived from the space-time restriction of the Lagrangisn, and those
implied by the rheomomic constraints via the Bianchi identities, should
be consistent. This property has been assumed in stating our rheoncmy
principle. Actually we should be more precise, In fact the word
consistency is still too loose as it allows the exceptional case where
the space-time field equations are simply a subset of the field egqua-
tions implied by the rheonomic constraints through the Bianchis. This
ig a very subtie global inconsistency of the superspace field equations,
i.e. of the theory.

Indeed what can happen is that the system of variational equations
associated to the Lagrangian has a larger set of solutions in x-space
than in superspace. In other words there are configurations which
solve the equations in x-space but admit no extension in the §-direc-

tions.

The whole idea underlying rheonomy, namely the smooth extension
from space-time to superspace, is disrupted in this case. It follows

that the corrvesponding Lagrangian is not supersymmetric invariant, the

non invariance being proportional to the missing field equations.

The problem of finding a Lagrangian for these theories is not
hopeless as it might seem. Indeed what one has to do is just to add
a convenient set of Lagrangian multipliers which enforce the missing
field equations restoring, in this way, the sixth building rule which

can be now stated as follows: "The x-gpace field equations must be

complete., They must encompass all the statements on the inner curva-

tures implied by the rheonomie constraints via the Bianchi identities".
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111.3.10 - Retrieving N=1, D=4 supergravity from the building rules

According to the previous discussion, the geneval form of the N=|
LR

D=4 supergravity Lagrangian is the following:

iﬂ(D:A, N=1} =4+ A A B
BLvy PROLR Ly (113.3.177)
wvhere
A A A A
A=g ] 2 3 4
AIA2A3A4 L {I11.3.178a)
AL A
v, = § 2
A TaAA HooaH (III.3.178h)
Yy, = O-f
A3 ozl (II1.3.178¢)

where uA and RA are the Ospl4/1)-Lie zlgebra valued soft i-forms
and curvetures, respectively defined by (1I1.3.4) and (EII.3.5). We
p?w proceed exactly as in the pure gravity case (see Sect. I.4.3).
First of 21l rule B, namely S0(),3)~gauge invariance, implies that the

possible guadratic terms entering (III.3.177) are the following ones

iy R . R (I11.3.179a)
i) g% g € g (111,3.179b)
iii) 5 .p (II11.3.179¢)
iv) P . Yg P (111.3.179d)
v R, R (I11.3.17%)

In i g (III 1 9) we as £ ot r ffect ivel
. 3- 7 5
writ ume that the 0 orms v B are ¢ Veiy

constants; if we allowed them to be functions on M4/6 we would obtai
obtain
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a matter-coupled supergravity theory where the quadratic terms play as
ecsential role. This is in fact what happens for supergravity in
presence of higher curvature-tefms in the Riemanp temsor, relevant for
their connection with string theory (see Part Vi).

Exactly as in the gravity case (see Eqs. {I.4.63-64)), one shows

that 1) and ii) are total derivatives since the definition of R for

Ospl4/1) is the same as for 180(1,3).

It ig also easy to see that iii), iv) ané v} can be reduced to
linear terms in the curvatures by the addition of tetal derivatives.,
Actually iii) and iv) can also be eliminated "y priori" by the scaling
argument embodied by rule € of the previous section, Let us chserve

that anyhow the Einstein term must be present in (I11.3.177):

ab c (111.3.180)

d
R .V .V €abed

According to (II11.3.145), it scales as wz. On the other hand, iii)
and iv) scale only as w and therefore we must drop them. (Notice
that the same kind of argument eliminates also i) and ii) independently
from the fact that they are total derivatives since both of them scale

as wo). Therefore we must only show that v) can be veduced to a

linear term. Indeed we have:

a - (avd - 13 =
R™ LR (4vY 2‘#“‘{!!3).\
= @(Va,\Ra) + V(- Rabnvb+iﬁnYap)..
i- a ]
ARRARE" (111.3.181)

where we have used the definition (IIL.3. 5b) and the Biznchi identity
(111.3.95). Equation (III.3,181) proves our statement since g2
-
Ra)"d(v - Ra)'
Let us now consider the linear part of (111.3.177). Using
80(1,3)~gauge invariance the general form of (I11.3.178) is the

following:

s

P T N

i~ e
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c d L4

a b ¢ d . - ab “ 1 4 . . s
= R PR A B configuration be a solution of the equations of motion on M (or
A % Eupad ViLuv v v +d % €oted L2 & Lguratls - ) q
on Osp(4/1)) fixes this last parvaneter.
s - ab :
* e, oY . Va - Vb .{ilI.B.ISZa) . Indeed upon variation of wab, v®  and ¢ we find:
=a e, Vv g v LV B Y0 207 e e lafygv v b, V=0 (II1.3.186a)
Vab T ®i fabed T ¢ 2% b 3 ¥ Tap abed & 5 Yd Yap
i P (I11I.3.182h) 28 v e L tab .oy =0 (111.3.186b)
YLB fapeg VAT Y T ; ) abed = '5 14
a a
- 8 LV - LR =0, 177,3.186
vosiy, P (111.3.182¢) 5 Ya® 2y TV ( c)
a 'l a
The vaecwun configuration
4 a
= i . III.3.182d
VEE Yo AV ris, v Y ( }
. p=r% =8 =0 (111.3.187)
(Recall that because of the commuting property of § .¢ only the
- & = ab s :
currents $ .Yy and 9,y are different from zero). : is obviously a solution of equations {III.3.186b,c). Equation
Once again the argument of wzwhemogeneous scaling reduces drama~ §“ {II1.3.186a), on the other hand, is the same as Bq, (111.2.20). In
tically the number of possible terms. Indeed using (IIL,3.143) one gets : Chapter III.1 we found that {IFI.2,20) can be rewritten as
jmmediately: : .
2R Ve, =0 (111.3.188)
= (IT1.3.183) sbed
T 83 = 34 =0. +J.

. . . if a=4 (see E¢. (IT11.2.22)). 1In this case it satisfies the vacuum
Moreover the reguirement of parity conservation kills the terms which .
, . \ requirement,
do not transform as a pseudoscalar density like the Einstein term

Rab 7 vd e dE 4 va:g d4x (see also (I.4.78-82)). %_ Thus we arrived at the now well-known Lagrangian of Eq. (III.3.51).
- " abe ;

Notice that we have not yet used the requirement of rheonomy. However
Therefore we also ser

it is a rheonomic Lagrangian as it was shown previeusly. In more com-

B, =7, =8, =0 (I11.3.184} ; plicated cases the requirement of rheonomy has to be imposed in order to
2 1 ' ‘ ‘
determine all the coefficients as we zre going to see in the next
In conclusion $0(1,3) and parity invariance plus the right scaling x chapters,

behaviour reduces (III.3.177} to the following simple form

II7.3.11 - Extension to anti de Sitter supergravity

D=&, N=] ab c d - A
= 8 ~ - _— P .
¥ B1 Eabed RV Vs 1 v s Yol Ag a further application of our building rules we give now the
(I17.3.185) & explicit derivation of the anti de Sitter version of N=i D=k super-
gravity.

where only the ratie 61/85 Ta 1is tofbe fized (an overall factor

being of course unessential). The requirement that the "vacuun”
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This construction requires only some minor modifiecations with
respect to the case previously examined. Indeed the only difference
lies ir the fact that we must start with the Lie algebra of the
uncontracted Osp{!/4) group, i.e. the graded extension of the anti
de Sitter group, rather than with its contracted version Osp(4/17.

The Maurer-Cartan equations defining the Lie algebra of Osp(4/N)
were given in Part II, Eqs. (IX.3.27). Setting N=] and letting wab,

Va, b be the soft !-forms we define the following Osp(4/1)-curvatures:

S N A A T (II1.3.189a)
= 9y - -;— b oY (I11.3.189b)

&

p=Fb-iByy .V (I71.3.189¢)

where, as usual

#% - g, - W’ w®b {I11.3.190)
and & is the rescaling parameter defined in (I1.3.26}. The Bianchi
identities associated with the curvatures (I11.3.17%) were also given
in (I1.3.76) for a generic N. In the N=I case we rewrite them here

for cempleteness

ap® + g2 | v, - i .y =0 (111.3.1%ts)

xR -8 R, w285 . v =0 (I11.3.191b)

Gp-i8yg. K-+ .y p=-0. (I11.3.191¢)
a' " 4 * Tab T

We can now proceed as in the Osp(4/1) case except for one point: in
applying the scale arguments we must pay attention to the fact that
Egs. (III.3.189) and (I11.3.191) are invariant with respect to the
rescalings (II1.3.145) provided we also scale the parameter 8 as

follows:

m

Erw B . (I11.3.192)
Hence in constructing the Lagragéian we can also use positive powers
of ¥ to get terms with scaling power 2. HNegative powers of & are
forbidden since.the Lagrangian must admit a finite limit €-+0 which
ig nothing else but the previous super Poincard Lagrangian. Keeping
this in mind we find again that, since 3 lowers the scaling
behaviour, all the possible quadratic terms can be omitted except
R?, Ra' Moreover, identity (III.3.18!} holds true also in this case
since the equations (IIX.3.189b) and (III.3.191a) are the same for
both Osp(4/1) and 0spla/1).

Thus we are left again with 2 linear Lagrangian whose general

coefficients are given by Eqs. (II1.3.182).

The difference with respect to the Osp(4/1) case comes at this
point. $ince the three terms in the expression for A have a too
high scaling behaviour we may lower it by multiplication with a suit-

able positive power of &.

We do it by the following substitution

@ > g2 a! (111.3.193a)
o, + e aé (111.3.193b)
ay € qa {III1.3.193c}

sg that all the terms in A do now scale as wz. The scaling argument

now implies only:
=0 (111.3.19%)

since we cannot increase the scaling powers of the corresponding tewms
by positive powers of €. The requirement of parity conservation

furthermore gives again

S e e e

ANt

~

fise

et

B

-



2
By =¥ =8, =0  ay=0. (I11.3.195)
Therefore we ars left with the following action:
.wg:!»éibg:;r ) J 4 mg} (111.3.196a)
M cM
¥= g By, s 8,5 « ¥g Vb v
¥ ui EZ abed v vb SV vd *
viade, 7. oy v v (I11.3.196b)

vhere we have set B, = 1.

The three coefficients entering (II1.3.196) can be fixed again

by the requirement that the “vacuun"

LS L (111.3.197)

be a solution of the superspace (or Osp{4/1)) field equations derived
from (I11.3.198). TLet ug observe, anyhow, that the definition of the
"yacuum” in the Qsp{4/1}~case is different from the contracted case,
EEETETTWs since the definitions of the curvatures are differeat {compare
(117.3.189) and (111.3.5)). Indeed we have seen in Chapter IT.3, that
an anti de Sitter vacuum corresponds to a Riemannian space with constant

curvature given by (I1.3.55b).

let us now vary the fields wab, v?, 0. We find respectively

d

4 i, .
+26§¢“¥5~(dYab¢.V 0

P
2¢ bea 2V LV (1I1.3.1982)

5 Rab e
abed

a b c

c -l
v ¥
¥+ 16 e Eabcd V. .~ ¥

- . - - a
PO L Yg e t IS g Vb W Y F

'3

1

g
—
[£+]

+4§2a' LA A A

1 €abed

R - ab co_
+ 21 oy & £ 0a ooy ¥V G (111.3,198b)

- ab c 4 a
2 €pea ¥ [/ A A A Gl Y5 Y - Ve o+

- 2 d
+ 18 61 Y5 Yadw LYV LY+

c 4 ab ¢ d _
+ 21 ey Be g q Y I A ¢ .

(I171.3.198¢)
Notice that, apart from the terms in ai and aé, there are other
contributions in & and 2 coming from the variation of vd and ¢
inside the definition of the Osp(4/i} curvatures (II1.3.183). We have
also used (III.3.189b,c) in expressing ¥® and ¢ in terms of B2
and p, and the Fierz identity (IIL.2.26).

Equation (II1.3.1892) is the same as in the Osp(4/1) case and

therefore implies once more Gl = 4,

Imposing the vanishing of the terms which do not contain the
curvatures in (III.3.198b,c) and using the y-matrix relation:
d

(IIL.3.199)

c C
abed T

-1
Ts5 Yap 2

from {IIZ.3.198b) we obtain
68+ 4 al =0 (111.3.200a)
6[ + 21 dé =0 (I11.3.200b)
that is a; = -4, aé = 2i. Bguation (I11.3.198¢) yields

2e+ =0 (II11.3.261)

o f—

e 8 * 2 i aé

whick is identically satisfied by the previous values, Thus we have

completely determined the Lagrangian:
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. Rab V,C Vd

2
48 Eahcd

- - ab c
e £ bed .y .V ¥

We notice that using the above values

the equations (117.3,198) become:

¢ d |
Z €bed M.V =19

ab ¢ - N
2Ched B -V AV L v

a a
8 Y5 VP - V- by Vb R=

- a
Sabed YAV A Y5 a Y

AN A A

of the coefficients

(117.3.202)

¥ Yy

(I11.3.203a)

(I11.3.203b)

{I11.3.203¢)

and these are formally identical with the equations of motion

{I117.3.52) of the contracted case, apart from the different definition

of the curvature Rab and p.

The discussion of factorization ang rheonomic symmetry developed
in Sect, III.3.5 applies, therefore, to the Osp(Ali)”theory without

changes. In particular from (IT1.3.203) one derives the rheonomic

parametrization of the curvatures:

= < 8 i
R gV v+ 8™y v

. zb
where the inner components R

abed _
& Y5 Yy by =0

(111.3.2042)

{I11.3.204b)

(III.3.204c)

ed and Pun obey, respectively, the
Einstein and Rerita-Schwinger propagation equations

(111.3.205a)

(I11.3.205b)

115

ab is gi e same rheonomic
and the outer component € lc is given by th

constraint (I11.3.72).

Therefore the on-shell supeJQymmetry transformations are
formally given by Eqs. (IIL.3.106), the cnly difference being that now
(Vg)A represents an Osp(4/1)-covariant derivative. Its explicit form
can be read off directly from the Osp{4/1) Bianchi identities, according

to the discussion leading to (I1I.3.i2).

We obtain

vgab - @Eab -8 EZ E[a Vb] + 28 5 -Yabg (111.3.206a})

N R (I11.3.206b)
. a 1 ab I11.3.206¢)

Ve=Qe-iéy eV - e Yapb - (

. ab_ a_
Restricting ourselves to supersymmetry trausformations (5 ="=0)
and inserting (III.3.206} and (I11.3.204) into Bgs. {II1.3.103) we find

the on-ghell first order supersymmetry txansformations of anti de Sitter

supergravity:
- —zb _ .c 1.3.207a)
s =23 3y + 28 eV {1z
o = 1 E 4% (111.3.207b)
=1
" a (I11.3.207¢)
w 0 - v,
sy = Fg igy ¢

It is easy to verify, in the same way as we did for the Osp(4/1) case,
that these transformations are an invariance of the action (I11.3.196)
{but not a symmetry).

In second order formalism, instead, the émab variation is given
by the chain rule and it is different from (II1.3.207a), the diffefence
being proportional to the l.h.s. of the gravitino space-time equation,
in complete analogy to what happens in the 5§§T37?? case (see

(I11.3.129)). We leave these verifications to the reader.
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TI1.3.12 = Building rules for supergravity theories using rheoncmy

and Bianchi identities

In previoys sections we saw that the rheenomic constraints, so
far regarded as an yield of the variational eguations, enforce, once
inserted into the Bianchi idemtities, the propagation equations of the
physical fields,

This suggests another line of approach for the construction of a
supergravity theory.

One can forget about the Lagrangian and assume the rhecnomy

srinciple as the fundamental starting poiat of the classical super-

gravity theory.
The space-time equations of the fields will then be obtained as
a result of the integrability of the rheonomic parametrizations through

the use of Bianchi idemtities.

To be explicit, one assumes the rheonomic primeiple in the ususal

form, that is:

a) the outer compenents of the curvature 2-forms in superspace are
to be expressed in terms of the inner components, that is of the field-
strengths of the physical fields, secording to eguations {IIT.3.163).

If one further assumes the rules:
. . A . . .
b) Lorentz gauge invariance of the R rheonomic parametrization.

c) Hemogeneous scaling of all the terms invelved in order not o

violate the fundamental properties of Eqs. (ILI.3.i34-135).

Then the structure of the superspace curvature is completely
determined, except possibly for a few constant coefficients. The
Bianchi identities fix the coefficients and moreover give also the
space-time differential jntegrability constraints on the inmer curva-
tures, to be identified with the space-time equations of motion of the
physical theory. The rheonomic parametrization itself fixes, om the
other hand, the on-shell supersymmetry traasformations of the theory,

as it has been remarked in the comment following (XiL.3.107). In this
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way the implementation of the rheonomy prineiple a}, plus Lorentz gauge
invariance b) and the right scaling behaviour ¢} into the Bianchi iden~
tities gives an equivalent description of the on-shell theory as it

would be derived from the action principle.

Te see how this works in a particular simple example let us

rederive once again Osp(4/1) supergravity using a), b) and ¢).

Let us start with the structure equations and the Bianchi iden~

tities of the Osp{4/1} theory, namely Egs. (II1.3.5) and (I11.3.9).

We write down the most general parametrization of the curvature
in superspace which is rheonomic, Loventz covariant and scale invariant.

For simplicity we alsc add the kinematical constraint:
R"=20. {I11.3.208)

As we have already pointed out Raﬁm,=0 is a kinematical constraint
which allows the transition £rom first to second order, by expressing
the non propagating field wsb in terms of the physical field v® and
&ﬁ. Moreover the absence of cuter components in Ra, gj R8==O, implies
that the supersymmetry transformation law of the vietbein field, given

by the general formula (IIL.3.21b), reduces to the standard form:
§ V= )it vy (I11.3.209)

(that is, idemtical with a (-gauge transformation).

Therefore it suffices to consider the general parametrization of

Rab and p. Let us use the general superspace ansatz given by

Eqs. (E11.3.60):

) RN AR o (I11.3.210a)

¥ c
vV . v o+ ch PO ﬂaﬁ [ {111.3.2160)
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The rheonomy principle applied to (II1.3.210) implies that eablc’ Kab

Hc’ n&B

¥

should be comstructed in terms of the inner components

ah 2

R Pund Rgn 205 (II1.3.211)

in a Lerentz covariant way. Moreover the scale invariance of (III.3,210)

under (IIT1.3.145}) impiies the following requirements:

B, H (111.3.212a)
Qg w2 & (111.3.212b)
Ky > v! Koy {I71.3.212¢)
0™ » w32 aabc ) (111.3.212d)

From the scale properties of Rab, p (II1.3,145a,c) we also find
B - - Rabcd (I11.3.213a)
Racd . Racd (I11.3.213b)
0™ w3 P.a (111.3.213c)

. & i
since V  seales as w .

it 15 now easy to see that the y-matrix-valued Lorentz temsors
H and K
[ ab

. a .
in terms of R an’ which however has been set equal to zero. We have

could satisfy (IIT.3.212a,c) only if they were constructed

therefore:

Hc = Kab =0, (I11.3.214)
The same conclusion also holds for the spinor valued matrix QuB wiich
should be expressed in terms of Py again we cannot match the scale

behaviour. Hence
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R =0 {111.3.215)

aabic, however, can be expressed in terms of the p =~ components
because their scale powers coincide. By taking the (VW projection of

the torsion-Bianchi {IT11.3.9b) with R2=0 ocne obtains:

—ab - L 111.3.216
i A RS TS A TP AP A ( )

or

1 -8 =+ip . 111.3.217)
2 (@ab|c @ac}b)w TPy Ya¥ ¢

This equation has the same Lorentz content as (1.2.40) and can be

sclved in the same way; one finds:

%215 ~ i35 ) 11%.3.218)
9abic 2 i Dc[a Yb} Ll Ve (

Thus we have fixed the superspace curvatures as follows:

ab _,ab o d (= -i3 v© (311.3.219a)
R = kY VLV +(2ch[ayb} 15,,70¥ - (

(111.3.219b)

a b (111.3.219¢)

At this point we call the reader's attention on the fact that the
parametrization (II1.3.219a) is different from that found by solving
the equations of motiom in superspace (Egs. (117.3.72)). Indeed the

% .V component of Rab is different im (111.3.219a) from that given
in (I11.3.74a). This fact might seem to contradict our statement that
the Lagrangian approach gives the same result as the rheoncmy principle
inserted in the Bianchi identities.

However we observe that the two parametrizations (I11.3.74a) and

{111.3.219a) differ only by the l.h.s. of the gravitino space time

P

T e

e N

— B T e S
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R

e T e TS Sy
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equation. Indeed the two expressions (1I1%.3,72) and (I11.3.218) just
determine two different supersymmetry transformation laws for 6wab
(III.3.742) determines through (I11.3,107a) the rule which, as we have

seen, 15 the on-shell first-crder supersymnetry transformation leaving

the action fnvariant; (I1£.3.219a), instead, gives rise through
(131.3.107a) to & &u™
(1I1.3.127} and therefore is the on-shell supersymmetry transformation

leaving the action invariant in Iund order formalism. The two laws have

supersymuetry variation which coincides with

been shown to differ by the 1.h.s. of gravitino equatien in (III.3.129).
They are therefore both viable as supersymmetry transformations of the
equations of motion. Hence the two different parametrizations
(I17.3.74a) and (J11.3.219a) differ only by the 1.h.s. of a space-time

equation of motion and are therefore on-ghell equivalent,

Actually the fact that the Biauchi identities imply the equations
of motion was deduced ip Sect. ITI.& using both the rheonomic constraints
given by the variational principle and the Bianchi identities. If we
use only the Bianchi identities then the derivation is somewhat differ—
ent; in particuler the Einstein equation, which was deduced in Sect.
3II.6 from 933b==0 cannot be obtained in the same way since, using
the new parametrization {I11.3.219a) we obtain in the PV sector omly

the cyclic identity on the Riemann tensot.

As we presently show the shortest way to recbtain the bosonic
equation for the Riemann temscr is to recall that the gravitino and
Binstein equation must transform into each other under a super-
symmetry transformation (or a iie derivative L in the 5q direction}.
Equivalently we may differentiate the gravitino equation and take its

content aleng the ¢y~! form. Let us see how this works.

First we deduce the gravitino equation from the Bianchi identities
and the parametrizations (II1.3.219). In Sect. 111.6 it was deduced
from the YVV sector of the torsion-Bianchi. In absence of the rheonomic
constrainte given by the variational equations, this does not work in
the present case; indeed the use of (I11.3.219) in the same sector,

vV, of the forsion Bianchi would just give an identity. Instead we
rake the $¥V sector of the gravitinSiBianchi {$11.3.9¢c); using Eqs.

(111.3.219) one finds

e et

T4
- a B 1 ab -
b VoYV LV 7Y "’“"’{chab"z‘fapbc)"v =0 .
(I11.3.220)

Using the Fierz decowposition:
=_1 a i _ab
LI IR A 3! LR O (I112.3.221)

after some y-matrix algebra one gets two equations for the coefficients

b
of ¢ "Ya¢ LV oand ¢ ﬂYPq¢ ,Vc respectively:

] i cd ]
2z + = i P4 -
a Pab 16 Y5 €ab Ped * 16 6ab \ ppq
- 4 -
F¥[aY Pplg ™0 (111.3.222)
- a IV B -
Yog ¥ Pac T4V [ Y Pplp 0 (111.3.223)

Ysing Eqs. (IIL.3.81), (EI1.3.100a~b) one easily recogrizes that the
l.hvs. of Eq. (EIT.3.222,223) are proporticnal to the l.h.s. of the

gravitino field equation Ep; therefore we find:

def. rst

I =
p Ts Yr %p

(117.3.224)

To retrieve the Einstein eguation we could make a Lie derivative
of Eq. (II1.3.224); it is equivalent and more convenient, however, to
rewrite Eq. (II1.3.224) as a 3-form in superspace, that is to use
Eq. (IT1%,3.52¢) {at B*= Q) and to differentiate it; we obtain:

Dlyg gp » vy = s Y20 - i %—75 TP - Poy=0.
{111.3.225)

Using the gravitino-Blanchi, Bq. (II1.3.225) becomes:

b

1.2 i "
Y Yo 7R T Ve bYW =0, (I11.3.220)

In the V¥Vj-sector we find
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ab ¢ g

Yo Yapl ~ B g VLV V=0 (111.3.227)
that is

.t ab c d

By Y v “mabt R od LA A A

b
ERRTE SR LR LR L (I11.3.228)

The second term is zero, due te the cyciic identity, which is valid at
a : .
R™=0; the first term, using v© AVd N EECdmf Rf gives the Einstein

equation

1 -
R 388 =0 (111.3.229)

as promised.

Therefore we can conclude that the rheonomy principle a) imple-
mented in the Bianchi identities (plus b) and ¢}) has the same on-shell
content as Bqs. (IT1.3.52) derived from the extended action obtained

via the A, B, C, D, E rules of Sect. III.2.9.

This bas been explicitiy verified in the case of N=1, D=4 super-
gravity, but it is true in geperal as one can easily guess and as will

be explicitly shown in more complicated theories.

Thus we have two alternative ways for comstructing a classical
supergravity theoxry: either by using the extended action principle
and uging the building rules A-E of Seet. III.3.9; or by using the
Bianchi identities and the principles 2}, b), ¢) of this section. Im

both cases the use of the rheonomy principle is essential.

Actually what proves to be the most convenient practice in con-
structing more general theories than the one examined so far is the
combined use of the Lagrengian approach and of the Bianchi idemtities.
The doubling of information gained in this way eliminates a lot of
labour which would be required relying on either of the two approaches
alone. In the fellowing we shall see examples of these parallel

constructions.
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in Table I11.3.I we give a resumé of D=4, N=i anti de Sitter
(0sp(4/1)) supergravity. The case of Poincaré (Osp{4/1)) supergravity

is obtained by simply setting fn all the formulae €=0.

TABLE 111.3.1

Summary of D=4 N+] De Sitter and Poincaré supergravity

De Sitter supergravity: 540, Poincaré supergravity &=0.

A) The Osp(4/1) curvatures

- ab
Rab - dmab -t ) wcb + 4 52 v Vb va i v
C

peBy-iEvy.V .

B) The Osp(4/1) Bianchi identities

- ab
gr® - gatal® w2y, yPe=0
_@Rawabhvb-xﬁﬁvao-l)

a_ ! ®_g.
Po-i&vy.R ""Z.'Yabw“k

¢)  The Action

‘e
MACgI‘M

where!
W < BepGiT 1Y /80(3,3)

¢ d

ab ¥

- a
V-
¥ =R .V €abed T L A Vg VP

a b c Vd

2 YLV

mhe Eabcd v
- - abw e v .
-2e Eabed oY - ~

e

~

@&m

S T e e N NN
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FR TSN

T
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TABLE I11.3.1 continued

D)

E)

where:

. . b
determination of 82

E)

The Field-Equations in Superspace

ab e -

2 € abed R .V + 459, YS b ® 1}
c d

2 Eabcd RO.V =0

a

a
Byg v eV ~hy vy R =0.

The Rheonomic Parametrization of the Curvatures

AV
b

determination of ng from the field equations gives

(1)
5ab ; z30 . . abus 5 _ 6{a blust -

¢ ¢ rs 15 Ye e F Pee Y5 ¥y

[H]

from Bianchi identities gives

P N
zab _ =ab _ , . -~ fa bl . -ab
Oc - ec zi Por ¥ L P

Inner Field Equations

ab l .4 ,mn
8 om 2 8 b R ma 0
R =0

ms

rsmn

-----

;

o P TR LT

TS

i

TABLE III.3.I continued
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G) Supersymmetry Transformation Laws

8 a2z v yabe * 2 éib e v°

§ Ve=icgy¥

3
= -ie 2

ngp %e LeYaEV .
They are
i) Symmetry (= closed algebra) of the inner equations F)
ii) Invariance (on-shell closed, off~shell open algebra) of the

{I
: . . . .. zab _ -ag)
action ) in first order formalism if Gc =0
N (1)
order formalism if 52 z 5§b.

c ? in second-




