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PREFACE

A metion of equational theery ia introduced; more general than
previous notions, equal in descriptive power to the essentially
algebralc theories of Freyd [S1 , and hence to the logic of
laft exact categories, wve call the theories genaralised algebraic.
The extra gensrality of these equational theories is achisved by
the introduction of mort structures more general than those usually
coneidered in that sorts may denote sets as is usual or elee they may
denote families of cets, families of families of =ets and the like,
This acceptance of varisble types at the level of oyotax (the ideam
and the form of syntax is taken directly from Martin-Lof type theory)
makes the theories particularly suited to the deseription of the
structures that cccur in category theory. The basic axample being the
theory of categories, in which Ob appears as a sort to ba interpreted
@8 & set vhere as Hom appears as a sort to be interpreted ms a family
of sets indexed by Ob X Ob. Hoa(x,y) appears in the ayntax as a

variable type.

The definition of the mest general or algebraic semantics for
geoeralised algebraic theories necesaitates the introdustion of the

notion of a contextual category. So called because we shall ses that

the objects of a contextual category should be thought of as  contexts.

The theory of contextual categories ism sesn am an algebraic des-

eription of the structure imposed om certain classss of tern and type

expressions by the aperation of substitution of correctly typed terma for

variables. HNow this is something one might also may of the theory of
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:at““ug. However the theory of contexbtual categories captures the
atructure of substitutiecn at work in & mors general gituaticn, it is ¢
the strugture of substitution &= found im the genaralised algesbraic
tneories put mot in algebrais itheories, as found priginally im

Martjn-lol T¥Pe theory but mat in sheories of the typed A= galoculus.

1t is proved that the Categary of contextual categories is
equivalent to the category of generalisad algebraic theories and
equivalence classes of interpretations. Thus we B&y that we have the most
general possible semantics. This result in a gensralisaticn of the
result implicit in Lawvera L] that the ald mtnnﬁi: notion of algebraic
theory (i.e. one sorted equational) and Lawvere's algebraic notion are

both ome and the same (i.e. squivalent categories}.

This thesis dsveloped fro= the desira to develop the model thtnrare
of Martin-Lof type theory. "he model theory rests om the notione of
generalised algebraic theory and contextual categary. It is only iz
these terms that we can dafine the notion model of Martin-Lof type
theory. e also give the definition of medel for & strengthened
varsion of Martin-Lof type theary, this definition can be reworked
algebraically into & hyperdoctrinal farmat. we briefly describe a
rew model of the typs theory in which types are interpreted as limit

spaces.

The model theory of the strengthened version of Martin-Lof type
theary is a gepurﬂiunti.un of the well known correaspondence of the

typed A -calculus with cartesian closed categories.
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CHAFTEE 1

GENERALISED ALGEBSAIC THEORIES

The purpass of this chapter is to describe and to Tormamlly
define the notion of generalised algebraic theory. It is hoped
that it will be clear froa the description et (i) the notion is
a natural one formalising mctual mathematical language and that
(i1} the notion is a eimple generalisation of the potion of a many
sarted algebraic theory. Though (ii) temds to be cbscured by the

form of the chosen symtax no doubt the choice is correct.

The formal definitisn ie given in $91.6. Most of the material
that follows 351.6 is in preparation for Chapter Two, 51.8 is
partially in digression and rartially to sxplain some of the

informsl syntax that is used in the sarly sections of this Chapter.



L

1.2
1.1 introduction €

e notion af generalised algebraic theory is a generalisation
of the potion of many sortad algebraic theory in just the fallowing
fannars Whereas the sorts of a many gorted slgebralc theory are
constant tYPes in the sense that they are to be interpreted as sets the sort
of & generalised algebraic theory need npot all be constant bypes same
of them Say be nominated to be yariabla types in which case thay are Lo
pe interpreted as families of setas. The type or typeas OO which the

yariation of a variable typs depends must always be specified.

Thus a generalised algebraic theory conaists of (1) a set
of morts, each with =2 aspecified role either as & constant type or
glse as a variable type varying in some WaYs {i1) o met of operateor
syabols, each with its argument types and its value Lype apecified, t’i
(the walue type may vary as the argument varies), {iii) e met of axioms.
Each axiom must ba an identity between si=ilar well formed expressions.
gither between terms of the same possible varying type oF alee
betwsan t¥pe expressions.

The theory of categories is a good example. The sort symbols we

shall call Ob and Hom, the cperator symbols id and o.

Ob i a constant type. Hom is & eyzbol for a variable Type
depending twice on Ob, That 18 %o 8&y that if t, and t, are both
terms of type Ob then Ho= Etl.tE} is a type. In particular if x and ¥

are hoth varisbles of type Ob then Hom {x,y) is & tYPe.
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The operator symbel id has ope argument type,namely Ob,
The value type of id varies as the argument varies,for if x is

a variable of type Ob then id({x) im of type Hom(x,x )

Not all the argusent types of o ars constant. If %,y and = are
variables of type Ob, if fisa variable of type Hom(x,y) and if
g is a variable of type Hom(y,z), then o(f,g) is a term of type

Hom{x,=).

Une way of eetting up the syntax to deal with variables would
be to assume that for every type A we had a supply "I-"'ﬁ
of variables of type A . However thims method would lead to
complications. Instead we assume just one set V of variables and
then repeatedly assign types to variables as required. In a
particular context the assertion or assumption that the wariable
x is of type & is written shorthand ms x&A . Mors generally,
the assertion that an sxpressicn t is a term of type A will be
written am t€ A. If the term t has variables X 1eseX, ocCUring
within it them it will caly make sense to asserl t ¢ A under an
assumption that L vereX are variables of particular types. The
cosplete assertion will be of the fors: i.!':r_‘l is a variable of
type ﬂ".l.""' and if x is & variable of type L then t is
a term of type [\, Thias cozplete mssertion we write sherthand

as l-ieﬂrxzeﬂe.---xne 4,

tef
or else &5 .'L_lﬁ_ﬂl,:ae ﬂe,...:ne.ﬂ.n reels.
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Similarly :r_Leﬁ,l,...J;nE ﬁ'n is used to aszert that if x, ia &

A is a type (

a variable of type bl"” if x is a variable of type fut L

then IIJ is a Eypes

Theae shorthands of the forms x-lﬁ ﬂ'l""xnﬁﬂ"u

el

and X € ﬁl,...inr:ﬂ.u we call rules. They serve to express

ﬂ. iz a type
which expressions of a given language are well formed as terms or as
types. no work with theas rules &8 units rather thaa with the
basic expressions. For gxample, in the formal definition instemd of
definirg tke notions of well formed term and well formed t7pe
we define inductively a set of rules, to be called the derivabla rules,
which express the well formed types, the wall formed terms thelir t

tﬁ'ﬂﬂl

The axiocms of a theory sre alsn written as rules. Instesd of the

more unu.ull'il’;le i I,H:Ee A 2,*.‘1'1115& Lty = t,

we write X & &1":25 Ja) nL ..xneﬂ ’

tl'ta

Thare again, we might just write tl = "E‘ whenaver II'E &1"“"::": ﬂ“'

For example the theory of categories has as axioms the following:

alid(x),f} = £, whenever x,¥y &€0b and f g Hom{x,¥) s
olf,id(y}) = £, whenevar x,y&0b and refomlx,yl.
ololf,g)h) = ol f,0{g,nl}, whenever w,x,7,:€00, ¢ € Hom(w,x), (

] anmE:,;r]- and b 'EH:-'I:I:I{J.:.}-
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A theory is presented by specifiying the language and by listing
the axioms. The language in specified by lieting the symbols
and by specifying the role that sach mymbol Plays within the language
either a8 a sort symbol of some kind or as a particularly typed
gperator symbol. The role that.a symbal plays can alwayes be specified
by way of the assertion of a singls ruls, In the case of a =ort

symbol A there is & rule of the form X, € !_‘11,....:“; A a that will

-ﬁl:.-'l'j-il-i-i!n:l im m t:l']!l
correctly specify over what types A is dependent. In the case of an

aperater symbol f a rule af the form xleﬂl,...:ngﬂ » suffices

fill,‘.qlﬂ.] E_ﬁ
te specify of what types its argusents are to be and of what type its values
will be. In either case we call the symbal the introductory rulas

acsociated with the aymbol.

For example the sort Hom of the theory of categoriee has
introductory rule XEOb,y& Ob: Homix,y) is a type. The symbol id has
introductery rule xeOb : id(x) & Ham(x =},

Finally, then, every theory is presented as n set of gymbals aach
With associated introductory rule and & set of axions, And of COUTES
everything must be well formed, but we leave all that until we give the

formal definitien im §1.6.

The theory of categories powloeks like this:

Symbal, Introductory Fule, .
Ob Ob is & typs,

Hom X,y € Ob : Hom(x,y) 1& a type. |
“ Xy¥az & Oh, fEHnﬂi{:.:l‘.gEHnn[y,:} P olf,g)e Hom(x,=). I

fd x&0b : 1d(x) € Yom(x, x), l
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jxioas. {

alid(x),f} = [, wheneVer x.y e0b and [ & Hom{xyyJ«
olt,idly)) = £, vhenever x,yelb and [ E Homix,¥)«
alolf,g)sh) = olf,0lg,h}), whever wyX,7y& & Ob,

¢ & Hom(w,x),g & Hom(x,y) and b & Hom(v,z).

Vhenever We speak of a model of a thecry LWL , without
qualification, then we ahal]l mean a model in the usual sense, that
ju whers type sysbols are interpretsd as sets, symbols for families of
types are interpreted ne families of sets, operator symbols are
interpreted at sperators and g0 om. Later we shall be interpreting

theories in algebraic structures, in which case type symbols will be inter-

preted as objects within & structure rather thao as BSOS
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la2 Examples of Theories

The first example is a theory which can be called the theory of

families of elements of fazilies of mets:

Exym=bal Intrndur:tug Hule

A Ails a type
B For x €A & B(x) is a type
b For xaA : b(x)e B(x)

Axiome - Nome

A model of this theory will consiast of a aet, a fanily indexed by
this set and a distinguished element of each set in this Tamily; which
18 to say that a model will consist of a sat indexed family of
elements of a fasily of sets, We are not sure of the notation that
we should be using but if we dengte the interpretation of a Bymbol in
s model TN by that symbol superacripted by 11 them a model M consists

m

of i. a set 4 | id, an .i.m = indexed family of elements b " of the

family of set= 8™,

;IITI"L

e

B™(a)

Fig. 1. - far every element s of the set .I.WI we have i. a met E'm{ﬂ

and ii. an element meuJ af the set Hmfl].
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1f both M and M' are models af this theary then a {
homomorphism I : M— TN consists of & function
f, ¢ A 3a™' gad an ™ - indexed family of functions fp
such that for every ag ik rH{a.!l : g7 La}-—*ﬂml “.u.';“”

and such that for every ueﬂ.m.. fﬂl.n:libm (a)) = hml lfh'lllll.‘-'-

Alternatively we can say that a horomarphism consimts of &
furction :I.’Jl Yk ——Flm‘ and an operator !‘B such that for every
aeA™, for every veB' (a), r,ﬂin,'b]'EBmllf.IAh.}] and satisfying
fElu.bth = hmlifﬁ{-}}, whenever A& A™. How this meana that there
is a gensralised algsbraic theory whose models are just momonorphisma
between ths models of the given theory (in fact this is guite generally
the came). This theory of homemorphisms can be presented as follows:
The theory of families of slements of families of sata in the hngu:gu(

<A,B,b> + the same theory in the langusge CA',B',B'D> +

Symbol. Introductory Rule

£, For xEA !‘Llfz:il":.l'.
£y For xeA, for yeBix) : !E{:,j}ﬂ' :E'IL:I!'L{:I:]:I.

Axiom.

zEI:::.hh:H = h'Etﬁ{:H. whenaver x €A.

An example eimilar to the first example we call the theory of

fapilies of families of elgments of families of families of sets:

Symbol. Introductory Ruls

A A im a type (
B For x€A ¢ Bi{x) is a type
C For x €A, for yeBix} 3 Ci{x,y) is a type

@ For x ¢A, for yaBix) i elm, gy e r,
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ixioma = Hﬂ.ﬁﬂ‘j

Suppose that TN is a medel of this theory. Then ik is a met.
For every element a of the set A™ we have a set B" (a) and for
every element b of the set B™(a) we have a set C™(a,b) and an

element ﬁmh.h} ef the set -l‘.‘-m{n,l:]l.

R
G
- -
a ' s f::) 5
k !:. [:’-«]-L"i

Now for every element a of .ﬂ.m, };b,cmin.h} inm
A Bm = i.nli.r-‘d fﬂﬂr f.'lf -ﬂﬁh.. ﬁuﬂ |I'\I -ﬂ.-l'"l h-cm:lib:li 1"‘! ":m|
is an A = indexed family of familiss of seta, Similarly ¢™ is an

A.m = indexed family of families of elemants.

Note that in the presentation of this theory no harm is done
if we replace the introductory rule for C by the rule:-
for x @4, for yeB(x) : ¢(y) 4s a type, this rule having the sanme
meaning as the given rule. The expreseion Clx,y) in the given rule depend
explicitly en x and y. Ve say that the expression G{y} in the alternative
rule depends implicitly on x by virtue of its explicit dependence on ¥y
and by virtus of the dependence of ¥y on x. In the alternative version
of the theory ve say that a variable has besn omitted. This iz onme
vay in which a theory may be informally presented. We ume this method

and another in presenting the msxt theory - the thkeory of trees.
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The theory of tress has countably many sort aynbols, Do operator
“,,nulu and no axioms. GHowevar, We chome to write tnes theory informally
with just two acrt syebols, one of these symbols doing the work that in a

formal presentation would be shared ABORE countably sany distinet symbols.

mﬂl ;gtrnduﬂ.ng Fuls

51 31 iz a type

5 For %, €5, 3 E{::l]' is a type

g Far x,E Ei.inr IE'EEI.::J_I : E{:E} is m type

5 For X, € El,fnr %o & 5'[::13,...14::: X E{:n_l}i : El’..:l:n} is a type

ixioms = Hooes

51.. then, 1= a symbal denoting the set of podes at tiu baae of the
tras. LI X i8 BnY¥ node of the tree then s(x) ia the met of pnodes
immediately above % in the tree, that is to EoY the set of successor
pnodes to . In A formal prnentnim af thim theory there would be

symbols 51..52,53.“. and the symbol En-r:l. would be introduced by the

rule X € EI,EEE 32{11] pessX € ﬂ-n'[:r.l, - 'zn-l}

e

-] L an sk Jiaat
asl 1t B TEe E
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We use the same methods in presenting the theory of functors
informally. The theory of functors consists of the theory of categories '
in the language <Cb,Hom,id,o™ + the theory of categories in the
language <Cb' . Hom,id,o? (and at this point we have used the sase

thres synbols Hom,id and o in new rolea) +

Sysbol. Introductory Rule

F For xe0b : Flx)e Cy'
F For x,ye Ob, for fzHom{x,y) : F(f)e Hom(F(x),F(y))
Axiome.

Flid(x)) = {4{F(x)), vhenever xcOb,

Flo(t,g)) = olF(f),Flg)), vhensvar ¥, 2 G0b, f € Hom(x,y) and g aHom(y,z).

A model of thie theory is just a functor. The category of
models is the category Eﬂz, which ia to say that if F : L—!
is a functor and if G : D=——+D" is a functor then a homomorphism from
F to G consists of a pair of functors <H,H'> such that H : E—>D

and H' E'—'I-E' and such that

¢ —4 p
F \ 34
o o B

commutas.



The fimal exarple in to indicate one way of axiomatising the e

gimjoint pnion of & family of LypesSs

If U is a theory Jhich includes 8 t¥PE mymol A ard a symbol B for
an A-indexed family of types then U can be gxtendsd BY three operator

symbols, three axicms and one type syabol iﬁ in =much &

way that i. svery sadel T of U uniquely extends to a medel of the
gutended theery and fi. every smodal TN of the extended theory {nterprets the

symbol I—E by the set ‘,_-':l.,'h‘?] aGA™ and 'bEEml:l.}} , that is to say

gs tne disjoint union of the family of sets interpreting B- The

sxtended theary {s taken to be 0 +

EE'I:-:!. - Igtﬂdﬂﬁt_if: Fule

%-3 i B is a type ‘E’

P1 For :.E%B 1 Fll'm}lEL

P, For :.E%B : Pzisle‘ﬂil’:ﬁmﬂ

Pr For x @A, for yeBix) 3 prix,y)€ f-*ﬂ
Axigms

PHP:L{:],PE!.::]} = £, whenever B € 5 B.

PI[.PT'{I.]'}} = x, whenever X €A and yeBlx).

E'E':F"-'{IJH = y, Whenever zeh and ¥ eBlx).

In future we might refar to BO extension of a theary by sy=bols for

(

disjoint unions of specified families of LYPES.
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1.3 Fredicates as types

It is possible to introduce sort sysbols into a generalised
algebraic theory and then axicmatise them in such a vay as they are
effectively predicate syobols. In this way any theory of predicate
calculus all of wvhose axicms are of the form "i"ﬁ{lﬂllh Lpz“'“‘Pn_‘”J" Yy
where 4}1”..{‘3]‘ and ¥ are all atomic, can be exprecssed as

generalised algebraic. Let us eall such an axios a universal condition.

We do not work with relatiopas directly but rather with their
ceharacteristic families. If R is an b-ary relation on a set A thenm its
nhirﬂ#tﬂl‘htiﬂ fH-Eilr is the fﬂm, f‘qﬁlt AlElliAIEFFEHrlllilnji

whars P{ll-ll-iﬂ-n.: = iﬁ] if R{ﬁlirll-ﬂn-} and -F':ﬂl'.--..n.: = # otherwise.

The following thesry indicates hew an n-ary predicate symbol may
be introduced into a theory. The given theory has as modals just

characteristic families of p-ary relations on a set.

Symbol. Introductory Fule

A Ais & type

P For TygeeeX A 1 F{:l....:n} is a type
axiom

Ty = ¥s» whenever :1.".:I.‘nE A and ¥ X € PI'.:I,“_:“:I-
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It resains to show how universal conditions may be expressed as {
Eﬂ“a_]_iped algebraic. We distinguish three forms that such =&
sondition might taka, The first case is when each of q}l""@n nnd-\}f
are instances of a predicate other than the equaliky pradicate.
2o tnis case WA(H A cun(p—= ) cannot be expresged as an sxiom but it
can ba expressed mersly by the introduction of & oev sperator syz=bol. For
sxample the transitivity of a binary predicats P is expressed by the introd=
petion of a new operator symbol t by the rule - for ¥ Xi.%3 © A, for
¥y € P‘{'x_l..ta:l and for ¥,© H'E'!}} : t(;rl,zrzlléﬂr.l.:}}. The point ia thal
enca P is interpreted then & is interpretable in at most one WAy and then

only in case the predicate is trangitives

The sscond case to eonalder i= the cCass where sach of 4-'1*."4:':1 ara
tpetances of a predicate sther than the egquality predicate and 'if il B
ipstance of the equality predicate. In this case "I'iilplh... M.'yn-—-l'k‘l-"'}'
can be expressed ms an BXiom of the theory. Tor sxample the anti-symetry
af a binary predicate § can be expressed by the axicm 1= X, =Nghenever

X %y €4 and ¥, eﬂ!l':zi A pha.:l} .

Lastly wo must consider the case when one of the CP:L"; ia mn
inatance of the equality predicate. In this case a neW binary predicate
must be added to the language and axiomatised to be the egquality predicate.
The axiom AL I!F'lh - L['.ln——'i '.F".Il san then bs dealt with by cne of the
first two cases. The following theory indicates the way in which the
binary predicate Eq cam be added to a theory and axiomatised to be the

equality predicate.
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Symbal. Introductory Fule

A A i8 a typs
Eg For XX, e qurl,h:al is a type
r For x €A & rix)e Eqlx,x)

Axioms

TL = Tan whenever IL,I.'EE A amd ¥y ¥5 equ:xl .:E,}
T, = x,, whenever X +X, €A and J'E-qu!'l.n'a]-

Cne final example. The theory of a | -1 function im the theory of

equality in the language SByEq,r) +

Symbaol . Iutrnduntug Bule

A A is a type
£ For x¢A : f(x)eB,
hxioms

X) = X, whensver Xy 4%, A and rﬁﬂq{f!:l}.ﬂxz}ll.
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1.b Essentially Algebraic Theories and Categories with Fioite I-I.( ]

The sasentially algebraic theories of Freyd L5 | can be seen
to have the same descriptive power as generalised algebraic theories, at leas
as far as the usual oet valued models are comcerned. In this section
we look at the relationship between these two notions asd aleo at the
relationship between easentimlly algebraic theories and categories with
211 finite limits. In the next l-ﬂt-iﬂ!-!l we point out the way in which

geceralined algebraic is a more general motion than essentially algebroic.

Esgentislly algebraic theories are fntroduced and wery briefly discussed
in Freyd (%1 } they are many serted partial algebraic thearies such
that the demain of every partial operation im specified
ao the extension of some conjunction of identitiea between terms Hup:n.gﬂd

from previocusly introduced cperators.

Thus the theory of categories as an essentially algebraic theory
has tws sorts, Ob and morph, three total operations, dom 3 Morph — Ok,
cod : Horph —+Tb and id 1 o — Morph, and oneé binary partial operakion
o form Morph x Morph to Morph whooe domain is specified by assarting

that of{x,y) io defined iff eod(x) = dom(y).

In order to write an esssentimlly slgebraic theory aa generalised
algebraic, all the egquality predicates used in defining domaine of
partial operations must be introduced, For exasple if [ is to b m
partial C-walued function defined on E:l.'{-ﬂ. ||1:1 = I.E} y wWhers
for x ek : tlla B and for x €A @ tav; B, thenm the equality predicate on B

mast be introduced and gxiozatised. Then f can be irntroducead by (



r

v

v

—
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the rule for x& 4, for yé Eq“l"ti} t flx,y)eC,

Ir this way every essentially slgebraic theory can be rewritten
aa generalised algebraic. The converse is aleo the case, at least
in so far as that to every generalised algebraic theory thers
corresponds an essentially smlgebraic theory with the same category
of modela. This is the case because of the sguivalence beatwesn
A-indexed families of sets and morphisms in the category Set with codomain
i. This squivalence holds for any set A and is given by the following
1. If {8(a)laca}l is an A-indeved family of sets thes proj @
E{a)—A is a morphism of Set with codomsin A (remember that
Blal = 3<a,b> | aci,beBla)} ) .
2. If £ i A'—& 48 & map in Set with codomain A then § £ “(a)) a¢A |
is an A=-ipdexed family of sata.
1. and &, establish an iscmorphisa between the class of A-indexed families
of seta and the class of functions with codomain A. Thus, if in =
generalised algebraic theory thers is a sort sy=bol B introduced
as an A-indexed family of types then in the corresponding essentimlly
algebraic theory there ie introduced a new sort eyzbol A' and a map

g A s s

The poticm of an essentially algebraic theory can be =seen as a
oetion of type theory im which the canly type forming principles are
for the formation of product types and for the forsation of types of the
form i_l'l‘;g'.'n| '|=1- hEi » wers 0 is & type and I'.1 and t.E are tersa

af the same type. HNow if we thisk of the objects of an arbitrary category
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o8 types then to have these two type forming principles ia just to nave finite
&g

Fﬂdﬂctl and equalisers of paira. Since a cabegory with finite prnd.unt.u{' i

equal iners of pairs is precisely a category with finite limits, the

aotions of essentially algebraic theory and category with finite limits are

closely contt poteds

In fact for every sssentially algebraic theory U there is &
sategory with finite 1imits C{UJ) such that the category of madels
of U is squivalent to the category LEX(C{U) ,Set) of all fimike limit prm':nnr-

ing functors from c(U) to Set, with all natural transformations between

thom as morphismse.

This is the content of a remark made by Lawvers, pages 8-9 of
Lawvers [17], though the resark does oot actually use the term

sssentially algebraic. e
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1.5 The Extra Generality of the Algebraic Semantics

One of the advantsges of generalised algebraic over sssentially

algebraic is to be found in the syntax particularly with regard tao

the presentation of theories. In presenting theories as essentially

algebraic there is a coding process in that, in general, families

of sete indexed by a set are represented by functions with codomain

that set. On the stherhand inp presenticg a theory as generalised

algebraic there need be no such coding. This distinction whereby

fazilies in a generalised algebraic theory can have a life of their

own goes through into the algebraic semantics. The algebraic sesantice

of generalised algebraic theories is more general than any possible

such semantics for essentially algebraic theories. There are

perfectly coherent interpretations of generalised algebraic theories into

structurss in which the elements of the structure that are thers ta

interpret type-indexed families of types are distinct from the

elepents that are there to interpret functions with codomain. This

can never be the case with essentially algebraic theories because alrsady in

the syntax families of types are coded as functions with eodonain.

The notien of type in adequately captured by the motion of
object of category. However bhaving decided to thirk of the objects of a
particular category £ sa types and in Farticular having decided to
think of aa actual object 4 of & as a type then it is incurTH:t than
tEo  suppose that the potion of A-indexsd famlly of types should always
be taken to be the notion sorphism of 8 with codomain A, This is Just

one possibility. In general, there will be other possibilities some
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of whigh may be more attractive. The exazple that we have in mind
ys wheD @ is taken to be the category Cat of all (emall) categeries.
tow the questicn 18 what shall we chose to mean by category ipdexed family
aof sategories? In particular if & is & category then what shall we

gesn by 8f j_-i.udﬂrud family of categories? Well, wnat we would like

to mean by shat is sny functer BiA—* Cat. This is not the same an
taking it to mean A morphism of Cat with codopain A. The idea that a
ramily of categories indexed by the category A should just be m

punctor BiA—>Cat arises because thers is a categery of a1l (smalll
sategories just as the fact that there is a claea 0 of all sets (= small
classes) leads &0 the definition of a family of mets indexed by B st A

s a funetion Bra—>0,

A fupcter BiA—=Cat can be thought of as & structure of the general

|

kind (for example take sort smymbols ObA, HomA, ObB and BomB intﬂduced%
x)

py rules ObA is a type; for :,:l‘;ﬂhﬁ.tﬂnuﬂ:.ﬂ is p typej For = & ObA: Ob
is a type; for x €0bA, for ¥.2 &0bB{x) sHomB(x,¥,2) is & typel. It
followe that thers 1= A category of categery jndexed families of
categories &nd structure preserving homomorphisma (it turns put that &
homomorphism ITes BiA—>Cat to B tA=—>Cat is describable just as
a pair F,N woere hﬁ—*ﬁ' is a fusctor and N:B—>FoB' s a natural
transformation). But now there follows the notion of & caiegory
indexed family of category indexed families of categories. This
procedure can be jterated. We get a huge structurs of categories,
category indexed families of categories, category {ndexed fapilies of
category indexed families of categories and 5o ©oR. It is a structure

into which generalised algeboraic theories can be interpreted - by
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joterpreting types as categories, type indexed femiliea of typea

as category indexed families of categories mnd 80 on.

A model of the theory of families of elements of families of mets
in this structure will consist of category A, a functer B:A—>Cat ,
for each a€)A|, an object bla) of Bla) and for each f:a—a' in A, =
morphiss b(f}: B{L){bla))—>bia’) in Bla’). Buch ¢ & blid(a))= idlblall,fe

all objects a of A and such that B{f") (b{f))eb(f’) = b{fof’), whenasver

S PN LW R
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1.6 The Formal Definition

we must insist that the introductory rule for a syombol into (
jgte a language be wall formed. In order that we Ty say what
it is for a rule to be well foroed we require a notiom of derivability.
gipce the notiom of derivability depsnds upor the introdustory rules there

ig 8 difficulty im givieg the formal definitioms

The difficulty is that we need knosledge of the derived rules of a
theory when we ars still im the process of defining the possible
languages in which the thesory may hbe written. We choope 1o ovVercoms the
difficulty by leaving aside the question of wellformedness until we have
availatle the cozplate sat of derived rules of the theory. Yor this
reascn the thecories that are admitted by the definition beleow may not be
well formed; we call them prethaories and mccept that they might make
1ittls sense., Later we shall define a theory to ke a well formed E'I

prethedrys

We assuse throughout that we have a set ¥ of wvariables which
has countably many distinct sesbers. We begin by giving a definition
of rule, more precisely a definitien of rule of the alphabet W. The
definition is crude im that nost of the peraitted rules ars
zeaningless in all eircumstances; it does suffice, though, for the
purposs of turning rulea into objects. Suppose then that W 15 &
gst. We consider the set W to be an alphabet and its slements to be
sy=bols. The following definition is relative to wiand, of courae,
it im relative to the set of variables ¥V, but V¥ will remain fixed

throughout ).
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The set of expressions is defined inductively in such a way that
every expression is a finite sequence of elements of WUYU VeIV S
by the clauses: 1. If x€V then = is an expression, 2. If Lew thenm L
le an expression. 3. If LEW and #11--=2  are expresalons then

L“l*‘ -+e_J) 1= an expression.

A premise is defined to be any finite sequence of elements of
Vx the oet of expressions. The ezpty asequence ia included as a
premise, called funnily enough, the empty preémiss. Ths premiss

determined by E{;‘L, h.l}.".i:n, ::.h}l] is written as xll':-ﬁl..-.lni "in*

A T-conclusion is determined by a single expression & and is written

as'A is a type .

in €-conclusion is determined by a pair of expressions

{t,A) and is written as'ten'.

A Tz-eonclusion is determined by a pair of expresaions

(A, ') and ia writtes an' A=A",

An € =-conclusion is detersined by a tripla of -:q:ﬁuiu.u

(t.t’, A) and im written as' t=t’ e,

A rule ip detersined by a premise P and a conclusion C and ie
written s E. A rule in said to be a T-rule, an € -rule, & Terule or

an Gerule according as to the farm of its conclusion.

If ﬂ..tl..utn Are expressions and if X yereX are distinct
varisbles then the expression ﬂ.ft.xlxl,...tnh'; is that expression

vhich results from sismultasscusly replacing every occurence of the
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yariables :r.l..-....tn in the expression A by t'l""tu' Please note Lhat
ﬂr—*’l“‘l*""‘n“n] and Al 1] wen L x ] are not usually the sa=e,
jndesd AL tltxl,tzluxaj and ﬂ[t11:11[ tEIl :21 are distinct whenever €,
x, appears in f\ . x_ appears in %, and t, is distinct from X

we can now give the main defimitions.

pefinition 1l A pratheory consists of 1. a set 5, called the set
of sort symbols. 2. A set © called the set of operator symbols.

71, To sach sort symbol A, an asscciatad rule of the alphabet SUZ, called

the introductory rule for A and af the form e i l!‘!":I.""':"[lfl":'!:"‘|1 for

M:l,”.xn}l is a type
some n¥e. 4. To each oparatar ayobol F, an associated rule af the
alphabet SUZ ealled the introdustery rule for F and of the fora

:lE 'ﬂ'l"";neﬂn' for some ndo. 5. A set of axioms, Each axiocm

F'l.}ll.. T -II} ] ﬂl

is either a T=rule or an €=rule of the alphabat. t \

Taken together, definition 2(a) and 2{b) define the derived rules

of & pretheory. Toe definition is of an inductive nature.

Definitiom 2(a). If U is a pretheory then (i) a context is a premise

:leﬂl.u.xne ,I':'; & such that the rule l:!.E*'E" .'l.'“'Fu-lEﬁ n=1

fi is a type

is & derived rule of U. (ii}) (a) The rule xE i 1""1I:LE fy & is

ﬂiﬁl.t_ﬂ:a

wellformed iff :.1& ﬂ :I."""InE'ﬁ" . ip a copltexts (b} The ruls

xq& 0 11-*-3:“5';& & je mellformed iff %€ ﬂ.l....nneﬂn is a derived

ey A is a type
rule of U, (
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is wellformed iff “lE “""J.”“:"n'Ei 4 B

t=t* € O e e A

s N E€dyeeeme A derived rules of 0.

' €A

Definition 2(b). The set of derived rules of T i the set of rules

derivable by the following principles of derivation.

LI1.

LIz.

LIZ,

LI&.

LI5.

L1G.

LI7.

CFl.

From B derive F "
£\ is a type A=A
From 2] deriwve F -
t EA t=t EA
From P derive F .
‘E":L' ﬂ‘.z ﬂa‘ 4y
Fram P deriva F .
tl-tE' EN t'E. ;1 e
From F arid _L Tirdvn P 2
Aq= 4, 4z= 44 D= &3
Frem P F B i

tl-tEEﬁ and tz-t:ﬁi.ﬂ. derive tl=t}l:-‘:1

From P and P darive P 5
'.‘-l-t.EE E.l .ﬂlu ﬂ?_ Ll-l l:E E ﬂz
Froa P and F derive P #

For a3o, 1£1idnet .
From :'.11'.': 'ﬂl"":na ﬂ'n derive :.-IE fa 1,...:.-“_._1#; 'ﬂ':ﬂl '

ﬁmlilatﬂn X €04

providing that l:m_l is a varisbls distinct from all of e GALLE
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cF2{a). For every sart symbol A with wallformed introductory rule {
IIE r,l.lj-‘-l-l-mxni -Ehl-n

h[:l,..-tnl'l is a type

y [or every econtext F, from

d ® ¥ derive

t, & By ' b E0, e, x. ' lt-n-E ALy |2y aeantyg Y

'F
Aitl...-tni is a type.

cF2({pv). For every operator symtol F with wellformed introductery rule

“1E&1“":nﬁ'ﬁn , for every context Fs

FE'F]-.I--K“} Eﬂ
fr’:- P ] P TELL] ud -F
1'.1'5 ﬂl tEE-_ ﬂzttlll::l] tnéhnttlhlﬂ.‘“'hn-lktn-;
derive P =
F{‘lliii-tule &[tli :-1|--I--|t=l I"] t‘l
5Il. T context then from Fle-il""‘rmen_g dnﬂ-llu. G ;
f’L-ﬂ: 511"3.."&.[1..
E-_}L i G. d..t'l"q."q-_ i_
ez e, 0sn] P Gt S € L TSk e | Yol YRR T Sl T AT Sl
= "'I#__ﬁ.t i e
s11. IfF Lis a conbnk than from ._—I—L—'E'*-E'ﬁ:ﬂ* ard T X
=] ] )
.l't'-'l.'i'i.

5,05, € 51,06 1% " Gm= SmE Slmlsihoe Sme O |

q L]
5{511 T‘.L"”'E'nhrnn] tE"[E"li Il"“sm" ;rn] E_ﬂ-EElt 11....E.| r-]

Al. Inleﬂl....fa& {s an axiom thes from
b=t
ilEhl.--.lnEﬂu and llEﬂl,..r'.r.“Eﬂ.n derive :'_lEﬂl.....:nEf!u a

A= D _{

[ 1s & type f}_’ is a type
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Als Ir ﬁeﬂljili:ne ﬂ.n is an axiom thenfree

t=t’ E A

:J-E&liillInE ﬂ‘ Md :IE-&Irr-l:EE -&E d.riﬂ'ﬂ‘ lL'G ﬁlml IIIEE .ﬂ.n

tely t' EN t=t’ & A

Definitien 3. A pretheery is wellformed iff all of its introductory

rules and axioms are wellformed, A generalised algebraic theory is a

wvellfor=ed pretheory.
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1.7 The Substituticn Lemma apd Cther Lemmas ﬁi

Fach lepma in this sectiom is peeded at pome later Btages
For example the substitution lemma which asgerts that the set of
derived rules of a theory is closed under the operation of the
substitution of correctly typed terms for variables, is needed in

the definitisn of the category of generalised algebraic theories.

zubstitution could have been taken BaA ODe aof the principles
af derivation} however to have done this would have hindered the
definitions by inductionm which surround the semantics. Compare with

Lasmbek [ 12] , though of course the problem is Gentzens.

It is assumed throughout thatU im mome generalised algebraic thesrys

Let us say that s derived rule of U of the form y, EJLys-es¥ € g, E~

Conclusion

the subatitution property iff for every context @ of U, whenever

51 (5. ,eesd are expreseions such that Q@ «
< m T -t 1 J
?1‘* L, sl lsly

4 dom @

and L] are all derived rules of U then

Enhﬂntsﬂ :'rl""s'n-l | :"n-lj

the rule (=] is also & derived rule af W,

Conclusion [51|| :I'l....Eml ;-']

We mim to show that all derived Fules of U have the substitution propariy.

We nesd two preliminary lesmas.

Lempa 1. If x, € ﬂl....lnlﬂ. L dima derived rule of U thea any

Conclusion

(

variables appearing im the comclusion occur MRODE [:1,...!;! i
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Proof. By induction on the derivation of rules in U. Look at each
principle of derivation in turn and see that it is impossible to use the
principle to derive a rule without this property from rules which

do bave the property. This ias Yery sasy Lo soe.

Lemma 2. (1} The premise of a derived rule is a context. {(ii) If

1 Eﬂ.l_--uxn E-I'ln it a context then for all 4 . 1 £4%N, the ruls

Hiall-!lxi-lE &1'1 is = derived ruls.

Ay is a type,

Froof. (i) ia proved by induction eon derivations. If each principle

of derivation is checked it will be seen that the presmise of the derived
rule ie either a cootext by hypothesie (CF2, SI1 and SI2), or is &
premise of a previcusly derived rule (LIl,...LI7, T1, R1 and A2), or slmse

satisfies the conditions necessary to be a context {cr1i).

(1i) follows from an  iteratiss of {i). If :lﬁ .ﬂ.l....xne: ﬂ. a in

a context then L P | is a derived rule. Herce
e Bl f n-1% Hdpy

'ﬂ": is a type
by (1), Xy Eﬂl*"'zn-lr‘ ‘ﬂ'ml is a context, Contigue until you get
te %, & ﬂ.l....xiE ﬂ;i is a context and *1 € Oyveeexy je Ay, 4. a

"'5‘1 is m type

derived rule.

IThe substitution lemma, Every derived rule of the theory U has the

- Bubstitution lemma

subatitution property.

Froof. The derived Terules and €wrules of U have the substitutien

property. because thers ars principles of derivation S5I1 and5T? which

have just that effesct.
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The proef that T and g-rules of U have the auhstitution property
is by inducticm om derivations ia U. It suffices to show that no
primciple of derivation by which such rules are derived can be used
to derive a rule without the property from rules with the property
Thus we just have to check the principles T1, CFl and CF2., Tl. Suppese

that both ¥ r..ﬂl,,....y Ef‘t and 31:-__{",1,...3' 1__;."1 are derived rules

'ﬂ'l.ﬂﬂ t Eﬂl

af U which have the gubstitution propertly. We must show that
r,_Eﬂ,_----r,,Eﬂm has the subatitution property. 5o suppose that for
t&ﬂz
each J, 15 1% M S is & derived rule of U.
syefl305; 1 ypaeeeSyg ¥iy )

|
\

L

By our first assumption both o
ﬂl[51h1111!-5mh1m:] = &E[Sli?’li'ilam&'l.]

and Q are derived rules of U.

t [51| 111--.5_1 :r_] £ ﬂ.l[ 511 '-"1""51: \ ;_]

Thus, by an application of Tl,; So iB&

g a derived rule of U
t [Slt :rlil'-sﬂl ,III.] 'E ﬂ Eiﬂl l 3‘1|i-|.|5=l :"m}

Hence 315_&1....3,& .'ﬁ'.m has the substitution property.

tel,
CFl. Suppose that Hﬁﬁl,...u e is a derived rule of U having
‘Iln+1 im @ Lype
the subatitution property. We muet show that :r_LE ﬂl"":n-rl ﬂ sl

IiEﬂ-i

has the substitution property. S0 suppose that for each J, Lejenyl

g
EE& EE lx,... I':j-—l]

ig m derived rule of . By lermas 1 (
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and 2, lji-l"“:n-rl do not occur in ﬁJ* Hepnce
L"I,,;1 {51 | ®preneSyg l 'j-l] - ﬂd [51! :1....5““ xn+1] « Thus

i =] is & derived rule of U, Which is to say
EiE ﬂilelﬁqiilsml1x ]

n+l

Q is a derived rule of U. Thus

(!15 A I.T[_El h '1"'"'En+l| :n+1j

Jltfl.lE' ﬂ‘l e T3 e 4 o+l has the substitution preperty. OCF2 (al.
* & By

(CF2(b) is very similar and we shall not bother checking it).
Suppose that A is a sort symbol of U introduced by the rule

€4, x e . Suppose that for esch i, 1 sisn,

Al:l-lu..xn.l is a typ=

Y & dlyeeeey € il
b A Lt ] m ety 1% ,]

is a derived rule of U and has the substitution property. We must

show thet ;l'lE 'ﬂ'l pered € n o has the substitution property. GSo

A{tlyt!!tn} iz a tn.
suppoee that for each j, 1 %34m , the rule Q
S R AL TRy

is & derived rule of U. Then because for each i, 1§ i $7m,

Jli-..ﬂ,l..u]r_l'; "1m has the substitution property and beacuss

tie ﬁltf-]._l rl"'”'ti-lt -‘t'l-:l.:I it followas fram lemma 1 that
Bty Ity g Lxg 108 1 ygaeens 1y, ]

"51[‘1[ Sp| ¥yaeees, | ¥,] i xpaenet, [ sl| Tyaeees, 'l""-]l’iul] A

s0 it is the cass that for each 4, {€i¢mn ,
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]
ty [5 ) ARCAEAL ﬂ.i'i.'_tl'iﬁll PARTEE ML | TR {

Tig (8y | 7yaeessyl ¥, | x=1 ]

is = derived rule of U, Thus, by an applicatien of CF2(m)y the

rule q
ﬁ.{tl[.slt rl‘lll-'s'n' }'n] -..-ll-tnl:511 Tll*ll‘ﬂmll I'Ij' is a type

is a derived ruls of 0. Which is to say that the rule

Q ia a derived rule of U.
Mtl....tnl Eﬁli _-,rl.....ﬁ.'. ;rn] iz a type

Thus ¥y ESLyresevy &dhy has the substitution property.

A[tll...tn} ie a type

Corollary. (Change of Variables) If x E &l....xne ﬂ“ i a derived
Conclusion E

ruls of U and if I'.I.""Tn im a eeguence of distinct variakles then

N E ﬂl‘jEE .ﬂatfl1. Tj..] Hi-ll'nf:ﬁntll \ “].'”"n—l" In_]j
Conclusion [ 71 x.l..--]fn .In]

is a derived rule of U.

Proof. The proof is by induction omn D. If n=o then there iz pothing
to prove, If the resalt holds for o then it holde for prl as fallows.

Suppose x, € B yeeex € A_, 1isa derived rule of U and suppose that

Canslusinn

Fyrev=Tnel ia a sequence of distinct variables, Then by lemma 2 the rule

‘l.lE..ﬁ.li...:nE ﬁn is & derived rule of U. Henca by the ipductive

E:Hl is a type

hypothesis so to is the rule I, € ﬂl,...;rneﬂn[yll SRTEEE an_lt .

‘51,.,.1[:!'1 | Xywee¥y 'I.Inl in & type
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By epplying CFl, the rule 311.1'-_.&1-,---:1":“1& .ﬂml'[rl | o el A | an

yied Ly by 12y ]

is & derived rule of U, for each i, 1% i{n+l. Therefore by the

gubstitution lemma and since :'1'5: '&1""“::-1"'“3' il is a derived rule

Conelusion

of U we can conclude that jrl.r-,'ﬁl....xn_'_ll:-; ﬂu-lf'rl | X yees¥p | :u'n] im

Copclusicn 1-_ ;rll Xoeeeedoq I xn*l]
a derived rule of U. The result holds for n+l. Heoce the result holda

for all n }a.

Lemaa Every derived rule of & theory is wellformed.

Proof By induction on derivations in the theory U. We check each

prineiple in turn, showing that all rules darived from wellformed rules
are wellformed. LI1-LI7 and T1 are very easy to check. CFl. We must

show that if tlﬁ.ﬂl....xnf_ .&n is a wellformed derived rule of U

&m-l is a type

and if x . im a variable distinct frow %, yeeax, then for sach §,12izN

the rula Il.eﬂl""':n-rlf ﬂIH*I is wellforsed. That is we muat show

":J.Eﬂi"

that !1 Eﬁl'*.-lﬂl’l'&ﬂn-ﬂ. iz o derived rule of U.

ﬁ'i iz a type
This is the case because, as above, for each j, 1% §i4£ i, the rule

x, Eﬂl‘"":uﬂ.ﬁ i) ait is derivable and because by lenma 2. [.11‘

X € 4y

the rule x & &1,...::1_1&&1_1 ie derived rule. Using the

ﬂi ias a type

substitution leema, the rule X el preee® g€ A Y is a derived rule.

ﬂi is a type
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cFlfal. Follows immediately from lemma 2. cF2(b), SI1 and 312. €
follow ismediately from the substitution lemma, Al and AZ. These

state that an sxiom is & derived rule omly if it 18 wallformed.

The Derivation Lemma. {a). Evary derived T=rule of the theory U

is of the form ;rlE,.'fll....jme 'ﬁ'n for pome sort symbol A of U

H.I:t,l..utn} is & type

with introductory rule of the form rlﬁ.ﬂl,..-xne ,|’_"|]I and for

A{’-.l‘l IIIEJ is a t'rP-
some expressicna £, 4...b, such that for each i, 1$i¢n, the rule

¥y Eﬂl"":'rm"-:"ﬂ'm is derived rule of U, (B} Every derived

ti.E &i_[tlll '-I'—L1l ”t'i.--l..' !i—]..]'

€ -rule of U is either af the form T],'E'ﬂ'].'"'rnﬁﬂu for some

Tﬂ & .ﬂ- &. ;
4y 1tj%m, and for scme M such that ylejll....rueﬁn iz a
_ﬂ__-] = .ﬁ
derived rule of U, or else is of the form ;.rlgﬂ],...:rmeﬂn for

£ty 4onety) E J
some operator symbel f of U with intreductory rule of the form

:1"; ﬂ'l"“:n&ﬁn and for some expressions tl“"tn' such

f{l'.l‘.-i-ln} = ﬂ

that for each i, lgidm, JIEﬂl....yﬂEﬂu is a derived rule

tit'-_ ﬂ"i['tl \ ul,...ti_ll 1:1_1]
of U and such that rliﬂl,...rmeﬂ' is a derived rule of U.

ﬂ[tllltl."”tnl :l:njl = S'L

Froof. Lal) Simply becauss the only principle of derivation that

cusbles us to derive T-rules is prineiple CF2(a). (b) The principes (@

which mllowua to derive € -rules are principles T1, CFl and cFale).
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1f ap E=rule is derived by CFl then it iz immediately of the first of the
twe forms stated above, if it is derived by CF2(b) then it is
immediately of the second form. It remains to consider the caee of

ap & -rule derived by Tl.

First suppose that a rule P is derived by Tl from P

t €fl t ed”
and P and also suppose that the-rule F is derived by T1
_.-"-L= ﬂ' E.ﬂ."
from some P and F « In this situstion the rule F
E E.ﬂ." il'a _H._H & _f]'_
could have been derived directly by T1 from F and P ,
" E:.ﬂ:.l _ﬂ':. ﬂ.u

thus missing out a double application of Tl, It fellows that if a rule

P is derivable by mn application of T1 then it is derivable Ly

¢ &51

an application of T1 to some rules P ard P guch that the
¢ e 1 )"

rule P is derivable by CFl or CF2{a). It then follows that

v €517

P is of one of the twoc forms Btated above.

tEeSL

Corollary, ir F and P are both derived rules of U then
t ESL ¢ ey

se ta is P =

A=
The pext lecma might indicate an alternative indoctive

definitioe of the motion of generalised algebraic theory.

If we say that U° is a theory extending U thep it is meant that all
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the introductory rules asd axioms of 0 are included among the (
introductery rules and axiome of U’. In particular every sywbal of

U is & symbol of T".

An extension U° of U is said to be a simple extensico of U iff

411 of the introductory rules and axioms of U’ are well formed wrt g.

For example, the rule x € ﬂl....:neﬂu af U° im wellformed wrt

ﬁ.ilnl:_fpt

T iff 115 ﬂ]_.---nnl':- .‘.'I!'.n is & context of T.

Lezma 5. 1¢ U is a theory extending the theory U then there exlats

a asquance of theories 'l:li';rl Ul, 'IZIE.-..""-- guch that for each i - T

U,y i= u simple extemsion of Uy and such that U, = U and A 5y~ e’
Froaof. llu tg dafiped to be U. Uhl ip defined to be the simple (
extension of U, given by all those symbels of U  whoss indroductory

rules are wellformed wrt “i and all those axioma of U' which are
wellformed wrt U.. The only problem is to show that every sysbol and
axiom of U 4is eventually in U, for some i, We just have to show that

every introductory rule and axiom of 0° is wellformed wrt _I.Ii for some i.

Suppose then that B is an introdustory rule or as axiom of U1°. Because
B is wellformed wrt U’ it sust be wellformed wrt soze finite number k of

intreductory rules and axicms of o' . We show by induction on k that R

i wellformed wrt Uk.

If %=o thean R is wallformed wrt 'E:Elu.

(

uae

If YWo Suppose 5 is ome of those k iptroductory rules and axioms

from which B can be showa to be wellformed. In any derivation we only
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an axiom or an intreductory rule after it has been shown to be well
forsed] in particular since 5 is used in showing that R is wellformed
thera must be rules capable of sheving that 5 is wellformed anong the k
rules that can be used to show H is wellforsed., Thue it can be shown
that 5 is wellformed from some pumber p of rules aod axioms of U
where p is strictly smaller than £, By the inductive hypothesis S

is wellformed wrt UF- Thus 3 is an introductory rule or an axicm of U
This L& the cass for sny of those k introductory rulea and axioms of

U° which can be used to show that R is wellforsed. Thus E is well

foraed wrt T, .

i ]
Lesma "h 1§ 4 =1E ﬂltlnnt:EE &E. and IIEﬂ 111-.1_!1&&- nquE'-.'lal-rlllT:‘E ﬂ m

&:I.E a type Conclusion
are both derived rules of U, if = is a variable distinct from

X ee e X Ty ieeaY, then 2 €Q ,.ox el zely el ..y efl,

Conclusicon
is a derived rules aof .
Proof. By iaduection on &, 1f o then fro= ] Eﬂl, ..-anﬂn
ﬂ. is a type

we can derive HEﬂl...-:nE&ndtﬂ ®

x el
for each i, 1€1i £ n. Since xleﬂ,l.”.:neﬂn is a derived

Conclusion

rule by the substitutioo lezmma so toods xlﬁﬂl.:u":tnE ﬂnﬂé ﬂ .

Conclusion

If mlo. Then since “'.I.Eﬂl‘“'“ntﬂn‘rleﬂj‘"'.'rmE"ﬂ'm is m
context, % Eﬂl"'"InEﬂn‘FlEﬂl"'”rm-lé'ﬂnrl is a derived rule.

_ﬂ.diua-'l.'-_'ﬁ't




pi }3 !
|
£

)
the inductive hypotheais 11E -l':'l.l,. : -InE ﬂn.n & ﬂ W E"ﬂ‘h g *Tn-{- o

Thoa BY
-ﬂ'u is a type

I Thus -r__lE.ﬁl,u-InEﬂnulﬁﬂiflﬁlev"'ImEﬂn z

is & japived rule.

:it& ﬂ'i.
B.ﬂ.d I]_Eﬁl!"ilp_e-ﬂnul Efﬁluﬁlﬁﬂl.-u]’_mf ﬂﬂ 1 1‘3 ';mq- are

3jﬁﬂj

151511

jerived Tules. BY the substitution lesmer

:.LE f."_'Ll.---Inl: ﬂn.z- &ﬁ,yleﬂl....:meﬂn jr a derived rule.

Conelusion




1.39

1.8 Informal Syntax

There is a discrepancy betwesn the syntax adopted in the formal
definition of §1.6 and the syntax used in informally presenting theories
in other sactions. We say that we have a forsal syntax and an informal
syntax. The infermal syntax is the syntax that is used in practice.
Iz a particular case it prevides an adequate and unssbiguous language
for the description of the structurs involved. GSince the informal
Eyntax varies non uniform=ly from ome particular theory to another it is
imposeible to give m direct description of the informal syntax. In thia
section we claszify the discrepancies that occur between formal and informal.
We also state a general probler and provide a partial solutiom. In this

szction we have in mind & very practical approach to mathematical syntax.

Iz the first place, the actusl forms of the rules are of no
consequence, Thus the form that is used in ths formal syntax, that

s el ..z el p * Bas the advantage of alisnation and is not

Conclusion
significantly different from any of the sther forms which have to some
sxtent thes advantage of naturality, forzs such as

x e fa) preeeE 6 i) a? Concluaien,
for 31'-':&1.-.1':':' IEE i FLECE and far X & ﬂ, n’ Concluaiom,

Conclusion, whenever e It 10%,% A gr=ssand x. € A n'
and such that, wherever ;ossible, repetitions aof sxpressions in the
premise are avoided by writing "]-r.‘"lu:l."'":k-u-.&ﬂ instead of

'l-kﬁﬂ -t---l'k*:-Eh &

There are two significant differences baktween the formsl arnd

the informal. The firat of these is the omission of come af the
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variables which would formally have to appear in the term that _
{ntroduces a symbol into a theary, and the subsequent omission of terms E-
from the argusent places of the symbol as it appears in the derived
rules of the theory. Thus in the theory af sategories the ters ol f,g)
occurs in the introductery rule for o instead of the Tern olx,¥,2,f4E) 3

the axicas differ ascordingly.

The second difference between formal and infermal is that
informally one sysbol can be made to do the work that several symbols
would have to do formally. As examples of symbols that have to do the work
of ssveral we have the symbol 3 of the theory of trees and the symbols
id,o,Ham and F of the theory af functors (with reference to the

presentations of these theorias ia %1.2).

1f we arbitrarily rewrite s formal theory by these tvo methods, (
that is 4f we omit certain variables from certain introductery rules,
altering the derived rules accordingly, and if we replace certain collections
of ayubela by single symbols, then mrbiguitiea may or may pot arlise.
There is ambiguity just when two formally distinct derived rules are
rewritten as indentical, for this would mean that there Hau.fi.nfurmu.].
rule which had twe meanings, was ambiguous. 5o the problem is - im
what ways can we rTeéwrite & given formal theory without ambiguities arisisng?
The answer im that it depends on the theory in guestieon. The best
general answer that we caa give consistas of a condition that the cmission
of variables must respect il ambiguities are not to arise. This
condition objectifies the dropping af the variables x,y,2 from the terms
ol{x,y+2,f48) in the introductory rule for o and the wrongheadadness
of drepping { or g or both from this same term., Intuitively, alf,g) {

depends explicitly on I snd g, I depends explicitly om X and on ¥
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because f EFom(x,y), g depends explicitly on y and on z because
g&Honly,2), thus o(f,z) depends implicitly on all of the variables
x,¥.z,f and g that occur in the premise of the introductory rule,

a0 that although the variables x,y and z no longer appear explicitly in
olf,g) there is =till an implicit dependence of olf,g) on each of

x,¥, snd 2. The condition on an introductory rule which is necessary
if ambiguities are not ts arice is that all wvariables occuring in the
premise must occur implicitly in the conmclusion. This condition we can
call the condition of implicit occurence. It is necessary but not

sufficient, am we shall show.

The definition of implicit occurence must be given inductively.
Euppose that P iz the precise % € ﬂ.l,...:ne 'j'n‘ Buppose G is &
conclusion and that 14 ifn, then we say that the varisoble

x, occurs implicitly in the conclumion C wrt the premiss F

iff either x; actually occurs in € (in which case we also say %, OCcurs

explieitly) or if for some > i, x, appears in .ﬂ.i and :;j cccurs implicitly

in C wrt F.
Lemma If asbiguity is pot to occur in an informal theeory then

whenaver L 1s a symbeol introduced by the rule ;l;lE ﬂl....xhe ﬂniﬂ then esch

of X, yeeex Dust occur implicitly im C (the condition of implicit occcurence).

Proaf. Assune that we have a theory and an informal presentation of

that theory in which there is a symbol L introduced by a rule that does not
satisfy the condition of implieit occurence. Wa shall suppose that L is

an cperator symbol for if otherwise and L im a sort symbol then the argument
is the same. Guppose that M2 1 and that 134K Jy...¢ J-suppese that L

is introduced by the rule :11’.-1&1"..:: EﬂﬂtL[I.ﬂ -.....ld :IE,,ﬂ. We are
. 1 r



l.42

assuming that not &1l of X, ,+..X OCCUT implicitly in (
L{IJ‘ *tlr:jr}e.ﬁ “t the Fr!ﬂlﬂ‘ I—lEﬁlill-InE &nr e ghow that thers i
are two derived rules which are distinct in the =ore formal syntax, that
is when L is introduced by x & ﬂl....:ﬂe ﬂn:L{rl,...rn'}E.ﬂ, but which

are indistioct in the informal syntax.

Let -_-;i """I:.L he & sequence of variables each one of which is
distinet from sach one of Ky ovekp e Let J= h ll!’-.}ﬁ ! and %
doss pot occur implicitly in L[:h....xj b E.*ﬂ} o Lot Fyieeedy be the

r

sequence of variables givan by Fj’::;l ifr j &d, ;rj=::5 if ,1¢J.

Suppose that jt.-l and i €, then lj scoura implicitly in
L{:ji....:jriéﬂ whereas =ge
Thus il _ﬂ:i then ﬂj[rli 11....3"1_1 | Ij-ll i ﬂj* Also mote that

Al | #pe=--7y I.::n] iuﬂ. since if JEJ then X, doss not occur im J.':L.E

dosa not, hence Xi does mot occur in ﬂ, Y

By the chenge of variables lemma the rule
TIE&:I""IHE- ﬂnt:'lq‘ :1!""31__11 III-]-] £ LEI]_I""TE} & ﬂ-[rl 1111"‘"
¥ t :u] is a derived rule. By the preceeding raragraph this rule is
just the rule ’1*"";;=LE71""‘T;:'EE , Where n_ is IJ &ﬂi

8|
when jq-.J and I.J im Ij E-ﬂj";.;rlh :1....31_1'. :1_1} when jEJ. BY
lemma 4 of '&1.? if we extend the premise of this rule by inserting the
clause x, Eﬂj after the clausts, whenever 4&J then the nev rule ia
atill derivable. If we call this extended premise Q then the rule

31 I-Erl.“.rnfﬁiﬂ is & derived rule.

Sipee § is a context axtending the context r.lr;ﬂl....:neﬂn and

using lemma & of §1.7 we deduce that §i L{:l....in}f:-ﬂ i a derived nllt
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How QiL{;1,.¢.jnJl=ﬂ and Q:L[xl."m‘}-&ﬂ are diatinet
Bince we have assumed J to be non empty. In the informal eyntax
both these rules become Q:L{:h....::l Jel.

(o
Hence informally the ruls q-L{:ji....erJEﬂ is ambiguous.

Finally we show that the condition of implicit cccurence is mot
sufficient to assure that ambiguities do not ariss when variables are

omitted.

Coneider the following theory:

Symbol Intrnhﬂtnrz Bule

4 A is g type.

B For x €A:B(x) is & type.

'+ For x€ A, for yeB(x):Clx,y) ia a type.

D For rEBII'lJ, for I'E:Gfili:}:m?.i‘}ﬁut&gg_
2y I1E As

a, I.EE.I--

Axioms.

E{‘l}::ﬂ[‘f}-

See that in this theory the rules JEB{:.l:HE[-U;.r} is a type

and J'EE{II'JIG{IE*FJ is a type are both derivable.

The theory might be rewritten informally by introducing the sy=bol
C by the rule for xe4A, for YE€Bix):C(y) in & type, clearly the
condition of implicit sesurence is respected. Hovever the two rules

rEEEulhﬂ[a]:r] ia a type and :EEE-:L}:G{'E,:? is & type are rewritten

48 the ruls J"EMH-L}:.::(” is & type in this loformal syntax.
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Thus though the conditiom of implicit occurence ia respected uuhiguitﬁz

gtill arises.

We have iscluded the aysbol D in the theory o illustrate that
ap asbiguous ruls in a theory easily leads to an ambiguous theory.
Informally the mymbol D is mow introduced by the rule for IEE{I.L]', for €
cly):D(y,2) is a type; the formal theory can &o longer be recovered from
its informal presentation since this presentation pould equally, well be the
informal presentation of the theory that differs from the given thaory
in that the symbol D is introduced by the rule

for 3-:13"..-.1}. for nEE{nE.:.r}:D{;.t]' ia & type.
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1.0 Hodels and Homomorphisms

de neglact the formal definiticns of fodel and
homomorphism. It should be gquite glear whet wea mean by model, We
have a few words to 84y abeut hemomorphiszms but fipgt we wish tao
develop some notations which relate to the matter byt are actually

of sore importance ig the pext chapter.

#e begin rather distantly with trees. The theory of trees was
given in%1.2 but from now on we want all our trees to be treem with
8 unique least slement, If we COme across a tree which does not have
& unigue least element then we quickly adjoin a new elsment 1 beneath
all the cther slezents, If O is o tree and if A is a node of the
tree  then we say that AEE, so confusing the tree with its met of
nodes. If we wish to assert that B is a node of the tree B ang that B
succeeds A then we Just say that AQB i © + The least node of & in alwa;
dencted 1. Thus if A 1n any node of the tree © distinct from 1 then
there exists a unique n3o, there exists uniquely "1"'"'“'4: such

that lﬁﬂlﬂil... .LnﬂA in B,

#e are interested in trees because for any thunr—;_ U, the sat
of contexts of 7 is structured as a tras, The least elenent of
the tree is the empty comtext {3 ., For any n 31 the predecessar

af the node (:11\': ﬂl"'"’ne‘ﬂn} is the node {:Ill.‘.'gﬂ.lu..xn_lé ﬂn-lt-}'

We wvieh to identify large tree of sets, families of meta,
families of families of sets and 80 on. It locks 88 if v should call
it the family tree. But we won't. Anyway it im first necegsary to

coneider the notation that va use for fa=iliass.
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tf A is & set and if for every element a&ai, Bla) is a set, (:
then the corresponding A-indexed family of sets is denoted |
\aCh.Bla) or just ss Aa.Bla). Mow suppose that in this situation
ve also have a set Cla,b) for every a€A and for svery bEBla). Now
if a ie an element of A then Ape Bia).C{a,b) is a Bla) indexed family
of seta. Thus Aach.A be Bla)eCla,b) 1z an A-indexed family of
families of setE. We can coptinue in this way. The whale collesction
of sets, fasilies of eet, families uf- families of sets and so on 1B
structured as a (large) tree. We call it the tres of families. The
pext thing te do im to turn the notation about. I Jll is a et and
if '“'E iz an Al-i.ud-nd family of sets then we write ﬁE{ali for the valus
of the family at an element -1'E lLl. we do the same for families of
fanilies and =0 on. In general if 144,49 h?..fdhnd A in the tree of
families then for any m €A, ,ee. for any & & "n{'l"”‘n-ﬂ* Alages-sa ]

is & &&t.

Lastly we wish to be pracise about the term operator. If
1*-'11.1.-.:11“&1 in the tree of families and if Jor any "'I.E""l""
!hrm .IIE nnt-.I.‘l--ﬁ_n_l]. f‘.ﬂ.li-il.ﬂ.n} = I:I.L.I,.l‘| |||.ﬂn] then wa say that

hﬁ&ﬂl-..l&n& An.flul....nﬂ} is an operator at A Thuu for any node
L of the tres of families there is a set of operators at A. If we
turn the notation about then we alenys wrikts g{ul....nnfl for the
value of the operator g at arguments &,,...8,« Ifl= "LL'” Aﬂ-ﬂﬂ
in the tree of families, if g {s an operator at A then the status of
the cperator g is given by the rule for every 11& "'11'“‘ for evary
I-D'E-I!l-ntllq-tiln_lji E{..l.-r-ln.:lé l‘-tﬂ.li--iln]- For !Implﬂ it E
ia a real 1ive category then id is an operator whose status is given
by for every a€ | C | » i.d{ulf:linm';{n.a}i Alternively id is an (

aperator at Aae) Ci i-“l:l-ﬂ:ilq.l:' %
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Now we return ta tpe juestion of models of a theory. In the
firet place it ig the. derived rules of a thesry that are interpretsd
in & model, not the txpressions. If U is a theory with sodel M and ifr

R is a derived Teruls of the theory, say X, € i 1reeeX € i "

Nia a type
If we let Bj be the rulg ".'.Eﬂl"”xi-l E'&'i-l v whenever 1 £314%7 '

,-f[ 3 18 a type
Lt the ioterpretation of a ruls within the model M is written as that
o
rule superscripted bym. Thes Rl is a set, Ean ia an Rln— indexed
family of sets and in general 14 le-l.‘- EE'.,.dﬂn“-n H'in the tree of

famil ies,

Further if R, 18 a derived rule of | of the form xleﬂl,...:n-:- ﬂ.t
t e

then the interpretation Ht of the rule H by the model M ia an

operator at HT .

We note that if M and H' are both models of U and if #: M—34" 15 &
hemomorphism then for every derived rule § of U of the form

x -E.E‘.l..-ht Eﬂn there is an operator fr, whose status is given

.ﬂl.,ia & typa
by for &, €R.%,...for s €R {.l....n 1}s for a€&R™(a,, a_l,
falag e i) € R‘f{rk (8)yeeaty (agyenna )yt “‘1""' al). It
e required that for all derived rules By of the form x ¢ ﬂl..i.xne ﬂn

t &4

it is the case that for al1 ﬁEHl vees for all a g R {u.l.".a noy?l e

f {!]-.-li-l.-n. F {I.l‘p.-l :l.] = H {f {.-.}l"'fﬂf,, II..-..I :l.:'- In
fact 1f thia condition bolds for all F'f.':],. .xn}. F an operator oymbal )

thes it will held for all t. The enly requiresent of a homomorphies that



1.48

might appear unusual iz the reguiresent that whenever X, Eﬂi....#ﬂ&ﬂ,n is
A-N €

a derived rule of U then fEl:fH' whare R is the rule :rll-'.ﬂl,...:neﬂn

ﬂ is a type

ﬂ,'.ld wWhere, Hl’ LF the rule :lEﬁqu-lan ﬂn .

&.‘ ig a typs

In the definitien of homomorphiss we just ask for & family AL
fuu:t symbols of 'Ln;..i'._ of cperaters of the correct status and then
define the T by jnductien { im this notatlon £, troductory rule
ol L™ :’L}. And we reguire jost that the two conditions mentioned
above are satisfied by the f_.

wWith homomorpbism &0 jefined the motion reduced ko the ususl
madal thecratic nstica inm the special case of the universal r.tnnd.itinn@.

theories expressed as generalised slgebraic as in B1.3.
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1.10 A& Short list of theories

e list some gereralised algebraic theories and Pay particular

attentiocn o the mort structures.

Firstly, extending tha theory of categories by operator eymbols
and axions alone (thus there are no additional sort symbols) are the
theories of categories with finite pradﬁctn. cartesian closed
cAtegories, categories with finite coproducts, moncidal categories,
closed categories, additive categories, U -categories for a Eiven
algebraic theary U, groupeide, preorders, partial orders, lattices and
=onsds. Extending the theary of eategories by Just the equality predicats
for morphisns, new operator symbols and new axicms are Lhe thearies af
categories with &qual isera of pairs, categories with finite lizits, mbalian

categories mnd topol,

Extending the theory of functors by just cperator aymbole and
axioms are the theories of natural transformations, adjoint pairs
and equivalences. In more diverse sort structures we have the theariea
of n-categories for fixed n, multicategoriea, category valued presheaves
on an artitrary tategory, category wvalued Presheaves on a given Category.
The theory of hyperdoctrines extends the theory of categery valued
pre=zheaves by cperator symbols and axioms alone. Later we shall coms
across the theory of contextual categories, a theory which extenda the

theory of trees.
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The notion of an interpretation of one generalised algebraic theory in
ancther is defined in such a way that there is a category of
generalised algebraic thsories and interpretations. It is worth ooting
of the definition that the inductiom that cccurs is cn the expressions

af a laoguage ratbher than on the derived rules and that as such the constr-

uetien ia very simple.

The alphsbet in which a theory U is written we denote Ay,.

We assume throughout some fixed epumeration 'l" ‘E' T?”... af
the et V of variables., We do this becaumse =ymbela Lt.ﬁ.u are poing to
be interpreted by expressions I(L) of a theory U'. We will wish to
koow which free varilables in the expression I(L} :nrr;apnn.d. to which { /
argusent pleces associsted with L. The simplest way this can be dose is
to apsume the anumeratisn of V and then chese I(L] sueh that ¥

1
corresponds to the first argument place of L, v to the =econd and so on.

We first define the notion of & preinterpretation and then go on to

eventually define anm interpretation to be a well fnrned-pruinturprttatim.
Definitions

A Preinterpretation I of the theory U in the theory U' conaists just

of a function I: h“——}&prtuiuns of U'.

If I is a preinterpretaticn of U in U" then define the function I'{'
Expressions of J——> Expressions of U' by induction (see the inductive

definition of expression in §1.6) with the following clauses:
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1. If x&V the I(x) = x.
2, IfLEA thes I{L) - (1),
1, If LE "'u and '1.--. §, are expressions then

(L% venne)) = WL 0] v,nidte ) 1w T,

If I is & preinterpretation of U in U' then define a functicn I:

Rules of U———>Rules af 0' by:

la fllil'ie &lll-.:ﬂﬁ Eﬂ) <l :leil:nl]".':ﬂEi[ﬁnj
\ A im & type I(A) ia a type
Ca = Ilei{ﬂljilllxuﬂi{ﬂn] -

e e 1(4)

i3

Lxle ﬂl.."xneﬂ
t e\

A =4 I(A) = I(AY)

= % ellfl..x elth) .

Je i ( HE'ﬂ l“"tnE'ﬁn) = KlE i{ﬂl:liilixn&i{ﬂn} -

by 2 (xleﬁl....zn&ﬂ

tat'e S\ Iiti=fttr) et Q)

An interpretation I of U in U' i a preinterpretation I of U in
U' such that for all introductory rules and axioms r of U, I(r) is

a derived rule of U'.

If I is an interpretation of U in U' then for any derived rule
r of Fy, Ilr/ is a derived rule of U', We prove thie after proving a

preliminary lemsa,

Lemma 1. If I is a preinterpretation of U ia U' and if ¢ and d}_"'“dm

aire expressions of j'l..l then
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ite LA L gyreendgiy]) = tled [ e )| yy0enadtad | v 1 {

Froofs. By induction oo the lergth of the expression e.

e

=
(=]
—
'
i

2 €V then, if x = ¥, for some i, 1€1i4m, then

L.H.G = i{;ij = R.H,S., othervisge L.H.5. = x = R.H.5.
El If & = LEiu. then LnH.E- = I{_L] = R.H:5.

3, Ife= L':ul....-n} for some L €A, and for some expresaions
eyaeent, of Ay then i{u[dli Tpreeedy | ¥, )=
Tinte L dy | ypaeeedy by, ] weeee Ly \ ;1,..*15-! 10 =
1wy [ e, Ly Lagaeeedy i 7] 3\ ¥y enadtey Ty Lyyeeesd, ERMIR P
By the inductive hypothesis i(eit_dli 31.;..d!1 ’uj ) o=
i(ui}ii{ﬂliljl....iidm} |y, tense q
e L) Vyyveeedyly 1) = 1) [ e L T{dl}\:l....i{dm}lymjl TR
ice ) [ Eleg) | I (IR B | %] = m,;Li{uljl.vl....tnenmlvn]
[itdl}lyl,...iumngn] = T(Lley,eeee I (CH] PR {CIR LA
” ita]Ei[dll|rl....i{dn}I 3] « Ae required.

lemma 2. If I is an interpretation of U in U' then for every

derived rule r of U, T(r) is a derived rule of U'.

Froaf. We wish te show that all derived rulea r of U have the

property thnmfirj is derivable. We are given that the axioms have tnis
property so it suffices to show that the principles of derivaticn
transmit the property. Thet is we should check that gach principle

of derivation when applied to rules with the property yields a rule
with the property. Principles LI1,-7., Tl. and CFl. are incredibly

sasy to check. The prinziple cF2{h) is similar to the principle cF2la)
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and alse primciple 517, is similar to principle SIZ.. In view

of this we just ¢heck CF2{a). and 2Iz,

CFa2(a). Suppose that A is a sort symbol of U introduced by the

rule ’1*51""".:"" .ﬂn v and that for each i, 1§14,

Mxl,...:n} is a type

Ilenl“"‘?n&nm is a derived rule of U, Alse suppose that
t, el i U:""l""‘i-l )543

IIEHI""I:‘ﬂn )1: a derivedrule of U', We wish to show

tied, Lt s LEECLINO C R

that i ( I"IEH 1"""3:1'5-[1:: )in & derived rule of t*,

utl,...tnl is a type

fince I is an interpretatien, I (introductery rule fer 4) is a

derived rule of 0", That is xE i{ﬂlﬁ,...unﬁ_f{ﬂ n-} ie & derived

if.ﬂ.f:l'l.---.:cnl:l is a type

rule of U’,

By Leama 1., ﬂ( rlEﬂ1+a--rmEﬂﬂ
I
tiE. ﬂittll :1‘111-'-1_11 :1—1]

= rlﬂ- j{ﬂl'}'.-'rﬂai{ﬂﬂ}

fepeicay Cice)| B aenadlt) | x ]

Thia rule im a derived rule for each 1,1 i<n, Hence by the substitution

lemma the rule 1€ i{ﬂk}._.-..:r‘E i[ﬂ.u} is @ derived rule of U

im:l,*..:nn [, ) X aanadle | x 1
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But -Il'.ﬁ{xl....:n}il = lir':.:ll._.xlll '1""“;11 v“1 y hence E
T CRIn DL < R TS R B BEE (A R IC I TN v ]

] i{a{tl..-.tﬂ}}‘ Eﬂ i h.ﬂ."' lhm t-hﬂ.t 35
i

yi6 il seeergedly )

.ﬂ.{tl..“tn} is a type

im a derived rule of U', a= TLI]_E_;"]_P...JME_-,:I_E j is by delinition

Al .tn} is a type

11".

3'1';; i{ﬂ'j‘lI!!Imh i':.n.’j

i‘.-:lttl-'tl -tl.'l.:l} is a t}]]-

412, Suppose that ullE ﬂ'l""‘ui ﬂn ig & derived rule of U
=t el
pad that for ssch 1,14 i4m, Jléﬂlu--;fme_ﬂn iz &
tg=ei €8, L] Impaenetyfy g ] C

M
derived rule of U, GSuppose that I applied to sach of the rules yields &

derivabla rule of U'.

By definitiom T\‘le'ﬂli'":n&ﬂn] x) €18, )seeex & I0A D
b=t EL i(e) = Bt eIl

this latter rule then is s derived rule of U'.

By definition and Lemma 1., a(*'lﬁﬂp-“l’meﬂm

ty=tiel Ly ey panatyly | TRE

= Il'E Itﬂljllllr-e I{I}HHJ = This Lﬂ,ttﬂr nll

tee,) = Beepe T8 P Deefd bageaattey 2 ) ]

is derivable for each i,l€i<m. {
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Hence using principle SI2,(wrt.U'), the rule

_?IEI{EL J'.---J" Eitﬂ ]

Tied Uice Hul,...:nt Nxd = Iten Lil{t'} 111....Ift 11:] € AT

I':ti:"l xl....I'[t;.] i xn_l ie a derived rule of 0, By definition
and lenma 1, this last rule is juast

£ [tllx]..-.tniln] =t [‘i ixl,...t.: lx e ALt 1:1....1:“:&])

A8 required, this rule ve have shown to be derivableinU',

If U,U" and U" are theories and I iz a preinterpretation of U in U
and I'is s preinterpretation of U' 4n U* then define I'ol to be the
preinterpretation of U in U" given by (I'ol){L) = I'(I(L)), for all LEA
On the way to showlng that theras is 8 category of gensralised algebraic

theories aad interpretations we pesd the following lenma and corollaries.

Lesma 3, If I and I' are as above then for any expression e of A4,
(I'oI}{e) =1'(i(e)).

Froof, By induection on the length of e.
X If = x &V then H'-uL'I{u-} = x = I'¢Ite)).
2 Ife L&A, then (I'eI)(L) w (I'eI)(L) = TH(I(L)) = §'(F (L),
i 8 IT o = L{il....u ) then {I* uIH-} = {I‘nl‘]li[.fl[['.r'nl.'lh |v1.

...LI'nIHu v ] = Iz o t:l:e 0 L1 IR, 11 (ICe )) | fnl
by the inductive hypothesis, = I'(I(L)[ Ihl.'ll vl....i{anf‘l "'n1

by lemma 1, = ."I'.'{f{l-tnl.”.en};l = i'[i[i.i.].,. a5 required.
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Corollary % If I an I' are as above then for any derived rule r ﬂf(

i . Y
(I'oli{r) = I"{I(r)i.

Corollary 5 If I is anioterpretation of U in " and I'" in &an

intarpretatian af U' in UM then Iel' is an interpretetiom of U in LY,

¥o need some identity morphisms. . If U is a theory define a

preinterpretation id,, of 0 in U by:

1. If A is a sort syszbol of U introduced by ::1&&1,,...1“& ﬁn .

ﬂlixl.,,...:r:n.'l is B type

then define 14 (A) = Alyjyeea¥ ).

2a If f 48 an operator symbol of U introduced by xlEﬂli.--:“E&{

E'htl ;|--|+a-xn] -] ﬁ

then defins i.d“{l']' = r{vl....fn}.

idu is a preinterpretation of U in U which is quickly seen Lo
have the property that for all expressions e of Ay ihulel E e
L
Thus it has the property that for all rules r of U, idylr) = r.
Hence id“ iz an interpretation.
It is now clear that there is a categery of generalised algebraic

theories and interpretations.

Any interpretation I:Ul—>T' induces a functor between the
categories of slgetras, denoted I:mlg: U'-alg—>U-alg. Any funct{

equivalent to l-alg, for some I, is said to be generalised slgebraic.
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Exasples
1. If the theory U is ineluded in the theory U", that is if svery

introductory rule and axiom of U is & derived rule of the theary U°,
then there is a ¢anonical interpretation of U in U'., The

correspanding algebraic functor for U'-alg to U-alg is usually

called a forgetful functar.

2« If C and D are categories and Fil—>D is a functor then there
ie an interpretation IF of the theory of categary valued
presheaves on C ints the theory of category valued preshesaves on D.
The ipduced generalised algebraic functor is the functor E&E?z

=r <
cat? — >outf

*» The functor which takes an adjeint pair to the monad induced by
that adjoint pair is generalised algebraic. It is induced by
an interpretaticn of the theory of nonads in the theory of adjolnt

paire.

4. The functor which takes a category valued presheaf on an
arbitrary category to tiRtotal category of its fibration is
gensralised algebraic. However it is not induced by an interpretation
of the theory of categories into the theary of category walued
presneaves, as such. Hather it is induced by an interpretation
ipto the theory of category valued presheaves extended by
sygbols for disjoiat uniona (one for objects, one for morphiass),
The extension aof a thesry by symbole for disjoint unions is

discussed in 51.2.
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1.12 Contexts aad Hemlisatlioos

Definition If <melqgseeex ey and {ryellyae-y e Q>
are cootexts of a thesry U then arealisation of
{yyeflyeeeeype > wrt {zl-; FA PR - A,> is an m-tuple

{'tl,...t.m'} such that for each i,1£j<m, r-Ln:'-:ﬂl.-uanﬂn

.
tj 'Eﬂj Etl 1311--.1:.1'1 i ll'j_l o

is a derived ruls of U.

If U 15 a generalised algebraic theory then there is a category
B(U} of contexts and reslisations of U, Ia Rril},
yreant ) {:lr.'—_L'&l.”.'.rnﬁﬂn}%-(':rlﬁﬂltn-?mﬁﬂm':’ L1
L tyy--etyd Qs a realisatics of { fleﬂlu--armé .'l-?.m} wri
{ﬁeﬂl....:neﬂn} . The identity morphism on an object ﬁ |
{Heﬂl....:neﬂn} of RV} im the realisation {Il,,..:n‘; af
{ﬁﬁﬂ-lu--ln&ﬂn} wrt {!‘-l_l.'; ﬁlunxng;_._ﬂn} « Composition in R{WA
is defined by {tl,...tm‘:v u{al....si} =

{E‘IE t-ll ?lriiltm' ]'__I] gunad [ tll Il|nv+t=| Iﬂ] } ¥ whenaver

{tl,...tm‘} :{xleﬁ l,...:neﬂ ;)—-—1{:1&_.."]_1,...%5:]1? and

*':517--1- .1."} T-{:IIEH 1" "FMEﬂm"}dd‘r;lE ﬁll--tiiﬁﬂq} in J_R ui.

The set of objecta of R{U), ie the set of contexts af U, L&
structured as & tree with least element {7 (the sxpty context) and with
{11'& ﬂlu..:naﬁn'} , Yo, precesdad by -Cf::l:lﬁ ﬂ":l."""n—lﬁ ﬂ."_l"} .
Far any n.,m 3o and for any contaext
-t:!'-.Lfl ﬂl- H'r:nE.ﬂL n*“mlﬁ'ﬂu-l"”“n*me‘ﬂnm} of U, {:u:l.,....:ln.'} 15(
a realisation of {H-L'E ﬂl.u-InE. ﬂn‘} wrt {”'_LE ﬂl""‘nme'ﬂ'mm} .
This map, & #pyeee% 7 L% E‘ﬂl""lnt::Fﬂ‘nwn‘} 3




1.59

{ﬁeﬁl.-uzneﬂn'} in B(U), is dencted pll{:t]eﬂl....:n“e S
{xe ﬂ-l.---ﬂneﬂ“} Jo Thus for any A,B € R(U) such that A% B, the

morphism F(B,A) is defined andg plBsA): B—=»4 in RIU}.

Ir A= e .
{H.Eﬂ‘l IDElﬂﬂ} . A = {Ilej}-l'***FmERm}' iE
B e Q:rl Eﬂll"-"rm_‘_‘ﬁﬂmql} and if f = {tll‘-.tﬂl\} iﬂ 8 realisatien

of {J’leﬂ.lm---rngﬂm'} wrt {nlﬁﬂl....rﬂgﬂ a2 v (in which case

B

i ELTE

H__r—qlﬂ'r

in BIW ) then

i fa 5l SR

F B
PLF*B,RY l pLe. Al
ﬂ'_—T——'hrT

is & pullback diagram in F Je

¥hers "8 = (ilﬁ'ﬂ}_"”xnaﬂu"yml&ﬂm-litlll'?l""tmllTml'r..-

-"quﬂn+|[tl1 Yyseenty |y > and qif,8) = {t.l....-t“.j

m-tl"":rq-t{}
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1.13 Intended identity of denotation

C

we define an equivalence relation on the derived T and &-rules of
a treory U which we call the eguivalence relation of intended identity
of denotation. The idea is that if r= ' by this relation then any
kigd of model of U should isterprst r and r° as fdentical objects.
Semantically, we should nat distinguish between the rule

;-r_leb..l..“unﬁ,ﬂ.n and the rule x, '€ f_"n.l.”-:l:n‘ﬁﬂn[xl'] 111-..::”;}‘1;11“1

[\ is a type ﬂ[kl' \ r__l,...::n" |:n] is a type

becpuse the two rules osly differ by the choice of variablea. HNeither

ghould we distinguisk between X, E ﬂl...-:niﬂn and ‘K__LEﬂ.i-.-u:nE ﬂ;l

A iz a type A' is a type

if for each i,1$ 18 m, Il"-‘&l""ii.-l"-“ .:5..1_1 is a derived rule and
Ay = O .E‘
"‘1‘5&1"‘ -x g fl, is a derived rule.

H= KX

The relaticn = , of intended identity of denctatiom, ism defined

betwasn T-rules of a theory U by :.L-n':ﬂ l.u.:n-.-; II"_"nLrll :rl{: J."]:l.---:lrme_'nln

E"n*l is a type ‘11 me 138 type

iff n = @ and for each i,1% i{a+l, "15-&1""“1-15‘& i-1 st

A i = 'ﬂ'i[ 11l 31“":;‘,-1"' yi-l]

derived rula of U.

5
-
i

is a equivalence relaticnm.

1. Reflexiveness follows [rom the principle of derivation LIl.
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2. Symmetry, Suppese that X & ﬂl....xnsﬂn ) eflyrenergell

E"n-pl is & type Slp.y 15 & type
we prove by induction on 4 that for all dylfif e,

FEIL LT ra E._:':]'.
2 4 i~1 -1 iz derivatble,

fly=0;Ln) Ty %5,

If £ =1 then certainly _ﬂ_L - ﬂ'l is derivable since ,I'_!'|.1 = .;L1 is.

Now Lf 431 and if for e11 3, 1§ §<1, 3151'11....:.'.1"15_71__]_1

.n.J = ﬂ.jt'rl l kll"'rj‘_l ' xj_]_]

is derivable; then for all such 3 ¥y Eﬂl"""_‘]-léﬂj—l' ij-Qj

1"_-] E&i[:l"ll "'11-"'.7_1_1 ixj-l]

is derivable. Hence for all such 1 3¢ ﬂl"'"'rf-le-:li-l

TyE ﬂj[flllx_l"”:'rj-l | :_‘]-11

is derivable. Since X E 4 Rl P}~ 'ﬂ'-i-l is derivable,

‘j'i ‘J-li[xll I]"”Ii-ll' I:L—.'I.]

by the substituticn lesma so is nedlyey jedl,

ﬂ.ii 31|' HJ--~-J'1,1| :_{'_1] ".”. i
(because Nyl | Ypreeexg g 1oy 370 9, | Xpeeee¥g g 1% =010

Hence :.rle_ﬂ_l....ri_l E-ﬂ-i-l ' is derivable as required, It

g =0,0nl eeas¥ial %57

follows by induetion that ¥ € _ﬂ_l....rneﬂ_ "

Sk

is a typs

qelvex el
ﬁn-&

wil 1= a type
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3, Transitivity, assume that x €0 ... el nellyeereld,
ﬂﬂfl is a type ) -ﬂ-' m+1 is & type
and that yleﬂl,...;mgﬂm _ He ﬂl,...zleﬂq .
ﬂr..-+1. is 8 type - Agey 1= 8 type

Euppome 1 4% i% o+l. We have sesn gbove that for each jJ,1 %] < i

nli ﬂ 1""11-1& 'ﬂ i=1 ip = derived rule of U. From tha

1:'&-‘11[:1‘ Ill""qui :r,j-]..l

substitution lemma and y € fl .00y 6 £l gl it follows that

ﬂi = hi[ :I']_ lﬁli*"ﬁri_lll E:i_l-_l

el vy jellyy

Ayl bagesoen U307 =ADoy e, 2501 Dol apeeeai gV 45

iz a deprived rule. That is e ) greesks 7 i=1

J“tir—"’lh FiareFygl ¥i1) =A0x) “1“""1-4.“3;

is a darived rule. GSince .’ﬂ'.LE ﬂ 1 'Ii-lé .ﬂ i=1

fiy = ﬂit":." FyrereXs g | :"1-1]

is a derived rule it follows thak "le'ﬂ'l""zi-le "j'.tvl . is &

Ay =Nglxy lzprex gyl 2]
derived rule. 3Since this is the case for each i,l% i £a+l, it follows that

l:lallf""‘1""""":1:|.r‘."'ﬂ"n. o Eléﬂl""zfih'i‘ . Which completes the proof

-I'lm.] is a type ﬂ'ﬂi—l is a type

that = is a equivalence relation.

The equivalence relation = on T-rules can bs used to define an

equivalence relation on contexts - simply by
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{xIEﬁI.‘--HHEEH} ; ﬂfl-‘..:lll"‘smﬁﬂm} "'rf xléﬂll*"xn-lfﬂn_l

| gn iE a type

31&‘!1 ]_1'"3',.,__1Eﬂ,_1 - 'We define the equivalence relation =
£ o i5 B type

—

of intended identity of denctation en € -rules of a theory U by

Kleﬂll"':ﬂEﬂﬂ _-:r J'l Ejllq.li.,]':e_}.lm iffr lléﬂl*-'-kn-c-_..ﬂn

—_—
-
-

e & £} 5 el i 18 a type
r‘rl&"rll'“':mﬁ':ln and Iléﬂl""kn'&ﬂn is a derived rule
JL is a type E=S0R | Fyaeax, (3, ]

‘ of 0. That = is an equivalence relation oo € =rules of U i= 3

consequence of the fallewing:

Lessa 2, If {ﬁ&ﬂl,--tlnﬁﬂn} and £y edlyaeney efl_ > are
contexts of U and {I’I:LE FllirrtInEﬂn‘:l' = & ]"1E_§11,ttv1m&:-1m.} then for

all derived rules of U of the form .‘rlf_'-.r'l l.--.rmr:_jlm 3 the rule

Conclusion
tlr‘ﬂl'"'xne'ﬂn ) is a derived rule of U.
Conclusion [ 1.-1] ¥paeeax | 3'1-,-]
Praaf. For each 1,1¢ i<n, "15“:"1""”1-1’5’5-1-1 is &

-I.'l.ll-i = j‘?_lEI: ! :lrll'*':i_l | :'r:_l]

derived rule of U thus, by the subatitution lesma, =0 is

11*&1*"":”“5&5 « &Since for each 1,15icgn 3

Ay =fli0=1 Fyveen®i gl 7441

11 el 1'”'In'Eﬂln is a derived rule of U then so is

e,
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;‘E_EJII'IIII 1.---!nr=ﬂ.n . Now by the substitutioo lemma, since

xefl Ll e 130,]

11'5‘&1"'"1:1"“& o is & derived ruls, l<i<pn, and since

S

el Lyl ygeeea®y o1 75,1

71 E-n-l""yn"*-'-:ln i5 a derived ruls then =o is H_L.:-ﬂl,---.tne.ﬂln

—

Conclusicn Canelusion [:rl i FyweeaX | "'-:-.‘.l

Corollary = im an equivalence relaticn on the derived E-rules of U.

Froafl.

1. Reflaxivensss follews from principle of derivation LI.Z.
2. Syrrmetry. Suppose that x, & A prrer ¥ & il B o~ 1€ i Gt L Il

te A 8 &fL

Then { x, & [y l""xnﬁﬂn} = ylgﬂl....yng_ﬂ o> 50 by lemsa 2,

rlc"ﬂl""?n%ﬂn is a derived rule of T,

tE,]n'1 [ X aved | :n'_] = 5'Eﬂ.[.‘|’1| CRLARE :n]

By wellformedness, since jleﬂl""rué‘ﬂ‘n and :‘rl'*‘l“ll"“rn**-'l-n

5 &Sl 5 € Ay | nyaeenyy 15,1

are derived rules of U =0 is :rlg_.”..,ltn-!ne J‘n g

L= AL T11 Ry gooely | :n}
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Thus T e j}_l,.":.rnt__n_n is a derived rule of U and

5at(y T AR jedL

b E-ﬂl" e¥pedl

= Medgpreemedy
5 & jL t &)

3. Transitivity. Surpsse that Ilni;ﬂl,...:ﬂt&ﬂu = Hlt:.i]'.l....rnﬁ_lln

=
—

R TAN & L

and #I'E'--JIJI""IEEJIE
3 & Sl rel\
{.ﬁ_f &-1|-¢-3nf.-ﬂn} = {-Fl-ﬂ-‘rlll-'vfnﬁﬂl.n'} and

Elehljlll.ﬁnéﬂn - inan

nl

Tiedlyaeeeredl, is & derived rule of U thus by lerma 2,

5= rL';.rl} 2geeeey | 2 ]2 AL

KIE |ﬂ|_ 1.-*11{“,5_"'_1 a

B - 1

e .1"1\----"';! o) =riy lnaeex 1z e SLUx | apeeeex 7]

a derived rule of U. Since we alas have that xleﬂlu..:nﬁ-ﬂn

t = 5[111 j'l;lt-::n'lrn-ll'hﬂ

is a derived rule of U we can gonclude that sa to ias

"lE'ﬂ'l"":nEﬂn » Thus .tlgﬂ.l....i:n;.ﬂ,n uzlsjll.-,-angﬂ

t=r[:11=1uu1n'|=,,1:;ﬂ t & A re )

We define an equivalence relation = on realisxationa of U as follows.

It 'l'..tl....tm} is a realisation of ¢ Ty .,;.__[]l“..jn;ﬂ n‘:"

wrt {:faﬂl_.“xned n} and if {ti....l:l;l} is & realisation of

‘;H{-T_J"Li....rr;e Sy > wrt {\_xi&ﬂ._[....:;.; LA!% then {Byreant 5 =
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'{- t{.rlqt;:ﬂ iff {:jlﬂ_ﬂ_l,u-j’-ﬁ.ﬂl} E {. I-I'E ;..l""y:n*ﬂé } and

for each §, 1€ i¢m, med el

i

EJE ﬂj[tll !lil--tj_l 1Jj_1]

1EJ1]:I”.II;E£1|TI

Lemma 3. Lf {tl,...tm'} is & realisationm of {7, E'_-..ﬂ.l-u-!:riﬂm:'
L
wrt {:11:.1':"-1,...::‘5,&“} and if {ti.,....tm » is a realisation af

Lyjesliveemygefl o> vt (yedjsexed ) and if {Eyaeeet D

il

£ t],eently then (1) 4if feflqieeetpgeil, o4 rie.]".'.;_.“.r;a.il,;,

JL is a type 21 is a type

are derived rules of U 8.k, {:rLEJllp---:'mEﬂ"JE_R'} =< Ii-;:_ﬂiq--.
S Lty ten Cxelyiemtge Ay e Al Loty 171> 2

{I{Eﬂi---ﬂ;eﬁ;l-:'EJ}_'[tilri,.-.t;L;;__j . f(14) If

Jl'E-[ll""rmr:ﬂl snd  § E,_';]',:‘Lu..r‘;leﬂz'l are derived rules of
s ¢ 50 & JL
U s.t. 5 Eﬂl,.,.ym,&_{']_ﬂ is a derived rule of U then

s S 0y lsjer il ledl

-ilé_ﬂ.l..-.x .E;ﬂ

STty | Fyaenaty 17y] =8 Lt V¥aeeety b 105 | ®]reempi5n] &

_n_[ t.lﬁ Fl""‘m | 3‘] is a derived rule of (.

Proaf Since {tl,."tm‘) = {ti,...t;}. for each j, 1% j<m,

0 €0y kel o eDfienre Dy :

e S — T,

tyedly Ly Lygeeeetyn) ¥5) tie 1) el ypueeety 11751
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That is far sach Jl€ism, ::1 = ﬂl" n-lni': "ﬂn
I-J = tal Lx:. | :i'i--:n [I::.][:ﬂj E_tllb'.?-t-
£l -“'3-11 is a derived rule of U. New (i) fallows immediately by

use of prisciple of derivation 5I1.. {ii) followvs from 5I2. uaing

the fact that S0 [;—1 | :"J".""’- EA 1{ t.i 1:;1 Ix:[*'"zn M 1 ”"1'"'

I O LS IS R N A E IS (R Xueeekilmy I .

_L'.m' I'I'.- {1-] it {tljrrlltm':]‘ is a rtﬂliutiﬂ‘n of {flﬁﬂl*ullrbtﬂm '}
wrt {Ilﬁﬂ'l‘-"lﬂelﬁﬂ:} and if {ﬁﬁﬂl.linxnﬁﬁn} = {I;_E.ﬂ.i|-ll

[esdt T3
el ! and {rlﬁ.,'ll.---rmf_-ﬂl'} = {:iaﬂi.---r;eﬂ.; »[there exists

a realisation {ti,.“t;‘} af {yi&_lz;_""r;t_;l_'__"} wrt {x]'_r;.ﬂl..u

:r:;-&ﬂ:;'} such that {tl,...tl} L, ; ti....t;}.

(is) 1Ir {xleﬂl....xneﬂ prXEd> 1% a context of U and
{ﬁﬂﬂlt---!neﬂ ar =4 XJEAJveeaX) € /11> then thare sxista A' sk,
{-xieﬁi”“xéeﬂéri'f:ﬂ'} is a context and {;Li:—_ﬂl',...x;;:ﬂa,

uleﬁl} = { ﬁ&ﬁl,...lnﬁﬂnlxﬁ'-ﬂ}'

Proof. For (i} take k1= by L= EpeeadX,ly | X, 1] and then use

lemsa 2, Similarly in (ii) take A' = AL Xyveral | x ] and use

lemen 2.

The following lemma follows directly from the 5I2 primciple of

derivation.

Liemma W i
5 Ir {tl,....tml} is & reslisation of {;.'15_[11....3':*1.-_ .

LY
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wrt £ xleﬂli"‘lntlﬂln} 1 {51"'"55} is a realisation of
u]_.-_-_llv.-u!mn-._»'l,'} wrt ":-’1‘: &11'__15,&&“'} and if
{51||'-$u} = '::-t]..‘.l'tﬂ:r th!l‘l {.Slli""sm‘tﬁl} is & fEﬂliEﬂti‘nn ﬂf
-|1+1‘:"' wrt {:!1{:'151*---1“&&“} and {51‘”'Em"tl+1‘? =

L Ne Jlyres ‘Tl+1"L--'H1

Ltyanastyg
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1.14 The Category GAT

He can define an sguivalence relation = on the sat of
interpretations of a theory U in a theory U'. If I mnd J are
two such interpretations then define I T J iff for all

introductory rules R of U, I(R) = J(R) in Uv,

Lemma 1. If I an J are interpretations of U in U* and I = J then

“ A
for all derived T and €-rulea R of U, I(R) = J(H),

Froof. By induction on derivatioms im U. se chesk that

principles Tl, CFl, CF2{a) and (b) preserve the property.

E-I- SEI.FPEIEI th-ﬂ.t 11‘ ﬂ.ljlll:-né ﬂﬂ md ﬂle &lil‘l"xhu -Iln
t €l =N
are derived rules of U and that T(‘l'&ﬂ'l""xn‘: ﬂn =
t &

5 (11:: PPTRE 3 ":I‘:n) .
t el

Then HI'E icﬂ'l]"":n& ﬂﬂn} i8 & derived rule of 1" and since

Ite) = Jivye Lo

I im an interpretation, so is x & A 1]""’%‘""1 (4 ). Thus

A = 3O
x € ilﬂl}.---lnﬁ i'f-"ln} is & derived rule of U'., Aind a=s

Ie) = M) e 1A
{IJ..E" itﬂl}“"xnﬁi{ﬂn}} = {-Ilej[ﬂ'l}'”‘lt‘lgj{&n}'} is the case so

£ e

?‘ (Ilﬁilll|-l!anﬂn] = 3_\31{2&1.---:“&&“1
AN
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CFl Suppose x & &1""'1:'&":'":1

&

ts a derived rule of U and that

il is & type

g |r='14= ﬂl"'*‘n‘:ﬂ_ﬂ _ 3(:1""11"”1“‘-'-’:1"} . Then

I'., ."_"l.n+1 is a type }H A

. I
el ie a type f

{xpe 1A Dyannx, 1€ HO D> S L xedlddierix, 1@ I, )0 and

%y € T(A Dgeanx 3@ TB ) 4o o derdved ruls of U', hence

x =36 I 1l:I' o h

.t I‘]Eﬂ'l""xmle‘ﬁml‘]l - 3 #le'&l""fgul _:'“_"144__:'._ s
x e 0y [ yed ‘

cra{e) (Principle CF2(a) will be eimilar), Suppose that f is

an operator symbol of U intreduced by x, € i qreeeX & ﬂh and

1‘.'{1:1..“:!1'.'-2 AN

suppose that for each 1,1£i<m, ;p'lE_J":_,,....Jm.:_}:-'_m is a

t.'.LE j'hi]l-tl 1 x-11-l-ilti'_11. ::i'.-lj

derived rule of U, Suppose that for each £,1 %1% m,

o
4 |
—= |

. 5 |
v dl Lty mpaeety g “1-1-] !

Tll'rll"iﬁ:l-lw«-fnﬁﬂn II'.

\ege O Loy bxaeeety gl %41

N i |
5 :'r].t"'l'”':'r::"':

Using lemza 1 of 31.10 we see that for emch i,1% 4%,

5 e 1(0 ]:'.....:,rHE fﬂ..ﬁ.ml

e de BOA D TI0) 1xypenalty )] g

:lrlelj.':ﬂ 1:||tll.:l'm~'.:_ J'{ﬂl_lll.m]'

. flos, sinee T 2 J,

Je e d (A DT Ie) |2y yeeadlty 401 x ]
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x, E iiﬂll,."an Iin n] x, & KA 1}....:“ tﬂ'iﬂn} +« In particular

Il:ml,...un}:-e Ith) J{IEIl,...xIJ]'E J(A)

CHoty Y-t (e D 1aa realioniion of Crelhy)m et )

wt (3¢ i{nlj,...;m;i{ﬂu}} 2 ﬁ{tll,...J{th} it a realisation of
<& A nax e 3 DD wre Ly edily)viey € (i1 ana

< e )it )) ¢ dlt)yeund(t )7, Thus by lesma 3 (i) of S1.12,

Tle i[.ﬂ-l]ri--rmﬁ' im'ﬂ:‘

i[r{li..IlI_uJ.:l[,i{tlJ I:lrlttt{tmllln] = jtfiﬁ.-n;lﬂj:[J'{t]:ﬂ.l:l.-..-.

-.ﬂtr_'}!zn'i & Jif ) [.ittlilx_l....iitnblx;:_i is derived rule of U',
Ozing lemma 1 of §1.10, this rule is just

J"l'E i{ﬂ 1:'.-!- lrmE i{ﬂmj

et yeaet )} m JILlt),.unt 2IE f{ﬂﬁ[tllﬁ,...t"{:n] «  Thus

T(Ilﬁﬂlu--—!'mf:.fl. ) - j(riEﬂl""Imﬁﬂm ) :i
et e DLt [ xypeant (=]

fftl....tn}t& AL tpl xpaeeet ixd

Corcllary 2 If I and J are interpretations of U in U' then I = J iff for

all derived E-rules R of U, T(R) = Sig).

Froof. Uss the fact that ﬁEﬂl""an 'ﬂn is a derived rule of

.El:i.a a type

0 iff xlt-ﬂ Jrosek € ﬂn.:uﬁ iz a derived rule of U, Freom

el
% (llﬁﬂl..urnf:ﬂn.:&ﬂ): - xel preseX G ﬂn.xr.;.ll) we can deduce
x el - E = e
that 'E( Ileﬂil""“nf ﬂ n) E& 'llﬁrﬂ preeeX & .'1_1) i
A is & type \ A 18 & type
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Corsllary 3 If 1 and J are interpretations of U in U* and I' and J!

are ioterpretatiocns of U' in " thes I =J and 1I' = J' implies

gl = J'od.

#e denote the catemary ef saneralised algesraic theories and
gquivalence classes af interpretations bY GAT. composition is de#fined

vy [I'] o1l [ 1tell . wWell defined by corcllary 3.
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EEF;F‘TEF! 2 CONTEXTUAL CATELGORIZS

2.1 Al gebraic Semantics

In this chapter we show that there is a generalised algebraic
theory (the theory of contextual categories) whoee categery of models
{the category of contextual categories) is eguivalent to the catsgory
GAT of generalised algebraic theories and equivalence classes of

interpretations.

How do we interpret this result? Well, there ars many ather
sxamples of this very stromg kind of relatisnship holding between an
algebtraic notisn of structurs ard a syntactic potion of theory. The

follewing 1ist is by no means sxhaustives

Syntactic Notion Algebraic Notion Aeference

Fropositiopal Theory

of classical logic. foclean Algekbra.

Propositiesal Theory

of Intuitionistie Lagic. Heyting Algebra:

Single Sorted Algebraic Lawveres Notion of Lawvere Lv/]
or Eguational Theory. an Algebraic Theor].

Equational Theory in the language Cartesian Clessd

of the typed A =calculus. Catagorys Myers Liil

Theary of higher order

Intuitioniatic Logle. Topos. Fourman Lt

Ceharent Theety. Grolhands eck Site. Reyen Crval
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In all these casss there is definable the notion of a model of
a given theory in a given structure. In each cass tha eatagery of
syntactic theories and equivalence clasces af interpretations 1s
equivalent to the eategory of algebraic structures. This last
property is the important characterising property. It can lead to
the view that the theories in syntactic form should be dispensed witkh
entirely and the structurea be given the title of theories.
This seens wasteful. It is to be preferred that we think of the
structures ae providing a semantice for the theories, in faect, the
nost genersl possible sesmantics. =e shall call it the algebraic
ssmantics. Thus contextual categories are to provide us with the al~

peeantica of generalissd algebraic theoriss.

In caze it should be argued that what we have called the algebrai
sasantics is really nopaother than the interpretations of one theory 1
considered as a notion of semantics; well we sore or less agree, thoug
perhaps it is only when such are comsidersd as interpretations into
algebrals atructures that they can be properly said to comnstitute a
notion of semantics. The ioportant point hers,though,is that atruct
do fregquently appear guite independently of theoriea} thus tha notion
of model is certaianly enriched by the isomorphism betwesn theories
and structures because theories which arise first as structures (beinj
defined by something like "the thesry that corresponds to this hera

structure') are usually theories which would not otherwise have occurd
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2s2 Dafinition grd Examples

Definition. A Contextual eategery consiste of

1. A category C with terminal object 1.

2a A tree Btructure on the objegts of C such that the
termical object 1 is the urique least element of the tres.

3 For all A,B Hgl such th;.r. A€4B a morphism p(B):

B—34 in Co This morphism will also be written juet as
B—ba.

L, For ell A\a* €] | , for all fra—3a0 4n Cy for all
B&|C| sush that A'qB, an object f*B of ¢ and a corphiaa
qlryB}: f*B—33 such that A A 1°E and such that the
diagram

LE. B
Fg—————
-—.f____qﬁ"
is a pullback diagram in c.

auch that:

(1) For all ABE|C| such that a4, id,*B = B and
qfid‘:ﬂ} = .iliﬂ.

(11} wheasver

A -—IF——-;.H'-—-P_z, #

*n @ then (ff*)°B = £°(r'"A) and q(fr' B) = qhf,#**Bloglr* 8],
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4e shall see that the cbjects of a contextual category should be
thought of as contexts. Hecall that a context is a sequence
{::Le ﬂ;l*...nue A n} eguch that the rule :::L-E ﬂ 1""':n-1 e ne1 H
fgn iz a type is a derived rule and such that x_ ig a variable distinct
feam aach of Xysmeek . The tree structure oo the set of comtexta of

n=1

& theory in easily &een. For n 31, the predecessor of a context
e Fis prreeX & A > is the context <Klﬁ- ﬂl.-":ﬂ_lrz A a1’

The empty context ¢ » is the unique least glessnt of the tres.

The morphisas of a contextual category ghould be thought of as
reallsations, Hecall that a replisation af a context {:‘rlﬁﬂl" --EEEﬂ -
with respest to the context {xl».:.f'_". 1....::55,&, > is just an m=tuple

£ty,na-t,> such that for each J, 14 j¢{ =, the rule Heﬁl,...xneﬂn :

tefl, Loyl myweests 3 1751)4s a derived rule. Uhisk of the morphiss
fih—»A" in a contextual catagory as being a realisation of the

context A' wrt tha context As

In 51.12 we defined the category RilUJ of contexta and realisations
af & theory U, We could go on and shovw that for any thesry U, the
category R(U} with the pullback structure defimed in 91.12 (actually
wa dafiped more structure than was necesaary) is & contextunl category
But we do not need this constructiocn. Rather wa need the constructicn
of 5 contextupl categary (0] associated with a theory U as part of the
eguivalence batwesn eontertual categories and generaliced algebraic
theories. This eategory LU} i=s a category of equivalence classes of
contexts and equivalence classes of realisations of U. We sball deacribe

in soms detail.

®acall tkat irm 8§1.13 we deliped an equivalence relation = cn

derived T and E€-rules of a theory U. This equivalence relation we call
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the equivelence relation of intended

identity of denotation,
this equivalenes relstion in cefining an equivalence

We usad
contexts and realisations:

relation oan

{-'"-_LE' ﬂl""In E ﬂln} = {J’lE_n. R E_ﬂm
iff “‘1"'!"1*"“:}15 -

I].Eﬂl"..rﬂ-l&ﬂmnl *

Jlu iz a type
€tis---t > im a realisation of <y el

—
-
=

And 4if
rﬂiu a type

1....:,':.5_51‘} wrt (:_'.'llE A
Ay a=nd if CE "yeest 'S is & realisation of

ity
{J’l'E_rll'.-..rn‘E_.'lm'} wrt {ﬁ‘ﬁﬂ"l....:neﬂ'n} then
{l:l,.._r;m N § % veeet "> 45T for each j, %3 £m,
:IE &lilliInEﬂn _ Il"-E E"II'“"III.IE ﬂﬂl
ti€ 0,0y | Tyseanty 1190, I:J‘._t__,"'lj' 108 Ty 'eesat, 4 17,13
The category L(U} is

defined to have as obtjects the equivalence
classes of contexts of U and to have ae sorphisme

the equivalence
c¢lasses of realisatiens af U,

Hare Frecisely if {HEﬂl"":qE'ﬂn}
and {'xleﬂl,...rmgjlh} are contexts of U then define Hom @(Y)
{[{HEﬂliﬁilthdn}J 0 [,": 1 & .ﬂlu'-lrnE'..rlm:lj-}=

{E{tl,“.tm'}] | €ty1eeet_> is & realisation of <nell
wrt ) & ﬂl....:nr;,,gjn’}} .

1."'"‘3mt-‘r2m':
44) of N1,13,

Hom is well defined Just by lessa

Whenever {:tl,“ .tm".:n- is & realimation of {;'1 '-‘-ﬂp'"-“’n'éﬂ & >
and whenever {5

.'L""s'i"} is a realisation wrt {JIE._.’I
then the composition in @(U) of [{'tl""t'u}']

is defined by [<t)40eet>] o (e85, yuragya]

= [¢s; Lty Fyveest |7
-|l|lrl5‘q£ :15 rllli'tu || f‘]}] - Emmil’.“ .LE
from lemea 3(ii) of §1.13.

11"'3‘Eﬂ mlh}
with [€8),...5,>]

well defined, this follows

The identity morphiges in L (U) are Eiven
" = &
y id Cax ey inax el > L annix ] o Well definednecs is
trivial,
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The objects of @.(U) arestructured as a tree by taking the
predecessor of [& e &1."'xﬂi f.'i.n}] to be
{{.I'-LE ﬂ,l,...r ulE"lln-l‘}] . The tree structure is well defined
because by definition if € x € ﬂl,...:ni.rj 7 T Ax'e Dytoessn e d
then £x & 'ﬂl""‘:u-le A, = {x'e Byteeenx ] ed 17
L': ‘?] is the least elesent of the trea.

T4 ?] ia a terminal onject of @L(U) because by definition of
Hom CA1), Hom €(U) ( [<x €l penex e 3] o L4 2]) -
‘L[{ ?J l {_ :-" is a realisation of C 7 wrt {_xleﬂl....:ne ﬂ.n":a.i
and because by the definition of realisation, < ¥ 18 & realisation of the

context %7 wrt the context {x € ﬂ.“.nxn{-ﬂnﬁ) .

If adB in (U], say A =< %€ .ﬁl....:neﬂu}] and
Bawm [{l‘.lE ﬁl""‘niﬂu"“ Eﬁ}l , then define plBl:Z—>A by

F{B}= E": 3'-L-| ill;n}] -

If

AR

in €(0), say A= <t e A ex e D) o = Wy el ]
B= [y elilyreeey el p¥ e Y] and f= [Lty,.-t 7] o them

define f"B= [4x € ﬂl.---xneﬁ TE _'i'l['-*ll Fyaeeoty A >] and
g{f,Bl= < CREETL ]« £'B is well defined, by lesma 3{i) of §1.13

Lamma., C (U) i= = contextual category.

-

FPraof. Firstly we must show that whenever

-
d
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Ciw the di .
in L{U) then the diagram a(f,B)
f'e—————p

.l

L'
H- ——;_—-—} ﬂ"
is & pullback diagras in C(u).

%0 suppose that A= [i{x = .ﬁl....::ni ﬂn‘}] » B= L'{;rleﬂl.n-rme,
yES5L>] azd that f= L<t)yeeut ¥] . Suppose also that C 5= an
ebject of & (0) and that EiC—>A and g":C—>8 4in C{U) such
that the disgram

#
c—2 53

W
‘lli-——i.—-;-l"-\.'
commutes. Call this disgram (I). We can suppose that Ca [ £ 5 € f"l.l,.-.
5nely?] . e [€rpeear ] , g'= [<8)100u8,,52] |, where
<Tyyessr > is some realisation of {Il&ﬂl""an f.'.n":- wrt
{‘1‘:411""‘?‘ hﬂ'} and {51‘...51“13} is a realisation af
{neflyvegell, gelly wre {alaﬂli...aﬁf—,ﬁq}-

We must show that thers exizts a unique h:C—3r*g in € (U} sueh that

diagrams (II) and (II1) both co=mute. -

c“b\; c a.’
\ e*R “\F\#\ﬁ_’

q e

\ (I1) Y (111}

I elaim that [{rl.-..rm:.ﬁ}'] is such an k. Since diagram {(I)
COmEUten, f{tll.'.'rlt ‘tl""‘rn' ::n"] .--.t-Lr:L{ :v:l....rI= | :n]':-] =

[< 51....$m$1 « Hence for all j, 14 J&m,

E'IEJ"'LI |-llaqﬁﬂ*

A T Y e ig n derived

E il I waa™ W ] " | J
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of U, Thus as € 51,...5m,.:'.'3‘ iz a reslisatiom of { 315_,."11....;;':.;-“1”,35

the rule llﬁ-ﬂ-l veeazg€

5 E.ﬂ_[tlf_rll. ey panar | x 1 '||71....tm1‘_r1 | %y geeary V%] \ - A

is a derived rule of U. Hsnce {rl,-..rn.s} iz a realisation of
{'I].E &1”"““&&“'?& ﬂ'f‘tlII ‘T'rl"""tn I.an] 7 wrt
& EIEJEI‘”'ZEE"\'E\} ard thus [< rl.-urn.,E »] ¢t C—>fB in i (u).
setting h= L& rysenerys »] then (II) cormutes because

f,{rl.-"rn.ﬁ}] o I.-_{x.l,."xn}] = E{rl,...ru}l and (I1I) coocutes
becsuse f_-:_rl....rn,s 2] o Ii'_{tl,...tu_.”] s I[_{.tl[.-:l'l.:tl.,.--r“q
x, Taennt Dy I Xppeeery | x 187 = [{.51..*.5”..5?:] . 5o

EE T T 7] is certaimly sush an h. 7o shew that it is the unigue
sych b suppose oow that b im an mrbitrary eorphism fip—>f*% in
€ (U) such that the dimgrams(II) snd (II1) commute ssy h =

[< l'l"n--rnHE' »] - Since (11} commutes, for each i, Lsi<m, the

rule Llﬂﬂ.,l.---:!ﬁ 'h'l? iz a derived ruls gf . Since

ryergt@ ALl xgeeeryn 12 ]

{111) eommutes, the rule zlEth”'th h‘i' iz a derived rule

Sal' & JTLT.E-._.l Fyree=5g 5

af U. Hence hw= :I:_{rl‘....rn',ﬁ"}] = L{rl....rn,S ,‘-'_] . ‘whnich completea:

the proof that

alF.nl
F"ELF _.}B
.|
b '
H ]
3 * A

ie a pullback disgras in @ ().

It remains to ehow that the axioma (1) and (II) of the definition ¢

contextual catagory hold of the strusturs C{u}. xelk, it i eauy T4 =
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that (L) must hold because if me E{xleﬂl....;neﬂn,; c¢A”]  then
ATHE T e *1 =0} » Siailarly (II1) holds because
ﬂ[?aljzl,...-‘iﬁlap_] [tllyl,...tm \7ad =ALs Ly Ypeennt Ly T |
s, 0ty | Ypeeaet 1y Tl2,], whenever {ne ByveszoeNjze S 12 a
context and {Sl,..jﬁ, 7 is a realisation of {Eléﬂl"";ﬂ'&ﬂtl} wre
{Ilﬁﬂlq----?uﬁﬂ o> and {tl..-.t‘ » iz a realiaation of

4 rlﬁﬂlriltJnEJEm} .

We mew turn to the definitien of g Qarge) contextual eatagory,
f2my which plays the same fole among contextual categories as does
the category Set among categories. Whersas Set is the structured
collection of functions =o it is that Fam is the structured collection
ol operatars, We must refer back to 3 1.9 to the discussion af

PPerators and sets, families of sets, familiga of families of sets and ss
The tree of objects of Fam is the tree of families introduced in

Thus it is the tree of sets, families of sets, families of families of met;

and =0 on with a formally adjoined least elemant 1,

For ﬂ-im},ch if la hll-li {I-ﬁn and lﬂ:ﬂll."JBlﬂ in Fam then HmF“u.m

Eﬂn,Em.‘.l 4% { 4 Il“”f:u » l f:l.""':l: Are operators such that the

Btatus of the operatar T4 is given by for &) GAy, for IEEA.E{'BI:I‘"'

for EHE l.n{ﬁlii.ln_l}t Iilﬂ.l.-ttl“ .} E ﬂ:ll:.flfi_l"".'u':l""f‘j-ll:-l""an”

Iz particular if nao then we get Hﬂu{l,B.J = {{'bl,....hm » |'
lblE E lml:'aﬁ E-Ethl}”" and h-ﬁ'-IE Em{hl.u.bn_l]'} « Un the othar hand

1 is the terminal object of Fam becauss Hnm{Aﬂ.l] = ¢« ‘-"} .
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Composition in Fam is defined as follows. If 1dA,...dd, ,
1-&51.&&4& and lq:lijldcﬂinFﬁ_mdir {I].“”Irnjz
Ay ——}E ol gl,...glr'j. 4! ——}L‘.‘E then the composition is given by
{fl‘-llf }Q{El.--"sﬂ‘? {hli--- hi} whera for each k—‘ 1-":1':5'?.
hk i8 defined hf'i'l. r..ﬂl.‘....ﬂ ]ﬂ;k{f '[nl,-"ﬂ.“]'"--f [.-1,11-1 .]:l

whengver I. E ‘I-l.gtn-lﬂ c A {311..1.15 JI

If 194 a0 dA_d A in Fam then pla)sA—2A  1n Fam is given by
pi.ﬁ.}t {hl....hn:- , where for each i, 1% 4m, hi is dmfined by
hi.hl'"'an"i] = a8, whenever EL:LEhl'.."‘EI.E '*'ntll"""n-ij and
.H.E_H.{J,l't L-il..n:“-

If 1"-1I'I1--- ‘.I.:l-u and l L Elllnﬂanﬂu in Fam E.:I'.ld- if

{ £y qune

l.:I"| ﬂlﬁ *-Ll -}542& A-E,{ﬂ-l}- rq:}\InE AntalI".aﬂulj'ﬂlctl"-'aﬂ] |+;'fﬂ{ﬁ11iilﬂn:

I“'} W ——2B than {'fl,...fm‘;r *B is defined to be the family

In this situation q{{fl.“.!“n‘} LB o= “1"“‘:.1' ¥», wnere I is the
gperator defined by '.!:‘Enlf...an.h]' = b, whengver “1& ‘11*'"3:1""' ﬂ-n

{ﬂ.]_‘vn.q-ﬁ-n-l.] and bE E{flinl*"-nn}I‘-‘fﬂ:llll-‘.aﬂ:l}‘

The proof that Fam, so defined, 12 a contextual category is rather
sizple. Because the statements asserting the status of oparators and
families are so similar toc the formal rulea the proof is similar to Ehe

precf that T (U) is always a contextual categary, oaly easier.

The homosarphissa between contextual categories are called

contextual funstors. Thusi

Definition. If @ and @' are contextual catagories then a

contaxtual funster P L—= ' is & functor F 2 L—" such that:
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1. Fll)= 1 amd 4f A<4B in 4 then F{AJAF{E) in @ .
2. For all objects A of © , F{p(A))l=p(F{a)).
3, For all f and B such that [*B is defined in @,

F(1"B)=F(£)*F(B} and F{q{f,3))eq(F{f) ,F{B)}.

The category of contextual categories and contextual functors

ia denoted Con.



Zali

. Yotation and Bosic Lemmas

If A£3 in the contextusl category d then define the
marphism pl3,A):3—>34 in { , also writtem just as B—3 4, by
p(ﬁ.ﬂ:piﬁhpitﬂ}a....L-plfll}. where X ,...%, i3 the unique sequence
of objects of @ such that A4 X ...ak «B in 4, (in the case

A:B. P[Elqi’l;I:id'l.:'r

BUGY o BNl

-ﬂ"‘: l-q a o g

x  PIBl
nd

The cantextual catepory structure supplits us with pullbacks for
any =ap of the form p{X), these given pullbacks can be pieced together to
obtain a pullback for any morphise of the form piB,A) along any
morphism with condomaia A, For we have the following very trivial lerma

about pullbacks in sny catepgory G.

Lemsa In any categery C.la) if f:i—>3 in £ then

[ S|
um\l 4@
ﬁ_'_‘:‘__} E
is a pullback disgram in C. (b)) If
I"'-1—&""_""l“l:. F'l.z,_h ¥y

ny

h hil ]/'j i

.___.—'.? and
L i 37} Hr—-ﬁu—‘ B,

are pullbacik disgrans in C, then so is

HE‘L_L'E;
|
.F'l",hl"lL‘ |'il1.:rE|-i'-
L {

L
Ay -l
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This means, for example, that if 4'4 X4 3 in a contextual category @ &

if fiA=——A' in L then the diagras

ALGIE X0, B a
|
R

ig8 a pullback diagram, since both of the two diagrams

QL X'y

!
A

X) e
ppti i xR UL

— ° ond i.x—"_"“isii,ﬂ * 3

are pullback diagrams. Se that gives us a canonical pullback for the

morphism 3——3 A" along any fii——aa'.

In geoeral, it means that whenever A'<$ B in @ and
f:iA—2>A' in @ then we have a cansnical pullback for the morphism
FIB,A') alomg f. For by iterating the method used when A'4 X4B wa see
that if A'aX;...aX aBia € and i f:4— 54" then the diagran

q,‘.u"il;-i |'I 1.\'\.“ . -.HH.'L\F_;'F
il BlELE M) Xader L Xasd), Xa)"B » P

|
d "
A

is & pullback diagram in (L .

Since these comstiructed pullbacks form an important part of
contextual category structure we would like a siepler notation for thea.
As no confusion is likely, we extend the * and q netation to cover thess

new pullback diagrams.



From now on if fi1A—a' ia @ and A'L B in L then the Jdiagram

Eeg 3:{F.E‘I a

|

A '—i—'-“F'"
ig the carnonical pullback diagram defined sbowve. The follewving obsarvation

which fellows froz the way the new pullback diagrams are constructed

coptains all the information we nesd to remenber about that construction:

Lemea 1., If fih—3 A" and A'¢ X< B in the contextual category € then

f*B=qlf.X)"B and gif,B) = qlqlfX),B).
wx}lﬁlw-ﬁﬁ

L

IR L

[I.

Dfq— MF—
‘:_

HI

If 1 is a generalised algebraic theory and if fiA——A' and
4'¢ B in the contextual category L{U)} then supposing that
iz [<xEll aueex € A n".::-] USRS N ﬂlp--hrﬂeﬂm}] ,
B= E{ ¥, € ﬂl”":'rmfﬂ-n'rm-l-le E-Lml""':"m'igEﬂ :1+~J}] and
f= [Lt 4eeet Y] then £'B= [{xeljaeex g Ao Sy 5 ¢ SR
6| Fyaeeetyl o] seesvp €Sl oLty | 3paeeety 1 7,) ] ana
qle,8)= [Ltqranct ¥y ree oY)

For L & contextusl category and for A an object of (L we can define
s contextusl categary L4 whose tres of objects is the tree of those abjecta
of 'E.. which mppears sbove A. The constructicnm ig gimilar to the
construction of the comma category E,.-"k of a category C at an object
A. The similarity is enhanced by the fact that it f:A——R' in T

then pulling back along f induces a contextual functor Et : 'ﬂ:h.—liﬁ-
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'[.A is defined by li’a‘ ={Belllick, ag E}, tiom €, (8,8) =

EFH—*E‘ in © 1 B—an’ cozmutes, }

N
A

We ghow that Eﬂ. inherita the structure of a contextual category from
T . It suffices to show that "-L-ﬂ. is closzed under the apesrations
p," and q of L and that these cperations yield pullbasck disgrems in EA.
Lemma. {a). If A$B4C in L then p(C):C—8 in T,
(6}, II gsB—>B' 4n -E" and B'<4 C in EL* then _g*ce.llf.jl and
qlg,Cl: g"C—Cin C ,,

{e). If g:A—p* in @, and B'aC in T, then
]

y 21
ﬂlELC_

Y
E _'-'.1'—‘ 8’
i a pullback diagram in L

Froof. {(a) Trivial - p{Clep(B,A) = plC,A).
(o) gC € |£.l1 sipce AgB<g*'C. qig,0)lig"C—>C in II.J. becaussa
q:EN:hE'I:——-lC in & and q{g’,{:lqp{c1h}=q{g,ﬂ]¢p{ﬂ]ﬁpfﬁ’.J.]I =

P{E'ﬂlat,?{ﬂ'.ﬂ} T ]Jl:g‘ﬂ:'-piﬂﬁh} ® plgTC,A).
qt':.- ._ql:“l:ﬁ_ I_l:_

F;EI‘E‘I | J! \"l.
3 3 3 P, A
PLR, a4y .Jl.i .f)

{e) , Assume that De | T h!l and that "'“:L’”'_‘B‘ 1.\2=1:|_.|: in @ "
such that hluphzup{':]. we pust show that there exists & unique

kiD—g*C in -II:}_ such that k.p(g*Cl=hyand keqlf,2)=hy.
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e
Lin M

since we slao have D clg) and H;D——&B. LE:L‘

guch that W quLE#Pf C}, and since

<@,
-:!It.;:,__:l'_l'“.li'_:—-l.-c

|

T
g—ms—s B

3

js a pullback diagram in i y it follews that thers exiats & unigqus
k:D—E°C in £ such that hipllg'ﬂ}-'h..l and kuqlg,Cluhy. It suffices

to show that k ia in o jr e that weplg Cyal=plDya)s Since hl is in Lp
we known that hl.plﬂ,a]:pitl,&'.l. Hemce k.pig'ﬂ,n}-knpig'l:},p(ﬂ.-’-]:'nl-p{!..l.]=

P{;l1.|ll.:|l

Eo li.a iz a contextual categorys How 1if we supposs that

fif——033' in € then we can define a furctor (L. 'E;‘.-—"-"i.h by

B2 " ]ﬂl_} P TN

wvhere for any g:B——B' in II]!..‘ f'g is the unique parphism from {*3 teo
*B' in EL such that fgaqlf,8') = glf,Blcg. Such a morphisa exiats

uniguely in I:'a--il because
ALt

iy — B

||

L v
H ——T_""" ﬁ"
is & pullback diagra= in L y Decause q[fﬁ],g;g(ﬂ'..ﬁ.':l &= q{f,E}cP‘:ﬂ,-ﬂ=

plif*B, Akl and because f*g ia in IT.A LEf [*gaplf®B' Al = plI"B,Al.

fe— At
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We must check that E?I. go dafimed, i= a functor. GSo we
checic that if giB—3E" apd g':B'—*8" g -:T,‘,‘ then
rrlgeg') = P'gef®g’s well, £*(g-g') is defined as the unique
gorphism from I°B to £*B" in E;a such that [*(g.g')eqlf,8") =
gifyBlag.g's But frgf g":f*B—f"8" in L, and satisfies
2ol E'eqlf,B") = ["g a0, B),g" = qlf,Blegsg’s S0 because

of the unigueness of ["(g.g') we must have I"(g.g') = f"g.i 2",
In faet, 'E[ is a contextual funatord

Lemma, (a), If A'"<BaC in @ then f*pic) = pli*C).
{ble If gtB—>B' in {Lh and 3'¢ C then *g*C = (£ g)*(f*C) and

f*lql{g,C)) = ql{f*g,£7C).

Freofs (a)e r*(p(C}) is defined to be the unique map fro=
£*C to £°B in ':E'a such that f*p({Cleqlf,B) = gql{r,Clspi{cl. 350
by unigueness pl£*C) = F'p(C) aince p(F*Claglf,B) = gl{f,)eplc)

followe from lesma 1.

§ dyg, c
'F'l'ﬂ LUE LB FL!
| |
— A

(). f(g"c) = g{f,B)*g*C, by lemma 1.

(alf,Blog)®C, by mxiom (II).

{f'g.q{f,B'IPC, by def. of .

(r*gl*(qlf,Br)"C), by axiom (II},

{f*gl={£*C), by leama 1. As reqguired for the first part.



new f*{q{g,5)) is the unique morphism from f*g'C te £°C in & ,
such that E'{q{g,'ﬂ‘.'}.;q{f,ﬂll = q{f.g’ﬂ},qu.ﬂ. That
q{r's.f‘m = f*(glg,C)) follows from unigueness because

qir‘g.:!"ﬂhq(i'.ﬂl- = q{f‘z.q(i‘,'ﬁ"J'Eﬁ-qiq{f.ﬂ‘l;G“.I by lemma l.

qlf*ge.alf,B1),C0, vY axiom (II).

i

nlq(f,Blug.C), by definition of 1°%-

q[q(!’,ﬂ}l.g'm.qig.ﬂ}. by ariom (II)e

qif.g'ﬂ]nq{,ﬁ,ﬂ]1 hr l“!m ll

gxiom (1) of the theory of contextual categories ensures that 1T A
iz an object of the eontextual category L then Iidh =id ltn- Axiom (II)
gnsures that whensver 1 p—sh' in @ and gropt —s= A" 4n L then

£?, 'Er-{lll— g Thus i_: E.""-'——"’!C_ﬂ__n {g a functorf.

nafinition. If Ft fL—0" i & contextual functor Lhen if A iE
= —_——
an object of & let F,: €, ﬂjﬂ 4 be toe restriction of F to @,

FA is, in faet, a contextual functor.

It is gausing to note that whensver F:i——Q" ia &
contextusl fuastor them F_ sl — gy is a natural transformatiof.
Thus whenaver L p— LB B contextual functor then we have the follewing
dingram in the 2-catejory of categories. -
Qe T
LT

The remainder of this gection is ground work for the proof af the next
ssction of the eguivalence between theoriss and contextual categories.

Wa begin by giving two definitions. with rafarence to the firet of theoe

two definiticons we sust apologise for the notation for we are not asking
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that the morphism *£' by theught of in any way as a guotation of f, the

notaticn is mersly convenient.

Definitioa. If A,Beld) and [:A—8 thea'l' is the urique
morphism from A te (fop(B))*B such that 'f'.p((fep(B))*B) = id,

and "fr.ql(fip(B),B) = £,

Lf-?-lF.-ll.‘n'E '-'_IL.“ '.E"-'Miﬁ.ll' B

; Jl‘ma

[ opiis)

Definitios,  If A4B in @ then arrg (B) = { fia——m | £.p(m) » mﬂ_f

Note that for all 4,B € |6\ , for all fian—a5, 'r'e Arrg ((fcpla)) 8],

Lemma 2. If U is a generalised mlgebraic thesry and &f 414 Apree dh
1-131-11-45-’-“- E’{U} mgi"ﬂﬂ h]' in: [{rlEﬂl“"InEﬂ'n'}} and

By © 1:{‘ Jlﬁﬂlr--d’.ﬁﬂ“‘;’] s

(1) If f:A —B is given by f= [ﬂtl....tu‘}]- then

(£ep(801°8, = [ elyeax e zef) [t Fpveeaty o 17 1] >

and "f' = [{'xl”";n.ltm}] L] .

(1) I aasin €O andax [Kmeldyixeld xed>] thea
for any morphism g of (CIU], BEAH‘.HM':-M E 9 s oF M ferwe

[{. “llpl--l ltu't:}] for some t such that !'_I-E &l"".xi‘:& ﬂ " ims &

£ €0

derived rule af U,

(iii) For any i, 1< i¢n, pl.'.Anlﬂ.ill = [< ".I."“:i?] .

Proeof. (i) amd (ii) follow directly from the definitien of L (U).

{iii) The proof is by induction. Certainly P“n"ﬂ'n] = LA yenex 7]
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by definition of L (U). If we assume that the result holds for irl,

that is if we assume that in (U D, pla .4, ;) = L<xg0e. "‘h],:’j '

then the result follows for i, since p{.ﬂ.n,hij = ptﬁu1ll+l},p{11+l} -

l‘_{xl“u:i_'_l"ﬂ o [{:'_L,...xi‘}:l = L-_{:I;I..”‘.l:i‘:r] .

Hence the result holds for all i, L% i{ n.

Lemma % (1) If A ——=—sff},

is a commutative diasgram in L then for all x:X— X' in ILE'.L'

1'2 X m IE"I'l s

(44) IfAae€l€\ and LaB ~ee 4B dn L and for each j, 1£ j&=

1
gJ: A—iEj such that each triangle in the diagrem commutea,

A i B,

then for all x:Xx——X%' in 'LEM' *gm"---*sl";'lhl]"l = £ "%

{iii) If A €EICl @and 1aB B in € and for each j, 15 j¢m

1

.:d_"jq,‘-;.n.rrt{.-:d' _1‘...dl'pt.ﬂ._1]|“ﬂj] then there axizta a unigue =sequence of

morphisns gy ye.egy of L such that for each j,1s5j¢m, ggiA— B,



=uch that the diagram

commutes and such that far Bll j, 1% j€m, '51' --;{d..

Proef. (i) £,°x = ':'rg'ﬂ-q[r1!51]}"‘1 since f = 'I’E'.qifl.ﬂz}.
= T.'"qlf, ,B )%, by axiom (II),

= 'ra*'rl':r., by lemma 1.

{112 The proof is by induetion oo m.
If = = 1 then we have A 94 E],
F{ﬂ‘-l\‘l

p

in &, thus by part (1) g "x = "g, " plA,1) x,
If >l , if we assume that for all §, 14 j<m, ij-x = fEdlt.-'

'El"II{-ﬂql}*i. for all = ip EH"- Then since
4

H‘_‘&ﬂﬁa#

N

&
=i

in © thus by part (i) B % = By ey "x) - 'sn"*sl_l".n‘st"

plAl)ox, by inductive hypothesis,
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(iii) The proof is by induction on m.

Ifmw 1 then since 'gll is regquired to be dl s0 we must choose

g, such that g, =E{1¢q{p{.ﬂ.¢ﬂ ,51]'-

If e?l, and if we asause that EyrenrBy y OF€ guch that

Ej_pl‘.aj} = H_-]-l* for all j, 1€ j€ m-1 and such that

‘EJ‘ =dj' for each j,1¢ j<m. Then by part (ii) ﬂfm:ﬁn—-%ga_l'ﬂ-
S0 we can and must choose g, = _eqlg .8 Js

Lemma 4. (i) If At—sB2sc in & then r~'g' = 'fog'.

(11) 1f A el and 188 ...95 in L and for each 3, 15 jsm,

1
PjE .ﬂ.rri{fl-j_l‘-upl"p[h,i}'ﬂj] then for each j, L£ j&m,

pn'...p,l- p(.ﬂ.,'l.:'"p{En,Ej}‘ =p,,j.

(iii). If Ael@| ,14Bj...4B_ and 14C,...aCydn L, if for all

1y 1€ 3¢ m, By ERrg {Bj_l-...ﬂl*pu.il*nj} and for all k, Leks U ,

3"“ E.lurrm_{ Th—l' é o ane ﬂl'p{Em,ll‘Ck]. then for all xsX—3X* in L 2
(By*oenly "PAALLY Y g )*UR "eua B pCAVD Y g 0% eaa(B"eue By "R(ALL IS )0
PUALITx = B “eeafy "PUALI°Y  tuus I TPIE 10720

Froof (i) "feg' is the unique morphism from A& to (fegep(C))"C
such that "fep'ep({fogep(C))=C) = id, and 'fez'o gl fagep(C),C) = fag.

It thus suffices to show that {*"g' is such & morphism.

By definition of 'g', "g':B——3(gp(C))"C such that "g'splige
pi€l)*c) = id; and 'g'aqlgop(C),C) = g« Thus £*'g'sh—f~(g plCII*C,
that is to gay, f*'g':A—3(f.g,p(C))"C. Alco since
g pllgap(C))*C = dd, """ p((g.plC))"C) = id . But
r*pl(gep(ClI*C) = p(f'iaid.]:(':}}"ﬂil = plifagsp(C}i*C), hence

*'g'apllfogapicli=C) = id, . Which is one property of "feg's
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As for the other, frem 'g'oqlg.p(C),C) = g deduce that
fo'g'sqlgep(C),C) = fog, But fa'g' = £*'g' qlf.(g.p(C))"C)

and gff,{g.plC))"Claglgep(C),C) = ql{fezep(C),C) hence we have
f"'g'0qlfogepl(C) ,C} = fog. A5 required. From the uniqueness of
'feg' we comnclude that f*'g' = "fog'.

(ii). By lemma 3(iii), there corresponds to Byie-<f & sequence of
WorFhisEs £ ysssg, SuCh that

H——i\m‘fﬁ-‘?m
i

Bl'ﬂrl

conmites and such that 'gj' = B.:I'
By lemma 3(ii) pm'...pl'p(n,j.:l*rpcan,aj}- a gﬂ"p(ﬂu.ﬂj]'. By part
(i) of this lemma g.”piﬂu,ﬂj}‘ = 'gﬂﬁptﬁl,ﬂjl' = p.j as reguired.
(1ii}. Again we use lemma *(iii). Corresponding to Lﬁj:l 15i¢m we
have {E:f} 1% j¢m such that 'gd' '-H.j' Corresponding to (¥, ) 1§k @
we have (h ) 1£k<{ such that 'he' = 's'k.

(PgeeeBy"PUARY Y 0% &0 wanlB teeaf) "PIA,L)" ¥y )"pUA, O"x

= (g," dgl%eanlg " ¥ 1) p(A,1) "x, by lesma 5(ii).

- ';ﬂ.h"‘".'gﬂ‘hl"'pfl.l}'x, by thia lemma part (i),

= Epehy"X, by lemma 3(ii).

= g " hy'xy by axiom (II).

- 'sm"...'zl“p{.ﬂ,i:l”hq"...'hi"piﬂn.li'::. by lemma 3(ii).

= Fﬂ'-uﬁl']{l,ﬂ' 11.'" Il'p{Em.ﬂ':. Am reguired,

Lemma 5. If f:A—>A* and A' B in € then "qlf,B)" ="id 'L'"EI"
Proal. By definition of Iiﬂi‘ﬂ“ '115.5',.:[[];[1‘3}11"'5] B i&'f‘ﬁ‘
Hence 'idﬂn"q{pfl'ﬂ.‘.f'ﬂ]‘-q{f.ﬂ-} = q{f,B8), that is to say
"ido.p'eq(plfB) £,8) = q(f,R), that is

o T T o e F o 1 L Fal¥ - Fymm |
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2.4 Contextual Categories = Generalised Mgebraic Theories

In this section we establish the squivalence between the category
Con of contextual categories and the category QAT of generalised
algebraic theories. We eplit the section into subsections as follows:
1. define a functor @ : GAT—iCon, 2. define a fuactor
U : Con—*GAT, 3. prove that Dol = dd..me
4, prove that ﬂnT.i‘:qu_qE. =

2l Definition of L : QAT —7% Con. L. has been defined co objecta

GAZ

ta $2.2, if U ia » theory then L(U) is a contextual categorys

1f 0 and U' are theories and {11 : U—+U' in GAT the define

C(r11) s CE)—L ") by

[<xelise . AnEAn>] e TAY,. Aae TlAWD]
g1
l'[f: Ery e Ema?] EEiea,. Ilew>)
LY Sk e Yo € g ?] (¢ fe 1ln),... Nt TiL07)

Then (. is well defined on morphisms because by lemma 1 of §1.13
if I and J are interpretations of U in U* and if

1= then for all derived T end €-rules R of U, my = Jm,

To ses that CICI]) in well dsfinsd and talkes objects and
porphisza of LC.A0) to objects respectively morphisms of Ciu') we

require the followingi-

Lemma. If U and U' are generalised algebraic thecries and if I is an
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interpretation of U in U' then

(il. 1f dx e ﬂl.".:nﬁ ﬂn} is a U- context then

£Lx 6 itﬂl.‘l....xne, (&)  is a U'-context.

(11). If {xed  eiux el > and c:nl'ea‘l reeex ‘e A7 P are
U-contexts and <x e .ﬂl,.‘.tne ﬁn':- S <x'el) ueex’e ,;’1‘; > then
(e T ex e HADY = & €T0AS ) ueux ‘S T(AY DS .

(#ik Ir {tl,...tn} is a U-realisation of the context

<ne ﬂl,.--rma.ﬂ'.m} wrt the context {x ¢ &1"“':::."‘* .ﬂ.n} then
{I'{LIJ..“‘I{T:__LJ} iz a U'-realisation of {ylei{ill....ymeifﬂm}.}
vt { x e i{ﬁl}....::ne Ita >,

{iv). If {tl..."tm’} is a U-realisation of LYy €Sl qrmesd e ) > wrt
leaﬂl.n.anﬂu} snd 1f Lt woet’V  dis & U-realisation of
Gie Uy vy eld’>  ure $xe D) eexe A Y and ir
Ctpreant b = Lt vesstt D then CI(t)),.. 00 0> ERI0 Diawalti? )3

Froof. (i) Follows immediately from lesma 2 of 51.11.

(i1). For each i, L€ 4¢n, x Eﬂl,...zi_lgﬂ i1 in a

f ¥ #
‘5‘1 “ ‘ﬂ": E"l | xf wesakioy | “i-lJ
derived rule of U, hence by lesma 2 of %1.11,

x Ei{ﬁ .:',qn:l.' Ei{li |:| 2
1 1 i=l i-1 is a derived rule of ', But

A, - A Lol veesXy 3 1270 7)
h}' lenma 1 of El-ll. i{ﬂlii "-11_ ﬁj |-||xi_1l Ii:].]]E .l{ﬂi}EIl‘ H'lr -
Ii-ll :i:ll « Thus for each i, 1¢ 44n,

eI Jeax, g I(A, )

i a derived rule af U's. That is

f{ﬂi} = i'[ﬂ:i}[ 111, x' peneX, o] ::1:1']
Cxellh ), e HA DY =dxe D, deeax e 1CA7 1>
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(tii) For each j, 1< j%m, flEﬂl""anﬂn is a

'n'-i'E.-rlj [bll I].'."t'jv-ll :I"J__]_]
derived rule of U, thus by lemsas 1 and 2 of 31.11,

2. A Yiewsx e ItA ) is a derived rule ol U'.
1 1 n ]

= e TE :
iede L OTL ey I gy eea Bty ) lrj_l]

Thus ﬂi{lll.-..i{tmj} is a realisation of £ ¥y € iI:""-'!‘j_}l"':l"mE 12 m]

{x e A uax e TD n}“} 2

(iv) For emch j, 1% j&=, %€ 'ﬁ'l‘“"‘n’iﬂ' "
b= th Dxlg eyt 5 1€0 JRiln o

is & derived rule of U, thus by lemzas 1 and 2 of 3 1.11,

111‘?- i':.ﬂ.{lj = -xn'E. i-{ i ﬂ.}

Hey) = 3085 00 I =) ooz, 120 1€ TN TR Lyppenadley 017y,

is a derived rules of U'. That is {i{tli,...ittm}”} = {f{'t.;_ ZI.H."L'I{‘n.‘:r!I

So LICLI]) is well defined, It remains to show that T(ix]) ia

a contextual funcktor:

Lewma (i} If &€ |0 ()| then L(CL1D044) =t 1 53(a).

f E N :
{i1) If A——3—>C din &L0) then CLCI]i(fog) =

COCTI Mo €ALT 1),
(i44) Ir A E\C\| and 1< A them QL I1)(p(A)) = plL(CI]IA}].

(iw) If

H——

A—

in (U} thes (LI }(LB) = €Il ~aifzliel and
C(C 1] ){qif B2} = gt (T T1¢e), CLL T 1 )BIL
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Froof. (i) and (iii} are both remarkably trivial.

fidil Guppose that A = E{xlﬁﬂl,“.xnﬁ ﬂn'}] . B o=

["{ rlE--rl-ll"":'m'E-ﬂ-.}_] .ﬂ-ﬂ : il E{ zlﬁﬂljrll!:FE hi}l L]

f= [{L_.“.tn"}] and g= [ £ 51*"'5nﬂ y where { ty,eeet 7 is

a realisation of {_ !'lﬁ-.:;l_l. ---_:I'mi_-_,lll .~;" wrt {11.& &1|l!!“nE ﬂ"h}

and {EI.H.S?} is & realisation of {slq:_ﬂl....zgeﬂp} bt
{ryeflyiesmaell Y« If we use the definition of €([ 11}, the
definition of ecomposition in (V) and QAU'), and lemma 1 of $1.11

theni

El{ E-I ] Hfﬂg} = E"{ [-I- 1}{ I-.{ 51[ I:]. I lel-l ltm HFMJ ‘Iiisqihl I :Irlqi-“
bl ¥ 1210 = [C3E [o) hypaenat 1y 1 0haan 05, Lty ypaeent ) ¥ 17 ]
o i{slj'[i{tl}lrl,...it,tmﬂynlll...ftf_‘rq.‘.ll:i{tl}l:rl,...itta? l:rmr] > ]
- {4 i:tla....i{tm:ut:-]q ch:sl}.“.in:smn‘}] =@ ({10l LT 1i(g).
(tv) Suppose that A= [(x el ,...x el >],
B= [Aneflyreeay efl wyefly] and ra [¢ Eyyesst 7], where
{:tl""tn} iz a realigation of {IIERI_""’mEﬂm} wrk

{HEJ&]‘!'-*EEE-& nt:’ M

C(Criies) « CICIINTL xl'.':ﬂl.--.xueﬂn.rﬁﬂﬂtlirl----
bl ¥, 170 = [{ x € il:.nj,l}....xu-a A )y Eﬂﬂifi{tl} | ¥y vess
e v, 107 o« (€t e )] * [ e KL veeer e 1AL,
yeI(LID2] = ATIIXLi*C(LI 1B,

CULTINGUB)) = TULITNIL typansnty32] ) =
[& It )yeeaBle )yd ] = at@CLT3 M0, TELTTIEY).

Supposing that I is &n interpretation of U in U' and that 1' 4=

an interpretation of U' in U", then by lemma 3 of §1.11 for any
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expression & of U, {I'eI) (e) = I'(i(e)). Thus it follows that in this
section CICI'"1 e &(C11) = E(LT%I N CifI*]J0l(I]). BSo for

sure (L 10AT—Con is a functer.

2ulie2 The definition of UsCon—0AT. It is convenient to say that an
object A of a contextusl category € im trivial just in case A is the least
sle=ent 1 of & . 5imilarly we say that a morphisa ef (Lo is trivial just

in case its codomain is the trivial object.

We begin by describing the functor UiCon—GAT on objects of Com.
If © is a contextual category them U{©) is the generalised algebraic
theory described as follows: U{L )} has a sort symbol A for avery
non-trivial object A of &, U{L) has mn operatar symbol T far avery
aon-trivizl morphism £ of © . If L& A e -ﬂhn'l 4 in T thenthe

introductory rule for & in U(Q) is IIEIliIIFIHEIn‘uI-'l.l*l:n_l} '

:':'Hl..l-li!n} is & t-:erﬂ

If 1a "1"' -:mn in @ and f:ih-—-—hE whera 1< B then the introductory rTule

far ? in U{‘L:' is :.I.EI-.L‘ v .:ﬂ. EID{IIiIGI:n-l} .

Tn:xl. . .:n}ElfqprT:I_'E{x]....nn?

The axioms of U{EC ) arise from three difforent situatiops, w{&) has

just the fallowing axioms:

(1) For npo, m21 and 20, if 1aAjeeadA o 14 B aus 4B and

14 Cyaes aCp in  and if £:A——B_ and giB ——C, in € then U(L)

]

has the axiom

HIE Alirlmxne -I‘-nl:ﬁ-.-l-q--lﬂ_l:l

E‘.Il g .:l:n] = E{ f-PIElmq.Eljillg- . ;I.n} i r{P{ﬂm‘Bn_lj'{xl1111-:'1}1?{!!1-.--'

xu'.l':l'E {fn_!.‘r..'F{': JJ":- '[.!'1|-.-Iﬂ]' v
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(ii) For nYeo, if 1= Ajesedd in @ then for each i, 18$didn, UL}

the axiom HE Illi--:ne-iﬂ[:l""ﬁn-l}

Ptﬁn|-ﬂ-ij{xl-|¢.-1“} = IiE ii{xlliiixi‘l}

(iii) For myo, m21, if la Aj++-@A and 148 ...48 @B in € and if

fiA —*B_ then U(L) has the axioms
:_lEIIH--'.I.‘nE_EuEIl,.“In_l}
ﬁ.t:ﬁ'lll“.“} al E{E.PEBE‘Bl][Hj_'l--IH}i". EF:EETEH—IJ{:{]_*. ..xn],}r(ﬁ|, ]

and :f-lﬁ I].‘.'.“ﬂezﬂ-{xll".xﬂ-l:lIIE‘_-E-[III.'.:EH} = TI'I-iE Eﬂﬁ]’il!t!‘l the

qif,B) {:'.1.... .xn,:.r:l -5 Eﬁ{x‘l"‘”xn}

definition of U{d ),

A8 for tha action of the functor U on morphisms, if 71 & —=qd* is

& contextual funetor then define a preinterpretation U(T) of O(L) in WIEY)

follows: If 14 Ayess dA @A din L then define U(F)(X) = Fl4) (¥ 0eae® ),y

if 144,000 4A_ in & and f:A —B then define U(FI(T) = Fll(v, ,...v )

1 n 1 |
¥31¥50ees i85 supposed to be the standard ernuseration of the set W of

variables, see §1,11,

Lezma. UO(F) is an interpretation of U(EL) in U[G'),

Freof. We have to check that for every introductory rule or axiom R af
I
(L), the rule U(F)(R) is a derived rule of U{& '), But it happens that
e )
in each case U(FJ(F} is actually an introductery rule or an axism of U(@

and thus a derived rule. Thuse there i5 1ittle work to be done.

For example, if 14 ll...ﬂhﬂql in L, so that U(E ) has the

introductory rule '.-t]_E ﬁl....xuﬁ hn“l"“"n-lj thas

!
i B EE T L
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E.-ﬁ-ppvii-: 'E-H- {;'1.‘...: _1]'
e

ht:-lll!IIn] is & t-]"p‘

il

;Lll. B{F) {,ll-l | T x & HEFJ{AHE::]_,. . 'tn'-l”

uEF:‘iI[.x-l.|ill:n}J 18 a I'a]"_FIE'

AR Ten IR (TR E N LOTITE See L Ay

i

U{F}tzitﬁ!?lni-!uni'ﬂ'n] is & type

#IE F{HI"..:HE r L'ILHI I:I_L‘ ..-:l:n_l:l

rihiixl....xn} is a type

which i&2 ef course the introductory rule for Fial in u( &),

1f Fi @ —E* and F's ©'— =" in Con then U{F'aF) = U(¥')el(F),

This is because for any sysbol L of U(E) and for apprepriate m,
U(F'ef L) = FIFLIT(¥, yeee¥ ) = TP ) CFTLT OV, yaaay ) = u(E JUCFICTN)

(U(F* JoU{FI (L), Thus wa have defined a functor from the caterory Con
to the cateqory of generalised algebraic theories and imterpretations.

By taking the value of U at F to be Cu(F)] we get a functor U:ilon—

242 The proof that Ue L= idGﬁ.T For avery generalised algebraic theory
1! wa define an interpretation {pu of U in U(&{0)), We show that [‘ﬂ-
(ie Auel GAT | ll:d}u] ) is a patural transformaticn
[Q-] :.idﬁhT-—hU¢l::E_}_.E —=GAT. For every theory U we define an

interpretation Y of U{E(U)) in U and show that (ol ]l =

id, ¢ gyy 24 that Cdeldul = .

If U 48 u theory then the preinterpretation By of U in

U(EC(UY) is defined as follows: If A is a sort symbel of U introduced by
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the rule ::1E &1,...1’]15.5.1 then define ‘ﬂl.!.{"‘}

Mxl.,...xu:l iz a type

= [£%5E .ﬁl.u.:neﬂn,:ahixl....lnh J wl,...vn}. If f is an cperator

syabol of U introduced by the rule x,&d ,..x € A then define

fly sanex )€ A

lﬂ.‘.tf} = _E{:lTlllxn-'f-{:l'ilixnjH {.l"lq-l-!-l-"l"n]-

when it ia unlikely to lead to wisunderatanding then we drop
the subseript U from li}u « Wa wish to show that fer any thesry U,
the preinterpretation 11.;' of U 4dn (A (U)) im setuslly an interpretation.

This reguires & long string of lemmas. We do in fact show that for any

derived rule of U of the form x. & ﬂl,...:neﬂn @(“1551""%5 i) n) .
e .

A is a type Alis a type

¥i6 L el 2] vemavp® LE €A X & ﬂ“};]_{vl....vm_lj

< Ilfsﬂ luulnﬁ-ﬂ nilE.ﬁ}J {\Fl.-.-vuil is & type

and we show that for any depived rule of the form ::J_E:ﬂl.."xné ﬂn '

telh
;1:] (I-]_'Eﬁln..xngﬂ n) -
tedy -

v, € [T EB 2] seeav € TCxEd . . A €07 (Vs )

_E-c.xl.--..:n.t 73 {'fl....\rniﬁ_f.{ X @OysreeX €0 4 X E.ﬂ,}fl'_livl....wn}

From which it follows of course that 4:’ is an interpretation.

Leswn 1. If L 45 a comtextunl category and if for pome my o and = 31,

anm | - H i.
14 hl q.‘.ﬁ.‘ 1 El BH and T .ﬂ.n—r E'n in then the rules

:1'5 I‘I-L-‘Irl?:“E ﬂ“{:ll '--Iﬂ'-'l:l

Tl sener 16B (Lop(B_ 8, 100 goner ). o, 78, F

34
-..1”"1""“:-."‘
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a derived rule of g ).

Froof, The rule can be derived by the principle T1 [rom the

intraductory rule of T and the axiom of kind (iii) vhich is

;zlE- "'].""I]:IE -’l-n[:l"li . "x'l.'l-].]

rnF:ij.Eml:xl'iian} = H_ELrnPEEm|EIJ{H1..--In}‘--.-- Dptﬂﬂjﬂﬁ.l:l{-ltljl l'ﬂn}j

Lemma 2. If € &z a coatextuil categery and if for soze n3l, m3 1 and
q .btl, l'dAl-.. ﬂAI'.‘-‘ lqal-ij dEﬂ"B. lqcllni':q' I=An_"ﬂ'm-‘ Ell
Eﬂ__“'n and Egmy‘——‘ﬂ in & such that the diagram

£= ,._L'Ill—q.ﬁ,

] |

Sk m-x
i e 3LE B B

il

|
% .;m;i % '!._E.-.l.-.l.-.-...q.t{‘,'
n

then the rule z,€ C,4.0.2.€ th:al....zi_ll

!-.[:1....3.'?:' = gzizl,. iru' :IEE all"d {z.l.r...zt}

is a derived rule of U(L).
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Froof. From Lezsma 1 it follows that for each i, 1€ i5na the ruls

% € cl,...:a‘E cw{zl""r'll-lj

hPPEr-ElAi}{z].--l!:-lt]ﬁ '!"_i{l""'FEriB'H']_J{1'1""31}"'"hgp{f.i'a'i.-l}h‘l"""aq“
is a derived rule of U(L )., Ey the same lemmn 50 is

E_ B g -
g Ak & ;qk.:;qullr =|',,t_11'I . Hence

E{El* L izl }E I‘H{hﬂp{ I'Biﬂl.:l ':.:-11 ---11,}.-"}.;..PII"E.HEH.£1 pEE lt-* J.:I

we can substitute this n+l-tuple of terms into the axiom

EIE -'-'n.l §EE ‘:ﬂ.e "'n{:l'- --Iﬂ.‘-l] WE I-B(-'ﬂlivri-"n}

CTESCPIC AR S8 ¢ Eﬁ[xl,...zn:

HE‘ EI‘ W lZEE G_E:zl . ll-IF__-.L:I

'ql: f.ij “"l]!-'[ Fﬁ1ﬁj{£l|4 E l-'i';h'} [ 'hPPtf.Ernn}Eﬁ '-115“}’:{.:11 . -|--|=I;|J'=E{=l TELE]

is & derived rule aof U{L ),

But since heg(f,8) = 82 (end also using EEDP‘{'HE} = gluf'.'l the rule

ZIG E;||-|-|=qﬁ EE':‘liillﬁ-lm
E_.Ehl““zq:l = q[f.l!}[lr.n.p{f‘B.JLl]l':]....z?}....L..pff‘ﬂ,.tn}lizl....su?‘
F.'::1|Iil=lfjle-talﬂfj.ﬁ Ellinlﬂa}

ie an axiom of U(Q.). Thus by tramsitivity of = .

Z1€ Cprenazg&Colz, seneyy ) iz a derived rule of

h{ﬁ.!!lzf} = EE[H‘-..E'I‘}E tsquj'atﬁ,-"ﬂq}
o{d),
f5 a special case of lem=a 2 we have:

Corollary 3« If @& is a contextusl category and if for some o2 o,

144 a0 44 snd f:4 —33B in L then the rule
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xl-E_- 'I'l"*':uea;hl""x::-l:l iz a derived rule

TF{x-lhllIxn} = ?lxl..--:-:n} E tfﬁEEj}.EEx]—" L-En:l

af ll.'t [r}!

Tf we usa the description lemma 2 of B52.3 of the contaxktual category

aiU} aEscciated with a theory U them corollary 3 can be rewritten as Tollows:

Gcorellary L, If {Hﬁﬁliv--tn-&&n} and {'ElEﬂl-uvmeﬂﬂifEﬂ) ars
contexts of a theory U and 1f {'tlp..tn.'r.‘;r iz a realisacion of
¢y flyveeetgBSl YESLY wt <xe O

“IE;‘_]_.I".?H.EE{?lI"-‘Iﬂ—l} ia & derived rule of LI{ IS-H]”.

fc“ll!rl?n-:l = E_"L'ﬂl,-q.-un]’e ctvlq-ilun:l

wnars .llr L< I.lﬂﬂlnadtiE&i}] » £ = L{tl....tm,t }jl

E = [_{111;--1“11:- ») and € = [{- x]_E ﬂ-l*...tﬂﬁ .&nﬁfﬁ- ﬂ[tlt 311*"1:[“ | :I’m._lﬂ
lezma 5. If L is a contextual category and for some n¥o ad okl

1aA eee A4 148, 00038 43 and fih ——>B8 in &, then (L) tha rule

Ili 1'11"--?:“15 hﬂtﬁ. u-.‘.'l.'u‘l'[

ﬁ{ﬁ,...:n} = B{TToplB_,B, )" B8, *cxl,“.:ﬂa....w.pmm.nn_l:u:ﬁ.”.

o
:tu'.l., 5 {:lr.l...”.xn”
ls & derived rule of UCL ). (ii) If also gEﬁrrE{E} then the nile

1'15%_.,...:“5 "'nl:xl"““n-lj
irlglillpill:n] ] 131{If:.]?':ﬁmnjﬂl.J.Ell.t-ﬂfu]..ttnqu.\PIBm-,.Em_-lj"'::1|'-i-xn:'1.

?{H*-.glnjj E' ﬁ{l:l" rl:n]

is a derived rulo of o).
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Froof. Both (i) ard (ii) follew from corollary 3. For exasple (ii)

follows from the axiom

LL'E A1||i|:ne hﬂtx-l‘..'xﬂ—l}

ﬁ{:lii"xn} = E{fquﬂm,g}trii...:n:l.... ﬁPthTHm—l}cHl”'*'xn:}'?{xl"' -::
since by corellary 3 we have as derived rules of U(C ) the rule
Ilﬁ ‘H.IlllIﬂE Alﬂ':r]....:ﬂ-l}

'f'ﬂﬂl{ﬁ|lil:n} n ?:E':"l"”"n}EFE{”]"“"n}

(since fug.p(B) = r;-‘&a = [) and for each j, 1€ j¢m, the rule
J:IE Il|11. -w leE ﬂnrH1-I1=n-1-}

'I‘FEEm'Ejj 'I::H:L.,.. . :n:n:l = f-pEEm.Bjjl:x],.”xn:lE {f.p{ﬂm‘:ﬁ*

llj‘ﬂj{xl....xn}
a

In particular if £ = ©(U) then we get the following:

Corollary 6. If U is a theory, if for some axo, mil,
{'xladl.u.xneﬂnh {':rlﬁ_l'.r.l....r_f—,.l’l ot YEJL} are contexts of U
and -;’tl....tm} is & realisation of < :rlEJ'LI.n.rmF,ﬂm"? wrt

{.tle_ﬂl....xheﬂn} then (i) the rule

v € "‘1""qu "'nh'l'*“""n-l}

Ewl,...unl = E,{E;{vl....un}....gﬂ{v verslL) )

18 & derived rule of UCEY)), where d; 0< wed, uixefl 3],
c= [<€ :Iﬁﬂl....xne A, wre 1Lt | ypeeeet 1% 121

Be Knedyinerefl oy e ld] and g, = [< Xueeatnt 3]
(1i). It :.rlEILI,-u;I'mE_ﬂn is 8 derived rule af U the the rule

t €SL
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Ny E A veea¥ €A (V.07 )

f{\rlpllllfn:l = F':E].{“.l"- " Un] |!!igm{vll'l ..'f“:|:|E c{‘l‘lli"?uj

is a derived rule of D{E&{0)), vhere = [ & XypereX ot Lt!‘ Fyrene

bt 17, 17] amdh= (2 EORLERE AL B I

Lemma 7. If U is & theory them (i) for every derived T-rule
IIEﬂulilllanﬁn of U the rule HE‘ H_J...‘li-l:_nE A_ntx]"”xn-l]
Irliﬂ' A Type I[ﬁl"*:ﬂj = 'i:l:.ﬂ'}

is a derived rule of U(E(U)), where A, = [< X €l yeeex; €4, 7] and
A= [£ L_L'[:ﬂl"“xnﬁﬁ Rra- A%] « (ii) For every derived € -rule

xl;:_f_q 1,...::“.,*:91 . of U the rule

te

Il Eq‘ 8 .InE Tﬂ(ﬁ.---!ﬂ_lj

_!__l:: H‘-"I]J.'t J‘j {Il-.lllzu] m Lb{t}EI{Illl"'xn}

is a derived rule of U{L(U}).

Froof. The proof is by induction on derivations in U. We wish to show
that all the derived T and E-rules of U have a certain property 5o we
just show that any rule that is derived from rules that have the propert
rust iteelf have the property. We smuat check the principles of

derivation T1l, CFl ard CF2,

Tl. Suppose that we derive the rule xlﬁﬂl,...:neﬂ.p from the

t ey

rulen "15‘51*""":15‘&:1 and € ﬂ'l"'*“nEﬂ'n y and surpose aleo
ke A= 0

that x_lgﬁl,...xng.ﬂ s has the property, which is to say suppose thal

te
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[1 E R.l|lll.HnE ﬂn[:]..--ilu‘l]

-E?Ill"';n‘t b 3 | {ﬁ‘lll:nn = @{t]'&:(xl.u-!n]‘

iE & deriwved I“Uill Df ULC{H]]- I-'-'E wish Lo show thﬂ.t 11'5 ﬂlq-!mlnﬁ ﬂﬂ

t el
kas the property i.e. that
€A eeax €& (1 0nai, o) is & derived rule

E{ xljl -':Illh- '?‘J {.tllll--l-xn:l = li’[t.}& ETI:T‘].".lIﬂ}

of UCW(U)), where A' = L< % €0 ,,...x_€h ,xeQ'>] . But

of course it is,because I'J.Eﬂl'“"xnﬁ'":' n 18 a derived rule implies A=A’.

A= AT

CFl. Suppose that X E 1] 1¢---InEﬂ G is a derived riule of U such that

ﬁmiu B Typs

xleq,...:nﬁ K:H"“In-l} is a derived rule of U{L(U})). Wwe

nﬂﬂ'l{r_.l."l':"} = q:. Lﬂn+1:l
cust show that for each i, 1% i€ n+l, the rule

o q‘ el J’tJ:+1l:’L.l,""";:n."

E‘:.I—-Lil ":ﬂ+11:i }] ‘.:11"':3"'1: = ILE ﬂ-_hh'.lq---.xn_}lj

is a derived tule of U(C(U}), whera ':'i = < xlgﬂ :|.""xn+1'E'ﬂn4-l"I"E"ﬁ i}']

This follows because {'.HE ﬂx"""wl"—;‘ﬂ ml'? and xlEﬂ l.---xii-ﬂ- i

ars contexts of U mnd {xl,.-q.l:i'} is a realisation of £ Ilgﬂ. preee¥; € A i'}

wrt {Iiéﬂ.l.---!mlﬂﬂ m_l"} » thus by corollary ! the rule

€ Ajrenax €A (R eaex )

[{. Hljl*lxi ;j_{x] |.-|-|Iln‘1} = E": H,-- .xn*l..'l'.i }]_.{H]. s ‘.Inrl}E E{xl s r'ﬂ__ﬁ_]
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iz a derived Tule of U{E{U})§ and becauss, aince p{.ﬁ.ml.ﬂi} in @(u)

jupt {xl,...:__,} {le==a 2 of 8 2.3), WE(U)) haa the axiom

II.EHI---:EﬁlE‘ﬂ'*l{H-ll'..:n:l .

r_‘: -F:ll IFHIL » i_{ﬁ -lil:n:l = HlEH{Ir. liﬂﬂ:l

CoF2{al}. Euppose that B is = sart symbol of U introduced by

y1E€ 5Ly seesy il o

B{Fl..ilfm:l is & '-'J"P.i

Suppose that for each j, 1% j€$m, the rule '.-ElEi'_'i. 1,...xﬂéﬂ =

leﬂj[tll :|"1||||titj__1! J’j__
is a derived rule of U with the property, i.e. such that the rule

IIE -“1 '...:IIE -ﬁntl'l'-l'r- . 'tl'.'l.--l}

Ed.xl‘u.ltn-.tj}_l_{'ll,-"!n} = 'p':.tj:l'E Et._'i-ixllill:ﬂ}

is a d-.Eri'H“Ed rule of U(E(U)) where Q__] = E{ ﬁﬁ:ﬁln“:ﬁnéﬂ n‘:‘rj E-'r:l-‘]

Ll yynents gl yy,y] %] . We wish to show the rule

xle'ﬁl"“"n{ﬂ n has the property, i.e that the rule

Blt,yeaet ) is a type

I-lE I—Ir-;;InE A_ni;‘]_*...xn"].} i: a dEJ.'-‘L'I'E'ﬁ 1'I.:L11: n-.r E{‘:EU]‘:I* whara

EE}LL....IH:I =$Lﬂtl..-.tmﬂ

L= [{xlE ﬂ lplqianﬂ I:I.‘EE E(tl"'.tm} }:l- -
Let Le L€y efly,eeay edl o9¥ €807y yeuey) ]

BJ' ¢ﬂl"ﬂ11m E‘.i:li R:LE-A_]:ivv-an. -ﬁ-_n{.xl..i-i--l:ln'l]

q':':l‘- .i:n} = i:‘.gi{xlji ll“n.:lt‘!l 'EJ'I{:_-LI "W h'.':n}:l
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is 8 derived rule of T Z(U)) for each i, 1% j<m, whaere

Ej = E"" IlE_ﬂ_lil-l-l:ij_rLJ}] i and Ej = E"‘-. L.L".-I-n.tj :"] .
nenca for each j, 14 j<€m, the mule

H].é qir-r-ﬂnﬁaflfl.u-xn_lj

E:I.ix-lp-tlxn} = "-'F'{tJ}'E E:';{E{H"‘.Iﬂ}‘l ||§'1{-"1 .-il-l:in}:l

i3 a derived rule of UK (U)), and frem the introductory rule for L

in U{E (¥)), which i= nE q“'“;"n{: 3{71-"':".1-1"

L{T:L;!II.IE} iz a =Ype

we gat Jl:ll;‘:_-'-'l_',...xhﬁ Etxl,”.xn__l}

L{H:lul""In}""‘m[“]""” = L{ﬂtlb....ﬂtnll
a8 a derdved rule of U{Q (V)). But sgain by &(i), the rule

Xy A weeek € Ay enax o)

i{E_ll:Il"u:n}.-nglxli-uxnll = Er.):l e ..h'l:u.:l

ig a derived rule of UL (0Y), Thus the rule

o A ELTL ST P is a derived rule of W EIU)),

El:rl....xﬂ} 3t f{ilitl}.-..l‘;{tn.]}

which ia just whats wanted since -I:{l:l{tl,“.tm]} = Iiﬁtl}....ﬂtm}}.
CF2(b). Very similar to CF2lal, uses corollary B(1i} and (i),

Corellary 8. For every theory U, &u is an isterpretation af U in
UCCqul.
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Froof. It suffices to show that for any derived rule R of U,
.
§(E) is a derived rule of U{L (UV)}. Ve check for each of ths

four forms geporately,

1S The T=rdles. If }I.IE ﬂ.l.ll l:“E iﬁ n iz a derived rule alf U

i n+l
then by definiticn ..n( xleﬂl,...:neﬂ n} € lﬂlﬁlh."xneﬂiﬂ.ﬂ n.:l

is a Lype

ﬂ'ﬂ+1 is a I'_:rpu ;!il.l:ﬂni-l} 18 a Lype

Ey lemma 7, for each i, 1% i¥nsl, the Tule

5 & '.r.;, creX; 1 & E-l {:.'1. nelty lJ iz a derived rule of

EII:-‘.-[.-lll:i_l} - '@{ﬁ i:l
v{L(v)). Heneca for each f£,19 15 n+l, the rule

]'Ilc ;ﬂ{ﬁlj|llixi_1ﬂ¢cﬂ 1_1.} i: E 'ﬂ-ﬂ'ri"ﬂd rule of

-E{IJI L 'xi—lj = b{ﬁi}

U{C(U)) {argue by inductien}. In particular x € "il:ﬁ],j""xuﬁ @'l‘. &n}

{xl....xn.'l = QA )

Aol n+l

iz a derived rule of U{C(U}). Thus because of wellformedness of

L1

derived rules {(=oo El.?} wo must have :IE&:'I:QIJ....IIHE EF{E Flr

l-i't.lflml} is a type

a5 a derived rule of UL (U],

2. The € -rules. Suppose that x, € A Qrese¥ € i ; ie @ derived rule

t el

aof U, By wellformedneas and by part 1. above,
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x € QA }yeeex € P8 ) and € P8 ) 4eeex, e @D, )

§WB ) = Tlxyguuux, )

#“:'n :I' L :l[.il,lll--:n}
l1%#i4n, are derived rules of U{% (U}).

Eﬁr lEm 'I-'r‘l H:LE q}!II;nE I;{:li"'xﬂ.—l:l

L 3 awnek oE 3] [r.l,...:hil =-E;I'I:t]E.I[.':1....:':n.i'

iz & derived rule of UL {U)). Thus so is

*HE |"':'hr"li"'l':l"'"1'[1:1"3"';:“{"'ml:l::' a derived rule of UL (U)].

L Xy peeek 3t 2T (my4e0ex ) s PULIEPIA)

Hence by wellformedness the rule :15-@{&. 11 yeesX € t-'.iﬂﬂn}

Prrredin)

is a derived rule of U{E (U)).

5+  The Terules., If x & ﬂ.liu-inﬁﬂ i is a derived rule of U then
Fa g B L B

xlﬁlijfﬁlﬁ,..mnﬁi}{ﬂ n':l iz & derived rule of U(L{(U)) because by
§A) aPLAN

lemma 7 and 1. above, the rules ﬁeﬁ][ﬂll,...:ne a.‘-liﬂnjl and

I{Hilllxn} ﬂ&:‘tﬂ }

€ Si:{ﬂl:',-nznc@lﬁn] are derived rules of U(L(U)), where of

Bt (xyy0eex ) = @AY
courss A = E{ ’15&1""“555 " E-ﬁ. }J = I__.{"-Ilf;—ﬂlm-*-?:nE ﬂn1
x"E i':'.'l.‘}:] = k'
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b, Similarly if z e hl....xneﬂ o 45 a derived rule of U then

t=tt €H

HEﬂﬂl?.---xnﬁlﬁ{GnJ is a derived pule of U(C (U)).

fre) = Prededh )

Hecap: We are attempting to shew that the functer

ide,m 8 SAT —»CAT is §scoorghie to the funstor Uod :GAT — 04T,

Z¢ far we have defined an interpretation @, of U in W(&(U)} for
every theory U, Thus for every Vel gaT |, [&,] v——ula(vh)
is & morphism of GAT. It remains to show that for every U el oaTl,
§,, is an izovorphism and that [@_] is a natursl transformationm,
'l:_-:"ﬁ_] =id[?rLT_'u'E' It is understood that we write UEL]. for

what otherwise might be written as AUE| GaT |.L @1

Lezma 9. [ﬂt] is @ natural transformation, L@.] :L:[GAT-—HJnE.

———

Proaf, Wa must show that whenever U and U' are theories and I is

an interpretation of U i4n U' then the disgram

U —T-‘LELLFUH.MH

Lt l lu[ﬁ.lf_ﬂﬂ

i ()
(0] :

commutes in GAT.

Supposs that we have such an I. By corollery & of £1.1h it

guffices to show that for any derived E -rule R of U,

GECLTIN(Gy (a)) = &, (R,
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Suppece then that %€ -l:'il. sasX B i} g 18 a derived rule of U. By

tefl
lemma 7, %Lﬁleﬂl""xnﬁﬂn‘} % € q"""nﬁ"‘—n(ﬁ"":n—-lj
tE & f = ?':.11'1.---111:'5 I{JL.I.I . lﬂn}

where A, = (< :ltﬂ.l..u.-:ie ﬂi}] s Ao L %NENA e e H.!Eﬂ‘*’l

and f = [{xl,...xn,n] « Thus by definition of the fumctor I,

uﬁ??ﬁ?}:a:‘( *‘ﬁﬂl--"*‘neﬂn)
e fA

x, € m,.uan m‘ﬁ-“”‘n-ﬂ

m{ﬁ....xnm m{xl....:n}

Co the Pthﬂ‘rhﬂ.ﬂ'i‘ ﬁ(HEﬂll‘..lxﬂEﬁnJ IlE i{ﬁl}-‘ili:nE Iiﬁ
1 =
kG s Heye 104

Thus by lemma 7, ‘% (i (xleﬂlt.u:n!é & r|.|| ) 3
ted g [
%, € q.---quB_n{xl,...xn_‘l} ahere

E{I:.;-.IH}EEQ'.ILEI,.-.R“}
B, = [<x€ i{ﬂll....:ie a1, 8- [<x € 10D, 0,

x B D ) xeI(LI>] and g = LLxyyeeex (8} >]  But by dofinitien
of {011}, E{[Ilmi} =By LILTI1J(A) w B and €(CIT L) = .

Honce TTE(LITN( B (R) = §

Y
"ulu'l{ I(R)), as required,

It rezains to show that for any generaliged algebtraic theory U,
the morphism fl}',u] of the category GAT is an imomorphism. It suffices

to define an inbterpretation '-P'u of UL (U)) in U and to show that

'}[fu.f'd;:u . idu and 41".,."-"";’1.-_ = id,, T



2 tth

Let U be a theory, e define a preinterpretation ‘f; of
t{&(0)} in U. The preinterpretation Y, is defined on sort symbols
T of U by choosing an element <V, € Ay yunaV 80 oV €0 D of the
equivalence class A and by defining ‘»k;, () = A . To simplify
matters we can maks the choices in such a way that if 14 Aqeee 'l‘-'l.l".n-'!.'l A
in &(0) and if (v € ﬁl,...wheﬂ.n} i chemen to represent A then
a ecntext of the form {'-..I'lE "ﬁ‘l""'“r.e'ﬂn’vmle ﬂ,} iz cha=an to

represant A. Thiez ia always possible by virtue of corellary 2{b) of 32.2.

1f £34 — 8 in €(V) and B is non-trivial then VulE) 4a
defined by chooszing an element {tl,...t“ﬁ} of the eguivalence class
f and by defining #’ul"fj = t. However we choose the representation
':tl""{'m‘t} of £ in such a way that id {#l{: ﬂl'"'wne'ﬂn} represent
A, and if {'\fleﬂl....wmeﬂm,vmlgjl} represents B then <t ...t .t
JEIL'} wrt "f‘-.l’lEﬂ

= 41

is a realisation of {"ql'lE JL pree ¥y efl preee

m me
This i= poseible by lemma L(i) af 91.13,

Marsover to simplify matters the choices are made in such a way that if
i Aw—ra and if fop(B) (assuming it is nom-trivial) is represented by
Lt

This is possible by lemma 5 of 51.13.

+ot > then f is represented by {th...tn.t} , for soms t.
Lemna 10. Y is an interpretation of U(C{U}) in U.
Froof. Je rust check that all the introedustory rules and sxioms of

U{ L (0)) are mapped by lf’“ te derived rules of U. YWe just check two cases

tha other sages are just am simple to check.
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1. Suppose A is a sort symbol of D(L (U}), Eay 14 A .es 44 4 A la

€.(U), eo that A has the introductary ruls :lr..'q..-.tnefl;hr.“.":u_ )

1

I{Ilt.":n} is a t-?:pﬂ

Suppose that A has I:-in represented by {uleﬁl.....rne A "ol € As
then ﬁ"r ( :l:lE. E-il lInE E{H" - ':ﬂ.—:.] )
u |- —

I':l'llltiIn:F is a type

%e0 e bl xlvyd veexel [Tx IV e, v, )]

and this rule is a derived rule of U by the change of variable leama of

51.7 becauss the rule "l':LF— ﬂl.n-\tnEﬂn is a derived rule of U,

ﬁlﬂntm

2 Ir I'd-*lnll q‘-nl 1ﬁ51--¢'ﬂﬂnﬂ3 and f:-ﬁ-n—lﬁ“ in (L(0) =a

that U( C(V)) has the axiom B, where R =

N S e b 1

ﬁ{x-l|-lll:n} = E{rﬂptﬂnyﬂll{:]-'-'f:n}‘l "iﬂtﬂﬁ'ﬂ‘-lliﬁl'-':n] |?{111-| l.'.l'h

Suppose that A has been represented by { vleﬁl,...\'nEﬂ.n} « B
nas been represented by (v, €Sl ..V €Sl _v_ €0l , £°B has been
represented by <V, €0 .08 €A W e/\y and f has beem

represented by {:1....1;“*; « Then W{E) =

llE &1_-1 'r'l"l'In'E ﬂ -[_Ill' vl“"lu—ll '.."il‘n-:].:f

|

O | vpreeaxy vl = SLEE Dot Waneenx | Vo T Nyaeant, [l pene
xﬂluﬂjlu-]
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2abb

€ E"I.""'":n'E A n[ %y | VyaeeeXy gl Vi 1]

DAL= | Vyrees®piva] = ICTURIE Vpd LRI Vyeemez vy ]
which im a derived rule of U by the changeof variable lemza since

“lE 'ﬂ':l.""'1"'|;:|.'E ﬂn iz a derived rule of U becauss

o= L] Vyeeaet vy ]

[_'dvle E'l11""un'E ﬂnl"'l'n_l_lE& }] = I'B = E_{ leﬂ ljllivnﬁﬂ nj
Vo E ‘ﬂ‘[t]1 Vyresetyl Vel >] -

Lemma. \t’u.“ qhi id .

Praaf. Use corollery £ of 91.14. GSuppose that :IE.ﬂl..._-:neﬂ o
t ey

is & derived rule of U, Let *1. = £ Ileﬂl....tie-ﬂi‘}] and let

p= Léxel ez el x eA>] . By lemma 7 of this section,

$u(:1r;ﬂl....:n;ﬂn) _ HETL""‘nETn{"l""Iml}

t ed)

DL EygeeaX b }j-{::l....:n'.lET{xl.-"xn}

Therefore - Kﬁ (I-J_Eﬂl.-"xnﬁ-ﬂn)J
AT ek

y QIIE q"""nﬁ I:{:“:l"""]IEJJ-:I.:I )

Y

T< x]."“:n"t'ﬁ {’1!"""}'& El:l....xn]

and it follews from the definition of '-H_. that this rule is equivalent to
2 elyaeeexyel .
t el

Lemmas G 0%u = 34 g(m).
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Praof.  Suppose that 14 A... A 44 in @(U), eo that X is a sort
symbol of U(L(U}) introduced by the rule

ULE *-1 L] i-lqu #ﬂ.t'l LR ""u-l}

I:"‘I‘-tt'ﬂ'ﬂ] ia a t-m

If 4 has been representsd by {Ulsﬂl,..-uneﬂn,\rn*lgﬁ} then

A f ve'—,...vnel"w vasaV__o) Al Vi€l v g8
@-l(h( s a''1 1 )J :%[ 164, )

I{'I"lylllll"n]' is a type ﬂl. is a type

1

vlaq....une E“:L""”n—l} + By lesma 7.

I{vli'.'?n] is & t-rp-

If also 14 3)...4B_ in ©(0) and £:A——B_ in €(0). IfB_
has been represented by {ulEﬂ 1....UHE.ﬂ o7 o if { has been
represented by ‘fl‘-l,.utn} and ir [Iupﬂ!.n'ﬂm har besn represented

h:’ {'I'I & lﬂl|fll1|rnE d n‘vn'l‘lEjl‘} then

d‘r:; (qf ( VeV ER (Vg 4enaV, ) ]
LE ¥
?{'H'l."..\i"njE(f.piﬂ-”"ﬁ.ﬁfl,..-'ifn.]

=
-

A (ulef_‘-. greeev € )
tnE_rL

"JI'E qrt L] llleﬁ_n{\l'ligli'fn_L}

E{ "fl’ lii":‘t-} ]_':U]-'---Unje Ehptﬁ-jjiaﬂ{?l.--‘vna
by lerma 7 of this mection,

_ 'H’l'E q.-u-lan 1;{?1'-.'?&!-1':

[< t et 7] (Vya-ia¥n) € Top EE“H'B-[VI,.HVH:I

by corollary 4 of this msction.

This completes the proof that 41“11*“ and 1dﬂi¢- (y)) BETee up to
equivalence on the introductory rules of U( L.(O)).
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2,44 The proof that ©oU=id. . We define a patural transformation
'ﬁ‘.idcm——l[. ol, That is we define for each contextual category

€ , a contextual functer Hﬁri..——*'li.{ﬂ{liﬂ, such that if FiL——L"'
is a contextual functor thap the diagram

C e, qu(@y

E l Eluled)

E'-—T——‘* G lulam

E_-I

commutes in Com. Eventually we ehow that T\ is an isomorphism, that is that
for each contextual category L yTg is an iscsorphise.

Then T\ is the required isomorphism between id. ., and © ol.

1f @ 4ip a contextual category then T||£ is defined on the trivial
cbjects and on the trivial morphisms of @ in the trivial manner, that
is by “‘L“‘} =1 and ﬂéph,l” = j{ﬁmu.'l,l}. Mg 1= defined on the

son-trivial objects and morphises of L as follows:

If 14 AjseedA 4 A dn G then Ngta) = [&V €T ,eee
v E AR AR AL Alvygees¥]) *1.

If 144 =es 4k, aod 14 B) ... qF, and fia —B, in © then
Tete) = L GpEE) wl,-..'vnj....t..piim.ﬂn“'lin:vl....vﬂ}.T{ Vgreit,) ¥

Lemea. If & is & contestusl categery then Tig: L——C(o{ &) is

a contextual functor.

Proof. (i), T\g preserves jdentity sorphisss because if 144 ...dA

in © then T\ lid, ) =

E{ Fthﬂihj{ul""?ﬂ}.'-.pilﬂ.,"ﬂ—lj{ul" p"'l"“.]‘ iﬂ.hn{\fl...u'l"'n} }] L] ].:,r
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def. of N, = 14 "l'_.l-.---"-"n:'] + because of axioms of U(@L) to that

effect,

id = e
(e e ey, 01

{iijn Tllu_ Prﬂﬂlmﬁ tntpnnitiﬂn h‘lcﬂuﬁﬂ ir 14 ﬁ-l-l-ll 'd--l‘u‘ l'd.Hl-l- quE=|

14 Cyres 4G, and .-ru;—-am, g!B,——C, in L thenT\(feg) =

L€ 7ar e B T yeeaV,) o e Tog(V ooy ) D] | By def. of T

= £ CTICHTR e {vl.".vn}....fwl....vnn....
E(w{‘ﬁ,...\rnh-..?{vl,...‘urn:lh}] s because of axioms to that
effect in T(@L).

= [4 TopTB_ B T(vypees¥ YoeaaTlV, yuna 37T o [€ BoplE B0V, 4oV )y
E(Vyeeanv )] =Nl ol lg)y as required,

(i48). If 14A...4A in © then Ng(pla )) =

[< BUA LA T (¥ yoaal D po oo PLA A 00V et ) 7] = [V peeav 42
piMigla b

(dw ). Ir f:.ﬁ.n—-JE-n irn & where 14 -!n:l_......ﬂﬂ.n gnd 148 ...-‘-IBEI*:I-E in ¢

1
then -ﬂ.tl:f'ﬂ-} ] [{"I]-E- i_lll"'uﬂEA_lnEvl'.'-vnhljqu‘l']':.: ﬁtvlr- --Unj}]

by def. of ﬂl:-'
" [{\flﬁq".-"u’nEE{Hn-ﬂf:_lj.‘H'=+J'E Erﬁmjh&,.“'ﬂ“},“-

Fiw

11"""1.”}'] ¥ becavee there is an awxiom to that effest im WL ).

| [-'I':' ILP{BE'B].;.{“].I' llvn:lilli?{vllfill"lrnj }] 2 [*"-'51'53_11.“"!"“&.?;{\"11-
";_111““15 E{ulilllvn]}J " h! dl'f-. ﬂr E.{'I]EE:I}.

= T'llt, {II'TL,:{B]'. As regquired.



Meo in thic situation, T glqif,B)) = [£ §lr,Blcpl n,‘nl'il:wl,,..v.rm Yga
q{f,El'ﬂ"l |-|l|l"frn+1} .l:.] = [{ PEI-EIiIEP{E-.B:L}Icvl|tiifu+1jilll

FEf‘BjI‘r{#l-'illqn‘l}' Ef.Bjcwlli“‘uﬂ‘Flj}] = r_"-'- I;Finmiﬂlitbfl.b-dvn:l‘

1

"‘?{?l'"'vn}'fn-ll}} = qlﬂ't_{f:l.ﬂm_l::ﬂ-”.

Lemma. If Fil———={" in Con then the diagram

Me | Clulen

CLULE)

..1
Ae— A

e ealen)
comruies.

Praof. If £3A 3B , where 1A vadh 14B aea 4B ind , then

1
ﬂE{{} = L{ !iFEEmpaijf-vl.---fnJ|---|--lf'|:"l'l ¢l-|l\'fn]' }_] " Thus

Co(FN(Ngln)) =
E{l" F'I.IE-PEB.151:”'H"1|---Uﬂ]’innnF[Ij{‘l’i.--."u‘;ﬂ] :"] ] [{ Fifi;piFIan ¥

FEBIjJ{vl'!IIvnj’lIIFE[I{.ul‘l l-l"l"'u.:l }] - T'LE'{F{.::'}.

S50 we have a natural transformation FLtidEm——l foll. We wish to
show that for each © , T’[E_ is an isomorphiem ;T:-E_';_m. Unfortunately
this turns cut to be rather tricky. We have to define a contextual
funetor 8¢ : LU(C))—C and show that ol = ddg and
ﬂ.ﬂn_nﬂﬂ_ = id E(u(E ). The procedure that we adopt in defining EE‘
is to define a function J from derived T and G -rules of V(L) to
objects respectively morphisas of € . We show that J induces an

equivalence preserving map from contexts and realisations of V(E ) to
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ghjects respectively sorphisms of © . Thus we get a map from objects
and morphisms of C(U(L}) to cbjects respectively morphisms of T,

we show that this map is a left and right inverse to Tig.

Initially J is defined just ms & partial function from the derived
T and € -rulea of U(Q ) to the objects respectively morphisms of O ,

though eventually we chow that J i total,

Consider the forma that the derived T mand € -rules of
U(L) can take. By the derivation lemma of %1.7 svery derived T-rule

of U(C) is of the form Heﬂl""‘ne'ﬂ'u

Aty ,eeet ) is & type
for some cbject A of & such that 1w ﬁ...ﬂhndﬁ in € and such

that for eash 4,1£i¢n, xlﬂﬂl,...uaeﬁ "

tiE Ai{t]-.Il-lti_lJ
is a derived rule of U{ZL )., By the same lsmma any derived & -rule of

U{L) is either of the form xlEﬂ. 1"'":mE"ﬂn

::j.g.ﬂ
or else is of the form :t:lE ﬂl..u:i:mt—ﬂ a

Tltyaeat JE O
for soms morphism fr-ln—"'ﬂ whare 1 hl"‘d"‘n in & , such that for

each 1,1€ ifn, the rule x el yreenX e )

t.e it )

1 i 1‘-‘-+iti-l

is a derived rule of U(L ) and such that l’lﬁﬂl”":wEﬂn

El:t‘l"”'tm} = N

i a derived rule of U(L ],
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pearing this in mind the function J from derived T and
£ _rules of U{C ) to the objects and morphisms of © is defined

1H.i_“';t ]\fﬂlr ak followss:

_ |.|l ’.IEﬂl*"*InEh' ]
(LI f
III. E‘.ll'l!ltnj 18 & t]".P" T

elypeenx el
i e e R ) = 3(B, )*eaad(R, VBUI(RA ) 1) 120

LTty eeet )€ B

Tlil :].Eﬂ 1"""an ||I_'|In }

\ xjr:.ﬁ.

E 1p(J[an}.JﬁﬁjJ}’. Where for

sach i, 1€ 1% 0, H‘i ig the derived rule :I'.l-E ﬂl...ixmg ﬂl.m

£ :.i{tl....ti_l}
and whers for sach j,1 £ 3L m, R,r_-._j is the derived rule

HE -'::l t-.!--a}{j‘_l{.; Eli f=1

.I'}Jiaut:rpe

IF ® 48 a derivedTrule of U{L } and if J(R) is defined then
J(R) is an object of ©C. If R is a derived €-rule of U(L) and if

J(R) is defined then J{R) is a morphism of T .

can fail to be defined either because

: ( &l gpeeex el i
l"-'#.'{tl,...tn'.l is & tjpij

one or more of the J[P.t_}'a ie not defined or else because the composite
&

is not defined in 0 . For example, l-' 0 €0 peeexelh
]

lIH Iftl,...tn? is & type

will certainly mot be defined unless J(H } 45 a morphies of € whose codonmal
i
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occurs lower in the tree structure of € than the ebject
plJ{Ry ),1)"A, for otherwise ”“tl:" plJd(Ra gt +13*A will not be defined

and thus Jiﬂtﬂﬂ"...ﬂﬂttl‘PN{thl113"& will not be defined.

We wish to show that J(B) is defined for all derived T and € -rules R
of {E). This is going te require a proof by induction on derivations
in U(C), It turns out that the inductive hypotbesis that we must
use is rather complicated. This iz because as we proceed to prove
that J is defined on the derived rules R of U(€ ) we sust keep an eye on
the behaviour of J on substituticn instances of R, atherwise
the induction does mot go through., If we call the inductive hypathesis H
then H is a possible property of derived rules of U(L ). That is for
any derived rule R of U either H(R) is or is not the case. Of course

ve aim to show that H(R) is always the case,

H ie defined inductively., The definition of [I{R) depends on

whick kind of rule B is, thus there ars four cases to considar:

Casel. T-rules, If Rp is & derived T-rule of U{@ } of the form

€ ﬂl.u.:ne A = then H{Bp ) ie equivalent to 1{a) and 1{b) and 1(c),

:‘f.'ti-u-t:'pu

which are as fellowso:

1{a)e If n21, that is if the premise of R p 18 not the empty
premise, thenli(Ra _J, where Ry, is the rule '1'5’51"""“"155 acl
A

& ie & type

1{bl. J(Rp) is defined and if a} 1 the MRa V9 IHEp) anC . Ir

n=o ther 14J(Ry ) in .
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1ie}. 5 (31 Eﬂ;*'-'-"u‘éﬂn
ﬂ{tli x]l]lllt'nh :ﬂ.] im I tnl
ie defined and 15 equal to “Fltn:"--.J{HHJ‘FLHRR-J,I.J'JI:H,_-,:I' y when

‘:l'lEJ':L 11---:-1';_':1;}' is a context of U{d ) and whenevar {tl“..tn}

& realication of {I;JIE fa) 1,ii-xn'Eﬂ nl} wrt {J"l E.ﬂluu:l'mé_n - b2
with the property that for each i,1% ig By
- ( FJIE.”. 1°* "II:I:I Eﬂ'—n J

ﬂif_tll 1.[""*'1—-1' "1-17 ie a type

i& defined and Jth_J is defined and J{Et,JE
& &

ravss 18
.y J(ue prees¥aedl J )

'ﬂ'il:tli I.L.....ti_:l |:1_1:| is a type

“here R, 1is the rule SR Ty and By o 18 the

LT PLLY %]

rule rlé.f}.lr---:rm_leﬂ -1 * (In future we use the convention that

,ﬂ_- is a type
Rt denotes a rule of the form =E ==,
—
LE =

It will then tsually be quite clear which rule :Iit denctes and we will

not have to sentien it, Similarly, unless we say otherwise Rdi denotes

the nde xmedl jheex e 1-1

ﬂi is a type

Canm 2, E=rules, If Et is & derived E-rule of U(C ) of the form

I]_Eﬂlpurneﬂ n ther E(E ]} is equivalent to 2(a) and 2(b) and 2{e)
tefl

which are ss followse:
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2(s). H{RAJ). (it is hoped that it is understeod that Ry is

the rule :I'1E ﬂl,.”::neﬁn 13 'i

Ais & type

2(b). J(R. )y is defined and -T{nt}E Areg (J(Rp) ).

2(e). 5 ( ¥ ESLaeeT €S )
tLty1 Kaeant, I x ] € AL o yannt | x, 1
is defined and ia equal te -TIIEtn}'...J{HH}'p{Jiﬂn-}.II‘JERt}.

vhenever {y, €0}, ,.-.¥ €fl % 4= a context of U(L) and whenever
{'tl..”tu'} in & realisation of cfrlc-ﬂl,..-lnr,ﬁn'} wrt {rle'ﬂl""

¥ & ﬂm} with the property that for all i,15 1% m,

:I(.Tlﬁ_ﬂ_l!!lf:fw E_';'.'_m )

-I'l'nil;tl_l I.T.""ti,-ll ‘ti-‘l] is a type

is defined and J{RHJ is defiped and J(Ht_} L
i

ATty Uxgaeeaty s ix 1] is & type
Case 3. Tsrules, Ifx el preeex e is & derived rule of U{{)
A= |
then (’15 L'*.l,“.uneﬁn) is squivalent to H(Ry ) and H(R s )
&=4'

Cass b, € srules. If xleﬁl....!nt.ﬂn is a derived ruls of U(L)
t=tre A

then " (11& A resex el n) is equivalest to H(R,) and H(R )
t=t'el

EI:IEI J':Et} = Jtﬂtf.:ll
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This completes the definition of the inductive hypothesis H.

¥We 8till need two lemmas before we can proceed with the induction.

Lewma 11. If R ie a derived rule of U{Q ) of the form

IlEﬂ'l"":nEﬁn sueh that H(R), If <t ,...t > isa

Conclusion
realisation of ¢ x, € ﬂl....:neﬁ “} wrt {'Jleﬂl....rlgﬂ-'} Euch
that for each i,1£ 1% n, HI:Ht‘.'! then also
i

i ( N RS A4 )
Conclusion [ t 1 agaaeat | xn]

FProof. By induction en m. We suppose that the result holds for all

rules B' of the farm :r,]‘. E;"_'I.,Jl ,...:r."n;-E-. ﬂ,,"'n, for n'4 n.

Conclusion®
We show thet the result holds of R, ve must treat each af the four kinds

of rulea separately.

Case 1. ¥ ie a T-rule, say R = Bp = "1'5"31""’“51'33 . Ve

ﬂ.i.un!.:n:-

must show that H holds of the rule ;15111,...;_5_1'[.

At 1:11 % geeet | :n] is a type

that is we must show that 1{al), 1(b) and 1(c) hald af this rule.

ila). H{Rp m:l is the tase because H (TLERI‘"'TIBEHE)
tlEﬂl

ig the case.
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1{b)s Since for each i,1{i<n HiRu}. go for each 1,1 £4<n,

'”Rti.} im defined and =
JRe;)ehere T

¥y &l paeenyefly

'ﬂittl! xl""ti-li Ii.-l] im & typ

Since H(R,), s0 Rp has property 1(c). Thus

(Flﬂﬂl""jmiﬂn ) is defined and is egqual to

ﬂ,[t-lll x’l'"'tn‘ :n] is a type

-

T(R, )*euud(B, )%p(I(R0 ) 1) TRy ). Ve wish to show that J(Rp,) 4

J (31 Clyrmectgely ) thus we sust show that
J':'l [t1| a’lputnl I;u.] is & type

J(Bg ! 4-"““,:“3""-““:;1}'1"3”“11 G 11T 4 )

H(Rp ) implies that for each 1,1£ ig¢n, H{Rhi:'- Thus, just &=

above, for sach 1,1< 14 n, ( :l'lE_'ﬂ'l‘---J’HE-ﬂu )

DL 6 I mypensty | %41 daa tape

iz defined and is squal to J(R__

t*-lj'--n}'[!ﬂt 1}'?{']{“;‘ n} ,ll'J{Eb i:l-

The situation in & then is that 14J(RA,)... 4J(Rp )4 J(Ry )
end for each i,1£i%n, '”“H.]EM?E-{MJ.‘.:'""J{th}"’{'”ﬂ""ﬂj'”":m ﬁtﬂ'
Hence J(Rp )QI(R, )*u..d(R, )'pUI(RY ),1)*I(Ry) in €. The

gituetion is afin lemma 5 of %$2.3..

1{c)s BHuppose that {El...nﬂm'} iz a realisation of

{3¢ ﬂlnnrmﬁ.fl.'} wrt {llﬁﬁ 1.1.4.-:?&_:'5_?} and suppese that for

each J,1%j<m, -I{EE':} is defined mnd Jmﬂl}e

=1E ﬂ 11--t3rﬁ.ﬁ r

PH'FE{.J (

)
ﬂj[ Eli ,1!"“Ej__1 1Tj_1] is a tm) ¥
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We must show that E(ﬁlE‘h’l"“anﬂq ]
AT 2 eet 1%, T0 8 1 ypeeeadity, ]
ig defined and is equel to Jtﬂsm}l'-..d{ﬂﬂi] 'PWEFHE 1% B b

( ¥y eflyaeeay efl, }
A t1|- 2y qannt | tn] is & type

By the induction we can assume the .corresponding reoult for the rule

":LE 'I"j'l""":fr.-l'E 'ﬁ ij=1 , whenever i£n. That is we can assume that fo

ﬁiisatarpu

each 1,1£i%n, 'I[ ﬂlﬁh 1,".!'E_ﬂ_ﬂ
Byltg ) mueeety g 12 g 10 831 vgeensSyl Tglis

is defined and is equal to Jliﬂsm:l'".-:'[ﬂstl'lﬂ”lmﬁi:'.].:"

FIER].""IH.EHE ) Call this the inductive

pesumption.

Since for each i,1£1i<n, H(Rt‘}, go for esach 4,15 1€n,

&
J‘{ zllE'ﬂ'],‘”'szhF
b, 051 FyameeSy |7, )€ B Lt xaent,) x JL 8, 1330ae8, )

im defined and is equal to "':Rsm]'"'"”‘s;"P':Jmﬁt}'”"“ntil' Since

eflysenergell o :
TR )€ ﬂfr@'( o ) 5
' ﬂi[t11 X gaaaty g txi-l] is a type
_-( I'rlEf..L 1"“=EEIILIF
d
OUEN [ RRRTL M A AUt bmyueeety g 1%, ] U8 Vayeeeasy ]

E ﬂWE'{IT{EE :I'.l-l-ll-'lrtnﬂ }'P‘{J{H 171:- I ( JIERII‘**':-'EHH_

ﬂitt11 ;:L"-.ti"l | 11_*1 i
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How we use the inductive assumption to get, for each 1,1€£4% n,
( =1 Eﬂ-]l' i-:tE PL!

tit Blh Tluuﬁ.ll ]"] & ﬂ i[ tl h “l|l!rti_l1 #1_1}[ 51 l Tli'l-nnsm i .E':

ﬁE-h -_Lnn-ﬂq.E ﬂ 8

€ Arve I( ) ).
e T T T

Let o; = ti[sl'i :1,_..5.[ ;.rm] « We have shown that {ﬂ‘l....ﬂ“n} Li
g realigation of {:r.-Lﬁ ﬂl,u.xne A :I:l} wrt {:liﬂll.-..:qq_ﬁt'}

muehl Hhat for sach !.,1': i€ o, J(Hu—i] im definsd and ..Tl:ﬂri] =

ﬁﬁm{qulEhlpdzHEh# )1

ﬁl[‘rlh Tyeee 0'1_11. :1—1] is a type

Since HLR |'.'|.] wa ¢an conclude that E( tlﬁﬂl,...ﬂnﬁﬂ_ﬂ

.E!I.Ei.-ll X geenly l!n] is a type
is defined and is equel to J{Hurn}‘...J{Ru-li'j{J{RLq}I,,].]'Jiﬂh Ya

Since [-E{RH}, so J(Re,) = J{ns“}-...Jtns.,:‘p{Jm.ﬁni.,1'1."JL*;th'| .
Hence J‘( zlﬂ_hli...:qg 'hg ) " U{HEm:I."-J{HE-_‘]-

El.tu-l'jrj.]illﬂ'n! :ﬂ] Lﬂﬂtﬂ'p'

by lemna &(iii) of §2.3. Thua :(315&1‘-“:"5&“'
15'[-“‘1'*’1""‘"..'1 xﬂ][ 51\ -"1‘”"3:;:1
F:]_inlgﬂl,...i‘Eﬂi ) _
; .ﬁtﬁ'l'l.lr---n'nlln] is & type

TRg, ) na TRy V'BUIRY JLITR, I uT(R, ) *pLIR ) 1 U(R ) =
Jl:REm}'l-.J{Rﬂl}tP{J:Hﬂq}nlJ- -.I (FlE..ﬂ_ 1.1-“3’14&_“_ & ) .
iz & Lype

tﬁ[tl | Xy peeat | In]
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as required, since H{Rh}-

Case 2. R is an € -ruls, aaaRlEtHILEﬂ-l.n-Iniﬂn

We REEUTE E[{Ht} and we must show that

ted

" (11 Bl greeer e dl,

el et 12 ] € ﬂ,l:tll ﬁ"'“tnl"njj.

that i we mist show that 2(s), 2(b) and 2(c) hold of the rule

IIE.IL]_-—'“-!’ME_I'.I. m

t-[tl'l iy yeesty | *x.1 € -ﬂ-[tll xl.,......tnl.xn—_l.

2ial. It follows from Case 1 that ( g Eflgrrenrgell
H 1] m

2(u)., Epcaune H{Rt]' it follows that

ﬁ[tli X geenty l‘.ltn] is a type

J ( F €M qreeey €01

t[t:ll li.....tn!x“] £ i'_'l'i:l:ll xl,...t

=

is defined and s equal to JIR, )%, . T(Rg)"pLI(R, )11 Jebecause

H(R,) it follows that J(R JEArrg (R

Hence

I(rlnj'l.l....:rm:ﬂm
I’.[ tllﬁll--tn'l :':n] E ﬂEtLJ ::1-....t

AfTEEJ{RHJ'...J{Eh] *pld(Bp ), 1I7d(R Y
Jiﬂtnl'...JlRtll‘th{Fﬂm?.1}'-?{5&:I = (

ety

})l But Eince H{Eﬂj‘l

 NCHITTERS -5t .

ﬂ[t\li ﬁ]lt'tni :nlh a typ

thus J[:leﬂl.u-rmeﬂ'
t Lty lagyeeet 1] € Ale |

] e
....tn'l. '.l.'n]



2.61

T:I.Eﬂl'“‘IIE‘ﬂ':I ) } as required.

HWE{I( ﬁ:[f-ll X avert | xn] is a type

2(e). Supposs that {sl,...smb is a realisation of < ¥y€flysese¥ €
wrt €2,€ ﬁr"'ﬁﬁ-"q‘-" such that for each j,1< j€n, J{EEJJ is
defived and JERE&J & AT Eizlaﬂ.l,."n,sﬂﬂ. )

Nyl \opeeneyy 1751 15 8 type
If we lot o= i-.ll‘_ali jl,...s‘iynl for each i,1$1i<n, then
bty ) xpeeat 16,3 08y L ayrens8 13 0= 0oy Ix0enna | x ] asd
AUt | gennty itn]fﬂlirl----ﬂni.:‘] R - PP A o
Thus we just have to show that ( ﬁgﬂl....zqeﬂ@

L0 | Xyreney | X, ] e Al lx,..o

io defined and ia egual to J(Rsn.'l“, L I(ag ) P{:ﬂ'“ﬂ ,}Lﬂ‘

3 (31 Eflyrene¥p €l }
e Lo | xpeeet 120 6 ATt Ixpannt 12 ] .

ds in case 1, {ﬂ'l,... l:l.'n} is & reslisation of ":lli-ﬁ 1rerX €1
wrt {-E‘.lr'ﬂl""‘!E ,f"._") such that for each 1,15 1% n, J[Hgi} is

defined and J(Re )€ ArT ( (ﬁlEﬁluﬂaqﬁ'ﬁg ]

b-i [ﬁll ’11---ﬂ-£‘11 ti.-l] im & type

Thus since H(Et], I(EL-E_I!LI‘-¢-=-!EJ.!.' ]
e[y xpeeee@ V%] € ATE  mpeeend, | %, ]

ia defined and iz equal to ..T{Eq-n.'!"...J{Hﬁ-lj‘ﬂ{dﬂﬂhﬂ},LJ‘JfﬂtJ. But

as umtij it follows that J(Re ) = J{HEJ'..*J(RHt]'p{J(Rﬁ:]'.'.I.J“-Hﬂt_‘
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Hance T (,alE ﬂl,".aie_h_' )

t[ﬂll,nl..-.truizn'] Eﬂtn—l"’]“"’n”n] )
{J{nsn}'..-qr{nsi} 'p{JEth.'.l.1]"J{Et“:l}'-...{J{HEH_EI*.“J{R&}'p{JfEﬂP i
J{Rti}:"'p'[JI:HAELl]‘JiRt} a JER_EH‘E"...J{HHJ']}{J{RM }.1}‘J{th:l'...r..1{nt1:l'
pld(Rg _H1)*J(R)D, by lemma L{iid) of B 2.3.

Bat since ]:lI:H't]', ..H.Rtnl*...JEHH}'pI:J{n_;,__i,l}'J{nt} -

o s ) - o
bl Lageenat ] € ALY | xpieeat |1x]

I[ ':]_E-I'Ll'!***mﬂﬂﬂi 1-
tlo i gaeeea Ix ] e A[T | Faeeeoy | xn]}

J{‘F‘Em}-' L] 'J{H-E‘].P{J{Rﬂt }11] .

_( ir.'|.'5'J'}-:I."'""':‘Iltl:'E'--'rE-::l ) , BE reguired.

e | xpgeeat t 2] € AL [xgaeent | 2]

Case % R is & T=rule, oay R = rleﬁl...-xneﬂn

A= Q"

We amsune H(R) snd we must show that ( 7€ Ji'L,‘....:.rmi;_ﬁl_I|1

ALk I, balnd = AT, bale]

H(R) implies that H(Rp ) and by cese 1 that implies

3'1 Eﬂli--ifnﬁ.ﬂ_ m \\
N ¥
BLEy | #yeeeet, 1%, ] o & type

Similarly we must have (:rlEIL yroea¥ell }

.ﬂ-‘ Et:t 111.".17‘11,::“] is & type
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H(Rp ) also implies that (:]_ei't.l----!mﬁﬂ, }
AUt ] xpieest |2 ] 48 & type

TR, I%ean IR, Dopl3(Rg 0,10°0(Ry ). B(Ry ) dmplies that

'I( ,1E-111"ITEERE I ) = -.Tl;_Ht“j-..-J":Ett}-p{.JrEﬂm
ALty Ixaeenty 1%,] ds a type |

J(Ry ).  But E(R) implies that J(Rp) = J(Ry ), hence

T rlE'ﬂ' .'l.'"'rme'ﬂ'- ) L J[ rlEﬂl"":'ruEﬁ'n

ﬂ.Etl'l Xasest | %] 15 a type ALty L2 eent, | x is

This completes the proof that (315_}1_1“..3“5_{1 %

ATty xqpenety 12,1 = ATEN. )

Case 4. B is an g=rule., Very similar to case 3.

Lemma 12. (i)s For every n»1, if 144 ... 44, in L then (a)
E{l’l.--lxn_l} 1-. k-1 ‘l-__"fpﬂ

iz defined and is equal to .u,n.{h} for any 1,14 1< n,
:( ne -a----rnei:fw--a.,.ﬂ)

IiE ri { l-l-t--Ii_l}

is defined and is equal to "p(A_,A,)'.

(i1). For every n% 1, if l-ﬂ.-ﬂ-l...-ﬂu.ﬂ.“ in © and if f:A—B i= a

non=trivial sorphism of © then
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s ey €W yenet, € Tl e e, ) )
Ty oo o) € (ToRTETTTE Ry e ee,)

is defined and is equal to "f'.

Proof. (i). The proof ie by induction on n. If m = 1 then (a)

J(7] is & type) is by definition A, (b) J(ﬁ )15 by definition
nel

'plAgody e £ 021 then (a) .]_L X, @ Ry yenaX, 1€ A 00 geenx ) )

-i:l'.xl.i“::n_l} iz a type

i defined to be J{Rn_l:l"......ﬂﬂi:l"p[ﬂﬂﬁn.lj.1}'An, where El is the =

ﬁeq..-.xn_le A.n_l'{:cl.-".'ﬂn-E} and mﬂ‘-l ia the rule

IiEE{Kl‘ 'Y 'Fi_]}

%, € 'p;,...xn_ae "‘n-z{rl'”'xn-EJ' « By the inductive hypothesis

Al yeeex o) is a type

.Hni} = 'plA__444,)" and Jf.mn_lh - A Thus

n=-1"

_( X8 Ayeeex € "'n-l":l""“n-zi ) iz Iil-fi.l!:l-d and 12 equal ta A
W

.ltnl'll‘.-;-tn__lj is & tﬂﬂ

by lemsa 3{ii) of §52.% (&) In view of (a),

_(Ileqi-":uEE{I].""Ig-l:l) ig ju:t defined to be 'Ptﬂnl'ﬂ'i}l

J
:1Eni{:!1,...l'i_1:|

{ii). By definition of J, ]_( x, & 1.1—'*““:;51:{“1""’;1-1} B
?{’1, wa iIﬂ}E— {W{:l‘ii!inl
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JL £ o s ) T ( A e Ay Bl e eax, )
AN L WY L

. o L R e ;- R B
:1 "1! =1 =1 E,l,' A=z 3 _1'} =ifFr_. S8 'h.r part {i

ol 3

"F‘:{Il‘"':u-:h} is & type

this lemma, this equals 'plzhn,.ﬁln]'"u.'P{lﬂ.ﬁl:l"p'[!uu,l}' 'f*, which
equale 'f* by lenma 3(ii) of 5 2.3.

Corollary 1% (i) For every sort symbol A of U(C), if 1a Hyees
4.hnd.l. in O then H( x & H.-.mne &nh]."'":n—l"r )
I{H,...nnl is a type

f1i) For every sort symbol T of U(E ), if 1dAeeeh in L and

I'uln—'!-B in © them H[ﬁ&q-]lll“nﬁqtﬁ-iliﬁn_lj )
?Eﬁ.---!njl.:.{mcxl"utn}

Froof. In view of lemma 12 it only remains to show that J behaves
gorrectly on all substitution instamces of the given rules. But the

definition of J ensures exactly this.

Leema. For every derived rule ® of U(L ), H(R).

Proof. By induction on the derivations in U(G ). We must check that

every principle of derivation preserves the property H.

The principles LIl-7 preserve property H. This can be seen at &

glance, We go on to the other principles.

Tl. Let R, be a derived rule of U(T) of the form x, € 8, eeex 6 d |

te A
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let R be a derived rule of U( L) of the form € ﬂ.lju.:heﬂn

A=4

Let B'_ be the rule :llEﬂl.,..uInﬁﬂl. n * WYe must show that

t e [\

u{nt} end H{R} implies that H{E*t}l.

E[ d ) is always defined indspendently of A 8o mince
tell

Jiﬂtl is defined and belonge to hrrﬁ_”[ﬁﬁ}} it follows that J{R't]
is defined and belings to Atrg (J(Ry )). Since E(R) it follows
that J(Rp) = J(Rps ), bence J(R'.) is defined and belongs to
2(a) holds of R'

urﬂ:mn&r }}. Thet is 2{b} holds of R’ because

5 t
H(R) implies H(Rp” ). 2(c) bolds of B', because 2{c) bolds of R, and

because P ) is defined independently of f\ .

I[t -

CFl. Buppose that H holds of the derived rule l’.lE ﬂ 1"".':.=E.|'f1. i

A

of U(@L ). We wish to show that for all i,1 £i¢n+l,

sial is a type

H e lyrenem ge By .

“i"ﬂi

The proof is by induction om i. Fix an i,if n+l, assume

that for all j,l£ j<i, k:ﬁﬂ 1....:n+1Eﬂn,.1
H

IJEEIJ

¥e can now show that Ilﬁﬂlu--*1“+15-ffl o+l
H

e lly

im the case as [ollows!
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Hmﬂn+1} implies that for a1l k,1 £k €n+l, H{Rﬂk.}f In
particular Efiﬁﬁi}- Ales, {r'.l,""":i-l} ic a realisation of
I ":. :li'ﬁul'!"""xi_l'e.ﬂi_l} wrt {:1& ﬂltiilﬂn_llE ﬂ ﬂ"'l} auch that
et (HEﬂ'l"“xmle‘ﬂml)

xely

Thus by lemma 11 it follows that xleﬂl..uxmleﬂ -
H
ﬂi is & type

Which is to say that 2(a) holds of XEA yeeeex el 4

xedy

J

By definition of J, ( ted eeex el n+1)

:Jeﬂj

PR, I (RAgI  Thus since H(RA,), X (rle Byveeex 6.4
‘ﬁ'i ie a type

"BIRA IR Ay 30 T en e BRI (RAL DI RIRY g L) (R Y

Thus, by lemma 3(ii) of %2.3, |l x el greenx, g0 n+11 -
3

]l\ ﬂiiuntm .|r

pl{J(HEp n+1}"I[Hhi-:|.”"HHE1:" By definition J[ *E A 1.....::”153 s
€0,
= IP{JEHﬂml}'Jtﬂﬂi}I' Hance

I( :]_Eﬁll"'xn-hlﬁﬁml ) e Hﬁ_ﬂ; [ I( IlEﬂ 114411:["_15&“1.1 )}‘
"1.5-"11 ﬂ:’. is a type

Wnich is to say 2(b) holds of x & fl,...x el

n+l

“iEﬂi
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Now suppose that ‘:tl‘"‘tnﬂ.} is a realisation of
{-IJ.E&I"'.IIH!.E& II*].} wrt {Ilﬁﬂlllllfnﬁﬂ‘} and that

for each k,1€k $o+l, J{Rth} is defined belongs to

¥y el 11"*!-5-.“ -
Aer I ) ,
B Lt l =t V% ] isa type

We must show that J{E“} = -Hnt“ﬂ}'...J{Rtll‘piﬁ‘-ﬂn,i.1}'

. (xleﬂl"'"xlilEﬂ n+1 i
x, € 1’_‘.’_

Aut that is immediate from lemma 4{i) of 82.3, since

J LIIE &1114'}:“1; ﬂ'“"‘l = IP{JEEnu*l:I‘J{R&iJI.
o '!_"1 !

Thus 2(c) bolds of x, € A, 4eex o €l

n+l

s,

¢F2{s).  Suppose that A ie a sort symbol of U{T) introduced by the rule

Xy & Ay qgeaeT € .ﬂ.nlf:l,...:n_l} « BSuppose that for each i,1% i< n,

I{rl,...:n} is a type

;rlf_i'l,l,...;-'aﬂ,m is a derived ruls of U(L) of vhich H holde.

B E A It ety 5

We must show that " ( 7 efl eennygell

Ittl‘qlitn} is & tw-

This i an irmedinte consequence of lemma 11 and corollaryl3,

gF2(b), Similar to GF2(al.
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SIl. Suppose that R is a derived rule of U(L) of the form
xlEﬂl,...j:nqﬂ _ and that for each i,1$i¢m, R, is a

A= D

derived rule of U{E)} of the form rlﬁ.n.l-,"-;rnﬁﬂm

ko= +.l+.55,i[ By |2 eeety 41 ::1_1]

Suppose almo that H(R) and that for sach i,1% 1% n, H[Ei]'. We must show

that y ( ¥y ETL jaeeay €Sl ]
AL ety b m T @ A DT mpeeentyt L %]

From H{R) we deduce H{Rﬂ } and from esch E{Hi.'l' wa deduce HIHH].

By lemme 11 it follows that ( Ilﬁﬂlp---ImE_”_- )
&

j:'_l_[tli Jr.l,._..tni In]' iz a typa

Similarly it follows that ( 315111....;;"55[_ ]

ﬂ'[tl'l Xpeeast 'l x ] i & type

Finally, .'I( 31511_1....;rﬂ.-,-=_|.'1_ | ) = J{Etn}'-.-Jthij'p(J{Fﬂ.
ATt et %] 18 a type
JiRy ) = J{Et.“ J'-..J{Rt,i]"P':J{H_nﬂ]'.ﬂ‘qﬂﬂb'} =
{ ypeflyreneyedl . ]

AN'LE ] mpeeeet, '] 2] is a type

S ' (rleﬂl.---r.aﬂ, }
ATty maeeet i =] = AT 6] 2 0eeet,’) =, ]

as reguired,

51z, S5imilar to 51l.
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Al and A2, We wish to show that these principles preserve property E

We must show that whenever P is an axiom of U(@ ) such that

b=Pht

H(ﬂ.i'u—aimr) e H(ﬁ'if.wp-)thm H(hﬁ-p—ﬂ')

and we must show that whenever F' __ is an axiom of (@} such
t=treh

that and then « In the fi
H[teﬂ H(t-ﬁﬂ) [t--t*th '

case this amsunts te shewing that J( P ) s I( o]
A is a type Atdsat

in the second case it amounts to showing that J( E ) =3 1
ted Lt Eﬂ.i

o we go through a1l of the axioms of U(QL ) checking that one or the

ather holds as appropriate.

(i) For n3o, m3»1, {21, if 14 Ajecedh s 19B,...9B_ and

14 4::1...451 and rmp—}am. E:Bm—w? in € thenlU(L ) has the axie

LS S
E{II,- li:nj = E{ iaP:Em.Elltxl‘-q l:n:l 'LE -?[}f_l g pInJ] Ebe'Pi{:,] }J”:IEI.

By lemma 12, I HEE"":nEE{H""IEHl = "T.g".

E{IL‘- - -In: = :qu'-tl{ﬂ?}]'ﬂu (-I']-I - I'I-:n]

Cm the other hand; by definition
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( .II-II Er{ﬁ.'---ln_lj )
J
Ei n-PtB B }{:1"‘.1 :"luqf{:’.rllix J}E {fiﬂlpfﬁ .:l.:l ¥ t11|l|.ix j

e

(I:L'E . F_.ﬁ.nf,l‘l..,.u: ) o
fI::l.”.:n Je B iﬂ. {ﬁ"":n}"“m{ﬁ""%”

35 ( €A yraex, € F.:{xl,.":n_ll') . . J('xle L LI W e

f.._-pilﬁ E :lhrl.,....xh:iEﬁl I‘I:I{l.l."":ﬂ;} is a type

ik which by lemma 12 equsle 'f** ....'f.p(B B )¢
p{.ﬂ.“,l.]”s"- By lemma 3(ii)} of 32,3 thie equals £*'g', which by lemma

b{i) of 82.3 equals "fog'. Which is just whats reguired,

(ii). For n31, if 1< Ajean 94 in € and 14 i€ n then U( L) has the
axiom :11:1- q....xnﬂ E{rl’"'xn-lj

POA A yanax ) = X 8 & (X yenexy o)

J( L PR AR W C PP ) is defined and im equal to

p'[.ﬁ.n.hi]{xl.l-.-IHJE.H.’.'[I.-L‘---Ii_I}
'ptnn,.ﬁi}' by lemms 12(ii).

J

'IlE q-.-'rlnﬁ_}:{:lliill'n_'l} )
:1'5“_5.{'1"":1-1}
is defined and eqal to 'p{ﬂni.ﬁi}' by wvirtus of lemma 12({1i). Thus
I( II-E- q-iitan “h{:l"l‘;n'l} ) ;
PUAL R ) Oy ven ez JE A (%) 000ex; )

]_( X ER uaeX & a{:ﬁ....xn_lb) ey

x84, (o anemy 4 )
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(14i). For nyo, myl, if 144 .ea A, 148, ,... 4B 4 B and
f:4 —B_ in @ then U(L ) has the axioms

I].E *11III:nE ﬂn{ll, = -1n_1]'

ﬁ{’]--'l lllu:: = E{Iﬁptﬂﬂ‘ll}{ll".‘xn} L] i?‘ﬁl| % l]nlﬂ

and x].E' ‘E;'lvritné i:[:lq-i "Iu.—l}'rE ﬁ{,:l. o .x.n]

qi!",Bﬁl[r_r...In,y] w Y& ﬁf::l, H ..:r.n.‘.l

B:' 'I'i.‘l.'frl..lﬂ af lemns 12, HEE|!=#I=.EE{:1|!!§:“_1.‘I
J

ﬁ{iﬂp{ﬁﬂ'% }{H.ll‘:uj‘.lll?{ﬁrr ‘-II'I} =a t:ﬂ

ig defined to ba 'f".H'fap'fﬂm..ﬂl:ll"pf.ﬁ.n,li'ﬂ, which by lemma 3(1) af

§2.2 is just £*B, which is

I( xleq....:ne E{’l""xi-lj) as required.
f‘E{:l,...::nJ is a type

Bj' dl!ﬁ.ﬂ!.tiﬂl 'ﬂ: III| JLHE E]I'IFIEE E{Il"'ilﬂblhiﬁ{ﬁ.‘lll:‘n}

¥ Eﬁ{;l L !-I:;n}

iidI'Bl- EF 1-Eﬂ1ﬂ]ﬂ. 12, I I.I.E q..“:l:“E E‘I]‘i l-i-ln-l:l 'H'Eﬁ.{:lll..xﬂ}

[!Ef‘Ej{:K]-.liltﬂ‘J']Eﬁ':l.l-llIn}

*g{f,B)'s But by lemma 5of §2.3, 'dd ' = 'qlf,B)'.

We can eollect together the information about J that we really

want in the following:

Corollary 1% (i) If {xlr.—ﬂl-.n-:thiﬂ.n} is a context of U(L ) then
14 J{Hﬁl}...ﬂﬁﬂﬁn] in C , where Rjp, =X € ﬂl,....:i_lﬁﬂ i1

'ﬁi is a type
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{ﬂ}- If {tl‘-itt-} im o ﬂﬂliﬂﬂ-tiﬂﬂ of {I rlEﬂl-tiiImEﬂﬂ}
wet &% el yeeex g 8 > 4n U(C) then for each j1g3i¢m, IRy ) e

Al-r'LEJ{HH_]_]".*.Jiﬂﬂl:l'p{-ﬂﬁﬁn}.I}'J{R_{}_jTI. Where By, is the

rule x, € El....xn-:,,ﬂn

tj'E .ﬂ.j C tl | :I'I'liﬂtj_l | ;'.j-l]

(444)., If {x € ﬂl.,...:nfﬂn”} = {x'ehy veeex'e A > then

J{H&n} = JEH;_._.: nJ.

{if:- If {t1|llrt“':l' - {tl-’bhitm.} then for -:ll:h j-.l 55.{”.

J{Rtjil = .!:n..r:: Je

By corcllary 14(4ii) and by lemma 3{iii) of §2.3, vhenever
Ctypeeet » is a realisation of < Y€l vamay €l B vt
{I__Leﬂl,.":ng A,Y in V(L) then there exists a unique m-tuple
(G STTTT i L norphisms of © such that for each j,l1£j<m,
}’j:J{HE “}Iv—'.IJ{R_ﬂj] end * fj' = J{Rtj'.'i., and such that for each

4,15 j€m, ‘;‘j+1.pta{nnj+1:..::nﬂj}} = ‘a’d. This last condition i=pli

that the m-tuple {3’11... 5> da determined by ¥ 1J(R4 ) —J(Rqa_

56 the statement ecan be reworded: for each such realisation there exis

a umigue ¥ :J(Ry ) —>J(Rp ) such that for each 3418 igm,

'f-ﬁp‘“mﬂ.m}*‘rmﬁ-}”' = J{th}. Thus we can define a functien 9

from obiects and morphisms of C(U{T}) to objects and morphisms of O

by
Eaneliy ... Ane,>] g Ettﬂ.:]
l (<) e bnd] — l Y
C<vefl, ... Ymeflu>] :.'I-lp..:.lhll
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Jner® ¥ is the unigue =ap such that for all Hleiem, 'YopldlRyg ],

atheghd! = IR

hen { is well defined by corollary 14(id4i) and (iv).

We &how that & is an inverse to 1"|€ L —aC(U(L )). We need

lepma 15 If X E ByrmeeX 4 € A 3 ig & derived rule of U{& )

J"'lln is & type

then far Bl 1,15 i % n, -“-lEﬂll-l -“31_15— I':!l- fa1

ﬂi = W‘;Il.+"1i"lj

{6 a derived rule of n(d).

If ::1& E.l,..nne ﬂn is 8 derived rule of UL d) then
te i
=1 q T .
r‘l‘.""l'."'l"":nt‘_' 'ﬂ'n ig a derived rule of U{T )

t= Jtﬁt}‘.lj-pll r:i'-nj

Proof. By industion on derivations im U(@ }, e show that each
grinmciple of derivation pressrves the property. We have only to check
those principles by which T and E-rules are derived. These Are .,
&F1, CF2{a) and CF2(b). If fact the checking of T1 is trivial.

CF2{b) im very mimilar to CF2(a), so that leaves us to check CFL and CFZial.
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CFls Suppese that for all j,l £ }z a+l,

%€ ﬂl'""j-lé 'ﬁj-l is a derived rule of U{L) and suppose that

D g = TR x, ey )

have some 1 ,1€1i%mn+l. We must show that

KIE ﬂ1|l-! .:ﬂ.“lE ﬂ'n-t].

x; = TPETRy VIR T1 (e euex, JEA

iz a derived rule of U(@C). But this easily follows from corollary j
of this section and the axiom

IIE J:H'ﬂlz T o nrl: {:1,...:h:l

e = EEw
pEJEﬁ&m_li.,J[Rﬂi]Hrl. :l:m_l} xiEEIHﬁiiixl. :1_1]

cFz{a). Suppose that B is a sort synbol of U{L )} introduced by the rule

e ﬁ,...:ﬂeﬁ;{ﬁu.qm43 and suppose that for each j,1% ji<m,

E{‘_Fl,...yt:l is a type

x el ez ed _ is & derived rule of U(T ).

L

i = m{xl‘.":ﬂ: ﬂttll.utd_l]

¥e must show that the rule zleﬂl,“.!ne i) A

E{t]..iuttm} = F{R”:l""xn}
ig a derived rule of U(L), vhere R is the rule

IlEﬂll*'*lnEﬂn

E{tl,”.tuil is & type

Let E:J{Eﬁn}—l-ﬂn bs the unique mep such that for all

Sil€j€m 'YoplB ,B)" = J(Rp). By lemma 5(1) of this section



2.76

€ JTHA Jheeax @ TRy Tl geeex, )
'?TE{::L. o RE E{W{'l" R ._{R.t_mﬂrlt-":n}}

is a derived rule of U(E ). Thus so to ia

neEf ez g ﬂn « But by lemma 3(ii) of § 2.3,

i.atﬁ'lli:‘-ﬂ} = Ettlll-..tﬂl

i"B = J{Rt‘}'...J{Etll'P{JfR.ﬂnJ »1)°B, which by definition of J im

just E(:l-:;&r...:neﬂn ) o Thus  medieex el

_H..ftlil-l-ltnj iE & {'-}'P .ﬁ{tllt!tt.J = JERE::I"“':HJ

is a derived rule of (T ), as required.

Proof. (i) Follows directly from lemma 12. (ii) Fallows from

lomna 1% and eorollary %

It now follows from guite genersl consideratiocns that
€ :L(U(E))——>C is a contextual functor. For exsmple S preserves
composition because Sifog) = §(NglS(DIoN(§(g)) =
SiNg(5 o 8{g))) = 5 (1) S{gl.

S50 that complestes the preef that I"i_.E_: . —{u(T))
is an isomorphism for every contextual category (L . 5o completing tha

precf that the category Com is eguivalent to the category GAT.
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2.9 Functorial Semantice, Universal Algebra

£:9:1 Funotorial Semantice

An algebraic sesantics is an equivalence betweon a category of
theories amd & category of structures. We referred to several such in
S 2.1. In all cases so far considersd there is a further
equivalence., In mll cases the usual definition of model of a theory can
be replaced by a mew definition which uses only the notion of etructure.
Lawveére has used the term functorial sémantics in describipg this kind o
semantice, Functorisl eemasntics depends on an egquivalence betweesn the
category of models of a theory U and the category of etructure preasrvin
morphises fron the structure & (0) corresponding to U to a special
canonical structure (the world structure?). For exmmple the cononical
structures is taken to be the category with products Set in the case of
algabraic theories (Lawvere[n]). ©Or in the case of classical
propositional theories the canonical structure is taken to be the
Boolean Algebra I o,11 .

The present situation is as well beheved es any if the canonical

atructure is taken to be the contextusl category Fams

If Ul ia & gensralised algebraic theory then the category of models ¢
U is equivalent to the category which has contextusl functors @ (U) to F;
gn objects and naturel transformations as Borphisms,. Thus we can asssrt

U-alg = ConFuncl &(U),Fam).
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It has turned out that the inductive censtruction of €{U)
from U has ensbled ua to replace the upual inductive definitiom of

model of U by the definmition 's model of U in a contextusl functor

M : @{0)— Fam".

Every interpretaticn I i U——T" ipduces a nu;!]t-t::tuu.l functor
LI} 1 CU)—@C(0'). Composition with & (I} is a functor from
CenFune (L (U'),Fam) to ConFunc{ £(5),Fam). It is the functor
I=alg i U"=plg—=U=alg: Thoee functors between categories of modela
which are induced in this way are called generalised algebraic functors.
We can show that all sush functors have left adjointss. But anyhow
thie is eguiveleat to a known generalisation of Lawvere [11] "e theores

a1l mlgebraic functors beve left adjoint.
2:5:2 Universal Algebrs

ke have been able to prove a generalisation of Birkhe[fs theorem.
Freviously this theorem haeg been proved Tor many sorted algebraic theori
see Birkhef and Lipsem [31 . Birkhoffs theore= classifies those
subcategories of a category U-mlg that arise as the cstegory of =models o
egquational extension of U. The result that we deoscribe characsterises
subcategories '=alg of U-alg in caeee where U im sny generalised
algebraic theory and U' is any £ -equatiomal extension of 0.

By an E=-esqualtional extension U' of U we mean an extension by
axioms all of which are €mrules. Thus U' is not permitted to have any

T=axiome which are oot glready im U,
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If we state the result then we can explain the terms afterwards,

Theorem If U ie a generslised algebraic theory and if P iz a

subcategory of U-alg then equivalent are:

ie " is the subcategory determined by soms € -equational

extenmian U of U,

il. ' ie a full subcategory of U closed under products,

homomorphic images and subslgebras and having the property that if M

is B U=glgebra sod if all the finitely generated subalgebras of H belcng
to " then M belongs te ' .

The U=alpebra K' is sald to be & homomorphic imags ©f the U=slgebra
M iff thkere exista a homomerphiss £ ¢ H—W' having the property
that for all 1<A. 2 ... 24 in ©(U), for all a' € H'{.ﬂ.l.:l, for all
I.'EE H'“E”'-‘l}t'" for sll &' € H*{ln”n'l.“.n'l1--.5'H_I:I. there
exints B ,eeen such that a € HEnll.--.lFE H“‘u”"l‘“‘"nnl} and such

that H.lll = n'lnuf{ln} =8’

A4 D-glgebra M is to be finitely generated U-algebra iff it is

the homomorphic image of some finitely generalted free elgebrs.

Copesider for & woment. Ewvery theory U has a minime]l model dencted
K and biidlt ouk of glesed terme. Alternatively this sicimel model
is deseribed just in terms of the structure T (U)., For example if
1ak in ©(0) then KylA) = Hom{1l,A), otherwise if
144,00 Ag A in V) then if a,€Ky(A )yere 3f 8 € Kylh Moy yenea, o)
then K () yeren ) = § aGHom gorn(1,8)] aspla) = 8 3 .
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How, the free U-slgebrass are the slgebras
I-Elgﬁﬂu'} for I 3 U——0U" an extension of U by constants alone. The
finitely generated free U-alpebras mre these algebras where U' in an

grtension by just finitely many constants.

For exazple, take U to be the theory of categories. Take T' to

be the theory of categoriecs +

EE'b-&l Intreductory Fule

™ g
L B € O
b b EHmEll.uEJ.

In this case I-alg(k;') is the category «+—+ . It is the free

category with one morphisms, It is & findtely generated free calegory.
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CHAFTER %

ALGEBRATC SEMANTICS OF M-1 TYPE THEORY

We say what it is for & contextusl caterory to have disjoint
unions and a singleton object (comparable with eatepory with finite products
and terminsl object). The category of these structures is denoted

E -':'F"I:h

We then introduce & pew notion of etructure - the notion of a
category with attributes. The eategory of these structures is denoted
Attcat. We show that the category 7 -Con and the cetegory Attcat are

equivalent categoriss;

In 1.5 we alluded to a contextusl category of categories, categury
indexed familims of categories and so on. The well known fibration
construction induces a structure of disjoint unions en this contextusl

category. We use the Attcat, ¥ -Cop equivalence to give a fairly brief

description of this structure, This is in 5 5.3

3 3.4 containe the definition of M-L structure intended ss the medel

theery of a otrengthened H-L type theory.

Also in $3.4 an equivalent notion of structure, based on the Atteat,
£ -Con equivalence, is put forward, Then in 5 3.5 we can briefly describe

a new model of M-L type theory, we refer to it as the limit Epace model,
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3.1 Disjoint Unions end Singleton Chjects

A contextual eategory with disjoint unions <& ,L,o> consists

af a contextual ecategory L and for every Q4A<B in@, an object
LB of © and a morphism o{{B) of € such that Q< £8 in € , such

that ol (B) is an isomorphism in £ , «{B)s B—— ¥ B such that the

disgran
™
H LB
\‘n J/
(i}
commutan,

subject to the condition: If fiQ—Q' infd and (f Y9 A< B then

f*"EB = E£L*B and £*o{(8) = o{{f*3).

The catagory of contextusl categoriss with disjoint uniona haso
as morphisma F:<L ,E o> —a g, 5", u'> those contextual
functors Fi1 & —>4' such that for all Q4AdB in € ,

F(ZB) = £'F(B) and F(et (B)) = L'(F(R)).

It follows that if <@ ,Z.,M> 1is a contextual category with
disjoint unions and if f : A——A' in € then
Efl ":{LA..E sk p—3 g 'iA.I.*‘?:} is & morphism of contextual

catagories with disjoint unions.

Actuel disjoint unions of familiss of seta induce the structurs af

contextual category with diajoint unions on the contextual category Fam
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of sete, familiee of asts and so on. This is as follows.

If 14Q,...4Q 4448 in Fan then define T B, such that Q 4 ZB in Fam,
by defining ZBlr ,...r.) = i¢a,b> | & EAlr yeasr,) ond
hEB{rl‘...rn.n] j whenever :.'15 ql'llltni qn{l"l]rrrr‘_l-]i Dafine

®{(B) : B——ZB in Fam by defining S(B) = <f ,...f .5} whers
fi,li-i-.' n is defined by ri{rl,...rn
ruEQn{rl.q.urn_l:'. E.'E-ﬁ-{rl|nn-rn.} and bEB{T1|'Ilrn-|ﬂ}| mnd

sa,b) = y whenever rlqu,“.

where g im defined by g'[rl..--rn..alhl = € a,b¥ .

Tt is easy to see that o{(B) has inverse ob LB given by
{I':I.'"'Ln‘j'i ,I:E“.:n whers 1.1,1 €44 n, ia tha operater given by
11Er11...rn.n]' = r; whenever r € @ ,se.r € Qn{rlpurn_l_} and
EEEE{rl....rn]'. and whers k, end k. are given by

kil[rl.....rn,c.‘.l = the ith component of the ordered pair C. The
conditiona f*I B m Z "B and (e (B)) = K({f"B) are

automatically satisfied. Even without thess conditions it is clear
that the definition characterises disjoint unlons in Fam upicss

loomorphicm.

Lomme 1 If £6,F,0ly is a contextual category with disjaint
unicne then Base ((Q) i= a category with products of pairs (and hence k

finite productal.

Proof Suppose that A and A' are objects of Hase (L},

That is to say suppose 1<d A and 14 A" in T .

In any category, pulling back over the terminal object yialda a

product disgram, Since
Eﬂﬁmflﬂ“ A

Feb A
‘N\\“ﬂ

ig a pullback disgroes in,

‘&\‘1
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g lpimy, A

A g o H.n,\ ] | —

is & product disgras in &,

Since o{(pla)*a’) ¢ plad a'——Z p(A}*A' is an iscmorphism

TXp(a) A Depipla)*ar) o LiptA)*A" Jo qlplA) ,4")
As FplAlar sA

iz a product disgram ind. ., 1 AXp(A)*A' in & and so this disgram

is a product disgras in Base (O ).

If this proof is interpreted in L = Fam then we have Base (L) =
Zeky the category of seto and Tunctiomss If A and A" are sets then
pl{A}*A" is the constant A-indexed family with value A'. Thuas
AxA' in Set is given by ¥ p(A)*A' in Fam which in turn {5 just

Y <a,n'> | €A ad a'e .H.'}. All is a8 it should bes

A gingleton object of the contextusl category & iz defined ta be

an object of Baee (L) that is terminel in L . Ejuivalently it im
an object of Base (T) that 4= isomorphic in € to the terminal object 1.
The singleton object, if there is ope,wlll usually be denoted 5-}.

The unigue morphisa : 1—'{] in L will be denoted e,

Thue & contextusl category with singleton object £, §-} 48 > consists of

a contextual category L , an object i*} of & such that 14%-Y 4n @
and a morphier & : 1—4{'}] such that p{1-} Joeo = Hi-'i « The morphioms
between contextual categories with singletonm objects are tekon to be theose

contextunl functors whick preserve the singleton ochject.

It ig mot difficult to see that if U is a generalised slgebralic

theory then the contextual category € (U) has = singleston object Lff there
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exists expressions t and A of U such that x €0 ¢ t =« xefl is o derive

rule af T.

Lemma 2 If € is 2 contextual category with singleton object I+}
if Fi1 L—=D 4is a contextual finctor then F{ {-3} )} i5 & singleton
object of . Preof F ie a functor, hence Fprua_urvna igomorphisse.

Tous 19F{-1) and F(E-F ) =1 in D .

Lemsa 3 If <@,{-3> is a contextual category with singleton
object and if A is an cbject of € thes ¢h' pla, 1) 1-1> da a
contaxrtual category with aingleton object. If f2h —aA? in & then
{ﬂ:n”h{.ﬁ' A1 11— <1011 is &

morphisn of contextual categorlies with singleton objects.

Proof If & ie an object of © then p{a, 1) :+ A—1 in € ,
Hence Eﬂhl} s C—=C,. Thos by lemma 2 <C,, pla,1)°i+ 1> is
a contextual category with singleton object. Now if

£ 1 A—sh' dn L then T, : C,,——, and

f
€ (p{a',207 1) ) = £plar,1)* T} = (foplat,l)® 1+ = pla,20"1} .
Thus IEI I I,t‘!'.——'.l i-h and preserves the singleton object.

The category of contextual categories with disjoint wunions and

eingleten objects is denoted 3 -Com.

The point is that in a contextual category with disjoint unions
and singleton object there is a lot of repetition of structure. Yor

example if in such a structure Q4HA<E then EE’HHJ is an isomorphism of



of EB with E‘IB' Thus the structure of @ absve B is isemorphic
to the structure of © sbove LB and becauss I8 is at a lover lavel
than B it turns out that the whole structure of © is coded up am
structure at a very low level. This leads to the notion of a

category with attributes. We must Tirst introduce same new notation,
For the remainder of this =mection we GUDpOEe
{-I.,E AT to be a contextual category with disjoint wnions

and singleton object.

Lemma 4  If f 3 A— A" in Base(€) and if A'A B4D in © then the diag

AAF B
40 + [
dtf"bﬁl l aliD)
b ——— 43D
air, In
commuites.
Froof, Since £ 7 A—>A' and A"4B4D we have by definition that

"I0= Z£'Dand £*%{D) = (£'D). But £*o{(D) is defined to be the

unigque map ! {*D——=f"FT D such that the diggroms

thp a.1F, B

l‘“\, “ Pty
\u /zf b [ l

A v
PIo ey D

commute. Thus the statement of the lemms is a rostatement of the conditiog

£2ol{D) = L{f*D}.
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If 14A<5B in Fem then we let AB} i T8——4 be the
1st projection functicn from % ¢a,b* | dﬂﬂ.hllhﬂ to As

More generally if Q4 A4B in © then define F{E} t EB— A to be

WL (B)uplBl.
B
-
H

IB

Now supposs f : A——sA' in Bage (C ) azd A'94 B in Q@ , define

§(¢r,B) ¢ Z £'B— I B to be the morphism o T(£*Bleqlf,B) s & (E).

Lezma 5 If £ 1 A——A" in Bape (€ ) and if 4'4 B in £ then
ik LIRS £a
[elfes] l FALEY

: 5 i
ie & pullback disgram in Bace (@ ).

Pr_:a-l:r:l' Just becauses )
L. 0 *
P

J,

"3 '

ng—— @

i8 & pullback disgram in & and of(f*B) and o (B) are isomorphiema.

Mate that these pullback diagrames fit together in the sense that
i

r i
if a——sat—p*  in © then £°r'*B = (££'}"B and
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S(r.0"*Blo%(f',B) = %{ff',B). Wo are at this moment collapeing the

structure of © into Base (@ ),

We now introduce the #f ,¥ notation. We have to think of this

as a reflection at & low level of & , structure at higher levels.

Leamen & It £ A—sA" 45 an imemorphimn il saa
If A'£ B then gq(f,B) : f"B——iB is an isomorphiesm with inverse

alf™L,r*8) : B—1*B 4n @ .

Froof qﬁf‘l.f'B} t B——t2'B in £ becauss £°744*B = B,
(1, £B) q(f,B) = q(f'1,B) = q(4d,,,B) = 4d..

-1 gl =1 .. T} g
glf,B) q(f ~,1*B) = gff, £*B) q(f ", £"B) m q(ff ", f"B) = id,.q.

In future if 19A<B in® and ZEBE4C thea the object
% o{(B)*C will be demoted #C. Thus A0 4n L, By lenma &
ol (B)"C = C, The compasite fzemarphism C——=s X(B}"C —= 3 ol (B]"C
will be denoted & (0). Thus T{C) = qlot(BY", A (B)*Clood (ol (B)*C).
Finally we define X(C) t §C——F#C to be the isomorphism

A (0o T(Cla A (F C)

A(RY*C

ﬂ.,m.m*,n@‘ l wﬂﬁ:}

THBI*C = C

c B
dy' J y/l / aiwC)
rC bl 3]

TH#C
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Lamma 7 If 14448 and £8¢C in © then the diasgram.
b o \
)
B IFC
)
oL o

commutes in Base (& ).

Froof Uze the definition of f and ¥ Flus the gomeutivity of
the diagrams
mC ,
4 ollallEy )
ol | G (0 P e l
! l B IABY*C = fC
B > B and A

el LBY

(The first diagram commutes because it is a pullback diagram, the

second be definition of disjoint unions).

Lemea 8 If @ A—pf" in Base (G ) and 1if A'dB, TB4C in

L then $H(§ (£48)*C) = £*# C and the diagram

TRERTT i{.il‘hﬂht'ﬁ T
LR I F{c}

.'F . ¥
LR LS A THC

Sommibas .



Froaaf The szituationt
alm™e
ok
Wi BC  pe—ME® g c
BT e
l‘ e
LR A

3.8

The identity H#( S({,E)"C) = "B holde as follows:

(% (r,B)*c) = E{a(fB)" &(,B)*C)

m

% (ol (2B (ol ~F(£*Baq (£, Blacl (B))*C)

by def. of # .

by def. of 5.

T {ql{e,B)*al (B} C)
Tlerol (B)*C)

f* Tlol(B)*0)

lc

Now 4f we take the diagras
the definitions of & and § we

rectangle of the diagram

notation — see lemma 1 of 1
Gince A'<4 B« H(B)*
and £ ¢ A— A" in T .

by def. of .

that we wish to shov copmutes and use

geeé that we wish to show that the outer

fupyre TR ooy MEERLO) o i‘j sz
LR RC) \ £
e BIc &
s{giguro)| :
BEE M e
dipae) \ / o
LPe —iewg ) e e R

commutes.

4, #O)
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Thus it suffices to show that the diagram

ati poe HEEBLO)L

o | Af, B w (<)

0 A ) w#c

conmutes.

Kew O(C) is defined to be gqled™ (B}, ol(B)*C)o of(ol (B} *C)
and T (8 (£,B)°C) = qlol ™ (£*B), o{(£°B)* & (£,B)*C)a o (ol (£B)* € (£.5)°C) o
qlot ™ (£°B), £ (8)*Clo of (£*oL(B)*C), by definition of & . Thus

we wish to show that the outer rectangle of the diagram

%mqmﬁm‘:} c

el § "0, § ulye) 1 Gl LBy, LR Y

Py HEABS Laee

ALFsl(RID) [ oL (allBYCY

pcRiEakC) Ll

commuteEe.

¥ell the lower rectangle commutes by lemma 4 of this esectinn,
To show that the upper rectangle commutes we replace the extended *,q
notation (i.e. use lomma 1 of § 2.3), use the fact that pullbacks
fit together and uee the definitien of 5 . This is as follows
a(et " (1°B) ,r*el (B)*Cloqlf,ef (B)C) =
alet T (2°B) q(£,B)* ol (8)*Cloq(q(£,B) ,o{(B)"C) =
al o (£*Blog(£,B), o£(B)*C) = ql § (£,B)0 ot 2(B), ol (B)*C) =
qCT (1,8, et (B0t (B) "Clogled LB, oL (B)*C) =

(8 (1,8} ,Coalel =2 (8), 6(E)*C), s required,
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If 4 € | Base ()| then p{ 4+ 1)*A = A because p(i+} ] : §+j——1
is an ieonorphism, Hence Ip({*3 ) X A. We denote p{ {-3 )*A by
L{A) and the icomorphism of Z LA with & by ©(A)s Thus ©(A) 1 T LA—s4

is defined by S(a) = o “Lipl §+1 Jadoqlpli-§ ),ada

Lerna 9 If 14448 4n © then LIZB) = (& (A)"B) amd the disgras
B v@iﬁ}
s{zm[ ZelAyg

TLTH F': Slav™ Y

commites.

Froof #“'-‘-“!'l{p-{i‘i T*adeqlp{ 13 ),A)'B = Zqipl -1, ,4)"B
by defintion of # , = E£p{§+] J*B, by replacing extended
* g notation, = p(f+*] }*$B. That is #S{a)*R = L{L 8],

is for the commuting trisngle, if we cancel out the o 's and o{™* &,
after substituting in for © ¥ snd § , then we see thet wé want to show
that the disgram
(R, B 6]

EE&E\

aipi-, Ry S(AT* B
pLi-1)"IR & (E(RB)

=

# BLAR

commutes. Mow gl B(A),EBle A (B) = q'I:EL-l{D'.' $e} aloalp(§+ ¥ ,A),BloxX(B)
alel™Hplie1 I*A),plE+} J*Bloalp(§-1 },BloolB), Whereas
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o (e(A)"B) = q{tu‘:'lig{ 1-% yea,pl i) YBlool(p(§+} )*B). Thus

wve must just ohow that the diagram

ﬂip(i-l‘.l‘ﬂ"}l 1 L8
Zpliy

*B———— B

qIpL T, 1B

commutes. Dut this commutes by lemma L.
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Fal Categories with attributes

A category with sttributes {g.ut,zc,i W RE R N.L,. B

coneists of

i. A category C with tercinal object 1':. Said to be the base

category.

ii. For every object L of C, a ast Att(A). The set of attributes of

type A.

iii. TFor every object A of C, for every BE Att(A), an cbiect

IB of C and a nmorphiss p(B) : T B—aa inC,

ive For every morphism f 1 A——=A' in C, for every
BeAtt(A'), an attribute I"BE Att{4) and a morphi=m

E(£,B) : TL£B—¥8 in C much that the dimgram

sop-SEED o
o o
i ' A

¥

is a pullback diagram inC.

v, For every object A of £, for every Beatt{A), for every
Ceatt(Z B), an attribute FC ©Att(A) and an isomorphism &{C) :

ZC——=F#C in C such that the dimgram
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Ic
le #(C)

id Eec
p{k‘ Ai#:‘.’i
A

commites.

vi. Tor every object A of C, an attribut L{A)E
Att(lg) ond an isomorphism G(A) : ZLA— 3 in C.
Such that L as a function L : | C |——Att{l.) is an
izsmorphiem of sets,

Subject to the conditions:

I, If A is an object of C and if BE Att(A) then

£d,"B = B and E{id.mE.:l = 3d o

B, geateap B e g C and if B€Att(A") then

£21'°B = B ana  S(f,£'"B)e8(r',B) = §(f*,B),

T, Iff e A——A' 40 C and if Beattla') and CeAtt(SB) then
FLEL,BI') = £°#C and the diagram

zaiea e UEERNG) | oo

esro) J ¥l
Y
COMOULtaEs
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IV, If A e an ebject of C and §f BEAtt({s) then

LIB =% ©(A)*E and the disgran

IR
Y lﬂmm

EAER) T EIAE

st

LireArD

commias.

The category of categories with attributes is denoted Atteoat,
A morphiss F 1 { Cohttyecsensdy—>4C" Att' yrsue--? consists of a functo
Ft L——C" preserving the terminal object and for each object A of L
a function, also called F, F & Att(A)— 4tt"(F(A)) such that F, as

a whole, preserves all the structure = [ .0,"%,4 4 4L snd© .

In this section we prove that the categery Atteat ia egquivalent to the
category I —con of contextusl catesgories with disjoint unisna and
eingleton object. Part of this work has been done in 81,1 where
we did, in effect, prove that every ihEH _E;-:E_gl'[ induces a category with
attributes now to be called §{M). 4{(®) has &s base category the
category Base (0 ), If & € Base () then Attg y(R) is tsken to be the
iselbdi | a42in . T,p"s§,# L and6 are then defined i
d{@) as defined in §3.1. Lemmas of that secticn then ensure that

ﬁ'{i‘h} so defined ie a category with attributes.

Since any morphism F : b——=p' in 3 —con completely

prasgrves the disjoint union and mingleton object structure as well as
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contextusl structure and since P(B ) and P{ D') are defined entirely

in terms of this strusture it follows that such an F induces a morphiam
) §(D)—> (@ ') in Atteat. The functerislity of

§ :L -con —— Attcat is immediate. We wish to show that { is an
equivalence aof categories. This involves the definition of a functor
Y+ Atteat—7F -con.

Then we ehow that for all BE | T —con| , Yifid))

i=, upto isomorphism of structures, the structurs B recovered from /(M ).

If E is a category with attributes write Base (&) for the
base category of E and write Attg (A) for attributes of A when A & | Base(
Construction If € is & categpory with attributes then define a

contextunl category "«I-"{ E) as followa:

m The objects of ME} will ba dafined inm such = way that aach ab,
is an ordered pair <n,A> where n is a natural number and A is an

attribute in E .

The tree of objects of W(E) is defined inductively. The least
elesent of the tree is taken to be the ordered peir <o,L{1 E}} s where 1;
the terninal object of Base (). Then if <n,A> 4= an ohject of
Y(E ) define the set of objects of ¥ (E) succeeding <n,A> to be the
net {{n+1.,.ﬂ-'i' l ﬂEHtL‘E{IM} .

Thus an arbitrary path up through l}r{E} is a path of the form
{.ﬂ.‘Lf]E }} € '{ 1,.*1} Ir-l-lli."ﬁ{ n.‘.n} 'H'h.ﬂ ﬂf-ﬂ-tt-!-{i LIE } mnd
for each 3,14 isa, A, CAttg(TA, ).



3.18

Step 2. Tae morphisms of YW(E ). Define HMW{E.J{ CRAY  €m,A'> ) =
f¢nmty| £ 1 ZA—Z4* in Base (E )}, Define

":n1l!1l"} u{'m,ﬂ',g} = {'ﬂiillIH} L]

Step 3. Projectiona. If €p,A> 44 n+l,B> in Y(E) then

HEJ.I.EEI.’,IA} go wa can definme pl<nsl,B2 ) = < m-l_.n,‘p{]ﬂ'? ”

Step 4. Pullbacks. If <p,m,f>» : <n,AY —= <m,A'"? in
YAE ) and if <m,A'> 4 & mel,B? then BEAttg (FA') and
f: ZA—-aZA" in E 5o define €o,m,f7*< mél,B”» = <n+l,f"B> and

define g{<n,m,f7 ,<m+l,B7) = <n+l,mel, §(f,B}> . We must check that

: Lhaty el SLE,B) 0
“n=l.E82 » <l , By

4n LAY » €00, A
: TN

ig a pullback diagram in 'IF'{EJ'. Thig is easily checked using the fact

that

LA

FPR— S IR
A5 B l lﬂm

TA—— IR

£

is a pallback diagram in Base ().

Similary the pullbacks in W E ) fit tegether becauss the

carresponding pullbacks in Base (E} riz together.
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Step b, Z andof , Suppose that < n,AY < < nel B> < < n+2,09 in
W(E). Then Ceatt=(ZD) and BEAttg (Z A) heoce W Ceatt 2(EA) and
¥ie)

F0? and (< n+2,8% ) = <ne2,m+1, ¥(CI> . Them ol €0+2,0%) is am

E0——L#0C in Base (E). Thus we con define E<n+2,03 = ¢
isomorphise because ¥(C) 4= an isomorphism.

The diagram

Sl L

\q{{t:-ml,tﬂ

{n+i, Ch I Cnsl,C%

Sy o

<n, A>

comzutes in W(E ) because the diagram

P{L} 1 ‘\\
p:h, _/ th:;

comsutes in Base (E ).

Finally we must show that if <n.m,f> : €nA> —3<n,d'? in O
and if <m,A'> 4 <m+l,B> ¢ <m+2,C> then
<o IP " E<pt2,07 = Z<n,m P> *"<m2,0> and <Cnym,I5> " H(<Lme2,C>
(< nym, £ Cma2, 0% ),
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The first identity holds as follows:

Som, £y TEm2,C0 = €nymf 7 <okl L) = <l 0RO,

low by cordition III of the definiticn of Attcat, £*#C =# €(1,8)°C,
Henca <nel,f*HCy = €o+l, WG £,B)CY = Z< o2, 8(L,B)'CY =

T nelmel, 806,80 *C 20> = gl n.m D>, <ol B> )" Cni2,C> =

T L<n,mfP*<m+2,0> in the extended * notatiom.

By leema 4 of § 3.1 the gecond identity is equivalent to the

commativity af

(<n 3 L mal, Co
{n.,m-IIF}"-':'.Mﬂr'.-l.,t'?q—r I ’ ‘ r sl B

ol n,m, L3 e, o) otldvmed, ¢

o, £9% 2 <mia 2, LY » TLmrL, O
. Hltn,m £ D<mia, o)

If in this diagram the extended *,q notatioo is repleced, thus
ql<n,mfy ,<m2,8%) = glgl<nymf.3, <2+l B>), {me2,C2>) and
-l!: nlmlf:}"{p-rzllﬂ} = q[{nim‘f.‘:‘ ,{n+liﬂ'}]'{m+2,ﬂ}- ir 'F|l:‘l| Eh.l'l.d.

are eveluated thern the disgram required to commte im

{ﬂﬁ-l‘MTl 1_%'..%‘-#15:1‘;"} {mj"l'r':}

P W TR L

Ll net, TIELRBINC)D Skl dakl, ¥i

vl SN Lyl HC
o e Srvel e t, Y05, HCY D Aty

The commutuvuty of this diagram follows from the commutivity of the
corresponding diagram in Haee {E ) which commutes by conditien II1 of

the definition of Atteak,



3.2

Step 5. Singleton object. Recall that in E we have
L{lglEatt (1l g) and an isomorphism €(lg) : TL(lg)l—>slg in
Base (E). It Iul'.l.uualth.at OllglLilgl€ Att g{EL(1)) and thus th
ey l{lglr» 4 €1,8(1g)* (Lg)? dn Y(E). Also since B(1g) is

an isomorphism in Base () it follows that IE(1g)'L{lg) is
iscmorphic to EL(1g). Thus ZO{1 g)'Lllgl) =IL(lgl=1E.

Thue £€{1g)“L{lg) ie a terminal object of Hase ( E).

It now follows that <1,8(1g)*L{l g)> is & terminal object of W(E J,

We can define the eimgleton object 1} of WIE) to be £1,C(1g) L2

This completes the description of the contextual category with
disjeint unions and singleten object induced by & category with
attributes £. Becsuse the morphisse of the categories Attcat and
L -con are in both cases just the structure preserving functione it

follows that the above construction is just the object part of a luncter

‘.r i Attoat —— 3 ~Com.

Lenzs 1. If © i® a contextusl estepory with disjoint unions

and singleton object then 'f"[tp'{l]}}} -8 R

Proot. Let 5= {Bel®l | there i=m & © such that
14D<E in D} . Now define a funetdon K @ HFJI —35 and simul tans

define a morphisa B(A) : K{A)—— 4 in I, for each object A of I .

K(A} and B{a) are defined by induction on the height of A in D,

Define E(1) = p(Y-} )* {°] and define p(1) = pik(1),1).
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If 14Aye0e SA <A, in P for ecme n)o and if K(A )
and p.{nnJ kave already been defined then define E(An+1} -
dk(a )V B IR, and dafine BA ) = alodHOK(A DIaBlA )0 ).
Thus TK(A )4 K(A ) and BlA ) P Kl AR} —— Rasy in D

_,.Hl'l. L]

M

Aw

I KlRn ey __,_.ﬁ?ﬁﬂ‘}
| l olieps”

Zklaay ",_-'_1.:.|;T=1,“_L1:I

KLAAY

p F

It is sasy to prove by induction that for each n..B{-H-n]' is Bn
feomorphisn (using lemma 6 of £3.1, ‘E-li.ﬂ.ﬂ*ll = q{ﬂ-li.‘nﬂ}uﬂ{“““”.

K{A 4 10.0s

Mow define a functor M : b—*Eane ( i?) by

fA “ kA
i l — l HRAY PRt eF o BAN Sl RAY)
A’ Z kil

Finally define & would be contextusl functor e p—a 'l]‘rl'.-lrI (D)) a

follows:

If 144 ... a4 in D then ﬁinni = <n,K(a_}>

l.'. 3 f
If 19 Ayesnd b and 14B;00es B dn D ane 4

£3: A —8 ia D then F(f) = Cnm,MHE)>.,
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The result fellows when we show that ' is a contextual functeor,
serves disjoint wnisss and singleton object and iE 1=l snd sate from
objects and morphiems of I to objects and morphiems of Y (' (B )).
¥e content ourselves with checking the bit asbout disjolnt unions.

If anything the other stuff is a bit essier to checks.

We show that wienever 19Q,..s 9Q 44<4B4C in D then
GlEc) = ZIPE) and F(dlc)) = (@ (Ci)
Fe) = <n+2s K(C)> hence by definitien of Y,
IB(C) = <nsl,HE(C)> vhers #FK(C) is caleculated in H (D),
But by definition of §(®), % K(C) is calculated in b , am 4n §3.1,
and is given by FK(C) = E{ol(K{(B))*K({C)). Thus to show that
FlZe) = ZP(C) we must ghov just T o{(K(B))*E(C) = K{ZC). This ie
as follows:

Z(K(B))"K{C) = Z uﬂ{xl[a'}l}'En!'lfH{BJJnFIIBH'GJ by def, of K

_ ZpiBic

«  Tqla"l(k(a)Iop(A),B)%C by def. of B

= T.{ﬂ'.'lﬂimj:lnﬂhl:l‘l: replacing extenc
* notation

= (al"HK(A)oPA))EC since ol™L(K(A]}
s EKEA— 4 and

= E{ZC) by def. of K

1t remains to show that B {o{(C)) = ol (B(C)). well

Ficli{c)) is just < me2,n+1,M(l(C})> and ol(B (C)) = & (<o+2,K(C)S

Alcne2, k(6)?) = <ne2,nel SIKCIP where ¥(RIC)) 18 calculated in [ as
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oLl k(e))o T (KIC) oo (FKIEY). Thus ve must Just chow that in D
MCL L)) = ol"R{g(e)). o (C))e s(HRIC)).

wWall we have o -(K{C)lo = (K(C)}o A(#E(C)) = aﬂ':‘{h{ﬂ}}aq{ﬂ “Mk(n)
dlK (B *K{E))o u-:tn-i‘l{mm:l-ﬁ{m;ru d{mK({C)],(by definitian of @ ), =
of "L IE)doa (= "L (K(B) ), B(BI*Clo X (R(B) “Clo ((K( £C}), since as above

ol {K(B)"K(G)) = B(B)*C and # K(C) = (L),

And H(s () = oL L(K(CHIoP(CIo® (Clop 2 ( £C)o HIK(EC)) so we mast
chock that B(C)o d(C)ep(EC) = qf of T (K(B)), B(B)*Clo £ (BLBI*C). Thie

iz an follows:

B(C)o (Ll (ZC) = BClo d(@oqlf ™ (Adocd (K(A)),
(o (K(A)JofA))* £€), by definition of §y = plClocd (B~ (a)o
LKA (Lol "M () aplA)) *Cloqlh™ (Ao aCik(A)), FC ™1 (R(A)IoB(A) ) *E =
BlCIoa (B (Ao ol(r(A)), (& THCR(AI0plA) ) Clo o (o ™ (R A ) ofiA)) C,
by lesea b of §3.1, = MCIcqlF iAo L(K(A)) ol "R CAIIop(A),BI*C)0
d (el "L(ka)oPla) B)C)= plCloal(B ™ (Alo ol (R(A)) BlBI*CIe (AlB)"C) =
RiChog(a (B (A)o ol (K (42D, K(8)) B(EI*C) = PUCIoglR ™ (B) ,B(B)*Cho ol (Bla) "2)
a6l "MK (B))op(B) Cloq (B™1(B) BLB) *Clo o P(BI*C) = qlsl “L(k(8)) B(BI"CIo v

B)*C) a5 required.

Lemma 2. It §:D——sp' is a morphiem in I -Con then the
disgram
0y = (i DY)
E ‘ l e
T —=—— il (D)

commutes in ¥ -Con.



Froef Reduces to showing that if A€ |4 then GURIAY =R{GIAY and tr
F 4 A——a" din D then G{MI£)) = MIG(£))}. But § preserves the structur

that K and M are defined in terme of .

This completes the demonststion that #’n"ir" = 44

7 =Con”
For the rem i : =i
repainder of this pection we mim at proving that ?nf-P 1y e

and thus that } -Con and Attcat are equivalent categories, Throughout

we suppose that B is a category with attributes. Eventually we show

thet GCYC(EN =E .

1 A &|Basel® J)| then (g ) Lia) eatt o (ZL(3g)) and
Ble(1.),Ln)) aBa) 1+ T (g L)
Ve define J{a) = ©(1z )°L{2) ard N{A) = E(B(1g ),LIA))JoO(A) then

A dr an isomorphiszm,

for each A € | Base(E )| , J{A)eatt 2 (L1 g)) and TWA) ¢ Eda—>a
is an isomorphism in Base (). We can then define a functor M : Baze (

—AHase (&) by

f o L IR
F l | E l N fe A
a-

I

he shall eventually define an isorphism
3 : E——®(E)) in terms of H and T\ but we will come back to that

later. Lemmas 3-9 just function to show that J once defined, is a

morphisms
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Lemma 3.  If A is an object of Base (E) and if Bedtt g(A) then
Fle{e1g),La)*0(a)*E) = B(1g )" H(B(2)*B) and

¥(R)*Blo (B (1;2),LEB) = B(S(E(Lz),La), C{aI"Blo ¥(B(A)*E) 1
Base (f).

Proof Thip ip Just condition III of the defintion of Atteat
£ {1z )
where A— A" B and C are taken te be Lulg)——1g, Li and X4

Lemma 4.  If A 1e an object of Base () and if BEAtt g (4) then
HN(A)*BloTMER) = E(N{a),B).

Proaf
TRAI*BINEB) = Y(N4)'Blo §(E (1), LELB)0 ©(EB) by def of T
= S(8(e(1g),la), @A) Blo ¥ ©(a)*Blo ©1EB) by lemma 1.

= B (el ) ,1a), €(A)Blo B ©(a),B) by conditisn
of def of At

= §(8(e(1g),LadoBCa),B)

= E(&(a),n) : by def af A

Lem=a 5, If 4 im an object of Base (%) and B & Akt i.E“‘]' then
J(ZB) = #(N{a)*B)
ond T{Z Bl PBRMTA) = ¥ (A) "Bl pORLAI 1),

Proof J(LE) = G{1g)*L(ZB) by def of J
= G1g ) E(a)"B by condition
= M S(e(lg),La)" 8(a)"B) by lemma 1

= HHTA)*R) by definition
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¥hich is the firet identity. As for the second:

nz E-'}InIPEE.‘.Ia-T[']'{AJ " a"'ll:m:n:l*a]ui{TI{A}.B}nlp{BJalfliu by lemma |
= ‘f*l'm.{!;.}'B.‘.ln‘ﬂ{ﬂ{ﬂ}']]}uﬂﬂln.[rl{ﬂl besause o}
commativit
the pullhs
diagram fc
3 along M
= ¥R "Bl pINCA)*B) a8 require
Lemaa G, If £ : A—=A' in Base (E) and BE Att E(A') then

NCEfBlo 86,80 HER) « ¥ L(Na)*£*B)o §(TLA Lo E(A") W4T *B)o
J{nla)*B).

Fraof. TEZ£Blo $(£,BJoW (L) = 4B ), LIS 1°E))e B (£*B)o 4 (1
08 zB)o $0 " M1g), O 2)*LIEE)), by def of M.

= W(6((1g),L{(ZB))e a“‘l{ 2(a)*1*Blo E(&(A),1*Blo &(f,Blo
07N, B ) Ble B O Yo g, (1 )LILE)), using
condition IV of attcat,

= Y Moneayeenle (2 (@01g),La), O(A) Bl §( B (a),1"B)o S(£L,Blo
€(e7lan), olar)Ble S8 (010 g0 Tz ) NariBle ¥~1en L ar)B,
by Tawwia T '

= Y na)erenla EMUA)afalifar) ,M(A" ) *B)0 F(NLA}*B), by fitting the
pullbacks together.

Lemma 7. If A is an object of Base (E) and if BEAttg (A) and

CEeAttz (ZB) then TIAI"HC = # & (THA)*B)*TH ZB)*C and

NE e ¥CIaT[ (LMY = ¥ Mtz s)clo & vinia)s), ¥im(ay* B) * TWIRY®
o X{ ¥MIA)*)"NR{Z B)*Clo H( #( F(MEA)*B)"T ZB)"C).
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Froof Use condition IIT of attcat at ML4) ¢+ ZJ4—— 4 and

BEAtt g(A),COAbt g (ZB)a We get T(A)*H C = §{N(A),B)*C) and

2Le{na)ELC)
¥ i{mm.m-r.:‘:.[ l HO

(TR, #C)
cormutes.

The first identity follows frop lemma 2 which says that

FIM(A)*BIal £B) = E(N(A),B).

fhe Wil of fhe sscond $AMtity is-stapliTisd by the sene; Jemes
It becomes ¥ L{N(Z B)*Cle &0 ¥ H(M(A) B}, § (Mia),H)*Clo Y (M(A),B)C
¥(# §{N{r),B)*C). Using both the above identities from condition
III the R.H.5. becomes ¥ T(N(x B)*Clo (¥ "H(N(A)*Bo €(Na) ,BiClo
Yehe SOnI00 MA),THA *H clo BT AR e

Use lemma 2 twice and we get the L.H.Z.
Lemma 8, If A is sn object of Base (E) then
T(E La)o S(A)eTT (A) = ¥ 'II:{P: SlgLilglilaaS(plBllg)*

Lilg 1), 91 }*LAd.

Proof Both P{E {1, )'L{1E)) end S{eg),L1g) =

ZJI1g)—=Z L) in Base (E). Since ZIL(1 ) dia terminal,
pleg gl = %e01g), LA gl). Now the R.H.5. of required
identity becomes ¥ (Nilg)*Liad)e $(% (8(1g),L1g)), Bl1g)"Lla)},
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Using lemma 1 on LHS we get %{8(1g),LELAJoB(ILA)oE(A)o
e~Mwe 86711 ), 81 ) LA),

Uaing the same lemma 1 on H.H.5: we get

£0B1), L 0 ¥ oG g )Ll

Haw LHE = FHE follows from the cese of conditiom IV @

$7He 1zl 1a) = B(EIAe e 1), B g) L),

Before we can define J : [f— =@ (¥ (IE)) we must know what
q?tlkHE}} lockse like, We know vhat the *,q,¥ ,of structure of Y(IE) iz 1
The §,F, ¥ ,1,© structurs is defined in terms of this and induces the
category with attributes $(W({E)). The next lemma calculates the

affects of the definition of %,7,¥,1,0 in WHiE).
Lemma G. I1f I:E- is a category with attributes then

il If {1.11.‘} F {1.ﬂ|}'_l {1““.1'} Eﬂd {l*hl}qﬂlﬂ} 'hl
W(E) then S(<1,1,£3,42,B> ) = <1,1, ¥~ L(r*n)o S(£,B)0 H(B)D .

ii, If14<1,A> @ €1,B) and J€1,B}a <2,c> in WE) then
#<2,8 = <2, ®¥(B)*CH and
B(42,0%) = <1,1, ¥7(C)e G0 47 (2), ¥{(B)*C)o ¥( ¥ (BI*Clo ¥(F ¥ (8

iii, If 19 <1,A% in Y(UE) then LISL,AY ) = {1.}19'1{15.1'1.{1 EltA>
and B(€1,4>) = <1,1,% Hp(8 (L) LlLg)) e B(ptOGIg D) .

Proof . S(<€1,,0%,<2,B3) = &7(<1,1,£7°<2,83 )o

ql €1,1,27 , 42,87 )oel(<2,B>), by definition of § ,
= TH(<2 2B Jo <1,2, B(£,B)7 0 0{(€2,BY) by def of }u
= <1,2, £7NeB)> 0 €1,2, (L,B)) <21, K (H)> , by daf. of ¥ .
= {l,l.ﬁ"l[r'l-_'.}u S(r,Rln ¥R} .
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Coses ii. and iid, are just as straightforward,

Given the definition of lﬂP wa can now give a complete

description of @[ HF’I: £)) as follows:

| Base( @y (&N | = § €a,a) | acattg{ZLiag )}

Hom @:“E”tfl,n} y€L,A ) = 8 €21,0,05 | £2 TA—EA* dn Bace (E
ALt gy 3) (S L) = fe1.87 | BEAtt (za)}

1 gigeey ® SL8T0grLOED

Ir ¢1,B% € Att PP E y3C<14A> ) then F<2,B} = <{1,#B> and
LB ) = <1,1, ¥ @)pE)> .

If <L,BP € Att @{?{EHH]"‘”} and if ﬂi“}'&‘“tg;xy:r(i;]}iE‘flnﬂ'

then #<2,0% = <28 2BI*C) and Y(<2,0>) = C1,1,
1M eohe €0 37(B), KIBI*Clo ¥l H(B)*Clo Y& X(B)*C)Y,

If €1,1,f%> : <L AD— €1, 4'} in Base ([E) and ir <2,B)

€ Att (o EnH’l,a*H them €1,1,£3*<2,B> = <L F"B>» and
S(€1,1,03 , €2,8% ) = <€1,1, ¥ 7(*B)e 8ir,Bl0 Hm)>.

If <147 € | Base( Q( YA then L{<1,4>) = <2, p{EQ1g)"
Li1g})*A> and ©(<1,A>) = <1,2,% (M BQE )L £ )] 4o
S(PIBA )LL) A Y, '

Defive J : E—>3 ¢y E)) by . if & is an object of Base (E )
then J(A) = €1, 0|1z )*LlA}> . 4i. If £ : A——A' in Dase (E)

then (1) = {1,1Jt.{njuruf[1m:l} « dii. If BGAtt g (4) then

J(B) m £2,MA)BD .
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T is easily seen to be 1-1 and onto from objects, morphieme and
attributes of E ' to objects, morphisma, respectively attributes of
PP lED. T preserves L and p by virtue of lenma 3. * 1& easily
geen to be pressrved. % is preserved by & , use lemna b,

# and ¥ are preserved, use lemma S.

Terminal object ensily seen to be pressrved. L preserved becauase

1p terminal implies (B(1g FLO1g)le@(1g) =715

& preserved - use lemms 6.

Finally, the collection of isomocrphiss {EE 1' E e +J.tt=at | }
cannot help but be natural in E. Thus we have a natural

isomorphism @ﬁ‘}""x i, esont completing the ]:!l'ﬂ-ﬂ-f that

I -Com = Atteat.
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%.3 Categories and Fibrations

In El.j we alluded to the contextual category of catagories,
category indexed families of tategories, category indexed familiea
of category indexsd families of categories end co on. In fast this
coptextunl category has disjoint unieons and singleton object.
By far the easiest way of describing the structure is by describing
the corresponding category with attributes which is to be called Fib
The significance of this structure is twofold. In the firet place the
mopt attractive notion of a category indexed family of catsgories does lemd

to a contextual category and thus generslised algebraic theories cen be

interpreted in this sanner.

Further more this potion is mot reducible to any morphism with

codomain notion amd o there is no parellel interpretation of essentislly

algebraie thearies.

This was diecussed in 51.5. On the otherhand disjoint unions in
this stracture are celculated by takipg fibrations. Thus we have a new
way of looking at the fibration comstruction. This compares with

the interpretation of Gray T.'-"] "

The category with attributes Fib of categories indexing categories

im deseribed me follewe:

j. Baee (Fib) = Cat, the category of all {emall) catepories.

fi., If A is a category then an attribute of type A is an A-indexed

family of categories, e 5 a funcher B:R —Cat
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If BeAtt,, . (A), ie if B : A——sCat ig a functor, then ZB is

Fib
the eategory defised as follows:

|Z8| = {<anb>| ac [A| and be|Ball}.

Homg o { <oy 4 <a'sb'> ) = Y<4e,e> | £2a— 3 4n A and

g ¢ B{E)(B)—b* 4a Blat) §.

Ir €a,b> € |EB| then id = <id_,id, >.

T
o
It {n,'h}-tﬁzi <n' .h‘}{r—.ﬁ?& La"b"} 4n EB than

2rgSo <Pl g's = <0 Bl ) glog' .
‘,!:H'.B]' : EB——s A dis defined to be the lst projection functor.

If Ft A—>A' in Cat and if Be At (A') then F'BEAtt . (A)

fer ==

is defined to be the functor FoB : A——> Cat. 2(F,B) = FF°B —

iz defined to be the functor "Apply F to the lst component leave
other component unchanged"s For example, if <a,bl © | 2B | then
ac | Al end b €|B(F(a)) | , henee <Fa,b> g€ | £B |. Similarly an

morphiems of X F'E.

IfB : A—Cat and C's £B——)Cat then define 3#C : A — Cat
as followa:

If a ¢ |A| then #Cla) is the category euch that

|#clal| = f<b,ed>| b €| Bla) | and c&lcl<abad]| }
Hmfﬂ_fgl{ £b,e%, 60,22 ) = Y <gvhr | 8 2 b——=0b" in Bla) &l

htol<a,gyl{cl—=c' dncl<an'>) L.
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If £ i a—a" in A then HC(1) is the functor

Heola) — #cla') given by

{h,er < BURNEY, e(<Fy 1dp 2 e)y

ACE
Qi <RENG), CLLk ey IR

<, ey < BIEMED), Cick,id ELJ;',LE*]}'.'IW}:’

Check that ZC and Z#C are isomorphie. In fact the iscmorphiss

W(C) : EC——= EZH ¢ im given by

{{ﬂ'ph’rc} {ﬁ {ﬂ.?":h'lf—‘?}
F.ie
<Lk, W F——"' <§, ¢y
Lo,k T2 <ol <l o

vi. Chose IE to be any terzinal object of Cat. If A is a category
then L{A} Ehbtﬂhill is taken to be the functor : 1—s Cat
whose value at the unique object of 1 15 A« Then

£ L{A) = 1 x A

Define ©{A} :1uA— A to be the projection functor.

Toat completes the description of Fib. Checking that Fib is a categorsy

with attributes is very straightforward and rather tedious.
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2.4 Martin-Lof Typs Theory

Martin-Lof type theory is a generalisatiom of the typed
A-calculus. It is more general in that in the syntax there =re
variable types - the structure of substitution is of the general form.
The algebraic semantics of Martin-Lof type theory is thus provided for by a
extension of the theory of contextusl categories. This extension
we call the theary of weak H-L structures. Evary weak H-L structure is a
medesl of fartin-Lof type theery. In fact the definition of weak M-L
structure im a met theerstie definition of the notion 'model of Martin-lof

type theory'. It is the most general possible such definition.

We need to explain that MHartin-Lof type theory generalises a Weak
varsion of the typed A-calewlus, The f-rule of A-calculus,
5= Ax. Api{x,5), correspondingte the uniqueness of the terms A x.t subject
to the condition Ap(x, A x.t) = ¢, is not assumed. Neither is the rule
pr{pll[-.n.'liplz{n}:l = & assused where pr is the pairing function and p, and p,
are the projections. On the other hand cartesiasn closed categeries
correspond te a strong version of the typed A -caleulus which includes
these tve rules. The sffect of all this is that whereas cartesian closedn
is defnable in terms of universal arrows, weak M-L stricture is defined
in terms of weak universal arrows (the definition of weak universal arrow i
like the dafinitien of wniversal arrow except that the wuniguenesa
condition is dropped). If we strengthen the definition of weak
M-L structure by replacing wesk universality by univeraaliTy then we
can drop the sdjective weak and call the structures strong M-L structures.
The &trong M-I structurss provide us with the algebraic semantice of a

strengthened version of M-L type theory, stronger just by the inclusion of
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a rule expressing the unigueness ef Ax.t subject to the condition

Aplx, Ax.t) = t and similar unigueness conditiene, ome for sach legiecal

sthome.

In the fellevwing defintion of strong M-L structure we use the
same notation as Martin-Lof uses except in the case of notation for the
type with precisely one slement = Hartin-Lof uses the notation By
for this type but we use the netation {* ) . Our use of ¥ avd -}
notation in this section will be consistent with our use of the same

notation for disjeint unicns and singleton object in previous esctions,

A strong M=-L structure <C,Z ,pr,T AP, Id e, d, 1y §°Y so,l,0,8 >

consiets of a contextual category © snd the following additional

atructure:

i. Whenever Q4A<B in L , an object TB of L and & morphien pe(B) of

& euch thet @4Z8 in € and pr(8) : B——s % B such that the

diagram
\E-': o)

A
3
\‘:?

DA

commutes and sueh that I8 and pr{l) have the following property:
for every object C of L cuch that EB=C, for every morphism

h §+ B——C guch that the disgram



ii,

iii.
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-
commutes, there exists a unique morphism g€ Arre (€] such that

the disgram
F’N [ 3

coxmutes,

Whepever Q4 4<B  in € , an object TE of L such that
Q4TWE in © and & morphism Ap(E) @ p{A)*TNBE ——B in T such

that the disgram

plaremg PR

\./

commutes and such that TTB and Ap(B)} have the following property:

for every worphiso h & Arr o {B), there exista s unlque morghiss

fe .ﬂ.rrﬁ_ﬁl' B} maeh that the diagram

A

comeutes. Im future the unique morphism corresponding to
h ¢ A——EB will be denoted Ah. Thus AhS Arrg (TWB) when

b A—B,

Whenever @44 in § , an object IdA of T such that plA}*A4Idn and

a morphiss ={A) ¢t A—— Jd4 in © puch that the diagram

* The definbinn of Areg is onm Paje 2.19 |
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Tdla
tLa) J
LU
f;’fg;ﬂ
il

sommutes and such that IdA and r{i) have the following property:
for svery cbiect A of L such that IdA4C, for every morphise

h: A —=C euch that the diagram

commites, there existe a unigque morphiem g €Arrg (C) such that

the diagram
|l
WAk
TdlA
r(h
A
gommites.

iw. Whemever Q<A and Q4B in € , an object A+B of € such that
§ €A+B and morphisns iiiﬂﬂ.—hh-lrﬂ and jh,B ¢ B ——=2A+B such

that the diagrams

AMA, nLa LY

N/

pad

commite and such that A+B, i,t. Be Ja B have the followlng property:
¥ ¥



339

for every cbjest C of @ euch that A+B4C, for all pairs of

morphisss b, 1 A—C and ‘i.E : B—>3 C such that the diagrams

c C
A——R+8 B—s AR

i"ﬂﬁ '-lﬂl-l."-l

commte, there exists a unique g€Arr ¢ (0) such that
in the disgram

both trisngles commute.

in object {*i of © such that 14 1+} and a morphism

¢ : 1—+}+} in @ having the following property:

for all objects § of © , for =11 cbjects A of L such that
p{Q,1)* §:1 4 & in &, for all morphisms f:§—* A in (. such

that the diagra=m

P':F-I 21 k. %*1
Q.{"

commites, there exists a unique gE&Arrg (A) euch that the diagran

H_
¢ /18
pla, 1y {-}
Q/E-Lmﬂ.‘h* e

COMMITER.
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vi, An object N of € such that 14K and morphisms o : 1—N
and & : H——=N in € having the following property:
for all cbjests @ of © , for all chjects A of € such that
plA,1)*N4 A, for al)l merphicms @ 8 @ — A and b 2 A——=A such

that the diagrams

e, 41" N

'[-Lﬂ..ﬂ "o

. T

l

e, T

cozmute, there exists a unique I'EAIIE“} such that the diagrans

A A L —fh
1 FI [
g
?[E-‘;il'ﬁ"H = &
PRATN —— pio v
Ft:..n:\ Pt-o

Q@

cOEmatEs
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Subject to the following conditioms. If f ; Q—Q'
is a morphica in € then

if Q"4 A4E then f*ZB = "B and f*pri{8) = prif*B),
if Q'A< B then £*T8 = Tif"B and r*Ap(B) = Ap(L*Bl,
if Q'4 A then £*IdA « Idf*A end £2r(A) = r(£*A),

if Q4 A and Q'a B then f*(A4B) = frA+E*B ¥

AyB
imrr"h EIIIﬂ PJA‘B = jF‘ﬁ1¥‘ﬁ‘

Clesuees i. +es vi. in the definition of strong M-L structure
correspend to the schemes for X ,T0 .I&,+,H1 and N in Martin-Lof type
theory. If the word unique is dropped from any of these clauses then
what remsins is an exact rewriting of the corresponding Martin-Lof

scheme within the language of contextual categorles.

The final condition says that £* always preserves L ,pr, ,Ap ete..
Thus it eays that the contextuel functor {IF: Eﬂu—‘ig is a structure
preserving morphise whenever £ 1 §——3' in £, It is, then, the
'eubetitution is a homomorphism between algebras of terms' condition,.

This is sn implicit property of syntactical substitution !.'hich must alwaye
be stated explicitly in any algebraic semanticse. That this is a property
of eyntactical subatitution 1= becauese L we substitute into any expression
that is the result of binding cimpler exprezalons by a logical symbol

then the result is identical with the result of first substituting inte

the simpler expressions and then binding by the logical symbal.
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This is work which syntax always does for us and which algebra has got to b

gads to do. Hance the esndition.

Mot surprisingly the contextual category Fam of sets, families
of eets and so on is in a natural way a strong M-L structure.
T 4s calcilated by taking actual disjoint unions of familiea of asets, ir
caleulated by taking cartesian products of families of seta. Ia(a}, when A
o set, is the characteristic family of 1.:11& identity predieats on A.

+ is interpreted by coproducts and N i= token to be the set of natural

ounbers.

The definition of strong M-L structure can be simplifisd
considerably. In the first place those parts of the definition that
are sbout [ ,pry L*] =nd e are equivalent to <L, E,pr, 1) 4> being
a contextual category with disjoint unions and singleton object. This
leads to aimplifinatlnn;i of the other clauses. Clause ii. can be used
to simplify clause vi. It turns out, then, that the definition that

we have given is eguivaleat te the follewing definition.

A streng M-I structure <& , T ,pr, TN ApaIderetodsds £ ,-&,H.n,E}
consista of 1 contextual category with disjeint unions and singleton

object €&, T s 1 e “» and the following additional structure.

ii'., For all 140aA<B in © , an object []B of T such that
Q<4 B and a morphism Ap(B) : p{al*(TB—B such that the diagram

Agl
pA TR —3

commutes and having the property: for all h&Arrg (B}, thers
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exipto a unigue g CArr o (W B) such that the disgram

pm'ﬂ.—- B

s N/

conmtag,

ii1's For all 14Q4A in € | an object Id{A) of € such that
pla)*A<TdA and a morphism r{A) 1 A—sTdA in € such that

the diagras
Td(A)

w /|
AR

r:r'"‘éa:

conmutes and having the property: for every object © of © such
that plAJ*A<C, for every morphism h : A—=3C such that the

disgram
Tdir)

bt |

plAA
Al

commutes, there exists a unique g : IdAi—=C such that

Iﬂ.m‘*-—zl_;r:,

&

P{n‘i" A



i

iv'.

il

}lJ'lll
and
Td 2
rm\ ﬁ
R
comaitas

For mll 1SQ< A Bnd 14 g9 B in @ , Bn object A+B of L such

that §<4 A+B and morphisms i A,B and §, p such,

ina Jae
that the diegram A 3 A+B + B  ie s coproduct disgram

in Hame ('ﬂ:q}.

An objeet N of @ such that 1< N mnd morphisms o ¢ 1 —1,

8 ¢+ H—>N guch that <N 0,5 is a natural number cbject in
fugBase (4 ). (<N,0,5* is & natural numbsr object in the
category C with terminal object 1 4iff o : 1 — N and

5 § N——=N and for all objects A of C, for all morphises

a2 l—h asd b 1+ N— N, there axista a un.i.q_l.l.-ul morphisa

f : N——& puch that

co=mute. }
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Subiect to the conditiom ¢ If f : §@——Q" in &L , where 1laq and

153" in @ , then

if Q'@ A48 then *TMB = TII*B and *Ap(B) = Ap{f*8),
if Q"< 4 then f°IdA = Idf*A and f*r{4)} = r{£*a),

if @'« 4 and §'< B then £*(A+B) = f"A+1"B, f'inia =

ienea 89 fdan = d5asa-

Finally, the definition of strong M-L structure can be rewritten

in terns of categories with attribtutes i

An M-L Hyperdoctrice £E,8, T, 1da,r+,i,§,H,0,5? consists

af a category with attributes E with the fallowing additisnal strustiure:

i, Tor every object A of Baselk), for every Be Att - (A), for every
CEAtt E{E B), an attribute QCeAtt _(A) and a morphism T(C) :

Z p(BJ*RC—>3ZC in Base £ such that the diagram

Tich
A F[Eﬂf"ﬂ e

Flpd.[!.‘l"l'l&\. /F-'Lr.”:n
PR )

commutes and having the property that for all morphisms
f: FE—=5C in HasellE) such that foplC) = id gp+ there exists
aunique g : A——* ZBC in Base f such that gop{ BC) =

id, end such that the diagram

Te(mrtme M9,

ﬂm-c\ / £
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commites. (Where p(B)*g is defined to be the unigue
morphiem b ¢ £B ——Z p(B)*AC such that hopip(B)TH ) = id g

and ho &(p(8), BC) = p(Blog .)

ii, For all obiects A of BaselE), for s11 Beatt g (a), an
attribute IdBe Atk (3 P{H}"B} and a morphism
r(B) : ZB—+F1dB in Base E such that the diagram

Lh

Al 1 B

LB «—— T 1dB
FLIAR)

commtes (where A(B) i the unique sorphiem such that L(Blag
pIBI*B) = id and A(B)o€(AE) ,B) = id) and having the property
that for all sttributes C SAtt o (L p(B)*B) mnd for all
morphises h: £ B——E C such that the dimgram

i

AlR) =

LS e———— 7 74R
Plzan)
computes, thers exiete a unique morphise g 1 ZI4B— 5 F C sueh that

the disgrams

pw TIS a8 L rxup
Z AR D i 3 \. l 3

commutes
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iii. For all objects A of Base (€}, for all EI.EEEAt.t-{A:I.
object B 4B, € Att(A) and morphisms baag, F IR B +8.)

and §p vp, * IB;——> (B 4B,) such that the disgrams

b1 LT NPT £, 2L 5 (8) 08,0

ﬁiﬂﬁ\‘ﬁﬂﬂﬁhi ,ﬂ{E.LN /F{Enﬁn.’ﬁ
A

commute and having the property that for all G Att E{.FI.}., for
sll paira of morphisms L.'I. 8 ]-:Bl—r[f: and

[..E 2 IEE——-—*!E such thet the diagrams

IE;——aE: TRBa—L arcC

ftﬁh_ / Flch F'LER / pley
A

(1149

tomsute, there exists a unique morphisam g : Iiﬁlqﬂal——r?_ c

such that

BBy + 82} —1—s 5C -

PlBy E5-11#\\“ /F{c'.".i
A

comnutes and such that in the diagrae

LBy ﬂ'h—"}:ml-r By e—2t '“‘“' 18,

LA
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both triangles cormule.

iv. An objeet N of Base (E ), morphisms o0 1 1— N and
S H—— N puch that {N,5,5% is a aatural number objsct in
Basme (& ).

Subject to the conditicns:

ve If £ 31 A—aA' in BaseE , if BE Att g (A') and

CEAtt o (EB) them f"HC = BE(r,B)*C and the disgram

U408, pBY¥EC)

ZpiyBinfeme » I plevt@c
ttgﬂ-.ﬂj 11:.\1 l -Et.r_.i
L () - X o
SLSLF,8),2)
commutes.

vi. If £ 1 A—3A' in Bame (E) and if BEAtt g(A") then

L2 Eif.E}.P{B}'Bj'IdB = Ia%'P and the disgram
SUSLSLE &, Pl BY, TAR)
L1485 » TIAR
PR riny
EE'B v 7
R %

commutes.
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¥ila If f 1 A—+A"' in Bage(k) and ByB,E At o (A') then

r'iﬂl+ﬁaj = I‘ﬁlif'ﬁ and the diagra=s

P

— = 3 TRy Ei‘ﬁlwh

Efia

‘.‘FLEMF'E;‘ liﬁlsﬂt J;‘#“l":q{ .‘IJ E‘qgﬂ.

Litarb) ——ABLely) and  EEMRBieB) — L F(RieBy)
£ty +RY 5':F|E il

commute,

We are claiming, then, that the category of M-L structures and ‘he
category of M-L hyperdoctrines are equivalent. The proof of this result

is an extension of the proof that I -com and Atteat are squivalent

categoriesa
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%. 5. Limit Speaces = a model of Martin=Lof type theory.

¥e wish to describe a model of Martin-Lof type theory in
which types are interpreted ms 1limit spaces and in which families of
types indexed by a type are, roughly speaking, interpreted as
'morphizme with codomain' in the category of limit spaces. The model
is described as an H=L hyperdecirine with bass category the category
of 1imit spaces. If we Firsk describe the M<L hyperdoctrine of cets
and families of sets then the H-L hyperdectrine of limit spaces san be

degecribed witheut much trouble.

But first, two very uselul and ftrivial lemmas:

Lemma 1, If E i5s a category with attributea, if A is am
object of Base (E ), If BE ALt E'[H-J', it ﬂﬂh‘ttiifiﬁi'ﬁ} and If

ri FR-—ZD is an isomorphlem in Base (£ ) such that the diagram

comrutes them <D,r> esatisfies clause ii. of the definition of M-L
hyperdectrine, That ie clause ii. ie eatisfied if Id(B) is

taken to D amd if r(B) is tsken to be r.

Lemoa 2, If & ic » category with attributes, if A is an object of E , If

B B, €Att g (A)y If COAtt g(A) snd if 4 + EB)— XC, § 1 §B,—FC
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in Base (&) such that the diagrame

EE-;_I"—r-‘.-:r.‘.. Eglﬁ_.:-:r_

mﬂ\ﬂ lA-ﬂ::: o F{ERH / pled
L%

i J

commute and if IBL——*EE '—_{B.E im m esoproduct disgram

in Bace (E) then <C,1i,j> s=atisfy clause 1ii. of the definitiocn of

M-L hyperdoctrine. That is if By+B, is taken to be C and if

!.B_h By im taken to be 1 and elmilarly 4f jﬂp B, is taken to be

] then clause iiil. is satisfied.

The M-L hyperdoctrice Fom of sets and families of sets i= =s

followss
1- -Hl..!‘ EE} = ﬁq.
2. IfAc |Base(Fam)| , ie if A is a set, then

Da

Sa

atty  (A) = § A-indexed familiee of sets] .

If A € |Base(Fam)| and if Beatt(A) thenm £B = \J Bla) =
BEA

{¢a,by | aca and benta)} .

If £ A—>A" in Base (Fam) if Beatt(a') then £*B = A€ A,
B{f{a)), S{£,B) : f*B— B is given by

£0r,B)( <a,k> ) w  <fla),b?.

It A€ |Base(Fam)| , if Be att(a), if € €4tt(EB) then

#C Eatt(A) s given by #C(a) = § <b,c? | bEBla) and ¢ eClca,b?
F(e) + EFC——TC ie given by F(C)(<a,<be?? ) = <<a,b> oo
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T

Qe

10.
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If A€ | Bage(Fam)| them L(A) = A x € (-} ,A, Then
Ba) : Ela A is given by @(A)(<C ,a>) = a.
If A€ | Base(Fan) | , If Beatt(a), if GEAtL(EB) then define
BeoeAtt(d) by
Bicla) = TizeBla)uC{<a,x>)a
If BC is so defined then X p(BE)*QC =
i_-:u,'h},gh |I ag€ A,beBla) and ge ]T: eBlal). th:a,:”h}} .

Define Ap(C) 1 E;F{E:l"ﬁﬂ ———3%C by defining

AplCl( << ab> g™ ) = <<a,b> Aplb,g)> .
1f ke | Buse(Fam)| and if Beate(h) then TXB)'B « § <<a,b> b0 > |
meh and b,b'e B(a)} . Define Td(H), r(B) by
TA(B)(<< ayb ' 2} = §¢7 , 41 b = b', = # otherviss,
r{B)( <a,b> ) =« <CCa, by b3 0>,
If 4€[Base (Fam)l, 1f B., B,EAtt(A) then define
By+By by (B,+8,){a) = B,(a) + B (a). Then Z (B +B,) = EBy+IB.
Detine 15 .o and Jﬂuh accordingly.
Az is well lmown the set of pmtural numbers is a matural number object
in the eategory Set.

Completing the deseription of Fam as an M-L hyperdoctrine,

‘The set of all filters on a set A ordered by inclusion is a

lattice. The meets in thie lattice are given by intersection of filters.

1f d;»' and "f’ are filters en A then &vu}’ =3 “H”I“E‘p and r-El,l"} .

If A in a set then the ordered set of all filters on & will be

dsnoted F(A).

ITf 1t A—a " i a function then define

F() 2 HA— HAD by HIHE) = {viea'| IveBa.t.
wt 2 ﬂu]‘i « Then F(f) is an order preserving map mnd it is easy to
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see that ¥ iz funstorial:

Flfot') = F(£') and F(4dA) = 1&.Hm. ¥ can be considered to be &

furetor from Set to the category of ordersd sets.
A limit space <A,L> coneists of a set A and for easch
a €A, s set Cla) & HA), said to be the set of filters converging to

g, ard subject to the conditions:

i, If a€A then <a> € C(a), where < a7 is the principle filter

generated by a.
i, If aehand §,pEC(a) then PAY Ecla).
ili, If act and ¢€ Cla) and if P§Y in T(A) then YEC(a).

We usually say that EFm‘r & in preference to Es]"-':.::{a]l.

A morphisw of limit spaces £ 3 SA0» —= <A',C'» is a functionm
f 1 A——=A' such that whenever n?cmw & in < A,C > then T(£)({) conv f(a)
in <i'.00 ,

The category of limit spaces will be denoted

Limsp |

¥e shall mske use of the fact that for every f : A——A' in Sat,

the worphism (£} ; F(A)— HA') bas a left sdjoint. We define
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an order preserving morphism :hﬂ' : TA")——=T(A) by

1) = Twah 1Iwe® et watrloend.

That () adj F(f) is expressed by Lem=a 3 If EeF(A) and it & F (ar
and 4 £ + A——A' then F(0(§)s® irr P <Hnie )

Proof 1. LUNDICE = P<E(2)(S), Assume that
(9146 . memue® > riwe TP Hlwes >
e e Fedte ). Herce ued)d u e TLH(D) becsuse

e Mu)eu, Thus HD ()8 D QLX((O).

2+ The converse, Suppose §¢ F(£(C). Suppose
v e FOP). Then Jued such that £ (ulev.

pned = uwe F(£)(H). Hence u2£(w), for some w €6 . But
waflw) iff £™2(w)2 w. EHence ved . As required,

P ¥inte) = fnwige .,

Corsllary b (a) ﬁ | &1“_3the category of ordered sets,is s functor.
(b) For each £ : A—3A%, F(f) : F(a) —s Fa")

preserves meebo.

The bass category of the M-L hyperdoctrine of 1init- Bpaces i& taken
to be the category Limsp, Then if (L&| Limsp | ana i1 {l has
underlying sst A then define Att(Q) = % <8,6> | B is an A-indexed family
of sets and € is such that <IB,C*» is a limit space ouch that S{B) :
295 .0 >— (L 1is :nutinuwn} i
If Beatt(d) then define IR = <IB,CY, where B is ths underlying
family of sets sesociated with B. Define P{BJ - F{H}.. Thue every Be

Attt} 45 determined by an A-indexed family of sets B and a limit space
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TR which has underlying set I B and which is such that PI:B] %
IiB—{] is continvous.

Fullbacks  If £ §Cl=——2>(1' and if BeAtt(d then the underlying
family of sets of I*H is taken to be [*B. Then L £*D is taken to be

the unigque limlt space with underlying set I £*BE puch that

PR _SEB | e
piER) [ lf{m
q Qo

+

iz a pullback disgram in Limsp,

Convergence in f1*B is given by Econv x iff (AL B)I(E)
conv [{£*8){x) and HE£,B)){C)convy E(£,8)(x)s Then that the
diagram is & pullback diagram follews immediately from the fact that
the underlying diagram in Set is & pullback disgram. Uniquensss of
this convergence relation subject to the disgram being a pullback
diagram is the case because if X is a new limit space with underlying
et If*B and suchk that

) J l F8)
a y o

iz & pullback dimgram then there existe en isomorphis=
g1 IfB—X such that gof(f*B) = P(1*B) and go S(£,B) = S(£,B).
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But then since the correeponding diagrame in Set are pullback
_ e
diagrams 80 g = id y,.5« 5o idEI‘H is morphism of lieit spaces
14 ¢ pug ! IfrB— ¥ and also id T¢B ° X — If*R. Hence
ddconvain E1B dmplies Hid ¢ pug) () conv x 1n X 1a o conv x in X,

And vice verse. Thus Ef*[ is unique.

That pullbacks fit together follows from the fact that they fit
together at the level of underlying sets and from the uniqueness of the

pullbacks once underlying sets are decided.

H and ¥, Ir (L €| Lissp| , If BEAtt(Q) and If GeAtt(IR) then
the underlying family of # & is taken to be FC. The limit space
Z# G is then uniguely determined by the requiresment that

H{c) 1+ L& —~FFE be an icomorphism of limit spaces,

Land @. Limsp hae & terminal chjeet 1. If QL€

| Limsp | then L(() is tsken to have underlying femily of seta L(A) and
Z1{ is then determined by the requirement that ©(4) : FLI ——>11
be an isomorphism of limit spaces.

Id, + and N are all trivisl to define. Yor Id and 4+ lemmas 1 and 2 of this

section can be used,

B and Ap  The clightly men trivial bit, If Qe LimSp |,

1f B ate() and if Gcatt(ER) then define WBin) = § & Wxenla).
Glenid ) | the corrusponding £ 1w B—as8la % in conbiiscus } e
Ap is tsken to be spplication. LE© is tbpologised by

{ conv y in ZTEE iff F(HAE ) (Pleony {BE )(y) and

Vxe €lptB), BEI 21 y1), YWE T Bla.t. Yeenv Zf(B)* UG ) (x),
Foap) CECELp(), BE (G IV Hptpm)- BB )Y comvapta).
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