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Quantum Supremacy:

Quantum Computation is expected to
be enormously more powerful

than Classical Digital Computation
(for special but crucial applications).

Quantum Instability:

But Quantum Computation is prone to
instability and hence to errors

when operated by traditional means.

Topological Quantum Computation:

is an ambitious but plausible strategy for
retaining supremacy while defeating instability.

Das Sarma, MIT Tech Rev (2022):

“The quantum-bit systems we have today are a tremendous scientific achievement,

but they take us no closer to having a quantum computer that can solve a problem that
anybody cares about.

What is missing is the breakthrough bypassing quantum error correction by using far-
more-stable quantum-bits, in an approach called topological quantum computing.”
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analysis of quantum matter [Feynman (1981)]

especially: quantum chemistry
& molecular biology [Manin (1980), Lloyd (1996)]

but also, e.g. database search [Grover (1996)]

and notably: cryptography [Simon (1997), Shor (1997)]

“ because nature isn’t classical, dammit,

if you want to make a simulation of nature,

you’d better make it quantum mechanical”
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Quantum factoring would break existing encryption

while Quantum Encryption would be unbreakable.
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

initial
state

instructed
operation

7−−−−−−−−!result some
state

any
operation
7−−−−−−−!other

state

I O • state
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computation

instructions

execute

operations
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as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

initial
state

instructed
operation

7−−−−−−−−!result some
state

any
operation
7−−−−−−−!other

state

I O • state
spaceprogram

computation

instructions

execute

operations
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

initial
state

instructed
operation

7−−−−−−−−!result some
state

any
operation
7−−−−−−−! other

state

I O • state
spaceprogram

computation

instructions

execute

operations
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

initial
state

instructed
operation

7−−−−−−−−! result some
state

any
operation
7−−−−−−−! other

state

I O • state
spaceprogram

computation

instructions

execute

operations
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

initial
state

instructed
operation

7−−−−−−−−! result some
state

any
operation
7−−−−−−−! other

state

I O • state
spaceprogram

computation

instructions

execute

operations
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

path instructions operations

instructed
operations

operations
on states

program execution

(pb)computatio
n on

initia
l sta

te
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Aside: Formalization by path lifting in Homotopy Type Theory:

path instructions operations

instructed
operations

operations
on states

program execution

(pb)path
lift

dependenttype family

univalenttype universecomputatio
n on

initia
l sta

te
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Example: Classical computation resulting in cyclic permutation of 3 numbers:

I−! O • inc
−−−−! •circuit
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Example: Classical computation resulting in cyclic permutation of 3 numbers:

I−! O • inc
−−−−! • F3

3
(•+1) mod 3
−−−−−−−! F3

3program execution
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Example: Classical computation resulting in cyclic permutation of 3 numbers:

I−! O • inc
−−−−! • F3

3
(•+1) mod 3
−−−−−−−! F3

3

F3
3

(•+1) mod 3
−−−−−−−! F3

3
[vi]

3
i=1 7!

[
vi +1mod3

]3
i=1

program execution
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Example: Classical computation resulting in cyclic permutation of 3 numbers:

I−! O • inc
−−−−! • F3

3
(•+1) mod 3
−−−−−−−! F3

3

0
1
2

 +1 mod 3
7−−−−−!

1
2
0

 F3
3

(•+1) mod 3
−−−−−−−! F3

3
[vi]

3
i=1 7!

[
vi +1mod3

]3
i=1

program execution

computatio
n on

initia
l sta

te
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

e.g. mechanical gates:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

e.g. electronic gates:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions [Sati & Schreiber, PlanQC 2022 33 (2022)]

as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

Notice: Fundamentally,
all computation is
along continuous paths.

schematically:
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)

bit fliperror
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)

bit fliperror
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)

bit fliperror
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Classical Digital Computation:
Coarse-grain state space into a bit lattice.

(effective but brutal truncation of
underlying physical processes)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances

158

https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17


To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

i.e.: invariant under reasonable disturbances
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates

167

https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17


To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates

184

https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17


To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates

198

https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17


To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
︷ ︸︸ ︷
robust

︷ ︸︸ ︷
consist

ently

⇒
result should be stable
under small deformations
of the computation path

Strategy of Topological Quantum Computation:
Use topologically invariant quantum processes.

(let the underlying physical processes
stabilize themselves)

⇒ knots as quantum gates
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But (why and where) do such processes even exist?

On atomic scales, particles are waves; whose energy is quantized.

ground state: E = 0
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On atomic scales, particles are waves; whose energy is quantized.

first excited state: E = h̄ω
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second excited state: E = 2h̄ω
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But (why and where) do such processes even exist?

On atomic scales, particles are waves; whose energy is quantized.

third excited state: E = 3h̄ω
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But (why and where) do such processes even exist?

On atomic scales, particles are waves; whose energy is quantized.

fourth excited state: E = 4h̄ω
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But (why and where) do such processes even exist?

On atomic scales, particles are waves; whose energy is quantized.

fifth excited state: E = 5h̄ω

232



But (why and where) do such processes even exist?

On atomic scales, particles are waves; whose energy is quantized.

sixth excited state: E = 6h̄ω
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But (why and where) do such processes even exist?

As very many particles come together in a crystal
their excitation energies accumulate in “bands”

but energy gaps may remain.

Conduction band

ever
higher bands

gap

E ∈ R

Chemical potential µF

k ∈ T̂d

Valence band

lowest bands metal/conductor semi-conductor insulator

un-occupied

occupied
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But (why and where) do such processes even exist?

If the ground state remains separated by an energy gap ∆E
then it is completely undisturbed by disturbances < ∆E .
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But (why and where) do such processes even exist?

So if such a gapped ground state depends on position of point defects,
then their adiabatic movement is a topological quantum process.

(numerical simulation from arXiv:1901.10739)
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But (why and where) do such processes even exist?

So if such a gapped ground state depends on position of point defects,
then their adiabatic movement is a topological quantum process.

Brillouin torus

wI/κ

nodal point

time
braiding

T̂2

kI

kI

some ground state for
fixed defect positions

k1,k2, · · · at time t1

∣∣ψ(t1)
〉 Berry phase unitary transformation

= adiabatic quantum gate

∣∣ψ(t2)
〉

another ground state for
fixed defect positions

k1,k2, · · · at time t2
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the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

reliably︸ ︷︷ ︸
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Claim: This has natural construction in Homotopy Type Theory:
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Quantum materials with these properties are called
topological phases of matter exhibiting topological order.

Their point defects are known as anyons.

Such materials are expected to exists
but have remained somewhat elusive:

experimentally as well as theoretically:

search for “Majorana zero modes”
had no reproducible success, and
would lack topological braiding;

but braiding in momentum space
has very recently been demonstrated:

promising! – needs more investigation

most successful theory for top. phases
was thought not to apply to top. order,
until recently: Sati & Schreiber (2022)

our new theory in fact predicts
anyon braiding in momentum space

of topological semi-metals.
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

H 1
Hilbert space of

quantum states at
parameter value P1

H 2 H 3
Hilbert space of

quantum states at
parameter value P3

H ̂LinTypes

P1
external
classical

parameters
at time t1

P2 P3
external
classical

parameters
at time t3

∈ P
parameter
groupoid

LinTypes
category of

linear spaces

Up12unitary evolution
Up23

fibration of
quantum state spaces

(pb)
univalentfibration oflinear spaces

p12 adiabatic flow of parameters p23

U
adiabatic

quantum gates
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

H 1
Hilbert space of

quantum states at
parameter value P1

H 2 H 3
Hilbert space of

quantum states at
parameter value P3

H ̂LinTypes

P1
external
classical

parameters
at time t1

P2 P3
external
classical

parameters
at time t3

∈ P
parameter
groupoid

LinTypes
category of

linear spaces

Up12 adiabatic transport of states Up23
fibration of

quantum state spaces

(pb)
univalentfibration oflinear spaces

p12 adiabatic flow of parameters p23

U
adiabatic

quantum gates
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

H 1
Hilbert space of

quantum states at
parameter value P1

H 2 H 3
Hilbert space of

quantum states at
parameter value P3

H ̂LinTypes

P1
external
classical

parameters
at time t1

P2 P3
external
classical

parameters
at time t3

∈ P
parameter
groupoid

LinTypes
category of

linear spaces

Up12 adiabatic transport of states Up23
fibration of

quantum state spaces

(pb)
univalentfibration oflinear spaces

p12 adiabatic flow of parameters p23

U
adiabatic

quantum gates
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

H 1
Hilbert space of

quantum states at
parameter value P1

H 2 H 3
Hilbert space of

quantum states at
parameter value P3

H ̂LinTypes

P1
external
classical

parameters
at time t1

P2 P3
external
classical

parameters
at time t3

∈ P
parameter
groupoid

LinTypes
category of

linear spaces

Up12 adiabatic transport of states Up23
fibration of

quantum state spaces

(pb)
univalentfibration oflinear spaces

p12 adiabatic flow of parameters p23

U
adiabatic

quantum gates
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

H 1
Hilbert space of

quantum states at
parameter value P1

H 2 H 3
Hilbert space of

quantum states at
parameter value P3

H ̂LinTypes

P1
external
classical

parameters
at time t1

P2 P3
external
classical

parameters
at time t3

∈ P
parameter
groupoid

LinTypes
category of

linear spaces

Up12 adiabatic transport of states Up23
fibration of

quantum state spaces

(pb)
univalentfibration oflinear spaces

p12 adiabatic flow of parameters p23

U
adiabatic

quantum gates
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

H 1
Hilbert space of

quantum states at
parameter value P1

H 2 H 3
Hilbert space of

quantum states at
parameter value P3

⊂ H ̂LinTypes

P1
external
classical

parameters
at time t1

P2 P3
external
classical

parameters
at time t3

∈ P
parameter
groupoid

LinTypes
category of

linear spaces

Up12 adiabatic transport of states Up23
fibration of

quantum state spaces

(pb)
univalentfibration oflinear spaces

p12 adiabatic flow of parameters p23

U
adiabatic

quantum gates
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

H 1
Hilbert space of

quantum states at
parameter value P1

H 2 H 3
Hilbert space of

quantum states at
parameter value P3

⊂ H ̂LinTypes

P1
external
classical

parameters
at time t1

P2 P3
external
classical

parameters
at time t3

∈ P
parameter
groupoid

LinTypes
category of

linear spaces

Up12 adiabatic transport of states Up23
fibration of

quantum state spaces

(pb)
univalentfibration oflinear spaces

p12 adiabatic flow of parameters p23

U
adiabatic

quantum gates
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

H 1
Hilbert space of

quantum states at
parameter value P1

H 2 H 3
Hilbert space of

quantum states at
parameter value P3

⊂ H ̂LinTypes

P1
external
classical

parameters
at time t1

P2 P3
external
classical

parameters
at time t3

∈ P
parameter
groupoid

LinTypes
category of

linear spaces

Up12 adiabatic transport of states Up23
fibration of

quantum state spaces

(pb)
univalentfibration oflinear spaces

p12 adiabatic flow of parameters p23

U
adiabatic

quantum gates
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

Example. For TQC one takes:

parameters = sets of distinct points in plane

parameter paths = braids of their worldlines
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

braid

Example. For TQC one takes:

parameters = sets of distinct points in plane

parameter paths = braids of their worldlines
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

braid
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

braid

H 3
U

−−−−−!H 3braid
representation

Adiabatic transprt along such parameters

is a unitary braid representation
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

braid

H 3
U

−−−−−!H 3braid
representation
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

braid

H 3
U

−−−−−!H 3

H 3
U

−−−−−! H 3

∈

|ψin⟩ 7!

∈

|ψout⟩

braid
representation

290



there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

braid

H 3
U

−−−−−!H 3

|ψin⟩
U
7−! |ψout⟩

H 3
U

−−−−−! H 3

∈

|ψin⟩ 7!

∈

|ψout⟩

braid
representation
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

braid

I−−! O H 3
U

−−−−−!H 3

|ψin⟩
U
7−! |ψout⟩

H 3
U

−−−−−! H 3

∈

|ψin⟩ 7!

∈

|ψout⟩

topological
quantum

circuit

braid
representation

topologica
l

quantum

computatio
n
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

braid

I−−! O H 3
U

−−−−−!H 3

|ψin⟩
U
7−! |ψout⟩

H 3
U

−−−−−! H 3

∈

|ψin⟩ 7!

∈

|ψout⟩

topological
quantum

circuit

braid
representation

topologica
l

quantum

computatio
n

293



there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

braid

I−−! O H 3
U

−−−−−!H 3

|ψin⟩
U
7−! |ψout⟩

H 3
U

−−−−−! H 3

∈

|ψin⟩ 7!

∈

|ψout⟩

topological
quantum

circuit

braid
representation

topologica
l

quantum

computatio
n
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

braid

I−−! O H 3
U

−−−−−!H 3

|ψin⟩
U
7−! |ψout⟩

H 3
U

−−−−−! H 3

∈

|ψin⟩ 7!

∈

|ψout⟩

topological
quantum

circuit

braid
representation

topologica
l

quantum

computatio
n

Concretely: For TQC with anyons the braid reps are
“ monodromy of KZ-connection on conformal blocks ”
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

Concretely: For TQC with anyons the braid reps are
“ monodromy of KZ-connection on conformal blocks ”
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://arxiv.org/pdf/1907.10611.pdf#page=2
https://ncatlab.org/nlab/show/braid+group+statistics#BWSWYB20
https://www.nature.com/articles/s41567-020-0967-9


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:

already demonstrated
in “meta-materials”:
- phononic crystals
- photonic crystals
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://arxiv.org/pdf/1907.10611.pdf#page=2
https://ncatlab.org/nlab/show/braid+group+statistics#BWSWYB20
https://www.nature.com/articles/s41567-020-0967-9
https://ncatlab.org/nlab/show/phononic+crystal
https://ncatlab.org/nlab/show/photonic+crystal


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:

already demonstrated
in “meta-materials”:
- phononic crystals
- photonic crystals
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://arxiv.org/pdf/1907.10611.pdf#page=2
https://ncatlab.org/nlab/show/braid+group+statistics#BWSWYB20
https://www.nature.com/articles/s41567-020-0967-9
https://ncatlab.org/nlab/show/braid+group+statistics#JBLZHLSJ21
https://www.nature.com/articles/s41567-021-01340-x
https://ncatlab.org/nlab/show/phononic+crystal
https://ncatlab.org/nlab/show/photonic+crystal


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:

already demonstrated
in “meta-materials”:
- phononic crystals
- photonic crystals
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https://arxiv.org/pdf/1907.10611.pdf#page=2
https://ncatlab.org/nlab/show/braid+group+statistics#BWSWYB20
https://www.nature.com/articles/s41567-020-0967-9
https://ncatlab.org/nlab/show/braid+group+statistics#JBLZHLSJ21
https://www.nature.com/articles/s41567-021-01340-x
https://ncatlab.org/nlab/show/braid+group+statistics#ParkGaoZhangOh22
https://ncatlab.org/nlab/show/phononic+crystal
https://ncatlab.org/nlab/show/photonic+crystal


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:

already demonstrated
in “meta-materials”:
- phononic crystals
- photonic crystals
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https://ncatlab.org/nlab/show/braid+group+statistics#JBLZHLSJ21
https://www.nature.com/articles/s41567-021-01340-x
https://ncatlab.org/nlab/show/phononic+crystal
https://ncatlab.org/nlab/show/photonic+crystal


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:

already demonstrated
in “meta-materials”:
- phononic crystals
- photonic crystals
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://arxiv.org/pdf/1907.10611.pdf#page=2
https://ncatlab.org/nlab/show/braid+group+statistics#BWSWYB20
https://www.nature.com/articles/s41567-020-0967-9
https://ncatlab.org/nlab/show/braid+group+statistics#JBLZHLSJ21
https://www.nature.com/articles/s41567-021-01340-x
https://ncatlab.org/nlab/show/phononic+crystal
https://ncatlab.org/nlab/show/photonic+crystal


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://arxiv.org/pdf/1907.10611.pdf#page=2
https://ncatlab.org/nlab/show/anyonic+braiding+in+momentum+space+--+references#TiwariBzdusek20
https://ncatlab.org/nlab/show/anyonic+braiding+in+momentum+space+--+references#TiwariBzdusek20


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://arxiv.org/pdf/1907.10611.pdf#page=2


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:

To do: Scrutinize further evidence
that/when/how such band nodes indeed
qualify as anyons in momentum space.
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:

To do: Scrutinize further evidence
that/when/how such band nodes indeed
qualify as anyons in momentum space.
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://arxiv.org/pdf/1907.10611.pdf#page=2
https://ncatlab.org/nlab/show/braid+group+statistics#Valera21


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://ncatlab.org/nlab/show/K-theory+classification+of+topological+phases+of+matter#Kitaev09


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://ncatlab.org/nlab/show/K-theory+classification+of+topological+phases+of+matter#FreedMoore13


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:

314
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://ncatlab.org/schreiber/show/Equivariant+principal+infinity-bundles


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos
https://ncatlab.org/schreiber/show/Proper+Orbifold+Cohomology
https://ncatlab.org/nlab/show/differential+cohomology+diagram#Myers21
https://ncatlab.org/nlab/show/smooth+infinity-groupoid#Clough21


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of vector spaces

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of mapping spectra

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of mapping spectra

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of mapping spectra

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

This describes adiabatic braiding of
band nodes of topol. ordered semi-metals

classified in TED K-theory of config. space:
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of mapping spectra

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n Such path lifting in fibrations over groupoids is captured

by homotopically typed programming languages (HoTT).
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of mapping spectra

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)

dependenttype family

univalenttype universe

topologica
l

quantum

computatio
n

path
lift
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of mapping spectra

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)

dependenttype family

univalenttype universe

topologica
l

quantum

computatio
n

path
lift
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there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of mapping spectra

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)

dependenttype family

univalenttype universe

topologica
l

quantum

computatio
n

path
lift
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https://ncatlab.org/schreiber/show/Differential+generalized+cohomology+in+Cohesive+homotopy+type+theory
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22


there is a curious dictionary

Condensed/Quantum Matter AdS/CMT
 −−−! String/M-Theory

flux, charge
quantization
 −−−−! Alg. Topology/Geom. Homotopy

gapped ground states stable D-branes topological KR-theory

quantum symmetries orbi-folding equivariant-

Berry phases gauge field cohesive differential-

topological order higher gauge field twisted-

(anyonic) interactions (defect) M-branes Co-Bordism/-Homotopy

Adiabatic transport of states Moduli monodromy Fibrations of mapping spectra

Topological Quantum Programming Linear Homotopy Type Theory

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)

dependenttype family

univalenttype universe

topologica
l

quantum

computatio
n

path
lift

Under this translation,
the fibration of conformal blocks,
has a slick construction in HoTT.
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path configuration space
of distinct points unitary operators

bundle of
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quantum states
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topological
quantum
program
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representation

(pb)

dependenttype family

univalenttype universe
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(1) – The Problem:
Practical Foundations of
Topological Quantum Computation

(2) – The Strategy:
Cohesive Linear Homotopy for
Holographic Condensed Matter Theory

(3) – The Technology:
TED K-Cohomology of
Cohomotopy Moduli Spaces
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There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.
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Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

368

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/Awodey%27s+proposal#Awodey10


In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

369

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/Awodey%27s+proposal#Awodey10


In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

BG =


∗

∗ ∗

g2

g1·g2

g1

∣∣∣∣∣∣∣gi ∈ G


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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{
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γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

BBr(3) =

{ }
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{
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akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
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An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

P : X −! Types P(y)

P(x) P(z)

y

X : Types x z

tr(γ2 )

tr(γ3)

tr(γ1)

γ2

γ3

γ1
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
and compatible path lifting:

P : X −! Types py

px pz

y

X : Types x z

γ̂2

γ̂3

γ̂1

γ2

γ3

γ1
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

392

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory


In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation;
and its path lifting is execution of su(2)-anyon braid gates!

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.
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Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

This
〈works because

and uses that

〉
HoTT has categorical semantics

in Parameterized Homotopy Theory.
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We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable −−−!
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Vacua of electron/positron field in Coulomb background.
Fact ([KS77, CHO82]). The vacua of the free Dirac quantum field
in a classical Coulomb background...

V
Coulomb
potential

∣∣∣u",v"
u#,v#

〉
single

electron/positron
wavefunction
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Vacua of electron/positron field in Coulomb background.
Fact ([KS77, CHO82]). The vacua of the free Dirac quantum field
in a classical Coulomb background are characterized by Fredholm operators...

finite-dimensional kernel

ker(F) H H
finite-dimensional cokernel

coker(F)︷ ︸︸ ︷
ψ ∈ H

∣∣ ∀φ ⟨φ |F |ψ⟩= 0
︷ ︸︸ ︷
ψ ∈ H | ∀φ ⟨ψ|F |φ⟩ = 0

Fredholm operator

F
bounded linear
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Vacua of electron/positron field in Coulomb background.
Fact ([KS77, CHO82]). The vacua of the free Dirac field
in a classical Coulomb background are characterized by Fredholm operators

finite-dimensional kernel

ker(F) H H
finite-dimensional cokernel

coker(F)︷ ︸︸ ︷
ψ ∈ H

∣∣ ∀φ ⟨φ |F |ψ⟩= 0
︷ ︸︸ ︷
ψ ∈ H | ∀φ ⟨ψ|F |φ⟩ = 0

Fredholm operator

F
bounded linear

on the single-electron/positron Hilbert space:

electron states in
dressed vacuum ker(F)

single electron
Hilbert space

H H
⊕ ⊕
H

single positron
Hilbert space

H coker(F)
positron states in
dressed vacuum

F∗F

dressed vacuum
Fredholm operator

total charge in
dressed vacuum

ind(F) =

number of electrons in
dressed vacuum state

dim
(
ker(F)

)
−

number of positrons in
dressed vacuum state

dim
(
coker(F)

)
= dim

(
coker(F∗)

)
− dim

(
ker(F∗)

)
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Quantum symmetries.
On these dressed vacua of electron/positron states
the following CPT-twisted projective group

even projective unitary group

U(H )×U(H )

U(1)
⋊
( grading

involution

Z2︸︷︷︸
{e,P}

×
complex

conjugation

Z2︸︷︷︸
{e,T}

)
group of quantum symmetries

C := PT , P ·
[
U+ ,U−

]
:=

[
U− ,U+

]
·P , T ·

[
U+ ,U−

]
:=

[
U+ ,U−

]
·T
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Quantum symmetries.
On these dressed vacua of electron/positron states
the following CPT-twisted projective group

even projective unitary group

U(H )×U(H )

U(1)
⋊
( grading

involution

Z2︸︷︷︸
{e,P}

×
complex

conjugation

Z2︸︷︷︸
{e,T}

)
group of quantum symmetries

C := PT , P ·
[
U+ ,U−

]
:=

[
U− ,U+

]
·P , T ·

[
U+ ,U−

]
:=

[
U+ ,U−

]
·T

naturally acts by conjugation:

[U+,U−] : F 7−! U−1
+ ◦F ◦U−

C · [U+,U−] : F 7−! U−1
− ◦F t ◦U+

P · [U+,U−] : F 7−! U−1
− ◦F∗ ◦U+

T · [U+,U−] : F 7−! U−1
+ ◦F ◦U−
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Twisted equivariant KR-theory – As a single diagram of smooth groupoids.
Homotopy classes of quantum-symmetry equivariant families
of such self-adjoint odd Fredholm operators
constitute twisted equivariant KR-cohomology:

KRτ
G(X) :=



space of self-adjoint

odd Fredholm operators

Fred0
C�

group of quantum symmetries(
U(H )×U(H )

U(1) ⋊{e,P}×{e,T}
)

orbi-
orientifold

X�G B
(

U(H )×U(H )
U(1) ⋊{e,P}×{e,T}

)

B
(
{e,C}×{e,T}

)

universal bundle of
self-adjoint odd Fredholm operators

over moduli stack of quantum symmetries

underlying

CPT symmetry

eq
uiva

ria
nt fam

ily
of

Fred
holm

op
era

tor
s

coc
ycl

e in
TE-K

-th
eor

y

twist τtwist τ

C=
PT

/
∼htpy
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Twisted equivariant KR-theory – As a single diagram of smooth groupoids.
Homotopy classes of quantum-symmetry equivariant families
of such self-adjoint odd Fredholm operators
constitute twisted equivariant KR-cohomology:

KRτ
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space of self-adjoint

odd Fredholm operators
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U(1) ⋊{e,P}×{e,T}
)

orbi-
orientifold

X�G B
(

U(H )×U(H )
U(1) ⋊{e,P}×{e,T}

)

B
(
{e,C}×{e,T}

)

universal bundle of
self-adjoint odd Fredholm operators

over moduli stack of quantum symmetries

underlying

CPT symmetry

eq
uiva

ria
nt fam

ily
of

Fred
holm

op
era

tor
s

coc
ycl

e in
TE-K

-th
eor

y

twist τ

C=
PT

/
∼htpy
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Twisted equivariant KR-theory – As a single diagram of smooth groupoids.
Homotopy classes of quantum-symmetry equivariant families
of such self-adjoint odd Fredholm operators
constitute twisted equivariant KR-cohomology:

KRτ
G(X) :=
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space of self-adjoint

odd Fredholm operators

Fred0
C�

group of quantum symmetries(
U(H )×U(H )

U(1) ⋊{e,P}×{e,T}
)

orbi-
orientifold

X�G B
(

U(H )×U(H )
U(1) ⋊{e,P}×{e,T}

)

B
(
{e,C}×{e,T}

)

universal bundle of
self-adjoint odd Fredholm operators

over moduli stack of quantum symmetries

underlying

CPT symmetry

eq
uiva

ria
nt fam

ily
of

Fred
holm

op
era

tor
s

coc
ycl

e in
TE-K

-th
eor

y

twist τ

C=
PT

/
∼htpy
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Free topological phases of matter.
⇒ Idea: Single-particle valence bundle of electrons in crystalline insulator

classified by topological K-theory of Brillouin torus
equivariant wrt quantum symmetries [Kitaev 09] [?]

Single particle
valence bundle V =

{
k ∈ T̂d , |ψ⟩ ∈ H ⊕ H

∣∣∣ ∣∣⟨ψ|Hk|ψ⟩
∣∣ ≤ µF

}
⊂ B Bundle of all

relativistic
Bloch states

Brillouin torus of
momenta in crystal T̂d ! n-particle story

Conduction band

ever
higher bands

gap

E ∈ R

Chemical potential µF

k ∈ T̂d

Valence band

lowest bands

 bands of
valence bundle metal/conductor semi-conductor insulator

occupied
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⇒ Idea: Single-particle valence bundle of electrons in crystalline insulator

classified by topological K-theory of Brillouin torus
equivariant wrt quantum symmetries [Kitaev 09] [?]
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{
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∣∣ ≤ µF

}
⊂ B Bundle of all
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CPT Quantum symmetries.

B
(
{e,T}

)
B
(

U(H )×U(H )

U(1)
⋊{e, T}

)
B
(
BU(1)⋊{e, T}

)
B
(
{e, P}×{e, T}

)
pure quantum T-symmetry

T 7−! T̂

Here is how to compute the possible quantum T-symmetries...

435



CPT Quantum symmetries.

B
(
{e,T}

)
B
(

U(H )×U(H )

U(1)
⋊{e, T}

)
B
(
BU(1)⋊{e, T}

)
B
(
{e, P}×{e, T}

)
pure quantum T-symmetry

T 7−! T̂

• •

• •

T

TT e

T

≡

• •

• •

T

e TT

T

• •

• •

T̂

T̂T̂ e

T̂

c

≡

• •

• •

T̂

e T̂T̂

T̂

c

≡

• •

• •

T̂

T̂T̂

T̂ T̂ T̂

T̂

c

≡

≡

• •

• •

T̂

T̂T̂

T̂ T̂ T̂

T̂

c
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CPT Quantum symmetries.

B
(
{e,T}

)
B
(

U(H )×U(H )

U(1)
⋊{e, T}

)
B
(
BU(1)⋊{e, T}

)
B
(
{e, P}×{e, T}

)
pure quantum T-symmetry

T 7−! T̂

• •

• •

T

TT e

T

≡

• •

• •

T

e TT

T

• •

• •

T̂

T̂T̂ e

T̂

c

≡

• •

• •

T̂

e T̂T̂

T̂

c

≡

• •

• •

T̂

T̂T̂

T̂ T̂ T̂

T̂

c

≡

≡

• •

• •

T̂

T̂T̂

T̂ T̂ T̂

T̂

c

So c = c and hence there are two choices for quantum T-symmetry, up to homotopy:

T̂ 2 =±1 and similarly Ĉ2 =±1 .
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Example – Orientifold KR-theory

Let I be Inversion action on 2-torus T̂2 ≃ R2/Z2 and trivial action on observables

T2 T2

k 7−! −k ,

I Fred0
C Fred0

C

F 7−! F .

I

If T acts as I on T2, then KRT̂ 2 =+1 is Atiyah’s Real K-theory aka orienti-fold K-theory:

KR
(
T̂0,2

)
≃



Fred0
C�

(
U(H )⋊{e,T}

)
T2�{e, I} B

(
U(H )⋊{e,T}

)
B{e,T}

I 7!T

inversionof space

T̂ 2=+1

combined
with

complex conj.

of observables

/
∼htpy

But what happens on I-fixed loci i.e. on “orientifolds” ? −−−−−!
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CPT Quantum symmetries – 10 global choices. (following [?, Prop. 6.4])

Equivariance group G = {e} {e,P} {e,T} {e,C} {e,T}×{e,C}

Realization as
quantum symmetry τ :

T̂ 2 = +1 −1 +1 −1 −1 +1

Ĉ2 = +1 −1 +1 +1 −1 −1

Maximal induced
Clifford action

anticommuting with
all G-invariant odd
Fredholm operators

E−3 = iT̂Ĉβ

E−2 = iĈβ iĈβ

E−1 = P̂β Ĉβ Ĉβ Ĉβ

E+0 = β β β

(
β 0
0 −β

)
β β β β β β

E+1 =
(

0 1
1 0

)
Ĉβ Ĉβ Ĉβ

E+2 =
(

0 i
i 0

)
iĈβ iĈβ

E+3 =
(

0 −T̂
T̂ 0

)
iT̂Ĉβ

E+4 =
(

0 iT̂
iT̂ 0

)
τ-twisted G-equivariant
KR-theory of fixed loci KRτ = KU0 KU1 KO0 KO4 KO2 KO6 KO1 KO3 KO5 KO7
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CPT Quantum symmetries – 10 global choices.

Equivariance group G = {e} {e,P} {e,T} {e,C} {e,T}×{e,C}

Realization as
quantum symmetry τ :

T̂ 2 = +1 −1 +1 −1 −1 +1

Ĉ2 = +1 −1 +1 +1 −1 −1

Maximal induced
Clifford action

anticommuting with
all G-invariant odd
Fredholm operators

E−3 = iT̂Ĉβ

E−2 = iĈβ iĈβ

E−1 = P̂β Ĉβ Ĉβ Ĉβ

E+0 = β β β

(
β 0
0 −β

)
β β β β β β

E+1 =
(

0 1
1 0

)
Ĉβ Ĉβ Ĉβ

E+2 =
(

0 i
i 0

)
iĈβ iĈβ

E+3 =
(

0 −T̂
T̂ 0

)
iT̂Ĉβ

E+4 =
(

0 iT̂
iT̂ 0

)
τ-twisted G-equivariant
KR-theory of fixed loci KRτ = KU0 KU1 KO0 KO4 KO2 KO6 KO1 KO3 KO5 KO7


bounded opers. F̂ : H 2 H 2bounded

K−linear

self-adjoint F̂∗ = F̂ := F +F∗

Fredholm dim
(
ker

(
F̂
))

< ∞

∣∣∣∣∣∣∣∣∣
graded comm.

Ei ◦ F̂ =−F̂ ◦Ei
with

bounded oper. E0, · · · ,Ep : H 2 H 2bounded
K−linear

(anti-)self-adjoint (Ei)
∗ = sgni ·Ei

Clifford gen. Ei ◦E j +E j ◦Ei = 2sgni ·δi j


=: Fred−p

C [?]:
{

X −−−!
cnts

Fredp
K
}/

∼htpy
=

{
KUp(X) = KUp+2(X) | K= C
KOp(X) = KOp+8(X) | K= R
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Example – T I-equivariant KR-theory is KO0-theory.

The combination T · I acts trivially on the domain space and
by complex conjugation on observables.

Hence (T · I)-equivariant (T̂ 2 =+1)-twisted KR-theory is KO0-theory:

KO0(X
)

≃



Fred0
C�

(
U(H )⋊{e,T}

)
X ×∗�{e,T I} B

(
U(H )⋊{e,T}

)
B{e,T}

TI 7!T

no actionon space

T̂ 2=+1

combined
with

complex conj.

of observables

/
∼htpy

n = 0 1 2 3 4 5 6 7 8 9 · · ·

KO0(Sn
∗
)
= Z Z2 Z2 0 Z 0 0 0 Z Z2 · · ·
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Example – T I-equivariant KR-theory of punctured torus.

So the T I-equivariant (T̂ 2 =+1)-twisted KR-theory of the N-punctured torus is

KR(T̂ 2 =+1)
(
T̂2 \{k1, · · · ,kN}

)
≃ KO0(T̂2 \{k1, · · · ,kN}

)
≃ KO0(∨

1+N
S1
∗
)

(N ≥ 1)

≃
⊕
1+N

Z2

S1
a

S1
b

T̂2

≃
stbl

S1
a ∨S1

b ∨S2
bulk

k1

T̂2 \{k1}
≃

htpy
S1

a ∨S1
b

k1

k2

T̂2 \{k1,k2}
≃

htpy
S1

a ∨S1
b ∨S1

k1

k3

k2

T̂2 \{k1,k2,k3}
≃

htpy
S1

a ∨S1
b ∨S1 ∨S1

k1

k2

kn

T̂2 \{k1, · · · ,kn}
≃

htpy

∨
1+n S1
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The B-field twist.
Besides these CPT-quantum symmetries,
K-theory generically admits the famous twisting by a B-field:

The homotopy fiber sequence of 2-stacks discussed before

BU(H ) B
(
U(H )/U(1)

)
B2U(1)

universal Dixmier-Douady class

DD
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Besides these CPT-quantum symmetries,
K-theory generically admits the famous twisting by a B-field:

The homotopy fiber sequence of 2-stacks discussed before

BU(H ) B
(
U(H )/U(1)

)
B2U(1)

universal Dixmier-Douady class

DD

induces a surjection of equivalence classes of equivariant higher bundles

π0

equivariant projective bundles

Maps
(

X̂�G, B
(
U(H )/U(1)

)) equivariant bundle gerbes

π0 Maps
(

X̂�G, B2U(1)
)

DD∗
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The B-field twist.
Besides these CPT-quantum symmetries,
K-theory generically admits the famous twisting by a B-field:

The homotopy fiber sequence of 2-stacks discussed before

BU(H ) B
(
U(H )/U(1)

)
B2U(1)

universal Dixmier-Douady class

DD

induces a surjection of equivalence classes of equivariant higher bundles

π0

equivariant projective bundles

Maps
(

X̂�G, B
(
U(H )/U(1)

)) equivariant bundle gerbes

π0 Maps
(

X̂�G, B2U(1)
)

DD∗

which has a natural section:

π0Maps
(
X̂�G, B2U(1)

)
equivariant bundle gerbes

π0 Maps
(

X̂�G, B
(

U(H )×U(H )
U(1) ⋊

(
{e,C}×{e,P}

)))
full quantum-symmetry twists

.

“stable twists”

446



The B-field twist – Inner local systems.
On fixed loci (orbi-singularities)

X�G ≃ X×∗�G = X×BG

the B-field twist induces secondary twists by “inner local systems”:

stable twists over fixed locus
Maps

(
X×∗�G, B2U(1)

)
≃ Maps

(
X×BG, B2U(1)

)
≃ Maps

(
X, Maps(BG, B2U(1))

)
≃ Maps

(
X, BG∗×B2U(1)

)
≃ Maps

(
X, BG∗)

inner local systems
× Maps

(
X, B2U(1)

)
bundle gerbes
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The B-field twist – Inner local systems.
On fixed loci (orbi-singularities)

X�G ≃ X×∗�G = X×BG

the B-field twist induces secondary twists by “inner local systems”:

stable twists over fixed locus
Maps

(
X×∗�G, B2U(1)

)
≃ Maps

(
X×BG, B2U(1)

)
≃ Maps

(
X, Maps(BG, B2U(1))

)
≃ Maps

(
X, BG∗×B2U(1)

)
≃ Maps

(
X, BG∗)

inner local systems
× Maps

(
X, B2U(1)

)
bundle gerbes

Here we are assuming G ⊂
fin

SU(2) so that H2
Grp

(
G, U(1)

)
= 0.

And G∗ := Hom
(
G,U(1)

)
denotes the Pontrjagin-dual group.
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The B-field twist – Inner local systems.
On fixed loci (orbi-singularities)

X�G ≃ X×∗�G = X×BG
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SU(2) so that H2
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(
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)
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G,U(1)

)
denotes the Pontrjagin-dual group.
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The B-field twist – Inner local systems – The diagrammatics.

Hence the
inner local system-twisted KU-cohomology
of a G-orbi-singularity of shape X
arises as follows:

KUn+[ω1]
G

(
X
)
=



Fredn
C�PU(H )

X ×∗�G BPU(H )
τ

inner local system twist

cocycle

/
∼htpy
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The B-field twist – Inner local systems – The diagrammatics.

Hence the
inner local system-twisted KU-cohomology
of a G-orbi-singularity of shape X
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KUn+[ω1]
G

(
X
)
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Maps
(
BG, Fredn

C�PU(H )
)

X Maps
(
BG, BPU(H )

)
τ̃

adjunct twist

cocycle
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The B-field twist – Inner local systems – The diagrammatics.

Hence the
inner local system-twisted KU-cohomology
of a G-orbi-singularity of shape X
arises as follows:

KUn+[ω1]
G

(
X
)
=
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Maps
(
BG, Fredn

C�PU(H )
)

X BG∗ Maps
(
BG, BPU(H )

)
cocycle

ω1
inner local system automorphisms of

univ. stable equiv. twist
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The B-field twist – Inner local systems – The diagrammatics.

Hence the
inner local system-twisted KU-cohomology
of a G-orbi-singularity of shape X
arises as follows:

KUn+[ω1]
G

(
X
)
=



(
Fredn

C
)G�G∗ Maps

(
BG, Fredn

C�PU(H )
)

X BG∗ Maps
(
BG, BPU(H )

)
(pb)coc

ycl
e

ω1
inner local system automorphisms of

univ. stable equiv. twist

/
∼htpy
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The B-field twist – Inner local systems – The proof.

For the proof we consider the following diagram [?, Ex. 4.1.56][?, §3]:

BG BPU(H )

•
⊕
[ρi] ∈
Irr(G)

ρi ⊗ ℓ2(C)
⊕
[ρi ]∈
Irr(G)

ρi ⊗ ℓ2(C)

7−!

•
⊕
[ρi]∈
Irr(G)

ρi ⊗ ℓ2(C)
⊕
[ρi ]∈
Irr(G)

ρi ⊗ ℓ2(C)

stbl0

stbl0

ρ ∈G∗

g

v 7!1ρ⊗v

⊕
[ρi ]

(ρi(g)⊗id) ⊕
[ρi ]

(ρi(g)⊗id)

v 7!1ρ⊗v

ρ(g)(1ρ )
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The B-field twist – Inner local systems – The proof.

For the proof we consider the following diagram [?, Ex. 4.1.56][?, §3]:

BG BPU(H )

•
⊕
[ρi] ∈
Irr(G)

ρi ⊗ ℓ2(C)
⊕
[ρi ]∈
Irr(G)

ρi ⊗ ℓ2(C)

7−!

•
⊕
[ρi]∈
Irr(G)

ρi ⊗ ℓ2(C)
⊕
[ρi ]∈
Irr(G)

ρi ⊗ ℓ2(C)

stbl0

stbl0

ρ ∈G∗

g

v 7!1ρ⊗v

⊕
[ρi ]

(ρi(g)⊗id) ⊕
[ρi ]

(ρi(g)⊗id)

v 7!1ρ⊗v

ρ(g)(1ρ )

stable G-representation⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

action of group character on equivariant Fredholm operator
FFredholm operator

v 7!1ρ⊗v

⊕
i ρi⊗ℓ2(C)

[ρ]·F

equivariance of
Fredholm operator

v 7!1ρ⊗v
tensoring with unit of group character

⊕
s ρi(g)⊗id

⊕
s ρi(g)⊗id

F

projective intertwining action
of group character

v 7!1ρ⊗v
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The B-field twist – Inner local systems – Chern character.

One aspect of these twistings becomes transparent under the Chern character:

complex K-theory
KU0(X) KU0(X; C) ≃

periodic de Rham cohomology⊕
d∈N

H2d
(

Ω•
dR
(
X; C

)
,d
)

Chern character
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The B-field twist – Inner local systems – Chern character.

One aspect of these twistings becomes transparent under the Chern character:

complex K-theory
KU0(X) KU0(X; C) ≃

periodic de Rham cohomology⊕
d∈N

H2d
(

Ω•
dR
(
X; C

)
,d
)

Chern character

For twist by B-field B̂2 there is a closed differential 3-form H3 such that:

plain B-field
-twisted K-theory

KUn+B̂2(X) KUB̂2(X; C) ≃
3-twisted periodic de Rham cohomology⊕

d∈Z
Hn+2d

(
Ω•

dR
(
X; C

)
,d+H3 ∧

)
twisted

Chern character

457



The B-field twist – Inner local systems – Chern character.

One aspect of these twistings becomes transparent under the Chern character:

complex K-theory
KU0(X) KU0(X; C) ≃

periodic de Rham cohomology⊕
d∈N

H2d
(

Ω•
dR
(
X; C

)
,d
)

Chern character

For twist by B-field B̂2 there is a closed differential 3-form H3 such that:

plain B-field
-twisted K-theory

KUn+B̂2(X) KUB̂2(X; C) ≃
3-twisted periodic de Rham cohomology⊕

d∈Z
Hn+2d

(
Ω•

dR
(
X; C

)
,d+H3 ∧

)
twisted

Chern character

For twist by inner Cκ -local system, there is closed 1-form ω1 with holon. in Cκ ⊂ U(1)
such that:

inner local system
-twisted K-theory

KUn+[ω1]
Cκ

(
X
)

of A-type singularity

1-twisted periodic de Rham cohomology⊕
d ∈ Z

1 ≤ r ≤ κ

Hn+2d
(

Ω•
dR
(
X; C

)
,d+ r ·ω1 ∧

)
twisted equivariant

Chern character

458



The B-field twist – Inner local systems – Chern character.

One aspect of these twistings becomes transparent under the Chern character:

complex K-theory
KU0(X) KU0(X; C) ≃

periodic de Rham cohomology⊕
d∈N

H2d
(

Ω•
dR
(
X; C

)
,d
)

Chern character

This is the hidden 1-twisting in TED-K – that we will next relate to anyons. −−−!

plain B-field
-twisted K-theory

KUn+B̂2(X) KUB̂2(X; C) ≃
3-twisted periodic de Rham cohomology⊕

d∈Z
Hn+2d

(
Ω•

dR
(
X; C

)
,d+H3 ∧

)
twisted

Chern character

For twist by inner Cκ -local system, there is closed 1-form ω1 with holon. in Cκ ⊂ U(1)
such that:

inner local system
-twisted K-theory

KUn+[ω1]
Cκ

(
X
)

of A-type singularity

1-twisted periodic de Rham cohomology⊕
d ∈ Z

1 ≤ r ≤ κ

Hn+2d
(

Ω•
dR
(
X; C

)
,d+ r ·ω1 ∧

)
twisted equivariant

Chern character
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TED-Cohomological incarnation of Conformal blocks.
Consider
κ := k+2 “level”

wI ∈ {0, · · · ,k} “weights”

zI ∈ {z1, · · · ,zN} “punctures”

ω1 := ∑I −wI
κ

dz
z−zI

transverse plane

ω1

defect brane

Σ2

∞

zI

su(2)-affine deg=1
conformal blocks

CnfBlck1
ŝl2

k (⃗w,⃗z)

natural
inclusion

↪−−−−−−!

1-twisted deg=1
de Rham cohomology

H1
(

Ω•
dR
(
C\ {⃗z}

)
, d+ω1 ∧

)
FSV92, Cor. 3.4.2

natural
inclusion

↪−−−−−−! KU1+ω1
((

C\ {⃗z}
)
×∗�Cκ ; C

)
inner local system-twisted deg=1

K-theory of Aκ−1 singularity

[?, Prop. 2.16]
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)
FSV92, Cor. 3.4.2

natural
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↪−−−−−−! KU1+ω1
((

C\ {⃗z}
)
×∗�Cκ ; C

)
inner local system-twisted deg=1

K-theory of Aκ−1 singularity

SS22a, Prop. 2.16
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TED-Cohomological incarnation of Conformal blocks.
Consider
κ := k+2 “level”

wI ∈ {0, · · · ,k} “weights”

zI ∈ {z1, · · · ,zN} “punctures”

ω1 := ∑I −wI
κ

dz
z−zI

transverse plane

ω1

defect brane

Σ2

∞

zI

su(2)-affine deg=1
conformal blocks

CnfBlck1
ŝl2

k (⃗w,⃗z)

natural
inclusion

↪−−−−−−!

1-twisted deg=1
de Rham cohomology

H1
(

Ω•
dR
(
C\ {⃗z}

)
, d+ω1 ∧

)
FSV92, Cor. 3.4.2

natural
inclusion

↪−−−−−−! KU1+ω1
((

C\ {⃗z}
)
×∗�Cκ ; C

)
inner local system-twisted deg=1

K-theory of Aκ−1-singularity (as explained above)

SS22a, Prop. 2.16
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Account for interactions by passage to configuration space.
Interacting n-electron wavefunctions are functions on the space of n points in Bri-torus
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Account for interactions by passage to configuration space.
Interacting n-electron wavefunctions are functions on the space of n points in Bri-torus
Pauli exclusion ⇒ these span vector bundle away from the locus of coinciding points:

Slater-Bloch valence bundle of
interacting n-electron states Vn ⊂ ∏

(k1,··· ,kn)

Span
{ Slater determinants of Bloch states

Ψi1,··· ,in

((
k1,s1), · · · ,

(
kn,sn

))}
(i1, · · · , in)
(s1, · · · ,sn)

configuration space of
n “probe” points Conf

{1, · · · ,n}

(
T̂d \{k1, · · · ,kN}

in complement of N “nodal”
points inside the Brillouin torus

)
=

{
(k1, · · · ,kn) ∈

(
T̂d

)n
∣∣∣∣ ∀i̸= j

ki ̸= k j

Pauli
exclusion

and ∀
i,I

ki ̸= kI
nodal

singularities

}
.
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Account for interactions by passage to configuration space.
Interacting n-electron wavefunctions are functions on the space of n points in Bri-torus
Pauli exclusion ⇒ these span vector bundle away from the locus of coinciding points:

Slater-Bloch valence bundle of
interacting n-electron states Vn ⊂ ∏

(k1,··· ,kn)

Span
{ Slater determinants of Bloch states

Ψi1,··· ,in

((
k1,s1), · · · ,

(
kn,sn

))}
(i1, · · · , in)
(s1, · · · ,sn)

configuration space of
n “probe” points Conf

{1, · · · ,n}

(
T̂d \{k1, · · · ,kN}

in complement of N “nodal”
points inside the Brillouin torus

)
=

{
(k1, · · · ,kn) ∈

(
T̂d

)n
∣∣∣∣ ∀i̸= j

ki ̸= k j

Pauli
exclusion

and ∀
i,I

ki ̸= kI
nodal

singularities

}
.

This locus is known as the configuration space of n points. (see e.g. SS22, §2.2)
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TED-Cohomological incarnation of Conformal blocks.
So consider, more generally, configuration spaces of points

Conf
{1, · · · ,n}

(
X
)

:=
{

z1, · · · ,zn ∈ X
∣∣ ∀

i< j
zi ̸= z j

}
.

with ω1 := ∑
1≤i≤n

∑
I
−wI

κ

dz
z− zI

+ ∑
1≤i< j≤n

2
κ

dz
zi − z j on Conf

{1, · · · ,n}

(
C\ {⃗z}

)
Then:
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TED-Cohomological incarnation of Conformal blocks.
Generally, consider configuration spaces of points (e.g. SS22, §2.2)

Conf
{1, · · · ,n}

(
X
)

:=
{

z1, · · · ,zn ∈ X
∣∣ ∀

i< j
zi ̸= z j

}
.

with ω1 := ∑
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∑
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κ

dz
z− zI

+ ∑
1≤i< j≤n

2
κ

dz
zi − z j on Conf

{1, · · · ,n}

(
C\ {⃗z}

)
Then:

su(2)-affine deg=n
conformal blocks

CnfBlckn
ŝl2

k (⃗w,⃗z) ↪−!

1-twisted deg=n de Rham cohomology
of configuration space of n points

Hn
(

Ω•
dR

(
Conf
{1, · · · ,n}

(
C\ {⃗z}

))
, d+ω1 ∧

)
FSV92, Cor. 3.4.2

↪−! KUn+ω1

((
Conf
{1, · · · ,n}

(
C\ {⃗z}

))
×∗�Cκ ; C

)
inner local system-twisted deg=n K-theory

of configurations in Aκ−1-singularity

[?, Thm. 2.18]
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TED-Cohomological incarnation of Conformal blocks.
Generally, consider configuration spaces of points (e.g. SS22, §2.2)
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.

with ω1 := ∑
1≤i≤n

∑
I
−wI

κ

dz
z− zI

+ ∑
1≤i< j≤n

2
κ

dz
zi − z j on Conf

{1, · · · ,n}

(
C\ {⃗z}

)
Then:

su(2)-affine deg=n
conformal blocks

CnfBlckn
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The previous statement is subsumed since Conf
{1}

(X) = X .
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Conclusion.

The commonly expected ŝu2k-charges of anyons and defect branes
are reflected in the TED-K-theory of configuration spaces of points
in 2-dimensional transverse spaces inside Ak+1-orbi-singularities.
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Conclusion.

The commonly expected ŝu2k-charges of anyons and defect branes
are reflected in the TED-K-theory of configuration spaces of points
in 2-dimensional transverse spaces inside Ak+1-orbi-singularities.

This is compatible with traditional brane charge quantization (only) in degree 1
while in general degree it is compatible under Hypothesis H, which asserts [?]
that quantum states of branes are in the generalized cohomology of
Cohomotopy cocycle spaces of spacetime:

473

http://ncatlab.org/schreiber/show/Hypothesis+H


Conclusion.
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figuration space of ordered points in
their transverse plane.
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electron states ↔ Brillouin torus

In summary,
we arrive at

the following
picture.
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[Sati & Schreiber (2022b)]
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory


Physics Theory
underlying controlling
Topological Quantum Computation

anyon braiding ↔ GM-connection on

anyon species ↔ twisted

quantum symmetries ↔ equivariant

anyon wavefunctions ↔ differential

topological phases ↔ topological

deformation classes ↔ K-theory of

strongly interacting ↔ configurations in

electron states ↔ Brillouin torus

[Sati & Schreiber, PlanQC 2022 33 (2022)]
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https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K


Physics Theory
underlying controlling
Topological Quantum Computation

anyon braiding ↔ GM-connection on

anyon species ↔ twisted

quantum symmetries ↔ equivariant

anyon wavefunctions ↔ differential

topological phases ↔ topological

deformation classes ↔ K-theory of

strongly interacting ↔ configurations in

electron states ↔ Brillouin torus

[Sati & Schreiber, PlanQC 2022 33 (2022)]

503

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K


Physics Theory
underlying controlling
Topological Quantum Computation

anyon braiding ↔ GM-connection on

anyon species ↔ twisted

quantum symmetries ↔ equivariant

anyon wavefunctions ↔ differential

topological phases ↔ topological

deformation classes ↔ K-theory of

strongly interacting ↔ configurations in

electron states ↔ Brillouin torus

[Sati & Schreiber, PlanQC 2022 33 (2022)]
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https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K


Physics Theory
underlying controlling
Topological Quantum Computation

anyon braiding ↔ GM-connection on

anyon species ↔ twisted

quantum symmetries ↔ equivariant

anyon wavefunctions ↔ differential

topological phases ↔ topological

deformation classes ↔ K-theory of

strongly interacting ↔ configurations in

electron states ↔ Brillouin torus

[Kitaev (2003)] [Freedman, Kitaev, Larsen & Wang (2003)]
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https://ncatlab.org/nlab/show/topological+quantum+computation#Kitaev03
https://ncatlab.org/nlab/show/topological+quantum+computation#FreedmanKitaevLarsenWang03


Physics Theory
underlying controlling
Topological Quantum Computation

anyon braiding ↔ GM-connection on

anyon species ↔ twisted

quantum symmetries ↔ equivariant

anyon wavefunctions ↔ differential

topological phases ↔ topological

deformation classes ↔ K-theory of

strongly interacting ↔ configurations in

electron states ↔ Brillouin torus

[Sati & Schreiber (2022a) (2022b) (2022c)]
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https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K

