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SUPER MAURER-CARTAN EQUATIONS AND THE GEOMETRY OF SUPERSPACE

II.3.1 - Maurer-Cartan eguations of supergroups ¢n Supergroup

manifolds

In Chapter 1.3 we considered the dual formu:lation of Lie
algebras in terms of Maurer Cartan equations.
The starting point was the construction, on the Lie group-

manifold G, of the left-ipvariant (alternatively right-invariant

1-forms):
-} -1
Gy =B 48 5 Oy =8l (I1.3.1)
where
g =eltyyont) . (11.3.2)
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is any matrix representation of the group elemeat identified by
parameters ty,...,t, {supposing G of dimension n}.

In want of better g can always be taken in the adjoint (regular)
representation. '

éince (1) (o U(R)) are Lie algebra valued we can expand them

along a basis of matrix generators {T,}

_ A . _ A
oy = O(L)TA : Sy * T Ta {11.3.3)

and by exterior differemntiaticn of (I1.3.1) we obtain the Maurer Cartan
equations:

A 1 c =
By * CABCG(L) Ty " O (11.3.4a)
GA 1 Cye? =0 {I1.3.4D)

Rt (R) - 0(R)

where CABC are the structure constants of the Lie algebra spanned

by the matrix generators Ty

‘ _ LRI 1.
[1,,T5] = €45 %o (11.3.5)

7, (R) T, (L)
The tangent vectors Ty and Ty are dual vespectively to the

left and right-invariant 1-forms

ARy A )
(L)(T ) = &g (T1.3.6a)
A (L) . oA W3
(R} ) = g (11.3.6b)
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They are differential operators on the group manifold G and are,
respectively, the generators of the right and left translations
and R(a} defined by equations {I.3.4-5). Both %ﬁR) and %&L)
satisfy the Lie algebra (I11.3.5):

L)

[-fik)'-fém] - CA];C @*éﬁ} (11.3.7a)
ﬁf‘) ,“T’f‘)] - CJ'U;G -?*éL) (11.3.7b)

Furthermore {see Eq. (1.3.23}) they commute among themselves

[giR)'géL)} -6 (I1.3.8)
As we saw in Chapter II.1 the elements of the classical and
exceptional supergroups are represented by graded matrices whose
entries are Grassmann algebra elements rather than real or complex
nunbers.

In addition we saw that one can introduce the notion of a
supermanifold, whose coordinates are Grassmann algebra elements, and
one can straightforwardly extend the calculus cof exterior forms from
manifolds te supermanifolds.

Hence the elements of a supergroup can be regarded as the points
of a2 supergroup manifold and the notiom of left-invariant or right-
invariant 1-forms (II1.3.1) ean be canonically extended to
supergroups. It suffices to replace the matrix g in (I1.3.1) by a
graded matrix g:

" Am] oA " PR |

363

Fxpanding the graded matrix valved l-form &, , along a basis of

R.
matrix generators of the supergroups {see Egs. (I1.2.110-111-312}}:

kg

»

~ ~ ~ ~gy
A =5

o] =g T
b bt b b (11.3.10)

we obtain a natural separation into bosonic and fermionic 1-forms.

hccording to Eq. (I1.2.309) we have

Y 2 P A2 (11.3.112)
n - 3Ly A 0L +3e
Oby ~ o T 0~ O
A - . ~ 11.3.11b)
% UBL = O'BL ~ 3% (
® ® ® @
N - (I1.3.1l¢)
L 1 L L
bH b b b
Therefore from the Maurer Cartan equation
o +6. 0. =0
& & @ (11.3.12)

which follows from (II1.3.9) upon exterioer differentiation, Dby

inserting Eq. (II.3.10) we get
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P T L feor] +

W bt G @

+28 &[]+ A e =0
1, -2’ B L I, o B
G ® @ (11.3.13)

which can be rewritten as:

daA +_I_A ~B aC

S G a0 =0 (31.3.14)
Rl -

In (II.E;EA) CABC are the graded structure constants defined by

Bq. (I1.2.13).
Once more as in the case of ordinary Lie algebras eq. (I1.3.14)
can be taken as the definition of the superalgebra. Indeed if we are

able to write a super Maurer-Cartan equation (II.3.14) which is

integrable:

P S ~B € _aA aB aF a6 AC .,
ddd” = - C{‘BCdU A0 = Cplpd 87 AT (I1.3.15)

then the constants CABC satisfy the graded Jacobi identities
(II.2.14) and define a superalgebra.

II1.3.7 - Maurer-Cartan equations of Osp(4/N) and Osp{4/N)}

As an exercise let us write the Maurer Cartan equations

associated to the Osp(4/N) superalgebra (II.2.140) whose Imonii-Wigner

DO

contraction is the N-extended super Poincaré algebra
(11.2.19,43,44).

The procedure is very easy. Consider the graded matrix
(11.2.135) which represents an element of the Osp(4/N} algebra and
let the parameters (e3P, 3, B, ©8) be finite rather than

infinitesimal.
6,8 %) ~ (10,2, 1"5, ) (11.3.16)
2e®®,6%, 6% By o A(m®®, % 1B, 6% (11.3.17)

4 generic element of the Osp{4/N) supergroup can be written as

the exponential of A:

0(n,x%,8) = exp[A(n,x,6)] (11.3.18)

and the parameters T, X, @ can be regarded as the coordinates of the

supergroup manifold. The left-invariant 1-form
8, = 07 (n,x,6)d0(n, %,0) (11.3.19)

is an element of the Osp(4/N) superalgebra and as such it can be
written in the form (IT.2.135)

ab a, B
Ty Y Yab+~vYa v
GL“
o L 88
2 (11.3.20)
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where wb=-pbd, va8  AAB=pBA 46 posonic one-forms while WA is a

Majorana spinor fermionic l-form

W = et

(11.3.21)

As a result of its being left-invariant the graded-matriz valued

i-form &(y) satisfies Eq. (II.3.15),

Performing the multiplication G(py A (1) we obtain:

i

where the 2-forms RAD, R2, RAB, A are defined below

ab _ ., ab a¢ *b b,1lx ab
B = - o™ w4 Vv Sy Y

F &dva-mab,\vb—

o [

T a

I i a,l
Ba = Wy Al YUY T A a g
R L AR T

(11.3.22)

(I1.3.23a)

(I1.3.23b)

(I1.3.23¢)

(I1.3.23d)
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To obtain this result the only ingredient which we have used, besides
the muitiplication of gamma matrices, is the following Fiers identity

b

oo 1 0B 1 abs
(ﬂ’A A !ZJB) = Zﬁ ‘PB ~ ‘l’A + 4 (Ys) IijB A 'Ysng

+ 4 000y vy + 1 %, v,
—% (v, )5, v, (11.3.24)

plus the observation that ﬁB Y5 ih, 53 A iA’ @B A Y5 Y4 Vg are anti-
symmetric in {(A+*B) while @k A Yy g and §4 A Yz ¥p ave symmetric
in the same indices.

Eq. (I1.3.24) will be derived in Chapter {II.8): for the moment
the reader should take it as given.

Comparing Egs. (I1.3.20) and (IX.3.22) with Bqs. (II.2.135) and
(I1.2.138) we see that «?®, V8, A, yA are, respectively, the
I-form coefficients of the Lorentz generators M,y the translations
P, the S0(N) generators Typ and of the supersymmetry charges Qp.

In the previous chapter we prepared for the Inonli Wigner
contraction by defining a new basis of generators (Myp)"*¥, (Typ)P%¥,
(P )78W,  (Qu,)"®" related to the old omes by the rescalings
(II.2.141).

Through the identification

old new(T

ald _
) A

A
(r = (G(L))

A
(U(L)> A

we see that (II.2.141) are equivalent to the following rescalings of :

the left-invariant l-forms:

(wab)old - (wab)new = (Rab)old - (Réb)new (II.3.26a)“'

yhew (11.3.25}
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S0
AB,old _ ,.,,AB new AB.old _ . AB new 11.3.26
@B oM < a5 @M - ™) { b) w5 e - oL (11.3.27f)
. AB . _AC CB

N old o anen 1132600 Bz g8 4 ey (11.3.27g)

i ST e Sl ¢ o S ¢ II.3.26¢
Dy, = i, - % o . A (I1.3.27h)

Wl - /T GHT = M - /BN (1320
D, E D, + B Uy (I£.3.274)

Tn terms of the new quantities, depending on the rescaling

parameter &, the Maurer Cartan equations of Osp(4/N) read:

a_. .2 17 &,
R =DV *”§$AAY¢A~G

20 = g e L v+ B, YabwA =0

- - a _
Py = DwA - ieYawA AV =0

BBzt P

where we have used the definitions

(11.3.27a}

(11.3.27b)

{1r.3.27¢)

(I1.3.27d)

{I1I.3.27e)

The interpretatioa of Egs. {II.3.28) is quite evident. R%D is the
Riemann curvature Z-form associated to the spin connection wdb; py@
is the Lorentz covariant derivative of the vierbein V&, while ﬂ@A is
the Lorentz covariant derivative of the spimer form ¥,. B s the
field strength 2-form of the S0(N) gauge field Ayp while Dy, is the
derivative of §, covariantized not only with respect to S0(1,3) but
also with respect ta SO(N).

fn the limit & + 0 in which the Osp(4/N) algebra contracts to
the N-extended super Poincaré algebra, the Maurer Cartan equations

{I1.3.27) become

LI 1 3y = 11.3.28a
R DV - Py a YU =90 ( )
22 = 32 - g ‘ (I1.3.28b)
oy =D, =0 (11.3.28¢c)

st P eo (11.3.284)
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11.3.3 - Osp(4/N) Maurer-Cartan equations as the structure equations

of rigid superspace

The Maurer-Cartan equations (IX.3.27) or (II.3.2B) acquire a
geometrical meaning, which is the starting point for the construction
of supersymmetric field-theories {(including supergravity), if we
restrict the space on which they hold from the supergroup manifold

0sp(4/N} to the supercoset manifold

4/48 _  0sp(4/N)
§0(1,3) & S0(N)

(Ad8) (I1.3.29)

Equation (II.3.29) defines a supermanifold which we call the N-

extended anti de Sitter superspace, Its coordinates are the 4 bosonic

parameters {x%} associated to the translations generators P, and the
4N fermionic coordinates {@A} associated to the supersymmetry
charges {Qu}. The ring of functions on (AdS}AMN is named the ring

of anti de Sitter N-extended superfields

8= 002, 0M
Similarly

(M)dféN _ Ospl4/m)
50(3,3) ® S0(W)

defines the supermanifeld which we name N-extended Minkowski
superspace. Its coordinates are {x®, @A} as in the previous case: the

difference however is the following. The bosonic submanifold of

N

on4/4N 55 fFlat Minkowski space vhile the bosonic submanifold of
(AdS)A/AN is anti de Sitter space which has constant negative
curvature, The ring of functidns on (M)4/4N is by definition the ring

of Minkowski N-extended superfields.

We construct the explicit form of the left-invariant 1-forms
V3, g, P w3t, aABBY extending to the supercosets the techniques
described in Chapter I.6 for the ordinary cosets. First we note
that a convenient parametrization of the supercoset (11.3.29) is the

following one:

G{Xa,GA} = GF(Q)GB[X) (11.3.30)

vhere OP(O} is a parametrization of the cosel

0sp{4/1)/5p{4) ® 50{W) (11.3.31)

whose coordinates are purely fermionic and OB(x) is a

parametrization of the coset

Sp{4) & 50{N)

80{3,1) ® So() (11.3.32)

vhose toordinates are purely bosonic and which coincides with anti
de S8itter space. That (II.3.30) is a parametrization of the coset
(II.3.20) follows from a simple argument. Let g be an arbitrary
0sp(4/N) element. Acting with g on 0(x,8) we get

.3.33
30x,6) = E0,(0)050 = 0p(@")g(O)05 (0 (11.3.33)

where g(6) e Sp(4) ® SO(N) is the compensator of the transformation
g on the coset element OF(S).

e

.
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On the other hand since Gg(x] is a parametrization of the coset il e i @ $inGE /253
(I1.3.32) we have: - /.———2—-—2 /—2—
14 4e”|x] t (17.3.39)
g(Q)OBCX) i UB(x1)h(e’X} (I1.3.34) which defines the coordinate x? ve get
where h(8,x) € SO(L,3) @ SO(N) is the compensator of the transforma- i+le ixaya
tion g(@) on the coset element GB(x]. 1+ 4el]x]2
Therefore we get OB(xj =
0 1
g0(x,0) = 0(x',8")n(x,90
20(x,9) = 0(x*,0")1(x,8) (11.3.35)
(I1.3.40)

which is the correct behaviour for a parametrization of the coset
(I1.3.29).

We construct OB(x) and OF(@) separately. Recalling Eqgs.
(11.2.139), {(II.3.20) and {II1.3.26} we set

1.8, 4=
-2- t Yaze

OB[X) = exp
|

{11.3.36)

where the relation between the parameters t2 and the coordinates »?

is still to be established. Using the simple relation

a 2 _.a&
)" = e, Ty (11.3.37)

we obtain

itay
exp (1567 ) = c0s(/e28) + —2 sin(a/tH)
/tZ
(I1.3.38)

By means of the position

The iaverse matrix Ogl[x] is easily seen to be identical with

OB(—X} :

1428141 ana
Vl+4§”xﬁ
Wl s
GB x) = OB[ x) i
G 1
{11.3.&1)
Next we construct GF(G):
o ] EB
OF(@) = exp 1
A
0
: (11.3.42)
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The exponentiation of this off-diagonal graded matrix can be formally

performed in the same way as in Chapter I.6 we exponentiated the off-
diagonal bosenic matrix:

i = (31.3.43)
Comparing with Eqs, {I.6.43) we can write
M L
(1 + gghe e
GF(S) =
& * + 3hh)"
(I1.3.44)
where the square root of the matrices
6%8 4 0B = %8 L al e (I1.3.45a)
S8 4 B = 4B L ghgB L (g 4 4B (11.3.45b)
is defined by the power series expansion
Yitx=14 i-x -1 x2 + —L-x3 - x4 + ... (I1.3.46)
pA 8 16 128

What changes with respect to the case of ordinary cosets is that
being the 9 -8 anticommuting the series stops at 2 certain point,

all the subsequent terms being identically zero. In particular since

315

there are 4N-different OA.s and since both M and N are quadratic in
8.5 the power series expansicn {II.3.46) stops at the 2N-power.
In the N=8 case which is the highest of physical relevance we

srrive at the 16-th power. In general we can write

M, M, M, M
e ....l 2_.
(1+e®ﬁ-1;+—2—e“@“ %eleee +...
M, M
Clledeser. oy MM o
204264810 .., (48) (I1.3.47a)
A B, A A A A,
s AP 1 1,
a+8Hiasl 4Bl -0
A A
CIeledeseg... D stz g
24062810 ... (41) (1.3.47b)

Recalling the rescaling prescription (I1.3.26), it is convenient ta

rewrite Eq. (II.3.44) as follows:

B
. YZE @
{1+ ZeOMGM)
O £5,0.)"
¢2€@A (’SAB+26AB
{11.3.48)
and we get

S e
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s 377M,M”,,,N= E

vt . . . 1-21éybxb 142i37%x
(1+2860)° V289 v =-——__-Tr1¥[ d( ")\
: - 48 Jl+ael[x|? V1+4a2]|2
OI;, (€) = 0,(-8) =
.. b
_ = A AB | . -zABk 1-2i8y _ _
2ed 6+ 238 | -—i—TrE Jatshille [(Hzzse)M@M);ﬁd(Hzé(—}MSM)si
! 48 1+48%[x|2
(11.3.49)
We are now in a position to caleculate the left-invariant i-forms: - QE@Md BM ](H- Zi'éycxc)} (II.3.52h)
o, = 07 ,0)d0(x,0) = 03 ()07 (9140, ()0, ) + 5
- B R 1-218+° 14218%°
ah _ 1 ab eY % ey X
we=g o \ T
+0gl(x)d03(x) (1I.3.50) | l+4e |x§ 1+4ef|x}
Comparing Eq. (I1.3.20) with the definition of V&, YA, b, AAB 1 ab 1"2i'e'*{bxb . )
P R A | +—Trl } (+2868) a(1+2808)"
5 2 1+4e2§x§2 M
- 211- mabyab + iE*{aVa Y2e wB _
- 2@%&6&1 (£1.3.52¢)
%) T .
/7% 5 a8
i - ) . -
‘ p8 1 [(5“%3&9%%(5“% 255%P) - 22844 B] (I1.3.52d)
(11.3.51)
As ve see the spinor 1-form tpA containg only the differential d.@A of
we obtain the fermionic coordinate 94, while V® contains both dx?® and d9-terms.
- ‘ The dx3-part of V? is the vierbein of an anti de Sitter space
whose Riemann tensor is
1- ZEixaya .y ;
) = (——————————-—-‘_ ) (1+ ZEOMGM) d@A (II.3.52a) i .
V1+4382|x|2 Rf_ﬂ_nmn - 4E 5;‘; © {11.3.53)

Indeed on the submanifold @ = o{=>d0= 0} we have:



378

Q 0
Ve Va0 W0 w:b(x)dxc (11.3.54)

and the Maurer Cartan equaticns {11.3.27) reduce to:

DV = 0 {I1.3.55a)

R - .42 e (11.3.558)

which are the structure equations of an anti de Sitter space with the
Biemann temsor (I1.3.53), This justifies our claim that the bosonic
submanifold of the supercoset manifold (I1.3.29) is anti de Sitter
space. With a similar argument we can show that the bosonic

submanifeld of (I1.3.31) is Minkowski space, characterized by a
vanishing Riemann tensor:

R =0 (I1.3.56)
mn

It suffices to perform the limit & + 0 on the Egs. (I1.3.52} and
on the Maurer-Cartan Bgs. (II.3.27).

Actually in the contraction limit & + 0 the left-invariant
I-forms ¢f, va, W, AAB take the very simple form

P =ag (I1.3.57a)

v = 2a® + % h3aeh (I1.3.57b)

379
ab (11.3.57¢)
w =0
i
- .3.57d)
Aot - Fhadt (11.3

which allows an immediate verification of the Maurer Cartan equations
(11.3.28}.

The (4 ® 4N) L-forms (V¥, ¥} are the components of an
anholonomic cotangent frame on the N-extended superspace (either
Minkowski or anti de Sitter).

Given any function on uA/ 4N (AdS&/AE), namely any superfield ¢{x,8)

its exterior differential can be written as:

- I1.3.58)
dp(x,0) = 0 V* + AA$A ¢

where the superfields $,(x,0) are named the inner components of d¢
while the superfields A (x,0)} are christened the guter components
of the same.

Calling D, and Dy, the tangent vectors dual to (V®, Wyq):

Vi) s 6 5 V) =0 (I1.3.59a)
Al Ly (1I1.3.59b)
Bog=o 5 VG - 68
we can write
(11.3.60a)

¢a(x,O) = Da{i')(x:@)

N T T

e

-

e

S
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Ry (,0) = By 6(x,8) (II.3.60b)

In the case (TI.3.57) of Minkowski superspace the explicit form of Dy

and ﬁAﬂ is easily obtained, Recalling equations (II.2.104)} we can

write
p,=to, =L =e e -te (0
a" 7% a P (I1.3.61a)
- N - 3 i .8
D, =—(—+=@y)—= A, =—-0+_-0Y%E (II.3.61b
" a0t Al e s " am t Ty Al )

where we have used

& Ap,

o =AC
( T 56 ; 40 (=7 ”BS} = 65 8 (11.3.62)
The differential operators D, and Dy, are named the invariant
derivatives of superspace. They should not be confused with the

generators {P, 5Au} of the supersymmetry algebra (II.2.142}. In the

next section we discuss why.

II.3.4 - Killing vectors on superspace, that is the generators of the

supersymmetry algebra of superisometries

The reason why D, and 5Au should not be taken for the trans-

lation and supersymmetry generators of the supersymmetry algebra

281

(11.2.142) is best understood by recalling that superspace 1s a coset

rather than a group manifold. On a group-manifold we have two sets of

tangent vectors, both satisfying the Lie algebra: the generators of

right-translations (dual to the left-invariant i-forms) and the gen-

erators of the left-translations {dwal to the right-invariant
1-forms).

On a coset manifold, instead, the symmetry between left and
right is broken by the very fact that G/H can be chosen to be either
a right or a left coset space. In this book we have adopted the
convention that we consider every coset manifold to be a right-coset
space and this is the reason why we restrict our attention to left-
invariant }-forms. Under these conditions what happens is that the
generators of left-translations (which are not dual to the left-in-
variant i-forms!) become the ¥illing vectors of the coset manifold
and satisfy the complete Lie algebra. On the other hand the genera-
tor of the right-translations are now restricted only to the direc-
tions of the vielbein (in our case the V& and ¢a directions} and in
general are not required to satisfy any algebra. The D, and
ﬁ&u vectors are the remnants on the coset of the full set of right-
translations existing only on the supergroup manifold. The Killing
vectors (Pa, aAa! Moo TAB}' instead, have still to be constructed.

Te obtain their form it suffices to apply the techniques of
Chapter 1.6 and calculate the action of a Lie algebra element on the
matrix 0{x,0) parametrizing the coset.

Recalling Eq. (.6.72) we can set

T,001,0) = K,005,0) - 00,0 Ti(x,0) (11.3.63)

where T, is any of the generators (P, QAa s Mane Tagds ﬁ(A is the
associated Killing vector, T; is either M, or Tpp and WA(x, ) is
the S0(1,3) o SO(N) compensator. Utilizing the fundamental represen-
tation {II.2.135) by explicit evaluation of (IT.3.63) one can work
out the form of the differential operators (I, aAa’ Moy Tap)e In
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the (8#0) case this is quite a bit of work which we do not feel the
need to do explicitly. In the contracted case (§=0) we can attempt
a direct evaluation of the Killing vectors (ﬁa, EA, ﬁab’ T ) = {QA}
relying on their alternative definition as iscmetries of the vielbein
defined by Eqs. (II,3.57a~h). Hence we write:

L, V= 2P

Ky , (11.3.64a)
B 1.ab B

Ro ¥ = =~ WY W

izA 4 A e (I1.3.64b)

where ¢ denotes the Lie derivative wAab is a suitable 30(1,3) com-
pensator and furthermore we impose that the {QA} satisfy the appro-
priate super algebra (II.2.142) (with 8=0), (We note that in the
limit & > D the group SO(N) degenerates inte a bunch of N B{(1).s

vhose action is zero on everything),

Te solve this problem we make the ansatz

- (I1.3.65a)
a a
2 3 - a )
Qe ® B 5=+ Y0, Y, & {I1.3.65b
Ay s asTgata

- 5
Mab = S(Xaab - xbaa) + neAYab @ (11.3.65¢)

383
1.=0 (11.3,65d)

whexe o, B, v, 8§, n are rumerical coefficients to be determined.

Considering first the commutation relatiens (I1.2.142) we obtain

(11.3.66a)

T f s
pon
[}
Bl

2 By = i (11.3.66b)

Then we impose the imvariance conditions of the vielbeins,bthat is
al ab _
a

A 0

Eqs. (I1.3.64). We begin with P, and Qmiand we assume W

The definition of the Lie derivative (L, = _tJd + d_t_!) extends

trivially to supermanifolds and hence we find:

b V=, |av +dG (V) = iaet2aet
BB b b 2

Ay o (I1.3.67)
+ d(udb) = 0
Similarly

A Ao Act (11.3.682)
A +d<J¢:>=o
% "ﬁ Py

A o Oy L acafs®y = (11.3.68b)
0 = 1™+ a e = @ =0
Qxﬁw Ugg %E; B8

N N T S

T

N e e e

P
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On the other hand:

9, vis :—]dv"1 + d(:‘ﬁj v =
Qs Oggp U

= igaBh® |, |aet+ (v e --3- Ba8),
5gBB
- (%B + 27) (déﬁyﬂ)s (I1.3.69)

Hence in order for 633 to be a Killing vector we must have

y = - % 8 (11.3.70)

In the above equations note that we used the commutation rule:

8 (40 ~ w) = 3/ae‘d® PRI - 3740 ® {11.3.71)

which is correct since both the l-form ¢® and the vector 3/3@ are
of the fermionic type. In general for graded differential forms and

vectors we have:

(a) (b) (a) m(b) + (- )ac+p (a) (b)
(c) Uy~ P T e M)t e Upy ped “(q)
(11.3.72)
vhere (¢), (a), {b) are the gradings and (p) and (q) the degrees of
the differential forms.

Caleulating the Lie derivative of V2 and $A along M, we can

determine the compensating function ng + We find

ey

E.M J%deAycde)+d(Jv)

ab c i =A abc

= l
=58 @Y YO)

)d@ +d(2x[ b] (11.3.73)

in the term under exterior derivative the only surviving curreat is

abce

0 A

Y

Indeed the matrix v9PC = const e2b0d YeYq is antisymmetric and
can sit in between two anticommuting 0.5 while % is symmetric and
gives a vanishing contribution in between &.s (see Chapter II.8).

Taking this into account we get:

g Ve %é \abue s o + 2y By ] 1@“"%@

Mab
- £ 8y, 00" + 2ax 5] = V[0h) =
cd _ cd
= WS (11.3.74)

Summarizing: Minkowski or anti de Sitter N-extended superspaces are
supermanifolds whose supervielbein (V&, ¥*) admits a group of iso-
metries lsomorphic to the Osp(4/N) or osp(4/N) supergroup. The
isometries are generated by the Kiliing vectors discussed above. The
Maurer Cartan equations (II,3.28) or (II.3.27) are to be reinter-
preted as the structure equations of the supermanifold, (p®, R®)
being the supertorsion and (R2P, RAB) the supercurvatures.

The vectors D, 5Aa dual to the supervielbein are the left-
invarlant generators of the right translations on the supermanifold.
(Their covariant Lie derivative along all the Xilling vectors is
zerc). Any constraint impesed on a superfield #{x,0) by means of the
differential operator D, and 5Aa has an invariant character with ve-

gpect to the superisometries: typically a supersymmetric field equa-
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tion 1is obtained by applying to ¢(x,9) some operator 0 constructed
with D, and Dy,

In Table II.3.I we summarize the explicit forme of all the relevant
forms and operators in Minkowski superspace. The reader will in par-
ticular note that we have

= " . & a
{DM,DBB} = i(Cy >aB‘SABDa @ - 1ty )meSABPEi
= - a

{01 Qgp} = SRR AN

{0,sB03 = 0 (11.3.75)
The fact that the anticomsutator of the ﬁAa-s is almost idemtical to
that of the aAa's is often & source of confusion with respect to
which operator should be named the supersymmetry generator. We hope
to have clarified the matter. The §Aa's which used to generate the
right-supersymmetries on the group-manifold are not Killing wvectors
of superspacel Rather they genevate fermionic translations which are
invariant under supersymmetry!

Finally let us introduce some names. The 1-form V@ is the

vierbein while the 1-form wA is christened the gravitino l-form. The
reason is simple: with a procedure similar to the one discussed in
Chapter 1.3, on superspace We can introduce new sets of vielbeins
(Va', wA') and connections (mab', MB'Y Shich do not satisfy the
Maurer-Cartan equations (II1.3.27) (the soft forms). They describe
dynamical = fields for which we are going to write action principles
(supergravity theories). While V* is associated to a spin Z-parti-
cle, (the graviton) VA turns out to be associated to N spin 3/2 par-
ticles (the gravitines).

When the curvatures Rab, 2,04, 2B are non zero, the closure

of the original Maurer equations is reflected into the Bianchi iden-
tities:
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oe® + &% . v, - 1 . y"‘qu 0 (I1.3.76a)
o - gatlt 0l s 225, ~ 1%, = 0 (T1.3.76b})

3 5% a 1 .8b - {I1.3.76¢)
DpA - eRAB ~ wg - 18Y3WA ~ R - i B oA YabwA 0
¥ = (11.3.768)
DRy + 4§, o Py =0
which in the Poincaré limit e = 0 become
o+ & Ly -~ 1 v?p, = 0 (11.3.77a)
b 3
o2 = 0 (I1.3.77b)
1 geb . (I1.3.77¢)
LR K
(11.3.774)

dRAB + 4 w{A " pB] =0

As we shall see the Bianchi identities play a crucial role in the

construction of the supergravity models.
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TABLE II.3.1

Minkowski N-exteanded superspace

A) Maurer Cartan equations of Osp(4/N}

-8 A
R""=Dv"‘--§w‘lnya:p =0
Rab - Rab -0
by = DY, = O

3

B ean®® et P

B) Explicit form of the vielbein and connections

-3

Feoad e iat . Padt 5 W eao

R

WP = 0 ; g déAG)B-E)AdOB

€) Invariant derivatives in superspace

) = 9 i =8 _3
D ==~ ; D, = + =AY |
& 552 Ao a@Au 4 o axa

b =

D} Explicit form of the Killing vectors

3

B o me e T ={)

a 2 5® AB

P 3 i ,zAz ]

9, =—=-7 @, 5
A0, BGAQ 4 o 5%°

1 Lg. 2
ab E'(xaab - %) Ty ©yYap géA)

L

|
I
|

E) Explicit form of the W-compensators

ed _ ped ed s cd cd
Uy =W =W =0 5 W=y
¥) Invariance equations
b, Voo wr-o= [p]=(q.,0]-
P, P, 2" A6’ b
@) ()
T T -
- A = lrgny) = [0y, ] =[5
= {Qggiby,t = 0
g v¢ eyt ; .
" V%) A ¥a =7 Yant
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