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= I <1V > quant-ph > arXiv:1801.00862

Quantum Physics
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retaining supremacy while defeating instability.

TOPOLOGICAL QUANTUM COMPUTATION

MICHAFRL H. FEEEDMAN, ALEXEI KITAEV, MICHAFEL: J. LARSEN.
AND ZHENGHAN WANG

ARSTRACT. The theory of quantum computation can be constructed from the
abstract study of anyonic systems. In mathematical terms, these are unitary
topological modular functors. They underlie the Jon=s polynomial and arise in
Witten-Chern-Surons theory. The braiding aind (usion of anyornic escitations
in grantivm Hall electror ligeids ard 2D-magrete are modelad by modular
functors, openiiig a new possibility for the realization of quantum compuiers.
The chief advantage of anyonic computation would be physical error correction
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Fusion Structure from Exchange Symmetry
in (2+1)-Dimensions

Sachin J. Valera

Until recently, a careful derivation of the fusion structure of anyons from
some underlying physical principles has been lacking.

But theoretical foundations had remained shaky
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like fermionic quanta (such as electrons) but subject to additional _

Anyonic quanta abelian braiding phases, understood as Aharonov-Bohm phases | ((CWWHS89] following
(abelian) due to a flat abelian “fictitious” gauge field (56) which is sourced [AS_WZSS I, reviewed in

by and coupled to each of the quanta. [Wil90, SL3J[Wil91])

: — . L _ (e.g. [ASWE84, p. 1]
like solitonic defects (such as vortices) whose position is a classical [FKLWO3, pp. 6]

Anyonic defects paljamet_er (boundary condition) to the quantum system and whose INSSFS08, SILA.2]
(possibly non-abelian) adiabatic mqvemernt (Rem. 1.1) acts on the quantum ground state [CGDS11][CLBEN15]
by (non-abelian) Berry phases. [BP20][St20, p. 3211)

Table 5 — Notions of anyons. — Even though the term anyon (or plekton) is traditionally used indiscriminately, we highlight
that anyonic quanta and anyonic defects are on distinct conceptual footing. Below we formalize both notions and find
them unified within the TED-K theory of configuration spaces of points (reflecting the anyonic quanta) inside surfaces with
punctures (reflecting the anyonic defects).

But theoretical foundations had remained shaky
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[Submitted on 27 Jun 2022]

Anyonic Topological Order in Twisted Equivariant Differential (TED) K-Theory

Hisham Sati, Urs Schreiber
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but first: What is the idea? —
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On atomic scales, particles are waves; whose energy 1s guantized.
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But (why and where) do such processes even exist?

On atomic scales, particles are waves; whose energy 1s guantized.
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But (why and where) do such processes even exist?

On atomic scales, particles are waves; whose energy 1s guantized.

sixth excited state: E = 6h®



But (why and where) do such processes even exist?
As very many particles come together in a crystal

their excitation energies accumulate in “bands”
but energy gaps may remain.

N

EcR
ever —
higher bands | = —_
-/\/—
—/\
Conduction band —

Chemical potential ur — -gap- — — — -

Valence band

lowest bands

4
P
M
=)
N
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It the ground state remains separated by an energy gap AE
then 1t 1s completely undisturbed by disturbances < AE .

AN

EcR
ever R
higher bands | = —_
/\/_ —/\
/—\ .
Conduction band e ____ un-occupied
Chemical potential ur — -gap- — — — - S _I AE -

‘ occupied

insulator

Valence band

lowest bands

b

M

=
N



But (why and where) do such processes even exist?

It the ground state remains separated by an energy gap AE
then 1t 1s completely undisturbed by disturbances < AE .

AN

EcR
ever —
higher bands | = _
/\/_ —/\
/—\ .
Conduction band e .~ un-occupied

Chemical potential ur — -gap- — — — -

‘ occupied

semi-conductor insulator

Valence band

lowest bands

b

M

=
N



But (why and where) do such processes even exist?

It the ground state remains separated by an energy gap AE
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But (why and where) do such processes even exist?

So 1f such a gapped ground state depends on position of point defects,
then their adiabatic movement is a topological quantum process.

4 0.056

< 0.04

0.03

o.o2

0.m

(numerical simulation from arXiv:1901.10739)


https://arxiv.org/abs/1901.10739
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To compute is to execute
sequences of instructions
as composable operations
on a chosen state space,
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To compute is to execute
sequences of instructions
as composable operations
on a chosen state space,

turning a given initial state
into the computed result.
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To compute is to execute
sequences of instructions
as composable operations
on a chosen state space,

turning a given initial state
into the computed result.
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To compute is to execute
sequences of instructions
as composable operations
on a chosen state space,

turning a given initial state
into the computed result.

Claim: This has natural construction in Homotopy Type Theory:
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Quantum materials with these properties are called
topological phases of matter
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Quantum materials with these properties are called
topological phases of matter exhibiting topological order.
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Quantum materials with these properties are called
topological phases of matter exhibiting topological order.
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Quantum materials with these properties are called
topological phases of matter exhibiting topological order.

Their point defects are known as anyons.
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Quantum materials with these properties are called
topological phases of matter exhibiting topological order.

Their point defects are known as anyons.
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Quantum materials with these properties are called
topological phases of matter exhibiting topological order.

Their point defects are known as anyons.

Such materials are expected to exists
but have remained somewhat elusive:

experimentally  as well as  theoretically:
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Quantum materials with these properties are called
topological phases of matter exhibiting topological order.

Their point defects are known as anyons.

Such materials are expected to exists
but have remained somewhat elusive:

experimentally  aswell as  theoretically:

search for “Majorana zero modes”
had no reproducible success, and
would lack topological braiding;
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Quantum materials with these properties are called
topological phases of matter exhibiting topological order.

Their point defects are known as anyons.

Such materials are expected to exists
but have remained somewhat elusive:

experimentally  aswell as  theoretically:

search for “Majorana zero modes”

had no reproducible success, and
would lack topological braiding;

but braiding in momentum space
has very recently been demonstrated:
promising! — needs more investigation



https://ncatlab.org/nlab/show/quantum+material
https://ncatlab.org/nlab/show/topological+phase+of+matter
https://ncatlab.org/nlab/show/topological+order
https://ncatlab.org/nlab/show/anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/braid+group+statistics#ReferencesAnyonicBraidingInMomentumSpace
https://ncatlab.org/nlab/show/K-theory+classification+of+topological+phases+of+matter
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://ncatlab.org/nlab/show/braid+group+statistics#ReferencesAnyonicBraidingInMomentumSpace

Quantum materials with these properties are called
topological phases of matter
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search for “Majorana zero modes”
had no reproducible success, and
would lack topological braiding;

but braiding in momentum space
has very recently been demonstrated:
promising! — needs more investigation

FIG. 1. Reciprocal braiding of band nodes.
Bzdusek et al., Nature Phys. 16 (2020)
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Quantum materials with these properties are called
topological phases of matter exhibiting topological order.

Their point defects are known as anyons.

Such materials are expected to exists
but have remained somewhat elusive:

experimentally  aswell as  theoretically:

search for “Majorana zero modes”

had no reproducible success, and
would lack topological braiding;

but braiding in momentum space
has very recently been demonstrated:
promising! — needs more investigation
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Quantum materials with these properties are called
topological phases of matter exhibiting topological order.

Their point defects are known as anyons.

Such materials are expected to exists
but have remained somewhat elusive:

experimentally  aswell as  theoretically:

search for “Majorana zero modes” most successful theory for top. phases

had no reproducible success, and was thought not to apply to top. order,
would lack topological braiding;

but braiding in momentum space
has very recently been demonstrated:
promising! — needs more investigation
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Quantum materials with these properties are called
topological phases of matter exhibiting topological order.
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Cunensed Matter > Mesoscale and Nanoscale Physics - XPeCted tO eXlStS

[Submitted on 18 Jan 2009 {v1), last revised 20 Jan 2009 (this version, v2)] OmeWh at eluSive:
Periodic table for topological insulators

superconductors _
las  theoretically:

Alexei Kitaev

Gapped phases of noninteracting fermions, with and without charge
conservation and time-reversal symmetry, are classified using Bott most SUCC@SSfUl theOI‘y fOr tOp phases

periodicity. The symmetry and spatial dimension determines a general

universality class, which corresponds to one of the 2 types of complex was thought nOt tO apply tO tOp Ordera

and 8 types of real Clifford algebras. The phases within a given class

are further characterized by a topological invariant, an element of some
Abelian group thatcan be 0, Z, or Z_2. The interface between two
infinite phases with different topological numbers must carry some
gapless mode. Topological properties of finite systems are described in
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facilitates a new type non-Abelian “braiding” of nodal-line rings inside
the momentum space, that has not been previously reported. The work
begins with a brief review of 227 -symmetric band topology, and the
geometric arguments employed in our theoretical analysis are

supplemented in the appendices with formal mathematical derivations.
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then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,
specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

A Modular Functor Which is Universal for
Quantum Computation

Michael H. Freedman, Michael Larsen & Zhenghan Wang

Communications in Mathematical Physics 227, 605-622 (2002) | Cite this article

2 A universal quantum computer

The strictly 2-dimensional part of a TQF'T is called a topological modular
funector (TMF). The most interesting examples of TMFs are given by the
SU(2) Witten-Chern-Simons theory at roots of unity [Wi]. These exam-



https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/topological+quantum+computation#FreedmanLarsenWang02

There are good arguments that
if Quantum Computation is to be a practical reality
then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,
specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).



https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality
then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,
specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.


https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality
then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,
specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of



https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality
then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,
specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of
the Knizhnik-Zamolodchikov connection



https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality
then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,
specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of
the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the



https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality
then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,
specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of
the Knizhnik-Zamolodchikov connection

on bundles of conformal blocks of the
chiral su(2) WZW model CFT.



https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality
then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,
specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of
the Knizhnik-Zamolodchikov connection

on bundles of conformal blocks of the
chiral su(2) WZW model CFT.

d I <1V > hep-th > arXiv:i2112.07195

High Energy Physics - Theory
[Bubmitted on 14 Dec 2021]
Ising- and Fibonacci-Anyons from KZ-equations

Xia Gu, Babak Haghighat, Yihua Liu

In this work we present solutions to Knizhnik-Zamolodchikov (KZ) equations corresponding to conformal
block wavefunctions of non-Abelian Ising- and Fibonacci-Anyons. We solve these equations around
regular singular points in configuration space in terms of hypergeometric functions and derive explicit
monodromy representations of the braid group action. This confirms the correct non-Abelian statistics
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Monodromy Representations of the Braid Group”
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Theoretical Physics Division, Institute for Nuclear Research and
Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
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Abstract—Chiral conformal blocks in a rational conformal field theory are a far-going extension of Gauss
hypergeometric functions. The associated monodromy representations of Artin’s braid group B,, capture
the essence of the modern view on the subject that originates in ideas of Riemann and Schwarz. Physically,
such monodromy representations correspond to a new type of braid group statistics which may manifest
itself in two-dimensional critical phenomena, e.g., in some exotic quantum Hall states. The associated
primary fields satisly R-matrix exchange relations. The description of the internal symmetry ol such
fields requires an extension of the concept of a group, thus giving room to quantum groups and their
generalizations. We review the appearance of braid group representations in the space of solutions of
the Knizhnik—Zamolodchikov equation with an emphasis on the role of a regular basis of solutions which
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In HOTT, data types come with paths between their terms

X € Types

Yy € X - Pathsy(x,y) = {x/\/y\ﬁy} e Types

akin to continuous paths in topological spaces.
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In HOTT, data types come with paths between their terms

X € Types

5y € X - Pathsy(x,y) = {x/\/y\ﬁy} € Types

akin to continuous paths in topological spaces.

E.g.: if G 1s a finitely presented group, then we get a type BG
with essentially unique * € BG s.t. Pathsgg(*,%) ~ G.
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E.g.: if G 1s a finitely presented group, then we get a type BG
with essentially unique * € BG s.t. Pathsgg(*,%) >~ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ~ JConf,(C).
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In HOTT, data types come with paths between their terms

X € Types

Yy € X - Pathsy(x,y) = {x/\/y\ﬁy} € Types

akin to continuous paths in topological spaces.

E.g.: if G 1s a finitely presented group, then we get a type BG
with essentially unique * € BG s.t. Pathsgg(*,%) >~ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ~ JConf,(C).

An X-dependent type family | x € X F P(x) € Types

inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
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akin to continuous paths in topological spaces.

E.g.: if G 1s a finitely presented group, then we get a type BG
with essentially unique * € BG s.t. Pathsgg(*, %) ~ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ~ [Conf,(C).
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In HOTT, data types come with paths between their terms

X € Types
x,y € X

- Pathsy(x,y) = {x/\/y\ﬁy} € Types

akin to continuous paths in topological spaces.

Such HOTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.



https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HOTT, data types come with paths between their terms

X € Types
x,y € X

- Pathsy(x,y) = {x/\/y\ﬁy} € Types

akin to continuous paths in topological spaces.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

Homotopy type theory is a new branch of mathematics

that combines aspects of several different fields in a HOmOtOpy
surprising way. It is based on a recently discovered Type Theo I'y
Unroalent Foundations of Mathematics

connection between homotopy theory and type theory.

it touches on topics as seemingly distant as the

homotopy groups of spheres, the algorithms for type

checking, and the definition of weak ©0-groupoids.
Homotopy type theory offers a new ‘“univalent”

foundation of mathematics, in which a central role is

played by Voevodsky's univalence axiom and higher
inductive types. The present book is intended as a first
systematic exposition of the basics of univalent

foundations, and a collection of examples of this new

style of reasoning — but without requiring the reader THE UNIVALENT FOUNDATIONS PROGRAM
¥ WA i ] TLUDY

INSTITUTE Fi

to know or learn any formal logic, or to use any

computer proof assistant. We believe that univalent

foundations will eventually become a viable alternative to set theory as the “implicit foundation”
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In HOTT, data types come with paths between their terms

X € Types
x,y € X

- Pathsy(x,y) = {x/\/y\ﬁy} € Types

akin to continuous paths in topological spaces.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

Homotopy Type Theory

Home Blog Code Events Links References Wiki The Book

+«— Geometry in Modal HoTT now on Zoom HoTT 2019 Last Call —

Introduction to Univalent Foundations of Mathematics
with Agda

Posted on 20 March 2019 by Martin Escardo

I am going to teach HoTT/UF with Agda at the Midlands Graduate School in April, and I
produced lecture notes that I thought may be of wider use and so I am advertising them

here.
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In HOTT, data types come with paths between their terms

X € Types
x,y € X

- Pathsy(x,y) = {x/\/y\ﬁy} € Types

akin to continuous paths in topological spaces.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:
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In HOTT, data types come with paths between their terms
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x,y € X

- Pathsy(x,y) = {x/\/y\ﬁy} € Types

akin to continuous paths in topological spaces.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution — such as in quantum computation —
1s described by path lifting in dependent homotopy type families.
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Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution — such as in quantum computation —
1s described by path lifting in dependent homotopy type families.
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In HOTT, data types come with paths between their terms

X € Types
x,y € X

- Pathsy(x,y) = {x/\/y\ﬁy} € Types

akin to continuous paths in topological spaces.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution — such as in quantum computation —
1s described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;
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(Recall here that I{ Conf }{@) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
Y

braid relations as in (32).)
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Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:
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(2.) The dependent homotopy type family of su(2)-conformal blocks
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Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution — such as in quantum computation —
1s described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HOTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.
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Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution — such as in quantum computation —
1s described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HOTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

= natural & powerful topological-hardware-aware Q-pogramming paradigm
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We now first offer the following observations:

(1.) Reversible circuit execution — such as in quantum computation —
1s described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on
5155 —2-conformal blocks GO @yl I!F{mi}(fﬁ) . [ [ ] (ﬂ?onf}(@\{a}?—l)(f) “{{‘C'”HTJ)]
7 AN (e
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(Recall here that I{ Conf }{fC) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
Y

braid relations as in (32).)
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on 31 N N

5155 —2-conformal blocks GO 1 @) I“CU“,{l([C) = I1 (J{Fonf}(@\{z;}f_lj(r) S K(E”){T))
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classifying type for

(Recall here that I{ Conf }{IC) etc. may be regarded as nothing but suggestive notation for types finit complex cohomology
e N

braid relations as in (32).)
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on
suy* —2-conformal blocks O @it I!_](_‘f?nﬁ}(ﬂ:) : [ Q (IE?.HE}(E\{Z"}?;])(T} _} K\ (C,n)'('r})]
! ! I: K ' ! u
classifying type for

(Recall here that | : Conf }{C) etc. may be regarded as nothing but suggestive notation for types finit complex cohomology
l,--- N

braid relations as in (32).)
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on 31 & e
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classifying type for

(Recall here that I{ Conf : (C) etc. may be regarded as nothing but suggestive notation for types finit complex cohomology
e N

braid relations as in (32).)
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

fiberwise function type

A\
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$BE, ~ Vn N~~~ 0

classifying type for

(Recall here that I{ Conf : (C) etc. may be regarded as nothing but suggestive notation for types finit complex cohomology
e N

braid relations as in (32).)
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

fiberwise function type
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(Recall here thatf (‘ cmf [tl':) etc. may be regarded as nothing t  dependent product i types finit complex cohomology
over twist variable

braid relations as m (’%2) )
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

fiberwise function type

KZ-connection on é % o fiberwise
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(Recall here thatf (‘ cmf (tl':) etc. may be regarded as nothing t dependent product i types finit complex cohomology
over twist variable
braid relations as m (’%2) )
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on
st~ 2-conformal blocks | @1 | @)Ly : T Conf (©)  + {H(Jfonf}(ﬂ\{a}?’I)(r)—»xtmm)]
GHE el .

(Recall here that I{ Conf }{ff:) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
Y

braid relations as in (32).)
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This < > HoTT has categorical semantics

in Parameterized Homotopy Theory.
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on
su3¥—2-conformal blocks GO @il - II-P"“ﬁ}(C) = [H (ﬂ?“nf}(c\{zﬁ}?I)(T}_*K(‘C'”)(T})]
AT ;

(Recall here that [ : Conf }{C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
Y

braid relations as in (32).)

HoTT has categorical semantics

Thig <W0rks because>

and uses that
in Parameterized Homotopy Theory.

Emily Riehl, On the co-topos semantics of homotopy type theory,

lecture at Logic and higher structures CIRM (Feb. 2022) [ pdf, pdf]
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on
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twisted generalized
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e.g. twisted K-theory,
twisted Cohomotopy, ...

parameterized semantics homotopy type
homotopy theory e theory (HoTT)



https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on
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(Recall here that I{ Conf }{ff:) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
TN

braid relations as in (32).)


https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on
su>¥ —2-conformal blocks

(31)

(z)ily [ Conf (C)  F {H (J{F?PE}(E\{ZI}?I)(T)_”K(Ej)(r))]
0

f:ﬂzx !

(Recall here that I{ Conf }{ff:) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
TN

braid relations as in (32).)

Claim: Its transport operation is the monodromy braid representation

P: X — Types

X . Types
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on
Size—2-conformal blocks | @V | @)Ly : [ Cont (©) F { [ (J{Fonf}(ﬂ\{z;}?’rI)(T)—ﬁ({ﬂ,n){r))]
1BEy T 0

(Recall here that I{ Conf }{ff:) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
TN

braid relations as in (32).)

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

o~

P: X — Types Wpy%
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on
Size—2-conformal blocks | @V | @)Ly : [ Cont (©) F { [ (J{Fonf}(c\{z;}?’I)(-c)—»x(cc,n)(r))]
b !

(Recall here that I{ Conf }{ff:) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
TN

braid relations as in (32).)

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HOTT language like Agda
gives a Topological Quantum Programming Language
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on
5155 —2-conformal blocks 1) (‘Z’}IN—I : I¢FGH£|([E) - { H (j{?onf}(@\{z;}?"_lj(r) _}K(E'HHT))]
t:BZ, B 0

(Recall here that I{Cnnf} (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
TN

braid relations as in (32).)

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HOTT language like Agda
gives a Topological Quantum Programming Language
which is fully aware of topological anyon braid quantum gates.
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on
5155~ 2-conformal blocks G1) (ZF}?{—I : I1§9n£:{[c) g { EZI (j{F?}]E}(C\{Z"}?_I)(T) _}K{E'ﬂ){ﬂ)]
T Dy v 0

(Recall here that I{Cnnf} (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
TN

braid relations as in (32).)

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HOTT language like Agda
gives a Topological Quantum Programming Language
which is fully aware of topological anyon braid quantum gates.
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on
5155 —2-conformal blocks 1) (‘Z’}IN—I : I¢FGH£|([E) - { H (j{?onf}(@\{z;}?"_lj(r) _}K(E'HHT))]
t:BZ, B 0

(Recall here that I{Cnnf} (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
TN

braid relations as in (32).)

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HOTT language like Agda
gives a Topological Quantum Programming Language
which is fully aware of topological anyon braid quantum gates.

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable ——
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Vacua of electron/positron field in Coulomb background.

Fact ([KS77, CHO82]). The vacua of the free Dirac quantum field
in a classical Coulomb background...

ur, VT single
u electron/posntron
LY wavefunction

/\/\/\

Coulomb
potential
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Vacua of electron/positron field in Coulomb background.

Fact ([KS77, CHO82]). The vacua of the free Dirac quantum field
in a classical Coulomb background are characterized by Fredholm operators...

finite-dimensional kernel Fredholm operator finite-dimensional cokernel

ker(F) < > H dE— »  coker(F)

bounded linear

_/N\

weH |V (9]F|y) =0 weH | Vy (WF|p) =0
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Vacua of electron/positron field in Coulomb background.

Fact ([KS77, CHOS82]). The vacua of the free Dirac field
in a classical Coulomb background are characterized by Fredholm operators

finite-dimensional kernel Fredholm operator finite-dimensional cokernel
F
ker(F') « > H — H »  coker(F)
bounded linear

N\

weH |V (9]F|y) =0 weH |Vy (WF|p) =0

on the single-electron/positron Hilbert space:

single electron
Hilbert space

electron states in k@f( F ) 3 "}-[

dressed vacuum

= o T
_— m I positron states in
:7_[ Ope,.atw j‘[ — COkel' ( F ) dressed vacuum
single positron
Hilbert space
total charge in number of electrons in number of positrons in
dressed vacuum dressed vacuum state dressed vacuum state
ind(F) = dim(ker(F)) — dim(coker(F))

dim(coker(F*)) —  dim(ker(F*))
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Quantum symmetries.

On these dressed vacua of electron/positron states
the following CPT-twisted projective group

even projective unitary group

WS

g
pres Qo™ co‘“v 2008

UG xU(H) =™

‘\3

Z. Z
g (L x 2
{e.,P}  {eT}

group of quantum symmetries

C:=pPT, P-|U,U|:=U,U/|-P,

T - [U+,U_} ;



Quantum symmetries.

On these dressed vacua of electron/positron states
the following CPT-twisted projective group

even projective unitary group WS

\e*
(‘Aa “0“ 00“&

U x U)o

\0“

Z. 7
g (L x 2
{e.P}  {eT}

group of quantum symmetries

C:=prr, pPU.,U]|:=|U,U]-P, T-|U,U]:

naturally acts by conjugation:

U, ,U_ F — U 'oFoU_
C-[Uy,U_] F — U 'oFoU,
P U U F —— U 'oF*oU,
T-[U,U_] F — U 'oFoU_



Twisted equivariant KR-theory — As a single diagram of smooth groupoids.

Homotopy classes of quantum-symmetry equivariant families

of such self-adjoint odd Fredholm operators
constitute rwisted equivariant KR-cohomology:
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Twisted equivariant KR-theory — As a single diagram of smooth groupoids.

Homotopy classes of quantum-symmetry equivariant families
of such self-adjoint odd Fredholm operators
constitute twisted equivariant KR-cohomology:

KR
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\
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Q
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> Qé d & universal bundle of
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orientifold ~
. U(H)xU(H)
X/G —— B « {e,P} x {e,T}
twist T U( 1)
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Twisted equivariant KR-theory — As a single diagram of smooth groupoids.

Homotopy classes of quantum-symmetry equivariant families
of such self-adjoint odd Fredholm operators
constitute twisted equivariant KR-cohomology:

KR

T
G

(X) :

\

» 7
Q
3 < d |
K8
& Qqﬁ d & universal bundle of
_Q‘b{“b\ oF 7 QJ& self-adjoint odd Fredholm operators
ARSI over moduli stack of quantum symmetries
S S
Q‘ 4 \62:\
orbi- 7 /codc \l,
orientifold ~
. U(H)xU(H)
X/G —— B x{e,P} x{e,T}
twist T U( 1)

Qbo’?q'
NG 3
Gy

B({e,C} x {e,T})

/ “~htpy



Free topological phases of matter.

= Idea: Single-particle valence bundle of electrons in crystalline insulator
classified by topological K-theory of Brillouin torus
equivariant wrt quantum symmetries |Kitacv 09] [?]

Bundle of all

Single particle (V — {k e ﬁfd’ ‘ll/> c j—[@ j—[ | |<W‘Hk‘llj>‘ S ,LLF} C @ relativistic

valence bundle
Bloch states

AN
Brillouin torus of d
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higher bands | = —_—
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Free topological phases of matter.

= Idea: Single-particle valence bundle of electrons in crystalline insulator
classified by topological K-theory of Brillouin torus
equivariant wrt quantum symmetries |Kitacv 09] [?]
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CPT Quantum symmetries.

pure quantum T-symmetry

B({e,T}) — L —T B(
s v
B({e, P} x{e,T})

U(H) x U(H)
U(1)

x {e, T}) —— B(BU(1) x {e, T'})

Here 1s how to compute the possible quantum T-symmetries...



CPT Quantum symmetries.

B({e,7}) ——1 >B<
~ /

T

T

O\
/
! \
7

pure quantum T-symmetry

B({e, P} x {e,T})

T

T

/
\
/
-

e —~H—r o

~)

o <—~NH— @

~)




CPT Quantum symmetries.

pure quantum T-symmetry
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So ¢ = ¢ and hence there are two choices for quantum T-symmetry, up to homotopy:

T?=+1 and similarly C?=+1.



Example — Orientifold KR-theory

Let I be Inversion action on 2-torus T2 ~ RR? /72 and trivial action on observables

2 I 72 0 I 0
T > T FlredC /Fred(C

If T acts as 7 on T2, then KRT*=+1ig Atiyah’s Real K-theory aka orienti-fold K-theory:

( )

Fredg//(U(ﬂ{) x{e,T})
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—
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—
—
—
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—
—
—
—
—_—

KR(T02) =~ | T2 ffe,l} o L BUM) x{e,T))
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Example — Orientifold KR-theory

Let I be Inversion action on 2-torus T2 ~ RR? /72 and trivial action on observables

0
Fred c

. 0
> Fred -

F F.

—

If T acts as 7 on T2, then KRT*=+1ig Atiyah’s Real K-theory aka orienti-fold K-theory:

y

T02) ~
KR(T ) = T2/{e} . T2=+1
11)6 .
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Fredg//(U(ﬂ{) x{e,T})

!

— B(U(%H) x{e,T}) >
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But what happens on /-fixed loc1 1.e.

?

on “‘orientifolds”



CPT Quantum symmetries — 10 global choices. (following [?, Prop. 6.4])

Equivariance group G =||| {e} |{e,P} {e,T} {e,C} {e,T} x {e,C}

Zo)
Realization as . "= -l 1 B N e N
uantum symmetry -
| IR e TR 1 [ N O I R
E 5= iTCp
E,= iCp iCp
E = Pp CB CB | CB
Maximal induced
Clifford action Eqo=l| B | B B ( p 0) BIBIB| B | B |B
anticommuting with 0 -p
all G-invariantodd g, = (0 1) C | C
I
Fredholm operators i 1o P i
Eyp= (‘f 5) iCB iCB
0 -T P
E.s= 270 i7Cp
0 iT
Era= (if 1o)
rtwisted Gequvariant ez 0| gyt ||ko?| kot [K02|KoS|Ko! | K0? | KO [KOT
KR-theory of fixed loci
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~ ~ graded comm. .
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Example — T I-equivariant KR-theory is KO"-theory.

The combination 7" -1

acts trivially on the domain space and
by complex conjugation on observables.

Hence (T - I)-equivariant (72 = 41)-twisted KR-theory is KO°-theory:

KO (X)
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Example — 7'/-equivariant KR-theory of punctured torus.

So the T'I-equivariant (fz = +1)-twisted KR-theory of the N-punctured torus is
KR(fz = +1) (@2 \ {kla o ;kN})
~ KO (T*\ {ki, -~ ,kn})
~ 0 1
~ KO'(\/, ,S+) =1

:@Zz

14+N
S
o > ] [ P ®
S A A A @ A
o > o [ > ®
ﬁfz q/fz\{kl} 1/fz\{kl)k27k3} ﬁz\{kh”')kn}
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The B-field twist.

Besides these CPT-quantum symmetries,
K-theory generically admits the famous twisting by a B-field.

The homotopy fiber sequence of 2-stacks discussed before

universal Dixmier-Douady class

BU(H) —— B(U(H)/U(1)) —2 B*U(1)
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The B-field twist.

Besides these CPT-quantum symmetries,
K-theory generically admits the famous twisting by a B-field.

The homotopy fiber sequence of 2-stacks discussed before

universal Dixmier-Douady class

BU(H) —— B(U(H)/U(1)) —2 B*U(1)

induces a surjection of equivalence classes of equivariant higher bundles

equivariant projective bundles equivariant bundle gerbes

7o Maps ()?//\G B(U(#) /U(1))) PP 1ty Maps (f//\c; B2U(1))

which has a natural section:

- “stable twists™ -
mMaps (X /G, B*U(1)) — mMaps (X//G, B (U(ﬂ%?g(ﬂ) x ({e,C} x {e,P}) ) ) .

equivariant bundle gerbes

full quantum-symmetry twists



The B-field twist — Inner local systems.

On fixed loci (orbi-singularities)
X/)G ~ Xxx//G = XxBG
the B-field twist induces secondary twists by “inner local systems™:

stable twists over fixed locus

Maps (X x /G, B*U(1)) ~Maps(X x BG, B*U(1))

~ Maps (X, Maps(BG, B*U(1)))
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And G* := Hom(G,U(1)) denotes the Pontrjagin-dual group.
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On fixed loci (orbi-singularities)
X/)G ~ Xxx//G = XxBG
the B-field twist induces secondary twists by “inner local systems™:

stable twists over fixed locus

Maps (X x /G, B*U(1)) ~Maps(X x BG, B*U(1))
~ Maps (X, Maps(BG, B*U(1)))
~ Maps (X, BG* x B*U(1))

~ Maps (X, BG*) x Maps(X, B*U(1))

inner local systems bundle gerbes

Here we are assuming G - SU(2) so that H(z}rp (G, U(1)) =0.
n

And G* := Hom(G,U(1)) denotes the Pontrjagin-dual group.



The B-field twist — Inner local systems — The diagrammatics.

Hence the

inner local system-twisted KU-cohomology
of a G-orbi-singularity of shape X

arises as follows:

KU (X) = <

Fred{. /PU(H)
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The B-field twist — Inner local systems — The diagrammatics.

Hence the

inner local system-twisted KU-cohomology
of a G-orbi-singularity of shape X

arises as follows:

KU (x) =

Maps(BG, Fred{. /PU(H))

~

adjunct twist

» Maps(BG, BPU(H))
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The B-field twist — Inner local systems — The diagrammatics.

Hence the

inner local system-twisted KU-cohomology

of a G-orbi-singularity of shape X

arises as follows:
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The B-field twist — Inner local systems — The diagrammatics.

Hence the

inner local system-twisted KU-cohomology
of a G-orbi-singularity of shape X

arises as follows:
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The B-field twist — Inner local systems — The proof.

For the proof we consider the following diagram [?, Ex. 4.1.56][?, §3]:

stbly
T
BG llpec BPU(H)
-
Stbl()
vi— 1y ®v
. @ pi®(C) : » @ pi@l*(C)
[pi] € 0;] €
Irr(G) / Irr(G)
8 [g?](Pz(g)@@id) p(g)(1p) [,E)li](pi(g)@)id)
C D pi®*(C) —— » D pi(C)
pilc ’ pil €

Irr(G) Irr(G)



The B-field twist — Inner local systems — The proof.

For the proof we consider the following diagram [?, Ex. 4.1.56][?, §3]:

BG Upec*/\/ BPU(H)

stable G-representation

P, p: @ ¢*(C) > P, pi @ (*(C)

[ ] ’
Fre ! Lo _— f
07701112 action of group character on equivariant Fredholm operator
Oper,
‘1[01‘

) vie 1p®v . )
EDi pi®£2 ((C) @l pl ® € (C) tensoring with unit of group character s @l pl ® € (C)

V|—>1p®V

®; p; ® (C) D, pilg)0id D, pilg)id

x ~ ~

> P;pi @0%(C)

V|—>1p®v
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One aspect of these twistings becomes transparent under the Chern character:
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The B-field twist — Inner local systems — Chern character.

One aspect of these twistings becomes transparent under the Chern character:

COmpleX K—theory periodic de Rham cohomology

KU(X) . KUY(X;C) ~ @HY ( . (X C),d)
deN

Chern character

For twist by B-field §2 there 1s a closed differential 3-form /73 such that:

plain B-field
-twisted K-theory 3-twisted periodic de Rham cohomology

KU B2 (X wited _pegB (X Q) ~ @ HA( Q0 (X: C),d+ Hs A
dR

Chern character
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The B-field twist — Inner local systems — Chern character.

One aspect of these twistings becomes transparent under the Chern character:

COmpleX K—theOI'y periodic de Rham cohomology

KU(X) . KUY(X;C) ~ @HY ( . (X C),d)
deN

Chern character

For twist by B-field §2 there 1s a closed differential 3-form /73 such that:

plain B-field

-twisted K-theory 3-twisted periodic de Rham cohomology
B\ wiste N B\ . ~ ° .
KUn+ 2 (X) Chertn chtal(‘iacter ’ KU 2 (X’ C) - d@ZHn+2d ( dR (X’ C) ) d —I_ H3 /\ )
€

For twist by inner C-local system, there is closed 1-form @; with holon. in Cx C U(1)
such that:

inner local system

-twisted K-theory I-twisted periodic de Rham cohomology
n—+ [a)l] twisted equivariant . +2d ® .
KUCK (X) Chern character ! d?ZHn ( dR (X’ C) ) d —l_ r- wl /\ )

of A-type singularity

1<r<k



The B-field twist — Inner local systems — Chern character.

One aspect of these twistings becomes transparent under the Chern character:

This 1s the hidden 1-twisting in TED-K — that we will next relate to anyons. ——

inner local system

-twisted K-theory 1-twisted periodic de Rham cohomology
n—+ [a)l] twisted equivariant . +2d ° .
KUCK (X) Chern character ! d?ZHn ( dR (X’ C) ) d —I_ r- wl /\ )

of A-type singularity

1<r<xk



TED-Cohomological incarnation of Conformal blocks.

Consider
K = k+2 “level”

w; € {0,--- k} “weights”
zi € {z1,-++,2n} “punctures”

. N4 dZ
a)l . ZI— K 7—7;
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TED-Cohomological incarnation of Conformal blocks.

Consider
K = k+2 “level”

w; € {0,--- k} “weights”
zi € {z1,-++,zn} “punctures”

_Z W dZ
1 K 72— -

su(2)-affine deg=1 1-twisted deg=1 T~
conformal blocks natural de Rham cohomology N
inclusion 1 .
CnfBlckAk (W,Z) « > ( R(C\{Z}),d+ o A ) FSV92, Cor. 3.4.2
natural
inclusion | .
c » KU T (((C \{Z}) x * )/ Cx; (C) S$S22a, Prop. 2.16

inner local system-twisted deg=1

K-theory of A,_-singularity (as explained above)
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Account for interactions by passage to configuration space.

Interacting n-electron wavefunctions are functions on the space of n points in Bri-torus
Pauli exclusion = these span vector bundle away from the locus of coinciding points:

Slater determinants of Bloch states

Slater-Bloch valence bundle of . . 1 1 o ( n n)
interacting n-electron states /%,l C I—I Span { LIJZ1 s yin ( (k Y \) ) ? Y k Y \) ) } .
(kb k)

\L (517...’S")

contiguration spaceof - Conf (ﬁ‘d\{kl,... ,kN}) = {(kl,... &) e (TY"| V K #k/ and Vk"#kl}.
{17 Tt 7n} 175] Pauli lal noldal
singularities

in complement of N “nodal”
points inside the Brillouin torus exclusion

This locus 1s known as the configuration space of n points. (see e.g. SS22, §2.2)


https://ncatlab.org/schreiber/show/Differential+Cohomotopy+implies+intersecting+brane+observables
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TED-Cohomological incarnation of Conformal blocks.

So consider, more generally, configuration spaces of points

Conf (X) := {zl, L eX |V z#z’}

{17"'7”} l<]

i or:= 3 y W & ) 2k Conf (€ {2)

i_ .

Then:



TED-Cohomological incarnation of Conformal blocks.

Generally, consider configuration spaces of points (e.g. SS22, §2.2)

Conf (X) := {zl, L7eX |V z#z’}

{1, ,n} i<

with @ = ) Z_WI Y 2 ide on  Conf (C\{z})
1<i<n 1 K Z— ZI 1<i<j<n K7 —2 {1,---n}

Then:

I-twisted deg=n de Rham cohomology

su(2)-affine deg=n of configuration space of n points
conformal blocks

CnfBlek 7 (W,7) — H" (Q;R ({
I,-

Conf (CC \ {z})) ,d+ w1 A > FSV92, Cor. 3.4.2
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Generally, consider configuration spaces of points (e.g. SS22, §2.2)

Conf (X) := {zl, L7eX |V z#z’}

(1, ,n} i<

with @ = ) Z_WI Y 2 ide on  Conf (C\{z})
1<i<n 1 K27 Zl I<icj<n KZ =2 {1}

Then:

I-twisted deg=n de Rham cohomology
su(2)-affine deg=n of configuration space of n points

conformal blocks
CnfBlck” ik (W,Z) — H" (leR ({Fonf (C\ {z})) ,d+ /\> FSV92, Cor. 3.4.2

< KUt (({Fonf} (C\ {Z})) X % [/ Cie; C) [2, Thm. 2.18]

inner local system-twisted deg=n K-theory
of configurations in A ,_j-singularity
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TED-Cohomological incarnation of Conformal blocks.

Generally, consider configuration spaces of points (e.g. SS22, §2.2)

Conf (X) := {zl, LeX |V z#z’}

(1,1} i<

with @ = ) Z_WI ) 2 ide on  Conf (C\{z})
1<i<n 1 K Z— ZI 1<i<j<n K7 =2 {1,---,n}

Then:

I-twisted deg=n de Rham cohomology
su(2)-affine deg=n of configuration space of n points

conformal blocks
CnfBlck” ik (W,Z) — H" (leR ({Fonf (C\ {z})) ,d+ /\> FSV92, Cor. 3.4.2

s KUt (({Fonf} (C\ {Z})) X * [/ Cie; C) [2, Thm. 2.18]

inner local system-twisted deg=n K-theory
of configurations in A ,_j-singularity

The previous statement is subsumed since C?r}lf(X) = X.
1
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Conclusion.

The commonly expected suy%-charges of anyons and defect branes
are reflected in the TED-K-theory of configuration spaces of points
in 2-dimensional transverse spaces inside Ay, 1-orbi-singularities.

This 1s compatible with traditional brane charge quantization (only) in degree 1
while in general degree it 1s compatible under Hypothesis H, which asserts [?]
that quantum states of branes are in the generalized cohomology of
Cohomotopy cocycle spaces of spacetime:

3-Cohomotopy cocycle space 3-Cohomotopy cocycle space
for codim=1 branes for codim-2 branes
Configuration space of * 3\ ~ * A
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{1’ e n}
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¢ \
M5
MK6 2
M5! The moduli space of flat M3-branes
m3! U B — 2 according to Hypothesis H is the con-
e.g.. Conf (C) =~ <« o ( fourat 80 1P .
a,-,3) I 22 guration space of ordered points in
| their transverse plane.
C
\ xX] < xp < x3 R — )
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Physics Theory
underlying controlling

Topological Quantum Computation

In summary,
we arrive at
the following
picture.




Physics Theory
underlying controlling

Topological Quantum Computation

electron states — Brillouin torus

[Brillouin (1930)]
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Physics Theory
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Topological Quantum Computation

electron states — Brillouin torus

[Brillouin (1930)]
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Physics Theory
underlying controlling

Topological Quantum Computation

topological phases topological
(deformation classes) <« K-theory of
electron states < Brillouin torus

[Kitaev (2009)]
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[Kitaev (2009)]



https://ncatlab.org/nlab/show/K-theory+classification+of+topological+phases+of+matter#Kitaev09
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Topological Quantum Computation

topological phases topological
(deformation classes) <« K-theory of
electron states < Brillouin torus

[Kitaev (2009)]



https://ncatlab.org/nlab/show/K-theory+classification+of+topological+phases+of+matter#Kitaev09

Physics Theory
underlying controlling

Topological Quantum Computation

quantum symmetries — equivariant
topological phases — topological
deformation classes — K-theory of
electron states — Brillouin torus

[Freed & Moore (2013)]



https://ncatlab.org/nlab/show/K-theory+classification+of+topological+phases+of+matter#FreedMoore13
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[Freed & Moore (2013)]



https://ncatlab.org/nlab/show/K-theory+classification+of+topological+phases+of+matter#FreedMoore13
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Topological Quantum Computation

quantum symmetries — equivariant
topological phases — topological
deformation classes — K-theory of
electron states — Brillouin torus

[Freed & Moore (2013)]



https://ncatlab.org/nlab/show/K-theory+classification+of+topological+phases+of+matter#FreedMoore13

Physics Theory
underlying controlling

Topological Quantum Computation

quantum symmetries — equivariant
topological phases — topological
deformation classes — K-theory of
strongly 1nteracting — configurations in
electron states — Brillouin torus

[Sati & Schreiber (2022a) (2022b)]



https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
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underlying controlling

Topological Quantum Computation

strongly interacting — configurations in

electron states — Brillouin torus

[Sati & Schreiber (2022a) (2022b)]



https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
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strongly interacting — configurations in

electron states — Brillouin torus

[Sati & Schreiber (2022a) (2022b)]



https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
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electron states — Brillouin torus

[Sati & Schreiber (2022a) (2022b)]



https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
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electron states — Brillouin torus

[Sati & Schreiber (2022a) (2022b)]



https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
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electron states — Brillouin torus

[Sati & Schreiber (2022a) (2022b)]



https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
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strongly interacting — configurations in

electron states — Brillouin torus

[Sati & Schreiber (2022a) (2022b)]



https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
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Topological Quantum Computation

strongly interacting — configurations in

electron states — Brillouin torus

[Sati & Schreiber (2022a) (2022b)]



https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
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strongly interacting — configurations in

electron states — Brillouin torus

[Sati & Schreiber (2022a) (2022b)]



https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
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strongly interacting — configurations in

electron states — Brillouin torus

[Sati & Schreiber (2022a) (2022b)]



https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory

Physics Theory
underlying controlling

Topological Quantum Computation

strongly interacting — configurations in

electron states — Brillouin torus

[Sati & Schreiber (2022a) (2022b)]



https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
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electron states — Brillouin torus

[Sati & Schreiber (2022a) (2022b)]



https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
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[Sati & Schreiber (2022a) (2022b)]
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[Sati & Schreiber (2022b)]



https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
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https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
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[Sati & Schreiber (2022b)]



https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
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anyon braiding — GM-connection on
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anyon wavefunctions — differential
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strongly interacting — configurations in
electron states — Brillouin torus

[Sati & Schreiber, PlanQC 2022 33 (2022)]



https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
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https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
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Physics Theory
underlying controlling

Topological Quantum Computation

anyon braiding — GM-connection on
anyon species — twisted
quantum symmetries — equivariant
anyon wavefunctions — differential
topological phases — topological
deformation classes — K-theory of
strongly interacting — configurations in
electron states — Brillouin torus

[Kitaev (2003)] [Freedman, Kitaev, Larsen & Wang (2003)]



https://ncatlab.org/nlab/show/topological+quantum+computation#Kitaev03
https://ncatlab.org/nlab/show/topological+quantum+computation#FreedmanKitaevLarsenWang03
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https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
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https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K

