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INTRODUCTION

Nature is simple. This article of faith, often taken for granted, sometimes fought over
bitterly, has ever been at the centre of physicists” attempts to describe reality. A wonderful
declaration of this is found in the third book of the Principia, in a passage in which Newton
sharpens the proverbial razor of that famous monk from Ockham: “We are to admit no
more causes of natural things than such as are both true and sufficient to explain their
appearances. To this purpose the philosophers say that Nature does nothing in vain, and
more is in vain when less will serve; for Nature is pleased with simplicity and affects not
the pomp of superfluous causes.”

The Standard Model of particle physics is decidedly not simple. It is nevertheless an
absolute triumph of modern science, remarkable for its economy in asserting but the single
guiding principle of gauge symmetry within the framework of quantum field theory. Less
pleasing is the actual U(1) x SU(2) x SU(3) gauge group itself, with the seemingly arbitrary
charges of the U(1) hypercharge group. Other aspects also demand explanation: the
Higgs mechanism and corresponding hierarchy problem, the observed non-zero masses
of neutrinos, the 19 unrelated parameters within the Standard Model that need to be
fine-tuned, and the inability to account for a potential cold dark matter particle; theoretical
puzzles include the mathematical validity of the path integral, the chirality of the leptons
and quarks, and the fact that these particles come in pairs. Perhaps most damning of all,
the Standard Model cannot account for gravitation, because quantum field theories of
gravity generally break down before reaching the Planck scale.

Grand unification attempts to answer some of these questions by positing that the sym-
metry of the Standard Model is a broken one, a shadow of some other, more fundamental
symmetry of nature that is only accessible at extremely high energies. Mathematically, this
corresponds to embedding the symmetry group of the Standard Model Gsys into a larger,
often simpler Lie Group, and picking a representation of the same such that it reduces to the
Standard Model fermion representation when one restricts to Gsy. The first example came
in 1974, when Georgi and Glashow proposed their SU(5) theory; though it was definitively
disproved some twenty years later, it remains the prototypical grand unified theory for
its aesthetic simplicity; its most important feature was certainly its logical explanation of
the fractional charges of the quarks. This is a virtue that can be extended to the Spin(10)
grand unified theory, another brainchild of Howard Georgi. The spinor representations in
which it accommodates the Standard Model fermions are completely natural, separating
the left- and right-handed particles in two different irreducible representations. We will
study this theory in some detail in chapter 2, since it plays a vital role in the construction
of the Eg grand unified theory, the focus of this paper.

An Eg grand unified theory first appeared in 1976, due to Giirsey, Ramond and Sikivie.
Of the five exceptional groups, E¢ is considered the most attractive for unification due to the
following reasons: (i) it contains both Spin(10)x U(1) and SU(3) x SU(3) x SU(3) as maximal
subgroups, each of which admit embeddings of the Standard Model; (ii) uniquely among
the exceptional groups, it admits complex representations; in particular, its 27 dimensional
fundamental representation accommodates one generation of left-handed fermions under
the usual charge assignments; (iii) all of its representations are anomaly-free. We will
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discuss each of these aspects in the coming pages.

This thesis was originally conceived as an extension of Baez and Huerta’s analysis in
The Algebra of Grand Unified Theories [8] to the case of the E¢ theory. There, the authors
undertook a mathematical introduction to the representation theory of the Standard
Model, and of grand unified theories—they treated in some detail the SU(5), Spin(10)
and Pati-Salam models, and then considered how these theories may be related to each
other. Their pedagogical approach forms the basis for most of chapter 1, and chapters 2.3
and 2.5, where we, respectively, introduce the Standard Model, and prove that SU(5) and
Spin(10) each extend it. Chapter 3.2, where we show that Eg is a grand unified theory, is
the culmination of this project.

John Adams’ Lectures on Exceptional Lie Groups [4] was the other major influence on
this paper. His lucid presentation of the construction of these “curiosities of Nature”
contained the three main ingredients we needed to prove that Es extended the Spin(10)
theory: (i) an explicit realisation of the subgroup Spin(10) X U(1)/Z4 C Eg; (ii) a route to
the 27-dimensional fundamental representations of Es, and (iii) the characterisation of
the restriction of these representations to Spin(10) x U(1). Moreover, his introduction to
Clifford Algebras, and the Spin groups and their representations, enabled us to deepen
Baez and Huerta’s discussion of the Spin(10) grand unified theory; in particular, we were
able to make more precise the connection between the SU(5) fermion representation A*C?,
and the spinor representations A* of Spin(10)

Chapters 3.2 and 3.3 contain our modest contributions to the literature. In the former,
we explicitly check that that Z4 kernel of the homomorphism Spin(10) x U(1) — Eg acts
trivially on every fermion; this is absolutely essential (in the cascade of unified theories
that we consider) for Eq to extend the Spin(10) theory, and hence the Standard Model. We
believe the reason that this result does not appear anywhere in the (predominantly physics)
literature on the subject is the same reason that the Z¢ kernel of the homomorphism
Gsm — SU(5) is rarely mentioned: physicists are often content to deal with these
symmetry groups at the level of Lie algebras, which are indifferent to finite quotients
of Lie groups. This affection for Lie algebras extends to their discussions of symmetry
breaking in grand unified theories, which are almost universally analysed using Dynkin
diagrams and related techniques. While computationally preferable, we felt that following
this method would break with the spirit of the rest of the paper, so we attempted to
understand symmetry breaking, in particular the symmetry breaking of the exotic Eg
fermions under Spin(10) — SU(5), using a different approach: we explicitly embedded
s1(5) < s0(10) = spin(10), and then solved the related eigenvalue problem; this is the work
of chapter 3.3. The result of this calculation is table 3.1, where one sees how the Standard
Model fermions and their new exotic compatriots fit into the fundamental representation
of Eg. This apparent bounty of new physics was the impetus for the final chapter, on the
phenomenology of grand unified theories.

To avoid getting lost in quantum field theory, we restricted ourselves to the following
question in chapter 4: are there any predictions of grand unified theories that come
solely out of representation theory? One of the most famous is certainly the Weinberg
angle, and we treat this in section 4.1. We also consider in some detail, because it has a
rather nice mathematical interpretation, the issue of anomaly cancellation; this is not a
phenomenological prediction of grand unified theories per se, but rather, a requirement
on their fermion representations: in section 4.2, we present Okubo’s proof [70] that all
representations of E are anomaly-free. We devote the final section of this paper to a
brief but general discussion on the signatures of grand unified theories, and their present
outlook.
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CHAPTER 1

THE STANDARD MODEL

Any discussion of grand unification must begin with the Standard Model of particle
physics. This rather uninspiringly-named theory is in fact a theory of almost everything: it
describes three of the four known fundamental forces in the universe (the electromagnetic,
weak, and strong interactions), as well as classifying all known elementary particles. It
was developed in stages throughout the latter half of the twentieth century, with the
current formulation being finalized in the mid-1970s upon experimental confirmation of
the existence of quarks. The history of this development is a fascinating subject in its own
right, featuring brilliant scientists, and set against the backdrop of some of the darkest
periods of the last century. We refer the reader to [21] for the history, and to [51] for a
remarkable collection of scientific essays from the pioneers of the field.

Since those early days, experimental confirmation of Standard Model predictions have
only added to its credence: highlights include the discover of the top quark in 1995, the
tau neutrino in 2000, and the Higgs boson in 2012. Indeed, it can be said that the stunning
experimental success of the Standard Model is often a cause for frustration among modern
theoretical physicists, many of whom are holding out for evidence of new particles to lend
support to the many projects of physics “beyond the Standard Model”; a highly-readable
overview of the major contenders can be found in [61].

We have already encountered some of the shortcomings of the Standard Model: it does
not fully explain baryon asymmetry, incorporate the full theory of gravitation as described
by general relativity, or account for the accelerating expansion of the universe as possibly
described by dark energy; the model does not contain any viable dark matter particle
that possesses all of the required properties deduced from observational cosmology; it
also does not incorporate neutrino oscillations and their non-zero masses. Understanding
these difficulties is beyond the scope of this paper?, but it is nevertheless clear that they
are a strong motivation to look for other, hopefully more complete theories. In any case,
the Standard Model lies at the heart of all model-building, of which grand unified theory
is a part, so we absolutely must understand it before we move on.

1.1 PRELIMINARIES

The basic theory of mathematical groups and their representations is really all that we will
need to understand the algebra of the Standard Model, and of grand unified theories; in
the first section below, we will briefly review the necessary concepts, and set the notation.
We mention some references, noting that these represent but a sample of the literature: the
book by Hall [43] is a solid introduction to Lie groups, algebras and their representations;
Fulton and Harris’ text [32] on representation theory goes even deeper; for an approach

1Reference [82] is a helpful starting point.



2 1. THE STANDARD MODEL

more geared towards physicists, the book of Fuchs and Schweigert [31] is an excellent
resource.

In section 1.1.2, we will formulate and motivate the two fundamental principles of
the representation theory of particle physics. Though these rules are surprisingly easy to
state and work with, their origins do require some preparation to appreciate, since they
are best encountered within the framework of mathematical gauge theory. References
for this field abound, we mention but three: for the mathematically inclined, there is the
venerable text by Bleecker [17], and the lecture notes by Hamilton [45]; the physicist can
turn to Nakahara [68] for his concise and clear presentation.

1.1.1 Basic DerINITIONS AND MATRIX GROUPS

We follow [4] in these paragraphs. A Lie group G is a group which is also a smooth
manifold such that the maps G X G — G, (g, h) — ghand G — G, ¢ — ¢! are smooth.
A homomorphism 0 : G — H of Lie groups is a homomorphism of groups which is also a
smooth map. A subgroup H C G is said to be normal if and only if gH = Hg for all g € G;
a Lie group is called simple if it possess no non-trivial connected normal subgroups.

A representation V of G, where V is a finite-dimensional vector space over a field K = R
or C, can be thought of asamap G X V — V such that forall g € G, v € V, we have

e ev =vand g(g'v) =(gg")v, and
* g¢v is a continuous function of ¢ and v, which is additionally K-linear in v.

By choosing a basis for V, we get isomorphisms V = K" for some integer n and
End(V) = M,(K) = {n X n matrices with entries in K} .

A linear subspace U C V is called G-invariant if gu € U for all u € U. A representation
V is said to be irreducible if its only G-invariant subspaces are the trivial ones, 0 and V; else,
it is said to be reducible. Irreducible representations will be fundamental in what follows;
for brevity, we will call them irreps.

The general linear group of V,

GL(V) = Aut(V) = {A € End(V) | 3A~! € End(V)},

is a group which is an open subset of End(V'), and hence a smooth manifold. The product
and inverse map in GL(V') are smooth, so GL(V) is a Lie group. If the dimension of V over
K is n, we will write GL(n, K) for GL(V).

We can choose on V a Hermitian form (, ) such thatforv,w € V, A e K

e (v, wA) ={v,w)A, and
* (w,v) =(v,w);

this form then defines taking the conjugate transpose via x'y := (x, y). The subgroups
{A € GL(n,K) | ATA = 1d} are denoted O(n), U(n), Sp(n) respectively for K = R, C, H.
For K = R or C, we also get the special linear subgroups {A € GL(n,K) | detA = 1}
denoted SL(n, R) and SL(n, C). Finally, we have SO(n) = SL(n,R) N O(n) and SU(n) =
SL(n,C) N U(n). All these groups are collectively called classical groups, and are in fact Lie
groups. The groups O(n), SO(n), U(n), SU(n), Sp(n) are all compact, while GL(n, K)and
SL(n,K) (n # 1) are not.

Since Lie groups possess the structure of a manifold, it is sensible to talk about tangent
vectors; if the Lie group also happens to be modelled on some vector space V, as the
classical groups are, then the tangent spaces at each point, T, G will in fact be isomorphic
to V. More will be said once we make the following
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Definition 1.1.1 (Lie Algebra). A Lie algebra is a vector space V over a field K equipped
with an operation [ , | : VXV — V called a Lie bracket, which satisfies the following
axioms.

e Bilinearity: [ax + by,z] = a[x,z] + bly, z] for all scalars a,b € K and vectors
x,y,z€V.

o Alternativity: [x,x]=0forallx € V.
* The Jacobi identity: [x, [y, z]] + [z, [x, y]] + [y, [z, x]] =0 forall x,y,z € V.

We will follow the standard convention of denoting the Lie algebra of a group by the same
letters in lower-case Fraktur font, e.g. T.G =: g.

Proposition 1.1.2. For G = O(n), U(n) or Sp(n), a matrix A € g if and only if AT + A = 0. For
the groups G = SL(n,R),SL(n,C), A € g if and only if tr A, the trace of A vanishes.

Theorem 1.1.3.

(i) For any Lie group G, the space T, G of tangent vectors to the identity element is a Lie algebra
over K.

(i) For any matrix group G € GL(V), the Lie bracket is given by the commutator, [X,Y] =
XY -YX.

(iii) If 0 : G — H is a homomorphism of Lie groups, the induced map d0 : ¢ — hisa
homomorphism of Lie algebras.

(iv) For any representation V of G, V is a representation of g.
(v) For a matrix group G acting on V as the endomorphism group, g acts in the same way.

(vi) If H acts on V and we are given a homomorphism 0 : G — H of Lie groups so that G acts
on V, the resulting action of gon V is X - v = (d0(X)) - v, where X € g.

The proof of these statements can be found in any of the references listed at the
beginning of this section. We note that in item (iv) above, a representation of a Lie algebra
is defined in the obvious way: a map from g X V' — V that is linear for v € V and respects
the Lie bracket, [X, Y]v = X(Yv) — Y(X0).

The final definition in this section is of significant importance to us, and it goes as
follows. G acts on itself by conjugation, c¢; : G = G, h +— gh g_l, and this is clearly a
homomorphism. We hence obtain by item (iii) in the theorem above, for each ¢ € G, a
corresponding Lie algebra automorphism dc, : ¢ — g. This is the adjoint representation
of G on its Lie algebra, Ad : G — Aut g. The differential of this representation gives the
adjoint representation of the Lie algebra on itself; this map is ad : ¢ — GL(g), adx(Y) = [X, Y].

1.1.2 SYMMETRIES

In the mathematics of particle physics, all vector spaces must be complex because of
foundational axioms in quantum mechanics.? With this in mind, the two fundamental
principles of the representation theory of particle physics can be stated in a few words:
given a gauge symmetry G of a theory, the fermions (matter fields) of this theory are basis
vectors of unitary irreps of G, while the gauge bosons, which mediate forces, are basis
vectors of its complexified adjoint representation (which is irreducible if G is simple). In

2See the Dirac-von Neumann axioms [24, 86].
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this section, we will try to motivate these claims, assuming some prior knowledge of gauge
theory, the arena in which classical field theory plays out.

For a field theory on a spacetime, the Lagrangian is the name given to a function that
describes the dynamics and all the interactions of the fields. There are a few core principles
that one must follow when attempting to write down such a function, of which we will
only consider symmetry: the Lagrangian, and hence the laws of physics, should be invariant
under the transformations of some specified symmetry group G (such as the Poincaré
group, which encodes the symmetry of Minkowski spacetime). It is clear at the outset that
the fields (particles) out of which the Lagrangian is built must live in irreps of G, to keep
the invariance under G manifest. The unitarity requirement on the irreps then arises quite
naturally from the desire to compute observables (matrix elements). For example, a state
|i) — P|y) under a Poincaré transformation P, so an observable would transform as

(Wnln) = M = M = (1|PtP|1) .

Therefore, we need PP =1d, i.e. P must be unitary, if the matrix element is to be invariant.3

It is more involved to see why the gauge bosons live the adjoint representation; we
begin with a plausibility argument from physics known as minimal coupling. Consider
a matter field 1(x): for local gauge transformations, (x) — g(x)¥(x), and ordinary
derivatives transform as

D (x) = g(x)Iup(x) + (dug (X)) P(x) ,

that is, inhomogeneously. What we would like instead is a gauge-covariant derivative D,
which transforms as D, (x) = g(x)D,(x). To achieve this, we define

Dup(x) = dup(x) = App(x) ,

where A is a Lie algebra-valued 1-form written in a local basis. As the notation suggests,
this is our gauge boson, and it is forced to have the transformation law

Ay AL (x) = g(0)ALg ™ (%) + (9ug(x)g 7 (%) - (1.1.1)

The first term is the desired adjoint transformation of A,. The second term vanishes if
g(x) is taken to be constant locally; this is referred to as a rigid gauge transformation. The
group of rigid physical transformations form a group isomorphic to G.

By way of motivation, the above should suffice (and is often the last word in physics
textbooks). But let us go deeper. In mathematics, matter fields like 1(x) are sections of the
vector bundle P X, V' — M associated to a G-principal bundle P — M by a representation
p : G — GL(V). The derivative D, above is usually denoted V, in mathematics, and is in
fact the covariant derivative on the vector bundle associated to a connection 1-form A on
the principal bundle; in coordinate-free notation, for a vector field X € X(M), it outputs a
section

VaY = dp(X) + dp(As(X))Y,

where A; = A o Ds € Q}(U, g) is the local gauge field for s : M > U — P a choice of
local gauge, and dp : ¢ — End(V) is the induced Lie algebra representation. A clue
that something more needs to be said about the somewhat ad hoc imposition of the
transformation law (1.1.1) for A can be found in the fact that in the parlance of gauge theory,

3We used the Poincaré group here since it is a natural example, but we will not be concerned with it
in what follows. The reason for this is that the unitary irreps of this group are all infinite dimensional, as
proved by Wigner in 1939 [91], and we wish to restrict to finite-dimensional representation theory. See [79,
pp- 109-103] for further discussion.



1.2. THE FUNDAMENTAL FORCES 5

the corresponding result is purely a statement about what happens when we change gauge
froms; : U; — P tosj : U; — P on the principal bundle*, and has nothing whatsoever to
do with the associated vector bundle, where all the physics takes place. Instead, what is
needed is the following: one can show that the difference between two connections is in fact
a section (field) on the base manifold M with values in the vector bundle Ad(P) := P Xaq g,
associated to P — M by the adjoint representation of G. (Heuristically, one can see this
from equation (1.1.1) by noting that the difference of two transformed gauge fields kills
the (d,g(x))g~"(x) term.) Naturally, sections of this bundle then transform in the adjoint
representation, as desired. A rather beautiful physical interpretation of this result is found
in [44]: in quantum field theory, particles in general are described as excitations of a given
vacuum field; in the case of a gauge field, one has to declare the vacuum field to be a certain
specific connection 1-form A% on the principal bundle, with reference to which all other
gauge fields would then by described?®; by the result stated in the previous paragraph, this
difference (excitation) A — A% can then be identified with a 1-form on the spacetime M,
with values in Ad(P) that hence transforms in the adjoint representation of G.

Now that we have the transformation rules for all the particles in our theory, a natural
question arises: how can the gauge bosons be said to “mediate forces”? The mathematical
mechanism is in fact quite straightforward. When we say that a force is invariant under the
action of some group, this corresponds to the statement that any physical process caused by
this force should be described by an “intertwining operator”, which is a linear operator that
respects the action of the group under consideration. More precisely, suppose that V and
W are finite-dimensional Hilbert spaces on which some group G acts as unitary operators.
Then a linear operator F : V — W is an intertwining operator if F(g{) = gF(¢) for every
Y € Vand g € G. Now we saw in theorem 1.1.3 that a representation p : G XV — V of
a group G gives rise to a representation of its Lie algebra g on V; we think of this as the
linear map dp : g ® V. — V. Itis easy to check that this map is an intertwining operator,
and it hence gives the gauge bosons agency to act on particles.

1.2 Tuae FuUNDAMENTAL FORCES

We begin our brief exposition of the Standard Model proper with the representation theory
of quantum chromodynamics (QCD), since it is the most straightforward application of the
principles that we encountered in the previous section. Many great minds contributed to
the development of this theory?®, but it was the trio of Fritzsch, Gell-Mann and Leutwyler
who formulated the concept of colour as the source of a “strong field” in a Yang-Mills
theory in 1973 [29].

This will be followed by a description of the weak force, which will then be expanded
to include electromagnetism in the section on the electroweak interaction; this milestone
in the history of unification was due to independent work by Glashow [38], Salam [78]
and Weinberg [88], for which they were jointly awarded the Nobel prize in 1979. We will
follow the article of Baez and Huerta [8] in this section, and in the one following, on the
fermion representation of the Standard Model.

1.2.1 THE STRONG INTERACTION

Let us begin with the nucleons of high-school chemistry, the protons and neutrons. It turns
out that they are not fundamental particles, but are instead made up of other particles
called quarks, which come in a number of different flavours. It takes two flavours to make

4See [44, Theorem 5.25].
5N.b. the form AY = 0 is not a connection.
¢6Reference [21, Ch. 4] has an account of the history.



6 1. THE STANDARD MODEL

protons and neutrons, the up quark u, and the down quark d: the proton can be written as
p = uud, and the neutron, n = udd (the notation will be clarified momentarily). It follows
from the charges of the proton (+1) and neutron (0) that u has a charge 2/3, and 4, —-1/3.

Quark confinement is one of two defining characteristics of QCD, the other being
asymptotic freedom. The latter is unfortunately outside the scope of this paper; we refer
the reader to a review article by Gross, one of the discoverers of aymptotic freedom
[39]. Now quark confinement, loosely speaking, is the statement that the force between
quarks does not diminish as they are separated; thus, they are forever bound into hadrons
such as the proton and the neutron. Let us try to understand this mathematically. Each
flavour of quark comes in three different states called colours: red (r), green (g), and blue (b).
This means that the Hilbert space for a single quark is C3, with r, g, and b the standard
basis vectors. The colour symmetry group SU(3) acts on C> in the obvious way, via its
fundamental representation. Since both up and down quarks come in three colour states,
there are really six kinds of quarks in matter: three up quarks, spanning a copy of C?;
u",ub, u& € C3, and similarly for down quarks. The group SU(3) acts on each space. All
six quarks taken together span the vector space C*> & C® = C? ® C3, where C? is spanned
by u and d. Confinement amounts to the following decree: all observed states must be
white, i.e. invariant under the action of SU(3). Hence, we can never see an individual
quark, nor particles made from two quarks, because there are no vectors in C3 or C® ® C3
which transform trivially under SU(3). But we do see see particles made up of three
quarks, such as nucleons, because there are unit vectors in C3 ® C3® ® C° fixed by SU(3).
Indeed, as a representation of SU(3), C* ® C3 ® C® contains precisely one copy of the trivial
representation: the antisymmetric rank-three tensors, A>C>. This one-dimensional vector
space is spanned by the wedge product of all three basis vectors, r A b A ¢ € A3C3, so up
to normalisation, this must be colour state of a nucleon. We also now see that the colour
terminology is well-chosen, since an equal mixture of red, green, and blue light is white.
Hence, confinement is intimately related to colour. An explanation of the quark flavours is
postponed until the next section.

We will have much more to say about the quarks, but as an introduction, what we have
above suffices: the strong force is concerned with the quarks; the up and the down quarks
together span the representation C? ® C> of SU(3), where C? is trivial under SU(3). In the
previous section, we took the trouble to understand how gauge bosons transform and
act, and we now we reap the fruits of that labour: from the standpoint of representation
theory, all there is to say is that strong force is mediated by the gluons, usually denoted
by g, which live in C ® su(3) = sl(3, C), the complexified adjoint representation of SU(3).
They act on quarks via the standard action of s(3, C) on C3.

1.2.2 THE WEAK INTERACTION

Our story of the weak force begins, interestingly enough, in early attempts to describe the
strong force, particularly in the work of Heisenberg in 1932 [49]. He hypothesised that
the proton and nucleon were the two possible observed states of a nucleon; a nucleon
would hence live in the simplest Hilbert space possible for such a setup: C?> = C & C.
Shortly thereafer, in 1936, Cassen and Condon [20] suggested that the C? space of nucleons
is acted upon by SU(2), emphasising the analogy with the spin of an electron, which is
also described by vectors in C? acted upon by SU(2). The property that distinguishes the
proton from the neutron was hence dubbed isospin: the proton was declared to be isospin
up, Iz = +1/2, and the neutron isospin down, I3 = —1/2. The charge and the isospin of the
nucleons N were seen to be related in the following simple way:

QN) = () + 5.
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This turned out to be a special instance of what came to be called the Gell-Mann—Nishijima
formula (abbreviated as the NNG formula):

Y
Q =I3+ E .
Y is a quantity called hypercharge which depends only on the “family” of the particle. For
the moment, this simply means that Y is required to be constant on representations of the
isospin symmetry group, SU(2). To now understand how all of this relates to the modern
theory of weak interactions, we have to introduce a new particle.

Along with the electron e~ and the up and down quarks, the neutrinos v form the first
generation of fundamental fermions. They carry no charge and no colour, and interact
only through the weak force, first proposed by Enrico Fermi in 1933 [26]. The weak force
is chiral, i.e. it cares about the handedness of particles: every particle thus far discussed
comes in left- and right-handed varieties, which we will denote by subscript-L and -R
respectively. Remarkably, the weak force interacts only with the left-handed particles, and
right-handed antiparticles. We have been silent about antiparticles until now, but they are
quite simple to introduce: to each particle, there is a corresponding antiparticle, which is
just like the original particle, but with opposite charge and isospin; mathematically, this
just means that we pass to the dual representation. Returning to the weak interaction,
when the neutron decays for example, we always have

TZL—>pL+€L_+§R,

and never
nR — PR+ eg + v .

This parity violation of the weak force, proposed by Yang and Lee in 1956 [58] is still
startling; no other physics, classical or quantum, looks different when viewed in a mirror.
One important corollary of this oddity is that the right-handed neutrino v has never been
observed directly; we will discuss this particle in the context of grand unified theories in
sections 2.5 and 4.3.

The isospin mentioned above is an extremely useful quantity since it is conserved
during quantum interactions; as such, we would like to extend it to weak interactions.
First, for the proton and neutron to have the right isospins of +1, we must have the isospin
of the up and down quarks defined to be +1 respectively (making these particles the up
and down states at which their names hint). A quick check then shows that isospin is not
automatically conserved in weak interactions; for example, in the above neutron decay,

urdrd; — upupdy + e; + VR,

the right-hand side has I3 = —1/2 while the left-hand side has Iz = 1/2. What is needed
is an extension of the concept of isospin to the leptons, i.e. the particles which do not feel
the strong force, e~ and v; simply setting I3(v.) = 3 and I3(¢; ) = —3 does the trick. This
extension of isospin is called weak isospin, and unlike the isospin of the nucleons, is an
exact symmetry. We will simply refer to it as isospin from now on.

We come to the description of the weak force. This is a theory with the isospin
symmetry group SU(2); the particles in the same representation are paired up in doublets,

) L)

with the particle with the higher I3 on the top; this is just a shorthand way of writing
that these particles live in (and span) the same irrep C? of SU(2). The fact that only the
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left-handed particles are combined into doublets reflects the fact that only they participate
in weak interactions. Every right-handed fermion, on the other hand, is trivial under
SU(2): they are called singlets, and span the trivial representation C.

The particles in the doublets interact via the exchange of the so-called W bosons,

+ (0 1 o_(1 O __ (0 0
el sl S )
As we would expect, these span the complexified adjoint representation of SU(2), s1(2, C),
and they act on each of the particles in the doublets via the action of sI(2, C).

We close this section with the afore-promised explanation of quark flavour splitting.
Recall that colour is related to confinement; in much the same way, flavour is related
to isospin. Indeed, we can use quarks to explain the isospin symmetry of the nucleons:
protons and neutrons are so similar, with nearly the same mass and strong interactions,
because u and d quarks are so similar, with nearly the same mass, and truly identical
colours. As mentioned above, the isospin of the proton and neutron arises from the isospin
of the quarks, once we define I3(1) = 1/2, and I3(d) = —1/2; we see that the proton obtains
the right I5:

1 1 1

Ii(p) = 2772775
and a quick check shows the same for the neutron. This is a good start, but what we really
need to do is to confirm that p and 7 span a copy of the fundamental representation C?
of SU(2). It turns out that the states u ® u ® d and u ® d ® d do not span a copy of the
fundamental representation of SU(2) inside C? ® C? ® C?; what is needed, for the proton
for instance, is some linear combination of the I3 = 1/2 flavour states which are made of
two u’s and one d:

+

N =

ueued, u®dou, deueu cC?eClgC?.

The exact linear combination required to make p and n work also involves the spin of
the quarks, which is outside the scope of our discussion. What we can do however,
is see that this is at least possible, i.e. that C2 ® C? ® C? really does contain a copy of
the fundamental representation C? of SU(2). First note that any rank-2 tensor can be
decomposed into symmetric and antisymmetric parts, C2 ® C2 = Sym*C? @ A%C2. Now
Sym?C? is the unique 3-dimensional irrep of SU(2), and A?C?, as the top exterior power of
its fundamental representation C?, is the trivial 1-dimensional irrep; as a representation of
SU(2), we therefore have

C’eC?®C?=C?® (Sym’*C*®C) = (C? ® Sym*C?) @ C2.

So indeed, C? is a subrepresentation of C*> ® C? ® C2. As a final remark, we note that the
NNG formula still works for quarks, provided we define the hypercharge for both quarks
tobe Y =1/3.

1.2.3 THE ELECTROWEAK INTERACTION

All the fermions have now been grouped into SU(2) representations based on their isospin.
Let us now consider the other piece of NNG formula, hypercharge. Just as we did for
isospin, we can extend the notion of hypercharge to encompass the leptons, calling this
new quantity weak hypercharge. It is a matter of simple arithmetic to see that we must have
Y = -1 for both left-handed leptons; for right handed leptons, since I3 = 0, we must set
Y =2Q0.

How can we understand hypercharge? Let us frame the discussion by briefly discussing
isospin again: it is an observable, and we know from quantum mechanics that it hence
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corresponds to a self-adjoint operator; indeed, from an eigenvalue expression like [3v; =
%VL, it is easy to see that we must have
(2o
*“lo -172)°
The story with hypercharge is similar: corresponding to hypercharge Y is an observable
Y, which is also proportional to a gauge boson, although this gauge boson lives in the
complexified adjoint representation of U(1).

The details are as follows. Particles with hypercharge Y span irreps” Cy of U(1); by Cy
we denote the one-dimensional vector space C with action of a € U(1) given by

The factor of three is inserted because Y is not guaranteed to be an integer, but only
an integer multiple of 1/3. For example, the left-handed leptons v, and e; both have
hypercharge Y = -1, so each span a copy of C_1. Hence, v, ¢; € C_; ® C?, where the C?
is trivial under U(1).

Now, given a particle ¢ € Cy, to find out how the gauge boson in C ® u(1) = C acts on
it, we can differentiate the U(1) action above. We obtain

iy =3iYy = Y:%ec.

Following convention, we set the so-called B boson equal to Y; particles with hypercharge
interact by exchanging this boson. Note that the B boson is a lot like the familiar photon,
and the hypercharge force which B mediates is a lot like electromagnetism, except that its
strength is proportional to hypercharge rather than charge.

The unification of electromagnetism and the weak force is called the electroweak
interaction. This is a U(1) x SU(2) gauge theory, and we have now encountered it in full
detail: the fermions live in representations of hypercharge U(1) and weak isospin SU(2),
and we tensor these together to get representations of U(1) x SU(2). These fermions
interact by exchanging B and W bosons, which span C @ sl(2, C), the complexified adjoint
representation of U(1) x SU(2).

We close with a word on symmetry breaking. Despite electroweak unification, elec-
tromagnetism and the weak force are very different at low energies, including most
interactions in the everyday world. Electromagnetism is a force of infinite range that we
can describe by a U(1) gauge theory with the photon as gauge boson, while the weak force
is of very short range and mediated by the W and Z bosons: we “define” the photon and
the Z boson by the following relation:

cosO,, sinBy\( B

(é) - (— sin 6y, cos Qw) (WO) ) (1.2.1)
We have introduced here the weak mixing angle, or Weinberg angle 0.,; it can be thought of
as the parameter that characterises how far the B — W? boson plane has been rotated by
symmetry breaking, which is the mechanism that allows the full electroweak U(1) x SU(2)
symmetry group to be hidden away at low energies, and replaced with the electromagnetic
subgroup U(1). Moreover, the electromagnetic U(1) is not the obvious factor U(1) X 1, but
another copy, wrapped around inside U(1) X SU(2) in a manner given by the NNG formula.
Unfortunately, the dynamics of electroweak symmetry breaking is outside of our scope;
we refer the reader to [79, Ch. 29.1] for the details. We will discuss symmetry breaking
from a representation theoretic viewpoint in section 3.3, and return to the Weinberg angle
in section 4.1.

7Since U(1) is abelian, all of its irreps are one-dimensional.
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1.3 THE STANDARD MODEL REPRESENTATION

We are now in a position to put the whole Standard Model together in a single picture. It
has the gauge group
Gsm = U(1) x SU(2) x SU(3) ,

and the fundamental fermions described thus far combine in representations of this group.
We summarise this information in the table below.

Table 1.1: The Standard Model Fermions

Particle Name Symbol U(1) x SU(2) x SU(3) Rep.
VL
Left-handed leptons C1®C*®C
e
ur, uf ,u z
Left-handed quarks Ci3®C*®C3
dr,ds,db
L%

Right-handed neutrino VR Co®CoC
Right-handed electron ex CLeC®C
Right-handed up quarks  (uf, ub, uf) Cy3®C®C3

Right-handed down quarks ~ (d}, d 12' dﬁ) Coy3®C®C3

All the representations of Ggy in the right-hand column are irreducible, since they are
made by tensoring irreps of this group’s three factors. On the other hand, if we take the
direct sum of all these irreps,

F=(C4®C*®C)®- @ (C,30CaCY,

we get a reducible representation containing all the first-generation fermions in the
Standard Model. We call F the fermion representation. If we take the dual of F, we get a
representation describing all the antifermions in the first generation. Taking the direct
sum of these spaces, F @ F, we get a representation of Gsy that we will call the Standard
Model representation; it contains all the first-generation elementary particles in the Standard
Model. The fermions interact by exchanging gauge bosons that live in the complexified
adjoint representation of Ggw.

Table 1.2: The Standard Model Gauge Bosons

Force Gauge Boson Symbol

Electromagnetism Photon y
Weak Force W and Z bosons W', W~ and Z

Strong Force Gluons g
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GENERATIONS

For the purposes of describing grand unified theories, the above description of the Standard
Model is all we need. For completeness however, we tabulate below the second and third
generations of fermions, evidence of which first arose in the 1930s; an elegant summary of
the physics can be found in [46].

Table 1.3: Quarks by Generation

1st Generation 2nd Generation 3rd Generation

Name Symbol Name Symbol Name Symbol

Up u Charm c Top t

Down d Strange s Bottom b

Table 1.4: Leptons by Generation

1st Generation 2nd Generation 3rd Generation

Name Symbol Name Symbol Name Symbol

Electron Muon Tau

. Ve . Vu . T
neutrino neutrino neutrino
Electron e Muon - Tau T

Notice that we thus have a pattern in the Standard Model: there are as many flavours
of quarks as there are of leptons. The Pati-Salam model explains this pattern by unifying
quarks and leptons, but we will unfortunately not treat this theory here; the interested
reader is referred to [8, Ch. 3.3].

The second and third generations of quarks and charged leptons differ from the first
by being more massive and able to decay into particles of the earlier generations. The
various neutrinos do not decay, and for a long time it was thought they were massless,
but now it is known that some and perhaps all are massive. This allows them to change
back and forth from one type to another, a phenomenon called neutrino oscillation?; the
Standard Model explain this phenomenon by recourse to the famous “Higgs mechanism”°.
For our purposes however, the generations are identical: as representations of Gsy, each
generation spans another copy of F, with the corresponding generation of antifermions
spanning a copy of F. All told, we thus have three copies of the SM representation, F & F.
We will only need to discuss one generation, so we find it convenient to speak as if F & F
contains particles of the first generation. This redundancy in the Standard Model, three
sets of very similar particles, remains a mystery.

8See the article [15] for a brief review of the theoretical and experimental aspects.
9See [45] and [79, Ch. 28].






CHAPTER 2

THE Spin(10) GRAND UNIFIED THEORY

Due to spontaneous symmetry breaking, not all of the symmetries of the Standard Model
are seen in everyday life—the symmetries encoded by Ggy are symmetries of the laws of
physics, but not necessarily of the vacuum. Grand unified theories attempt to answer the
question, what if this process continues? That is, could the symmetries of the Standard
Model be just a subset of all the symmetries in nature? By way of motivation, consider
that from a representation theoretic standpoint alone, the Standard Model leaves a lot to
be desired: “The representations of Gsy seem ad hoc. Why these? What about all the
seemingly arbitrary hypercharges? Why do both leptons and quarks come in left- and
right- handed varieties, which transform so differently? Why do quarks come in charges
which are units 1/3 times and electron’s charge? Why are there the same number of quarks
and leptons?” [8, p. 32]

In this chapter, we will encounter the earliest attempts to probe these questions. We
begin by introducing some additional concepts in representation theory and motivating
the exceptional Lie groups, after which we will elucidate which groups are to be considered
potential grand unification groups. Then we will turn to, both from necessity and because
of its intrinsic interest, the SU(5) grand unified theory. Thereafter, we will focus our
attention on Clifford algebras; it is a short step from there to the Spin groups; once we
then understand their representations, we will prove that Spin(10) extends the Standard
Model in section 2.5.

2.1 CHARACTERS AND WEIGHTS OF REPRESENTATIONS

The study of characters, and root and weight systems, is fundamental to representation
theory. Our modest goals in this section of simply defining these terms and stating the
main results will doubtless do a severe injustice to this branch of mathematics; we point to
[43, Ch. 8] for a lucid introduction and additional references. We will follow [4] here.

Particle physics demands that we restrict to complex representations, so let us do so
right at the outset, reaping the added benefit that over C, every irrep of a compact abelian
group is 1-dimensional.

Remark 2.1.1 (Structure Maps). We note that this restriction involves no sacrifice of gene-
rality: consider that a representation V' over the quanterions H is certainly a representation
over C; together with a conjugate linear structure G-map j : V — V such that j = -1,
ij = —ji, this representation does in fact return the original H-representation; on the other
hand, a representation V over R gives V ®r C and this carries a conjugate linear structure
map j : v ® z > v ® Z such that j2 = 1; we can regard V as the +1 eigenspace of j (or the -1
eigenspace).

13
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Definition 2.1.2 (Characters). Suppose V is a representation of G over C. Then its character
is given by

Xy: G ———C,
g H——>tre(g:V—-oV).

It follows from the definition that characters are class functions, i.e. x,,(gh g hH= Xy (h)
forall g,h € G. Also,

Xvew(8) = Xy (&) + xw(g),
Xvew(8) = xv(8) - xw(g) -

The following result clarifies the importance of characters.
Theorem 2.1.3. If x|, = X, then V. = W.

A proof is found in [3, pp. 46-52]. Consider now the torus, T = [] S'. Because T is a
compact, connected abelian group, the exponential map exp : t — T is a homomorphism,
and we can thus regard T as T = t/I', where I := ker exp is a discrete subgroup of t, called
the integer lattice of T.

Homomorphisms 6 : T — T’ are easily described. We need only check for a linear
map ¢ :t — t’ such that ¢(I') ¢ I, and if so, then 6 = ¢ : t/T — t’/I”. All continuous
homomorphisms arise in this way, and all 1-dimensional representations of T arise from
linear maps ¢ : t — u(1). Here we encounter the first connection to representation theory:
given a representation V of T, there are linear maps ¢ : t — u(1) such that V decomposes
as a direct sum of non-zero sub-representations V,,, where t acts on V, by 7(x) = ¢(7)x
fort et,x € V.

Definition 2.1.4 (Weights). The linear maps ¢ on t are called the weights of V. The
dimension of V, is the multiplicity of ¢.

2.1.1 SkercH oF THE CLASSIFICATION OF CompacTt Lie GrRouPs

The remarkable history of the more than one-hundred-and-fifty years of Lie theory is
studied in [84]; the Killing-Cartan classification of Lie groups is arguably the highpoint of
this story, and certainly a significant achievement of modern mathematics. This section
is the briefest of summaries of this classification scheme, and is important for us for two
reasons: (i) it motivates the existence of the exceptional Lie groups, and (ii) the roots and
weights of the classical Lie groups that we will derive along the way will be instrumental
in constructing Eg.

Definition 2.1.5 (Maximal Torus). A maximal torus in a compact connected Lie group G
is a subgroup T which is (i) a torus, and (ii) maximal, i.e. if T C T’ C G for T” a torus, then
T =T.

Example 2.1.6. The maximal torii of the classical Lie groups are as follows.

(i) In U(n), consider the subgroup of matrices diag(e?™™1, ..., e?™¥n), for xj € R. This
is a maximal torus in U(n): any matrix in U(n) which commutes with all diagonal
matrices must be diagonal, and hence in T. Thus, T is maximal among all abelian
subgroups, connected or not.

(ii) Since C c H, the matrices of (i) are in Sp(n), and they form a torus in Sp(n). Since
C" can be regarded as R?", we get an embedding U(n) — SO(2n) and we can again
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take the corresponding matrices, namely

cos2mx; —sin2mxq

sin27x;  COS2TXxq
Ccos27txy —2T7Sin xp
sin2mxy;  cos2mxy

CcoS2mXx, —sin2mx,
sin2mx;,;  Cos27mx,

These will form a torus in SO(2n).

(iii) We can embed R?" in R*"*! and thus SO(211) in SO(211 +1), where wemap A — (4 9).
This is the corresponding torus in SO(2n + 1).

(iv) In SU(n) we take the matrices of (i) subject to ) x; = 0 to get a maximal torus.

Maximal tori are fundamental in representation theory, as the following results
demonstrate. Their proofs can be found in [3, pp. 89-95].

Theorem 2.1.7. Let T C G be a maximal torus of a compact, connected Lie group G. Then any
g € G is conjugate to some element of T. That is, there exist elements t € T, h € G such that
¢ =hth L

Corollary 2.1.8. If V, W are representations of a compact connected Lie group G and x, |T = Xw
then x,, = xy, 50V = W.

T/

Hence the weights (together with the multiplicities) of a representation V of G,
determine V up to equivalence. We also have

Corollary 2.1.9. Given two maximal tori T, T’ in a compact connected Lie group G, there exists
an inner automorphism of G taking T to T,

It follows from this corollary that any property of G defined by reference to a maximal
torus T is independent of the choice of T. The most important example of this is the
following

Definition 2.1.10 (Rank). The rank of a compact connected Lie group G is the dimension
of the maximal torus of G. We will usually write | = rank G.

Suppose now that T C G is a torus (not necessarily maximal). Then G acts on g
via the adjoint representation, so T acts on g by restriction and g ® C splits as a sum of
1-dimensional representations of T, with T acting trivially on t C g. Thus the trivial
1-dimensional representation occurs at least d = dim T times. In fact, we have

Proposition 2.1.11. If G is compact, then T is maximal if and only if the trivial 1-dimensional
representation occurs exactly d times.

A proof of this result can be found in [3, p. 83]. Henceforth, we suppose that T is
maximal and set d = I.

Definition 2.1.12 (Roots). The roots of a compact connected Lie group G are the weights
of the adjoint representation, excluding 0 (which occurs [ times).

The roots are thus R-linear functions on t, that is, elements of t*. Since the adjoint
representation of G is real, the 1-dimensional summands of g ® C occur in conjugate pairs
and the roots occur in pairs +0.
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Example 2.1.13. The roots of the classical Lie groups are as follows.

¢ For the maximal torus of U(n) described in example 2.1.6 above, the weights are 0, n
times, and +(x; — x;), where1 <i < j < n.

Proof. First note that u(n) ® C = gl(n,C) = End(C") since B — —B" is a conjugate
linear structure map and its +1 eigenspace is u(n). Now take the basis {e;} of
standard column vectors for C"; for i < j, define linear maps 0;; € End(C") by
Oij(ej) = ei, Oij(ex) = 0 for k # j. The matrix of 6;; has a 1 in the ij-th place and
zeroes elsewhere. The 0;; are eigenvectors of the action of T with eigenvalues
exp(2mi(x; — x;)), so x; — x; are eigenvalues for the action of t on u(n). (Here, we are
taking t to be the diagonal matrices diag(iy1, ..., iys), y; € R, and x; € t* is given by
xi(diag(iyy,...,iy,)) = iyi.) QED

¢ The roots of the other matrix groups are

SU(n) ©ox(xi—xj), 1<i<j<n; 0, (n-1)times.
SO((2n) DX X, 1<i<j<mn;, 0, ntimes.
SO@2n +1) : #*x;+xj, 1<i<j<mn;, 0, ntimes;
+x;, 1<i<n.
Sp(n) i 1<i<j<mn; 0, ntimes;
+2x;, 1<i<n.

Definition 2.1.14 (Weyl Group). The Weyl group W of a compact, connected Lie group
G is the group of those automorphisms of a maximal torus which are given by inner
automorphisms of G.

Example 2.1.15. In U(2), conjugation by (? 3') is an element of W, and

0 -1 eZnixl 0 0 1 eZm’xz 0
1 0)( 0 e2mn]l-1 0/7| o ezﬂiﬁ)ET'

The Weyl groups of the other classical matrix groups are as follows [3, pp.114-116]
U(n) and SU(n) : W =any permutation of x1, ..., x,.

Sp(n)and SO2n +1) : W = the group generated by all permutations of
x1,...,x, and all sign changes of x;.

SO(2n) : W = the group generated by all permutations of
X1,...,%X; and an even number of sign changes of
Xi.

The Weyl group W acts on t and permutes roots. If we regard the roots as elements
of t*, they form a configuration with great symmetry and very distinctive properties [3,
Ch. 5]. The Dynkin diagram encodes this configuration, as we proceed to describe.

We may choose on t* a positive definite inner product invariant under W, so that
we can define the lengths and angles of roots. For each pair of roots +0, the kernel,
ker 0 = ker(—0), is a hyperplane in t called a root plane. Conversely, it can be shown that
each root plane comes from only one pair of roots, +0. The root planes form a figure in t
called the (infinitesimal) Stiefel diagram.

The root planes divide t into convex open sets called Weyl chambers, and the Weyl group
permutes these chambers in a way which is simply transitive. We choose one and call it
the fundamental Weyl chamber (FWC); we denote it by C. A root 0 is positive (resp. negative)
if 0 > 0 (resp. 0 < 0) on C. A positive root is simple if it defines a wall of C; in the Stiefel
diagram of SO(5) shown in figure 2.1, the roots x1 and x1 — x, are simple.
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X2

Figure 2.1: The Stiefel Diagram of SO(5)

The Dynkin diagram has one node for each simple root (i.e. for each wall of the
fundamental Weyl chamber). These nodes are joined by the following number of bonds:

0 if the roots are orthogonal ,

1 if the roots are at 60° or 120° ,
2 if the roots are at 45° or 135°,
3 if the roots are at 30° or 150° .

These are the only possibilities [3, pp.118-121]. By definition, the Dynkin diagram of the
torus is empty.

Example 2.1.16. The Dynkin diagrams of the classical Lie groups are as follows.
(i) For U(n), take C to have x1 < xp < --- < x,. We obtain

—X1+ X2 —X7 + X3 —X3 + X4 —Xn-1+ Xy
— o o — e

SU(n) has the same Dynkin diagram as U(n), which is traditionally labelled A,_;.
(We always take the usual inner product on R".)

(ii) For SO(2n), take C to have —x; < x1 < x2 < x3 < --- < x,,. Then the diagram is
denoted D, and is given by

X1+ X2

X2+ X3 —X3+ X4 —X3 + X4 —Xn-1+ Xy
— e ——— o

—X1+ X2

(iif) For SO(2n + 1), take C to have 0 < x1 < xp < -+ < x,. Then we have the Dynkin
diagram B,:

X1 —X1+ X2 —X2 + X3 —Xp-1+ Xy
o Q—————¢  —@— R —— ]

short

(iv) For Sp(n), take C to have 0 < x1 < x2 < -+ < x;,. Then we have the Dynkin diagram
Cu:
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2x1 —X1 + X2 —X7 + X3 —Xp-1+ Xn
o———— o ———@— - —e
long

Note that “short” (resp. “long”) means x1 - x1 =1 < 2 (resp. 2x1 - 2x1 = 4 > 2).

We now finally have a rule which associates to a compact Lie group a Dynkin diagram.
The upshot: if G and G’ are compact Lie groups, then g is isomorphic to g’ if and only
if g ® C is isomorphic to g’ ® C; thus the Dynkin diagram determines g, and hence G,
locally. In particular, corresponding to each Dynkin diagram, there is a unique compact,
connected, simply connected Lie group, because to each of the diagrams in the Killing-
Cartan classification, i.e. example 2.1.16, plus the exceptional Dynkin diagrams below, there
is a unique simple Lie algebra—in fact, every complex simple Lie algebra is isomorphic to
one of the algebras in this classification scheme—and hence a unique connected, simply
connected, compact, simple Lie group. As we saw above, the groups SU(n + 1), n > 1, and
Sp(n), n > 3 correspond to A, and C,, respectively; the groups Spin(2n + 1), n > 2 and
Spin(2n), n > 4 correspond to B, and D,,. All these groups have rank n and are pairwise
non-isomorphic. The non-classical or “exceptional” Dynkin diagrams are as follows; the
notation and conventions are explained in [4, Ch. 9].

Gy
1 2 3 4
o ————0—o— 0
Fy s s ]

3
E7 Q—Q—Q—I—O—Q

We are primarily interested in the Lie group corresponding to the diagram Eg, but
to arrive at the same, we will need to construct the group Eg; we do so in section 3.1.
Additionally, we describe the construction of the smallest exceptional Lie group G; in an
appendix, by way of an illustrative example.

2.2 PossiBLE GRAND UNiFicATION GROUPS

By way of motivating grand unified theories, we have already raised several questions about
the unsatisfactory aesthetics of the Standard Model representation. We introduce now
considerations of a more technical nature, which will help us “classify” grand unification
groups as it were, i.e. understand which groups are preferred from the plenitude of
available Lie groups that contain embeddings of the Standard Model.
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CouPLING CONSTANTS IN GAUGE THEORIES

Definition 2.2.1 (Killing Form). Let A be a Lie algebra. The map

AXA — C,
(X, Y)x ——> tr(ad(X) o ad(Y))

is called its Killing form.

The symmetry and bilinearity of this form are easy to check; it is also immediately clear
that the Killing form of an abelian Lie algebra is zero. More interesting is the following

Proposition 2.2.2. Let 0 : A — A be a Lie algebra automorphism. Then (6X,0Y)x = (X, Y)k
forall X,Y € A. For A = g the Lie algebra of some Lie group, this holds in particular for the
automorphism Ad(g) for an arbitrary g € G.

Proof. Since o is a Lie algebra automorphism, we have
ad(cX)Y = [0X, Y] = 0([X,07'Y]) = (6 cad(X) o 671)(Y) .
We hence compute

(0X,0Y)k = tr(ad(cX) o ad(cY))
=tr(c oad(X) oad(Y) o o7 })
= tr(ad(X) o ad(Y))
= (X, Y)k QED

We introduce some more terminology: if g is the Lie algebra of a compact Lie group G,
it is in turn called compact; a subspace i C g is called an ideal if it is closed under the Lie
bracket, and satisfies [g, i] C i; a Lie algebra is called simple if its only ideals are 0 and itself.
Now, one can show that for g compact and simple, the negative of the Killing form is a
positive-definite inner product; moreover, it turns out that up to a positive constant, it is
the unique such form. The proof of this is not very hard, and can be found in [31, Ch. 8.1],
for example. From this, one can deduce the following result (see [44, Ch. 2.10] for a proof)
which will in turn finally allow us to make the definition that we are after.

Theorem 2.2.3. Let G be a compact, connected Lie group of the form
G=U1)x---xU1)x Gy X - X Gy,

(up to a finite quotient) where the G; are simple. Let k : g X g — C be an Ad-invariant positive
definite scalar product on the Lie algebra g. Then k is the orthogonal sum of

* a positive definite scalar product ko on the abelian algebra u(1) @ - - - @ u(1), and
* Adg,-invariant positive definite scalar products k;’s on the Lie algebras g;.

The scalar product kg is determined by a positive definite symmetric matrix, and the scalar products
k; are determined by positive constants relative to some fixed Ad-invariant positive definite scalar
products on the corresponding Lie algebras (such as the negative Killing form).

Definition 2.2.4 (Coupling Constants). The constants that determine the positive definite
Ad-invariant scalar products on the abelian ideal 1(1) @ - - - ® u(1) and the g;-summands
relative to some standard Ad-invariant scalar products, are called coupling constants.
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Some insight from physics is in order. Gauge couplings are simply numbers, determined
by experiment, that fix the interaction strength of the field that they correspond to. They
are encountered most directly in pure Yang-Mills theories, which lie at the heart of both
electroweak unification and QCD. We consider them briefly, returning to the framework
of gauge theory; we follow [44, Ch. 7.2]. Let G : P — M be a principal bundle with
the structure group G compact and finite dimensional. Further, fix an Ad-invariant
positive-definite scalar product k on g as in the theorem above, and a k-orthonormal basis
for g. For A a connection 1-form with curvature 2-form FA € Q(P, g), in a local gauge
s : M D U — P, the field strength is given by

F2 = s"FA € (M, q) .
The Yang-Mills Lagrangian is then simply defined by

1
Loy = —Ek(Ff,Ff).

In the case that G is simple, for instance, there is a single coupling constant ¢ > 0 and it is
clear that this “determines the field strength” in the sense that it directly scales the inner
product that appears in the Lagrangian.

This brings us to unification. The coupling constants of the strong, weak, and
electromagnetic interactions are known to be different at low energies (~ 1 GeV); to wit,
the strong interaction is observed to be much stronger (obviously) than the weak and
electromagnetic couplings. However in principle, there is no reason that the couplings
cannot be unified at high energies, because in quantum field theory, these constants are
in fact not constant; they depend on the energy scale. This phenomenon is known as
renormalisation group running. Calculations show (see [66, Ch. 5.5]) that if the coupling
constants are normalised as in the previous paragraph, i.e. taken to be orthonormal with
respect to the Killing form on gsm, the renormalisation group equation indicates that they
roughly converge at high energies. This is a plausibility argument for a grand unification
group with a single coupling constant, unifying the three forces of the Standard Model
at high energies; this can only occur if the unification group is simple, or a product of
identical simple groups, where the coupling constant for each factor is set the same by
forcing the theory to have some sort of discrete symmetry. This is the first demand that we
will make of any potential grand unification group.

CHIRALITY AND COMPLEX REPRESENTATIONS

In mathematics, the term “complex representation” simply refers to a group representation
on a complex vector space; the term as used in physics denotes something different, and it
is related to chirality. As we have seen, the weak force, and hence the Standard Model, is
chiral. This unexpected feature detracts significantly from the symmetry of the rest of the
theory, and one might expect that grand unified theories behave more naturally, or at least
somehow explain this parity violation. But this is in fact not the case: Georgi [34] and
Barbieri et al. [10] have argued that the fermions that would have to be introduced into an
achiral grand unified theory to recover the chirality of the Standard Model on symmetry
breaking would be unacceptably heavy; this is an instance of the Survival Hypothesis, which
we will discuss in more detail in section 4.3. For the moment, we will content ourselves
with defining a complex representation, and seeing how it is concerned with chirality.

Definition 2.2.5 (Complex Representation). Two representations 7 : G — GL(V;) and
12 : G — GL(V2) of a group G are said to be equivalent if there is an intertwining operator
from Vi to V2 such that it is also a vector space isomorphism. If 7 : G — GL(V) is a
representation, the complex conjugate representation 7 is defined over the complex conjugate
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vector space V by 77(g) = 1(g). A representation of a group is said to be complex if it is
not equivalent to its complex conjugate representation.

The connection to handedness is pretty straightforward. We know that the way to
get the antiparticle representation from the particle representation is simply to pass to

the dual; for example, Vg € C; ® C?®C = C_1®C2®C 3 v (we have used here the

fact that C?> = C2 under SU(2)). So if we take a direct sum of the representations of all
the left-handed fermions, call this f;, it stands to reason that the direct sum of all the
right-handed fermion representations is given by fr = f_L Therefore, if f; = E, ie.if fr is
real, the theory is manifestly achiral, since the right-handed particles transform as the left;
such theories are called vectorlike; on the other hand, if f; is complex, the theory is chiral.
We will hence demand that our grand unification groups admit complex representations,
to preserve this feature of the standard model. Let us summarise our work in the following

Definition 2.2.6 (Possible Unification Group). We call a Lie group G a possible unification
group if it satisfies the following properties.

* G is simple, or a product of several copies of the same simple group.
* G contains (perhaps up to a finite quotient) the Standard Model gauge group Gsm.

¢ G admits complex representations.

CLASSIFICATION OF UNIFICATION GROUPS

We will restrict our discussion to Lie groups with rank less than 7, since they are generally
considered the most interesting for unification'; they are listed as follows:

e rank 1: SU(2);

e rank 2: SU(3), Spin(5), Gy;

e rank 3: SU(4), Spin(7), Sp(3);

e rank 4: SU(5), Spin(8), Spin(9), Sp(4), F4

e rank 5: SU(6), Spin(10), Spin(11), Sp(5);

e rank 6: SU(7), Spin(12), Spin(13), Sp(6), Es.

Of these, the only ones for which we have not explicitly computed the rank are the
exceptional groups G, F4 and E¢. Since we will momentarily eliminate F4 as a possible
unification group, we will not bother with this computation?; the rank of E¢ is computed
in the proof of theorem 3.1.1, and of G; in the appendix.

Mehta and Srivastava have classified the complex representations of all the classical Lie
groups: only the SU(n)’s, for n > 2, the Spin(4n + 2)’s, for n > 1, and E¢ admit complex
representations [64, 65]. Together with the fact that the gauge group of the Standard Model
Gsm = U(1) xSU(2) x SU(3) has rank equal to 1 + 1 + 2 = 4, and the further requirement on
simplicity from definition 2.2.6, we can immediately thin down the above list significantly.®

1For a discussion on higher rank unification groups, see [56, Ch. 3.4] and [81, Ch. 3].

2The interested reader may refer to [4, Ch. 8].

3In section 4.2 we will consider the issue of anomaly cancellation, and its consequences for grand unified
theories. This rather subtle requirement from quantum field theory is hard to motivate from a representation
theoretic standpoint alone (though it does have a nice interpretation in the same), and was hence omitted in
this section. In any case, it has no bearing on our list of possible unification groups.
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Proposition 2.2.7. The only possible grand unification groups with rank less than 7 are the
following:

e rank 4: SU(3)? and SU(5);
* rank 5: SU(6) and Spin(10);
o rank 6: SU(3)?, SU(4)2, SU(7) and Es.

We provide references for these grand unified theories, where they exist. In the same
paper [36] in which they proposed the SU(5) theory, Georgi and Glashow ruled out an
SU(3)? theory for physical reasons, leaving SU(5) the unique rank 4 unification group;
we will turn to this theory in the next section. A theory with unification group SU(6)
was suggested in 2005 by Hartanto and Handoko [47], while the Spin(10) grand unified
theory was put forward by Georgi in 1974 [33] and Fritzsch and Minkowski in 1975 [30].
Finally, a theory with SU(3)? as gauge group, called trinification, was demonstrated by de
Riluja et al. in 1984 [22], an SU(7) grand unification theory was studied by Umemura and
Yamamoto in 1981 [83], and the subject of this thesis, the E¢ grand unified theory, first
appeared in a 1976 paper by Giirsey et al. [40]. We provide references for these grand
unified theories, where they exist. In the same paper [36] in which they proposed the
SU(5) theory, Georgi and Glashow ruled out an SU(3)? theory for physical reasons, leaving
SU(5) the unique rank 4 unification group; we will turn to this theory in the next section.
A theory with unification group SU(6) was suggested in 2005 by Hartanto and Handoko
[47], while the Spin(10) grand unified theory was put forward by Georgi in 1974 [33] and
Fritzsch and Minkowski in 1975 [30]. Finally, a theory with SU(3)? as gauge group, called
trinification, was demonstrated by de Ruluja et al. in 1984 [22], an SU(7) grand unification
theory was studied by Umemura and Yamamoto in 1981 [83], and the subject of this thesis,
the Eg grand unified theory, first appeared in a 1976 paper by Giirsey et al. [40].

2.3 Tue SU(5) GRAND UNIFIED THEORY

Georgi and Glashow’s SU(5) extension of the Standard Model was the first grand unified
theory, and is still considered the prototypical example of the same. Unfortunately this
theory has since been ruled out by experiment: it predicts that protons will decay faster
than the current lower bound on proton lifetime.* Our focus here will be simply to show
what exactly we mean when we say that SU(5) is a grand unified theory; the questions we
will ask and methodology we will develop will be highly instructive for us when we later
consider the Spin(10) theory, and eventually the one of E¢. We closely follow [8] in this
section.

For integers m,n > 1, let us define S(U(m) x U(n)) = {(A,B) € U(m) x U(n) |
detA - detB = 1}. This Lie group is naturally a subgroup of SU(m + n) under the
embedding

S(U(m)xU(n)) —— SU(m +n),
(AB) — (g‘ g) .

The key to the whole SU(5) theory is the following: the subgroup S(U(2) x U(3)) is

4Detailed studies and reviews of this theory abound in the literature, see [66, 76] and references therein.
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isomorphic to Gsy, modulo a finite subgroup. More precisely, consider the map

¢ : U(1) x SU(2) x SU(B) —— SU(5),

alA 0
(aIA/B) '% ( 0 a—ZB) ’
this is clearly a homomorphism from Ggy to S(U(2) X U(3)). Equally clear is the fact that it
is not injective: its kernel is all elements of the form («, a3, a?). This kernel is Zg, because
scalar matrices a3 and @ live in SU(2) and SU(3) simultaneously if and only if & is a sixth
root of unity. So in short order, we have obtained

Gsm/Z6 = S(U(2) x U(3)) — SU(5) .

This sets up a test that the SU(5) theory must pass for it to have any chance of
success: not all representations of Ggy factor through Gswm/Zg, but all those coming from
representations of SU(5) must do so. In particular, we have to check that Z¢ acts trivially
on all the irreps inside F, that is, it must act trivially on all fermions (and antifermions,
but that amounts to the same thing). For this to be true, some non-trivial relations
between hypercharge, isospin and colour must hold. Consider for example the electron
e; € C.1®C?*®C; for any a € Zg we need (o, a3, a?) to act trivially on this particle. We

compute,

3 ,-3

(a,a‘3,a2) e =aa Ve = a_(’ei =e,

since « is a sixth root of unity. In principle, there are 15 other such cases to check, but
these can be reduced to just four hypercharge relations that must be satisfied:

¢ for the left-handed quarks, Y = even integer +1/3,

¢ for the left-handed leptons, Y = odd integer,

e for the right-handed quarks, Y = odd integer +1/3, and
¢ for the right-handed leptons, Y = even integer.

A glance at table 1.1 shows that all of these equalities hold, so our SU(5) theory has passed
its first test. We remark here that not only is Z¢ contained in the kernel of the Standard
Model representation, but it is in fact the entire kernel. Hence, one could say that Gsy/Ze
is the “true” gauge group of the Standard Model.

Our next order of business is to find a representation of SU(5) that extends the Standard
Model representation, and there is a beautiful choice that works: the exterior algebra A*CP.
We have to check that pulling back the representation from SU(5) to Gsm using ¢ gives
the Standard Model representation F & F; our strategy will be to use the fact that, being
representations of compact Lie groups, both F & F and A*C? are completely reducible, and
can be written as the direct sum of irreps; we will then match them up one irrep at a time.
We already know what the decomposition of F @ F into irreps is, so let us look at A*C°. Any
element A € SU(5) acts as an automorphism of the exterior algebra: A- (v Aw) = Av A Aw,
where v, w € A*C®. Since we know how A acts on vectors in C°, and these generate A*CP,
this rule is enough to tell us how A acts on all of A*C°. This action respects grades in A*C®,
so each exterior power in

AC® = A%C® @ AICY @ A2C5 @ A3C® @ A*CY @ ASCP

is a subrepresentation. More than that, they are all irreps of SU(5), though this is not so
easy to see; we refer the reader to [32, Ch. 15.2] for a proof.
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APC® and A°C? are both trivial irreps of Gsym, and there are exactly two trivial irreps in
F&F, namely (vg) and (vr) (we use the angle brackets to denote the Hilbert space spanned
by a vector or vectors). Hence, these irreps must match up; we will select A°C° = (v )
and ASC® = (vR) for reasons that will be clear in a moment. Consider next the irrep
AIC® = C°. The group Ggm acts on C° via ¢; just by inspection, we see that this action
preserves a splitting of C° into C2 @ C2, with the C? part transforming in the hypercharge
representation C;, and the (o5 piece transforming in C_,/3. From table 1.1 then, we see that
we must have

AlC = (C1eC?*®C) @ (C30CRC?)

= <§1§> ® (dr) ,

where we once again used the self-duality of C? under SU(2).
The remainder of the irrep matching is similarly straightforward. The final result is as
follows:

+
AP = (71, ALCS = <5R> @ (dg) ,
VR
A2CP = (ef) @ "L o ), ASCP = (ep) @ dr) g (ug), (2.3.1)
dL URr
AC = <:E> ® (L), APC® = (vg).
L

Hence, A*C5 = F & F, as desired. Notice that our choice A°C® = (vr) has led to a rather
pleasing pattern: the left-handed particles transform in the even grades, while the right
handed particles transform in the odd ones. At the level of the SU(5) theory, this is nice
but not essential; for the Spin(10) theory, this is the only possibility; we will return to this
point in section 2.5.

We have now shown everything we needed to show: the mapping above defines a linear
isomorphism F & F — A*C® between representations of Gsy, i.e. these representations are
the same when we identify S(U(2) X U(3)) with Gsm/Zg using the isomorphism induced by
¢. This can be neatly summarised in a commuting diagram, the main result of this section.

Theorem 2.3.1. SU(5) is a grand unified theory, i.e. the following square commutes:

Gsm/Zs — SU(5)

I

F®F —=—3% A*C

2.4 CLIFFORD ALGEBRAS

To approach the Spin(10) grand unified theory, we need to understand Clifford algebras,
which are the most natural environment in which to study the Spin groups. Moreover,
many of the results that we will obtain will be required to construct E¢ in due course.

Clifford algebras are a generalisation of the complex numbers, quaternions and
octonions: indeed, they are sometimes constructed in the literature by adding the required
number of square-roots of —1 to the algebra of the real numbers. We will not take this route,
pursuing the more formal (and standard) treatment found in [4] and [32], for example. In
what follows, V is a finite-dimensional vector space over K = R or C.
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Definition 2.4.1 (Tensor Algebra). For a non-negative integer k, we define the kth tensor
power of V to be the tensor product of V with itself k times:

T'V =v® =veVve -0V .

ktimes

By convention, T’V = K. Then the tensor algebra is given by

T(V) = é T*V .
k=0

We define multiplication as follows: if v1 ® --- ® v, € V¥ and w1 ® -+ ® wy € ved,
then their productis 11 ® - ® v, @ W1 ® - @ W, € Ver+1), For example, if V has a basis
{x.y}, then T(V) has a basis {1, x, y, xy, yx, x2,y%,...} (the tensor product symbol has
been omitted for brevity). In general, T (V) is a free associative algebra.

Definition 2.4.2 (Clifford Algebra). Let V be endowed with a symmetric bilinear form (, ).
Let | denote the two-sided ideal in T(V') generated by the set {v ® v — (v,v)-1|v € V},
and define

CIV):=T(V)/];

this is the Clifford Algebra over (V, (:, -)).

It is clear that this is equivalent to the characterisation one usually sees, namely, that
the Clifford algebra is the associative algebra freely generated by V with relations

vw +wo = =2{v, w) . (2.4.1)

A word on notation: though we should define a map V — CI(V') denoting the composition
V —= T(V) - T(V)/] = Cl(V), this is usually omitted in practice, and we write v for an
element of V or its image in CI(V).

Now, T(V) is a Z,-graded algebra; let us set

To(V) = EB Ve Ty(V):= @ ven .

n even n odd
Thenv®v—{v,v)-1€To(V)and | = Jo + J1, where [; = [N T;(V), and
Cl(V)=Clp(V)® CLl1(V),
where Cl;(V) = T;(V)/];. Hence, C1(V) is a Z,-graded algebra.
Proposition 2.4.3. If V = V' & V" with (v’,v"”) =0 forall v’ € V', v"” € V", then
ClI(V) = CI(V") ® CI(V")
is its Clifford algebra.

The proof of this standard result can be found in, for example, [4, pp. 14-15]. Its
corollaries bridge the gap between our abstract construction of Clifford algebras, and the
motivation of generalising the complex numbers.

Corollary 2.4.4. Ifdimg V = nand {e1 . .. e, } is an orthogonal basis for V with (e;, e;) = A;0ij,
then dimg CI(V) = 2", and {H e]l.’} is a basis, where i; is 0 or 1.
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Example 2.4.5. Suppose V is 1-dimensional with basis {e}. Then CI(V') has basis {1, e},
because T(V) has basis {1,61,82, . } and | has a basis {62 —{e,ey-1,e3—(e,e)-e,.. }
Hence, CI(R) = C, as desired. The next result shows that C1(C) = H.

Corollary 2.4.6. Again, assume that {e;} is a basis for V and that {e;, ej) = —0;j. Then the
products in CL(V') are determined by the following relations:

* ciej = —eje;, for i # .

STRUCTURE MAPS ON CLIFFORD ALGEBRAS

We define structure maps on Clifford algebras, analogously to remark 2.1.1. Consider
a:Cl(V) - CI(V), induced by =1 : V — V; we have that alao(v) =+1,and alCh(V) =-1.
Further, define g : T(V) — T(V) by f(v1 ® --- ® v,) = v, ® --- ® v1. This is an anti-
automorphism, f(xy) = B(y)B(x), and induces g : CI(V) — CI(V) with |, = 1. Finally,
y = ap = pa: Cl(V) — CI(V) is an anti-automorphism such that y |, = —1.

Example 2.4.7.

* CI(R) has generators {1, i} with a(1) =1, a(i) = =i, (1) = 1, f(i) = i, y(1) = 1 and
y(i) = —i.

* The algebra H = CI(C) has a basis {1, i, j, ij = k}, with the action of a, 8, y given by
1
1
Bl1 i j -k
vl -

Note that for CI(R) = C or CI(C) = H, y is the usual conjugation map.

2.4.1 THE SeiN GrouUPS

We now posses the machinery to introduce the Spin groups. Let V = K" with (, )
the standard inner product, and construct its Clifford algebra CI(V) with respect to
—(, ). With {e;} the standard basis for V, we have the products e,e; for r < s in
Cl(V)—there are n(n — 1)/2 such products—and they span a Lie algebra with Lie bracket
leres, erey] = eresere, — ereyeres. By corollary 2.4.6, we have that

e if r,t,s,u are different, the bracket vanishes, and also forr = t,s = u;
e if r,t,u are different, [e,e,, ere, ] = 2e,e;.
We wish to see this Lie algebra as the Lie algebra of a Lie group.
Definition 2.4.8 (The Pin Groups). Pin(V) c CI(V) is the subset of elements x such that
* x(yx)=(yx)x =1, and
¢ the map nx : V — CI(V) defined by (nx)v = xv(fx) maps V c CI(V) into V.
Example 2.4.9. Pin(R) = {z € CI(R) | zz = 1,22 € R} = {1, +i}.

Proposition 2.4.10. The Pin groups satisfy the following properties.



2.4. CLIFFORD ALGEBRAS 27

* Pin(V) is a subgroup of the invertible elements of CL(V') and its Lie algebra is the one specified
above.

® Themap 1t : PIin(V)) — O(V), where O(V) is the group of K-linear maps V. — V preserving
—(, ), is a surjection with ker = {£1}.

e The closed subsets 7= (det ' 1) and m=(det™" —1) of Pin(V) are in Cly(V) and Cly(V)
respectively, and are connected for n > 2.

Proof. Itis straightforward to check that Pin(V) is a closed subgroup of invertible elements
of CI(V). We move on to showing that 7t(x) € O(V):

((nx)o, (nx)) = ((1x)0)*
= —xv(Bx)(ax)v(yx)
= —xvvY(x)
= (v, v)xyx
=(v,0),
where in the second line we used the fact that —(nx)v = —(ax)v(yx).
It is easy to see that 7t is a homomorphism; let us try to identify its kernel. Suppose that
x € ker . Then v = xvfx forall x € V, so vax = xv(fx)(ax) = xv; by the lemma below,

x must be a scalar. But xyx = 1,s0x2 =1 = x = +1 = kern C {+1}; since the
inclusion certainly holds in the other direction, we conclude that ker 7t is identically {+1}.

Lemma 2.4.11. If (, ) on V is non-singular and x € CI(V) is such that xv = v(ax) for all
v €V, then x is a scalar.

Proof of Lemma. Over K = R or C, we can diagonalise (, ) and choose a basis {e;} such
that (e;, es) = 6rsA,, with A, # 0. Then any x € CI(V) can be written as >;; A, Hj e]l.j,
where A; € K. Now, ¢, is invertible since eses = A5 # 0, so that if xe; = es(ax), we have

e;'xes = ax. But
;. -DZi[Te! ifi, =0,
es_l l_[(,’l./ es = ) ] ;. 'S
R (-0 Te) ifig=1,

while a([; e;j) =(-DZi[] e;j in all cases; thus xe; = esax if and only if A; = 0 whenever
is=1,i.e. Ay #0only for I = (0,0,...,0), so x is a scalar. QED

Next, we proceed to show that dn from the Lie algebra of Pin(V) N Clyp(V) to o(V)
is a surjection. The first step is of course to check that Pin(V) N Cly(V) is a closed
subgroup, but this is straightforward. Then, for r < s, (e,es)(eres) = —erereses = —1, so
x = el = cost + (eyes)sin t is defined for R or C. This means that

1

cos 2t —sin 2t

sin 2t cos 2t
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since

eu ifu#r,s,
cost + (eres)sint)e, (cost — (eyes)sint) =
( (eres) Jeu( (eres) ) {(c052t+(e,es)sin2t)eu ifu=r-s.

Thus nt(x) maps V to V, so x € Pin(V); in fact, x € Pin(V) N Clp(V). We see that
the K-multiples of e,e; lie in pin(V) N ¢lp(V) and map under dn to the K-multiples of
0

R (12(x))’|¢=0, which form a K-basis for o(V), the skew-symmetric matrices.

2 .
Hence, dnois surjective.

It follows from this that dm : pin(V) — o(V) is also a surjection; it must further be an
injection, since ker 7t is finite. Thus, the Lie algebra of Pin(V) N Cly(V) is really the Lie
algebra pin(V), and dm : pin(V) — o(V) is an isomorphism. As a consequence of this,
{eses|r < s} is a K-basis for pin(V).

Let us make the transition from Lie algebra to Lie group. Using exp and log, we
find that m maps a small neighbourgood of 1 € Pin(V) N Clp(V) onto the identity
component of O(V), i.e. onto SO(V). But {+1} is contained in the identity component
of Pin(V) N Clp(V) if n > 2, since cost + (ejez) sint for ¢t € [0, ] is a path from 1 to -1
in Pin(V) N Cly(V). Thus, 7~1(SO(V)) = n~(det™ (1)) is connected and contained in
Cly(V). To show that = !(det ! (~1)) is connected and complete the proof, it suffices to
produce an element in nl(det™}(=1)) multiplication by which will send nl(det (1)) to
7n~1(det™(~1)). The element e; will do, for one checks that it lies in Pin(V) and covers the
reflection diag(-1,1,...,1). QED

Definition 2.4.12 (The Spin Groups). We define Spin(n) as the subgroup nl(det™t1) =
Pin(V) N Cly(V). It comes with a homomorphism 7t : Spin(V) — SO(V).

Remark 2.4.13. Over R, the maximal torus in Spin(m), m = 2n or 2n + 1, is usually taken to
consist of the elements [];_, (cos % + (ez;-1€2y) Sin %) inCI(V), x, € R, which corresponds
to
cosxp —sinxg
sinx; CosXi
COsS Xy —sinxp
sinx, CosXx»

cos X, —Ssinxy,
sinx; COSXxy,

1

Here, row n + 1 has 1 as the last entry if m = 2n + 1, and is empty for m = 2n.

2.4.2 CLIFFORD MODULES AND REPRESENTATIONS

Since Spin(V) c Clp(V), any Clp(V)-module is a representation of Spin(V), and some
extremely important representations of Spin(#) arise in this way. We study these now.

Proposition 2.4.14. The algebras CL(V') and Cly(V') are semi-simple, so all their representations
are completely reducible.

Proof. Let{e;} be the standard basisin V = K™, and consider E = {J_r H;”zl e;j |ij=0or 1},

a subgroup of order 2"*! of CI(V), corresponding to the matrices diag(+1,...,+1) of
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O(m). In Clo(V) consider the subgroup Eo of 2" elements with }};i; even; we have
Eyp c E c Pin(V). Let v denote —1 € Cly(V) when considered an element of Eg, E or
Pin(V'); a module over CI(V) gives a representation in which v acts as —1. Conversely,
a representation of E in which v acts as —1 gives a module over K(E)/(v + 1) = CI(V),
where K(E) is the group ring over K of E. The representation theory of CI(V') can thus be
inferred from that of the finite group E, and in particular all representations are completely
reducible. We argue similarly for Clo(V), replacing E by Eo. QED

Proposition 2.4.15. If dim V is odd, m = 2n + 1, say, then Clo(V') has one irrep A of degree 2",
affording a representation A of Spin(2n + 1) with weights % (£x1 + x5+ - £ xy,); there are 2" of
these weights. If dim V = m = 2n, then Cly(V') has two irreps A, A~ of degree 2", affording
representations A*, A~ of Spin(2n) having weights § (£x1 + X3 - - £ x,,), with an even number of
— signs for A* and an odd number of — signs for A~; there are 2"~! such weights. If K = C, these
are complex-analytic representations of Spins(m).

Proof. By Schur’s lemma, v acts on any irrep as either 1 or -1. The ones in which it acts
as 1 are representations of Eo/(v), which is an abelian group of order 2”1, so there are
exactly 27! 1-dimensional representations of Eq in which v acts as 1. Since the kernel of
Eo — Eo/{v) has exactly two elements, the conjugacy classes in Eg are either one element
(if the element is central) or two elements +g. For Ey, the centre is {+1} if m = 2n + 1 and
{J_rl, + H%” ei} if m = 2n; we can see this as follows. If we conjugate g = [’ e;.j with e, e,
where i, = 1, iy = 0, we change its sign. So if ¢ is in the centre, g = +1 or tejey ... e,. The
latter is in the centre only for m even.

Recalling that the isomorphism classes of irreps (over C) of a finite group are in a
1: 1 correspondence with the conjugacy clasees, we see that Eg has one (resp. two) more
irreducible class(es) of representation(s) than Eqg/(v) if m = 2n + 1 (resp. m = 2n). Let
F C Ep be the subgroup generated by ejey,...,e2-1€2;,...e2,-1€2,. This is an abelian
group of order 2"*1 5o the index of F in Egis 2" if m = 2n + 1, and 2" ! if m = 2n.

Choose now a complex 1-dimensional representation W of F in which v acts as —1
and ey,_1¢y, acts as i€,, €, = +1, i = V—1. Then the induced representation IndlEOW is a
representation of Ey with degree 2" for m = 2n +1 and 2"1 for m — 2n, with v acting as
—1. It has a basis

2n+1 ji 2n+1 )

I1 e, with 2, jieven, if m=2n+1,
i=1 1

i odd

2n-1 . 2n-1

I1 egi with Y jieven, if m=2n.
i'odd !

When m = 2n + 1, there are 2" choices for W (because we have n choices for €,), Eg/F
permutes them transitively, and by conjugating with ey,e5,.+1, we can change the sign
of €, without changing anything else. Each choice appears once in Ind?’W. We thus
get a representation A of Eg with character 2" at —1, —2" at —1 and 0 elsewhere. By the
orthogonality relations (corollary 2.4.6), A is an irrep of Ey.

When m = 2n, there are 2" choices for W, and under E,/F they fall into two orbits:
those with [] €, = 1, and those with [] €, = —1. We can only change the sign of an even
number of €,, since conjugating with e, ez, ¥ < s, changes the sign of both €, and ¢;.
Hence we have one irrep of Eg which as a representation of F contains all the W with
€ := [] e, = 1, and another containing all the W with € = [ €, = —1. The character of
these representations is 2" 1 at1, =21 at -1, i"e at ]_[%" ej, —i"e at — ]_[%" e;, and zero
elsewhere. This is an irreducible character by the orthogonality relations, so these are
inequivalent representations. QED
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Remark 2.4.16. We calculate the weights of A for K = R as follows: the element

8 2mx 27X
l_[ (COS > L+ (Bzr_lez,,) sin > r)

r=1

of the maximal torus acts on A with eigenvalues

n
2 ) 2
l_[(cos 712xr + (iey) sin 222

r=1

and weights % Y.y €rXr, where €, = £1.

Definition 2.4.17 (Spinors). For K = C, the representations A, A* and A~ are called spinor
representations of the (complex) Clifford algebra.

Proposition 2.4.18. The representation A of Spin(2n + 1) is self-dual. The representations A*, A~
of Spin(2n) are self-dual if n is even and dual to each other if n is odd.

Proof. We have to prove the isomorphism in the various senses of M* with N, where
we write M, N for the spinor representations in the proposition statement. Consider
that by definition, Eg acts on an & in the dual representation M* = Homc¢(M, C) as
(gh)(m) = h(g7'm) for m € M; generalising this, we see that Cly(C™) acts on M* as
(ah)(m) = h((ya)m). From the discussion in the final two paragraphs of the proof of
proposition 2.4.15, it is clear that we have an isomorphism of the representations N
and M* of the finite group Eg, which is an isomorphism of the Clp(C™)-modules. But
Spin(m) c Clp(C™), so the isomorphism preserves the action of the elements of Spin(m),
provided this action is defined by (gh)m = h(g~'m), which is the usual action. QED

We now in fact have almost everything we need to discuss the Spin(10) grand unified
theory. But before we do so, we end this section by stating a technical result, required
to construct Eg (and also G, in the appendix). In particular, we need to understand
how the representations of the Spin groups behave under certain inclusions. To this end,
we first note that the inclusion K" < K”*1 induces an inclusion CI(K") — CI(K"+1),
so we get Spin(m) < Spin(m + 1) covering the usual map SO(m) — SO(m + 1), A —
(’8 9). We also have, by proposition 2.4.3, that CI(K?) ® C1(K7) = CI(KP*), which gives
Spin(p) X Spin(g) — Spin(p + gq).

Proposition 2.4.19.

(i) Under the inclusions
Spin(2n) < Spin(2n + 1) < Spin(2n +2),

we have
A+

e
~

A

AT+ A™ «—— A

(ii) Under Spin(2r) X Spin(2s) —  Spin(2r + 2s)
ATOAT+AT®AT A*
ATOA"T+A"®AT A~
The proofs of these inclusions are found in [4, pp. 23-24]. We will henceforth denote, as

we have here, the direct sum of vector spaces (and representations) by a simple + instead
of an @.
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2.5 TuEe Spin(10) ExTEnsioN oF SU(5)

Let us revisit the SU(5) theory. Viewed from a different light, the core idea behind the
embedding SU(2) x SU(3) — S(U(2) x U(3)), which subsequently split each irrep of SU(5)
into an isospin and colour piece (each twisted with hypercharge), can be stated as follows:
since the Standard Model representation is 32-dimensional, each particle or antiparticle in
the first generation of fermions can be named by a 5-bit code. Roughly speaking, these bits
are the answers to five binary queries.®

¢ Is the particle isospin up?
¢ Isitisospin down?

e Isitred?

¢ Isit green?

¢ Isitblue?

This binary code interpretation of the SU(5) theory requires the dimension of F + F to be
32, and this raises some questions, as we shall see now.

At the time of writing, there is no direct experimental evidence for the existence of
the right-handed neutrino, even though they are extremely desirable theoretically, as
they could account for several phenomena that have no explanation within the Standard
Model.® The right-handed neutrino vr has a direct bearing on our grand unified theories;
in particular, it presents a mystery for the SU(5) theory. SU(5) does not require us to
use the full 32-dimensional representation A*C°. It works just as well with the smaller
representation

A'C® + A’C° + AC° + A*C?,
which is less-aesthetically pleasing, and moreover, clearly does not allow for the existence
of vg. It would be nicer to have a theory that required us to use all of A*C5; better still,
if our theory were an extension of SU(5), our explanation for the arbitrary hypercharges
of the Standard Model particles would live on. The Spin(10) grand unified theory is an
attempt at such an extension; [30] and [33] are the original references for the same.

In proposition 2.4.15, we constructed the spinor representations for Spin(2n), A*, each
of dimension 2"~L. It is perhaps not immediately apparent from the somewhat technical
proof of that result, but these irreps are intimately related to A*C", and we will exploit this
fact to forge a path to the SU(5) theory.

Let V be a complex vector space with dim V' = 2n, equipped with the standard inner
product (, ). Write V = W + W/, where the W’s are n-dimensional isotropic spaces for
(, ).7 Infact, under (, ), we can simply take W to be spanned by the first n standard basis
vectors, and W’ by the last n.

Proposition 2.5.1. The decomposition V. = W + W’ determines an isomorphism of algebras,
Cl(V) = End(A*W).

Proof. We follow [32, p. 304]. Mapping CI(V) to the algebra E = End(A*W) is the same as
defining a linear mapping from V to E, satisfying the relation (2.4.1). That is, we must
construct maps ! : W — E and I’ : W' — E such that I[(w)? = 0 = I'(w’)? and

Hw)l'(w’) + I'(w")(w) = 2{w, w’), (2.5.1)

SThere are subtleties when we answer “yes” to both of the first two questions, or “yes” to more than one
of the last three, but we ignore this problem here; it has no bearing on our argument.

¢For thorough reviews of the current theoretical and phenomenological status of this elusive particle, see
[25, 85] and references therein.

"Recall that a space is isotropic when the chosen symmetric bilinear form restricts to the zero form on it.
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for any w € W and w’ € W’. To do this, we will “deform” the usual wedge product on the
exterior algebra (this is sometimes referred to as Clifford multiplication of forms). For each
weW,w € Wand & € A*W, define

lw(E)=w A&,
l;},(cf) =1lwé,

where 14 : AYW — AF1W is the usual contraction by w’; on a basis vector it acts as
k
Lo (W1 A - wy) = Z(—1)J+l<w',wj> WA ATA - AWy
=1

It is immediately clear that /> and I’? vanish on their domains, and it is a straightforward
exercise to check that equation (2.5.1) holds. Finally, one confirms that the resulting map
from CI(V) — End(A*W) is an isomorphism by computing it on a basis set. QED

The maps [ and !” are far more important than they perhaps appear. The first clue is
that if we extend them to all of V = C", they are in fact adjoint with respect to the inner
product induced on A*C" by (, ),i.e.forv € C", p,q € A'C",{p, l.q) = {I,p,q). Adjoint
operators are the bread and butter of quantum mechanics, so one might ask if these maps
have a physical interpretation; indeed, there is one readily available. In the parlance of
physics, particles are vectors, so I, = vA can be said to “create” a particle of type v by
wedging; analogously I}, = 1, “destroys” a particle of type v by contraction. In other words,
these maps return, for each v, the corresponding creation and annihilation operators. It is
customary to denote the n creation and annihilation operators corresponding to the n
basis vectors e; of C" by a’]*. and a; respectively, and we will do so below.

Consider now the splitting AW = A®Y*"W + A°4W into the sum of even and odd
exterior powers; Clo(W) clearly respects this splitting. Hence, we deduce that there is an
isomorphism

Clo(V) = End(A®"W) + End(A°9W) .

Restricting now to the case n = 5, we conclude that since Spin(10) C Clp(C19), the above
Clifford modules, i.e. the even- and odd-graded powers of the exterior algebra A*C>,
are representations of Spin(10). Moreover, by proposition 2.4.15, they are irreducible.
Elements of these two irreps, A" and A~, are called left- and right-handed Weyl spinors
respectively, while elements of their direct sum, A*C®, are called Dirac spinors.

We are tantalisingly close now to the Spin(10) grand unified theory; there remains but
one question. Does the Dirac spinor representation of Spin(10) extend the representation
of SU(5) on A*C>? Or more generally, does the Dirac spinor representation of Spin(2n),
which we will call p’, extend the representation of SU(n) on A*C"? Recall that this latter
representation p : SU(n) — A*C" acts as the fundamental representation on A'C" = C"
and respects wedge products. The result that we need is answered in the affirmative by the
following theorem, which appears in a classic paper by Atiyah, Bott and Shapiro, wherein
they also founded the abstract theory of Clifford modules [7].

Theorem 2.5.2. There exists a Lie group homomorphism 1 that makes this triangle commute:

SU(n) L} Spin(2n)

Sk

AC"
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Proof. We follow the proof as laid out in [8]. The connected component of the identity
in O(2n) is SO(2n); since U(n) is connected and U(n) < O(2n), it follows that there is
an inclusion SU(n) < U(n) < SO(2n). Passing to Lie algebras, we obtain an inclusion
su(n) <= so(2n). A homomorphism of Lie algebras gives a homomorphism of the
corresponding simply-connected Lie groups, so we now have a map 1 : SU(n) — Spin(2n);
we must check that it makes the above triangle commute.

Since all the groups involved are connected, it suffices to check that this diagram

su(n) L} so(2n)

R ldp, (2.5.2)

A C"

commutes. Since the Dirac representation dp’ is defined in terms of creation and
annihilation operators, we should try to express dp in this way. A good choice of basis for
su(n) will be extremely helpful in this regard: we pick the so-called generalised Gell-Mann
matrices. Let E jx denote the matrix with 1 in the jkth entry, and 0 everywhere else. Then
su(n) has the basis

Ejk_Ekj fOI‘j <k,
i(Ejx + Exj) for j > k, and
i(E]']'—E]'H,]'H) fOI‘jZl,...,Tl—l.
These matrices satisfy Ejx(e;) = 6x;, which is in fact how a;ak acts on A!C". So on this
space at least, we have the simple relations

dp(E]‘k — Ekj) = a;ak - a;u]- ’
dp(i(Ejk + ekj)) = i(a;ak - IZZIZ]‘) ’ (2.5.3)
dP(i(Ejj - Ej+1,j+1)) = i(”;ﬂj - ﬂ;+1ﬂj+l .

We claim that these hold on all of A*C". To see this, first recall that p preserves wedge
products:

p(X)(v Aw) = px)o A p(x)w ;

differentiating this condition, we see that su(n) must act as a derivation:
dp(X)(v Aw) =dp(X)v Aw +v Adp(X)w .

Since both the derivative and taking wedge products are linear, derivations on A*C" are
determined by their action on ALC"; hence, for equations (2.5.3) to hold on A*C", it suffices
to check that all the operators on the right hand side of the equation are derivations. The
annihilation operator is given by contraction, which acts like so on a wedge product:

aj(v Aw) =aj(v) Nw+ (=1)vAajw,
where p is the order of the tensor v; this is almost a derivative, but not quite. On the other
hand, the creation operators act in a completely different way:

a;(v Aw) = a’]fv Aw = (-1)’v A a’]fw ,

since a; acts by wedging with e;, and moving this through v introduces p minus signs.
This combines with the pervious relation to ensure that a;ak is a derivation for every

combination of j and k, as can be checked explicitly. Hence, dp can be expressed directly
as a sum of creation and annihilation operators. Checking now that the diagram 2.5.2
commutes is straightforward (though tedious). QED
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The homomorphism ¢ is precisely what allows us to extend the SU(5) model to
Spin(10), and makes this square commute

SU(5) —~—3 Spin(10)
)
ACS —=—— AT
From theorem 2.3.1 then, we have the final result of this chapter.

Theorem 2.5.3. Spin(10) is a grand unified theory, i.e. the following diagram commutes:

Gsm/Ze — Spin(10)

L

FOF —=—% A*C°



CHAPTER 3

THE E¢ GRAND UNIFIED THEORY

A grand unified theory based on the exceptional group Eg first appeared in a 1976 paper by
Girsey, Ramond and Sikivie [40]. The authors were motivated by the fact that E¢ has as a
maximal subgroup SU(3) x SU(3) x SU(3): they took these components to be, respectively,
the symmetry groups of the left- and right-handed quarks, and the colour group of the
quarks, and considered two assignments of this subgroup into a 27 dimensional irrep of
Es. We will not follow their treatment in this chapter, choosing instead to focus on the
following “cascade” of theories [11, 42, 48]:

E¢ — Spin(10) — SU(5) — Gswm -

We will first construct Eg and Eg in section 3.1 below. In the process, we will see how
the group Spin(10) X U(1)/Z4 arises naturally as a maximal subgroup of E, which will lead
us directly into the proof that E¢ extends the Standard Model in section 3.2. Thereafter, we
will analyse the new fermions that appear in the Eg theory.

3.1 Tue CoNsTRUCTION OF Eg AND Eg¢

We closely follow [4] in this section. Our strategy will be the following: to describe an
unknown group G, it is useful to find a known subgroup of maximal rank H C G and to
give an account of G/H.' The main theorem of this section is the following, the proof of
which will be in stages.

Theorem 3.1.1. There exist Lie groups G with subgroups H as specified in the following table.

G Rank Dim. Local type of H Rank  Dim. a/h as C Rep. Dim.

Es 6 78 Spin10)xU(1)/Zs 6 46 A" ®@&+A &S 32
Es 8 248 Spin(16)/Z; 8 120 A* 128

Here, & is the fundamental representation of U(1) on C.

Remark 3.1.2. We will see in due course that
(i) in Spin(10) x U(1)/Z4, the Z4 is generated by (H%O ej, ).
(ii) in Spin(16)/Z,, the Z; is generated by H%é ei, and

The first column we will fill is that of dim g/¥), proceeding thereafter to find groups which
have the required representations of these dimensions. We begin with the construction of
the Lie algebra of Es.

1See the construction of G; in the appendix for a prototypical example.

35
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THE CONSTRUCTION OF A L1E ALGEBRA OF TyPE Eg

For Eg, there is no representation of smaller degree than Ad, so let us use this fact. Take
L + A", where we denote spin(16) = L, and consider this simultaneously over R and C; its
degree is 120 + 27 = 248, as required.

For a while we can work with Spin(2n); let us try and define a suitable inner product
on its Lie algebra L. By proposition 2.4.10, L c Cly(V) has a basis {e;es | ¥ < s} and
A" is a representation of Spin(2n), and hence of L over R, i.e. foralla € L, u € A",
we have [a,u] € A" satisfying the Jacobi identity, where the multiplication is Clifford
multiplication. Assume now that 2n =0 mod 8 and consider A* as a real representation
of Spin(2n). Choose (, )a+ : A* ® A* — R, a symmetric bilinear non-zero map, invariant
under Spin(2n), i.e. (gu,gv) = (u,v) for g € Spin(2n), u,v € A*; the linearised form
of this invariance is ([a, u],v) + (u,[a,v]) = 0. Since Spin(2n) is the double cover of
SO(2n), we have L = spin(2n) = so(2n), which is the space of skew-symmetric matrices;
on matrices the form (A, B) = tr AB is symmetric, bilinear and real on real matrices. The
invariance property for X € GL(2n) is tr XAX !XBX™! = tr AB; if we set X = Id + tY
and pass to the limit, we obtain the linearised version: tr ([Y, A]B + A[Y, B]) = 0; hence
([Y,A], B) + (A, [Y, B]) = 0. Under this identification, e,es corresponds to the matrix with
all entries zero except in positions (r, s) and (s, r) where we have respectively —2 and 2, as
we saw in proposition 2.4.10. This gives (e,e;, e,e5) = =8, so to remove this undesirable
factor, we set

(A,B)L = —% tr AB

so that (eres, erey)r = 0,4054. We now transpose the action L ® A* — A" to get a map
ATQAT — L.

Lemma 3.1.3. Forall u,v € A*, there is a unique [u, v] € L such that (a, [u,v])L = ([a, u], v)a+
forall a € L and [u,v] is bilinear in u, v. Furthermore, if v, w € C ® A" are such that

1 n
€2g-1€240V = 10 forall q (corresponding to a weight 5 Z Xi ),
1

1 n
exg-12qw = —iw forall q (corresponding to a weight ) Z xi),
1

and (v, w) = 1, then
(i) [v,w] =1i(e1e2+eseq + -+ - ean-1€21);
(ii) [exge2r0, w] = (e29-1 + i€2g) (271 + i€2r), g < 7;
(iii) [eag €24, """ €24,,0, w] =0ifm > land q1 < q2 < -+ qom.

Proof. Clearly, ([a, 1], v)a+ is a linear function of 4. Since the inner product on L is non-
singular, we must have ([a, u], v)a+ = (a, ), for some b = [u,v] € L. Since ([a, u], v)a+
is bilinear in u and v, so is b. We proceed to derive the explicit formulae. All the inner
products in the following are over A*.

(i) First we have (ez5-1e250, w) = (iv, w) = i and (e,esv, w) = 0 if e, es is not one of the
basis elements ey;-1€24. Thus [v, w] is paired to 7 if a = ez;-1e24 and to 0 for all the
other basis elements.

(ii) For simplicity of notation, consider [eze4v, w]. Then (e,ese2e4v, w) = 0 except when
(r,s) =(1,3),(1,4),(2,3) or (2,4), when we get respectively 1,i,i,—1. This yields
[exeqv, w] = e1e3 + iereq + ienes — exeq = (e1 + iep)(es + ieq), as desired. (Notice that
e2e40 has weight %(—xl — X2 + X3 + - + x,,) while w has weight %(—xl — - —Xy) SO
that [eze4v, w] must have weight —x1 — x,. In fact, e + ie; has weight —x1 and e3 + iey
has weight —x5.)
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(iii) It suffices to note that forall e;es, r < s, we have (e,eseaq €24, * - - €245, v, w) = 0. QED

Remark 3.1.4. Note that the map [ , | : A* ® A~ — L is invariant under Spin(2n)
because everything in the construction is invariant under Spin(2n). The linearised form of
invariance, i.e. invariance under L, is

la, [u,v]] = [[a, u], 0] +[u,[a,0]];

this is established as follows. It is sufficient to show that forallb € L,

(_b/ [ll, [M, U]])L + (b/ [[ll, u]/ v])L + (br [M, [ar U]DL

is zero. This expression, using the invariance of (, );, under L and the definition of [u, v],
is equivalent to

([al b]/ [M, U])L + ([b/ [ﬂ, M]], U)L + ([bl u]l [Cl, U])L ;
the invariance of (, )a+ means that this in turn can be written as
([[ﬂ, b]/ M], U)A* + ([br [61, u]]/ U)AJ’ - ([ﬂ, [b/ I/l]], U)A+ =0,
where we used the properties of the action of L on A™.

We now proceed to give L + A* the inner product with L and A" orthogonal, and
(@+u,b+0)=(a,b)L+(u,v)

foralla,b € L and u,v € A*. The Lie bracket [a, u] is as in L; [a, u] as the action of L on
A* satisfies [u,a] = —[a, u], and [u, v] as in 3.1.3.

Theorem 3.1.5. If2n =16, L + A* becomes a Lie algebra with an invariant inner product.

Proof (Sketch). The inner product is invariant under L by definition, and under A* by the
definition of [u, v]. We need to prove anti-commutativity and the Jacobi identity.

Clearly, [a, b] = —[b, a] since L is a Lie algebra, and we define [u, a] to be —[a, u]. To
see that [u, v] = —[v, u], observe that foralla € L, u, v € A*, we have

(Ll, [1/[, U] + [U/ u])L = ([a/ u]/ U)L + ([Ll, ’0], u)L
= ([a, u]/ U)L + (I/l, [El, ZJ])L
=0,

where the penultimate equality follows from the symmetry of (, )1, and the last one from
the invariance of (, ); under L. Since this is true for all a, we have [u, v] + [v, u] = 0.
For the Jacboi identity, there are several cases that need to be discussed

e Three variables in L, none in A*. The identity will hold here since L is a Lie algebra.

e Two variables in L, one in A*. We have [[a, b], u] = [a, [b, u]] — [b,[a, u]] = 0. Thus
[a,[b, u]] + [u,[a,b]] +[b,[u,a]] =0.

® One variable in L, two in A*. Here, by the invariance of the bracket under L,
[a,[u,v]] = [[a, u], v] + [u, [a, v]], which leads to the Jacobi identity.

¢ All three variables in A*. This is where one needs the fact that n = 8. Reference
[4, pp. 40-42] argues this case in full detail, setting down a general procedure for
checking identities of this type by using symmetry. QED
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THaE CoNsTRUCTION OF A L1 GrRouP OF TyPE Eg

Our construction of the simple, connected, compact Lie group with Lie algebra of type Eg
proceeds according to the following steps.

(i) Take the Lie algebra L + A* (over R or C).

(ii) Take the group of automorphisms of this Lie algebra; this is closed subgroup of
GL(L + A*) preserving the Lie bracket.

(iif) Take the identity component and call it Eg. (In fact, the result of step 2 is already
connected.)

All our constructions are invariant under Spin(16), over R or C, so we get a map
Spin(16) — Aut(L + A*), and since Spin(16) is connected, we get a homomorphism into
Es. To find the kernel, note that eje; - --e16 € Spin(16) acts as i =1 on A*. Tt covers
~Id € SO(16), so it acts as —1 on R!® but it acts as 1 on L. Therefore it acts as 1 on
L + A*. This and the identity are the only elements which actas 1 on L + A*, so we get an
embedding Spin(16)/Z, — Eg. We now check that Eg has the required properties.

Let A be a finite dimensional algebra over R or C (for example, a Lie algebra) and let
Aut(A) be the group of automorphism of A, that is, linear bijections a : A — A such that
a(ab) = a(a)a(b). Then Aut(A) is a closed subgroup of GL(A), hence a Lie group.

Definition 3.1.6. A linear map 6 : A — A is a derivation if 6(ab) = (6a)b + ad(b).

The commutator [, 8] is a derivation if 6 and ¢’ are, so the derivations form a Lie
algebra, der(A). We then have

Lemma 3.1.7. The Lie algebra of Aut(A), aut(A), is the algebra of derivations of A.

Proof. First we show that aut(A) c der(A). To see this, take a short curve in aut(A),
ay = 1+ pt starting at the identity. Then a(ab) = a;(a)a;(b), which gives us y(ab) =
y(a)b +ay(b), so y € aut(A) is a derivation.

For the reverse inclusion, consider a derivation 6 : A — A; we have (by induction) the
standard formula 6" (ab) = ¥ =, (7)(6'a)(6/b). Definenow a; : A — Aby a; = Y7 Lon.
Then

it .
aifab) = ) g (0'00/) = (aa)(aib)
)
so a; € Aut(A), and the tangent vector to a is 6 € aut(A). QED

The most familiar example of a derivation is the map ad.(y) = [x, y] for x € A. Itis
easy to see that we further have the formula [ad,, 6] = ad,s for 6 € der(A). The next result
says that ad, is an isomorphism if the Killing form is non-degenerate.

Lemma 3.1.8 (Zassenhaus). If A is a Lie algebra with non-degenerate Killing form, then its
algebra of derivations is A.

Proof. To see that ad, is injective, suppose that ad, = [x,y] = 0 for all y € A. Then
[w, [x,y]] =0forall y,ie.[w,[x,-]] is the zero function, so tr[w, [x,-]] = (w, x)x = 0 for
all w. This implies that x = 0, as the Killing form is non-degenerate.

To prove that ad, is surjective?, let us first identify ad, with x, and so extend the Killing
form from elements x to derivations. Now fix a derivation §; the linear map x + tr(ady)o
is a then a linear mapping of A into C, i.e. an element of the dual vector space A*; since (, )k

2We follow [52, p. 74].
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is non-degenerate, it follows that there exists an element d € A such that (d, x)x = tr(ady)o
forall x € A. Let us denote d := 6 — ady. Then,

tr(ady)d = tr(ady)d — tradyady; = tr(ady) o6 — (d, x)xk = 0.
Now consider, for x, y € A,

(xd, y)x = trad,yad,
= tr[ady, d]ad,
= tr ((adyx)dad, — dadad,)
= tr(dad,ad, — dad,ady)
= trd[ad, ad,]
=trdady, =0,

by the above result. Since (, )k is non-degenerate, this implies that d = 0; hence 6 = ady
for some d € A. QED

Lemma 3.1.9. The Killing form on L + A* is non-singular: indeed, (x, y)x = —240(x, y).

Proof. Both (, )x and (, ) are invariant under Spin(16) and L and A* are irreps of Spin(16)
which are not dual to one another. We can defineamap f : A — A, where A = L + A",
by (x, y)x = (fx,y) for all y € A; A splits as a sum of eigenspaces of f invariant under
Spin(16). Thus (a + u, b+ v)x = A(a, b) + u(u,v). But(, )x and (, ) are invariant under A
and A is an irrep of A, for the only possible subspaces closed under L are L and A* and
they are not closed under A*. Thus A = p.

To find A, we calculate (ejez, e1e2)x = tr(z +— [e1ez, [e1e2,2]]) = tr(0),say. Now

from lemma 3.1.3, we have [e1ep, e1e2] = 0, [e1e2, e1e,] = 2eze,, [e162, €2¢,] = —2e1e, and
[e1e2,ere] =0for2 < r <s. So d(erex) =0, 6(ere;) = —4erer, O(exe,) = —4ezer, O(eres) =0
and tr; 6 = —112. On A" the action is Clifford multiplication, so [e1ez, [e1e2, u]] =
e1epe1ex = —1u, so tra+(0) = —128 and we have try(0) = —240. Hence A = —240 since
(6162, 6261) =1. QED

Corollary 3.1.10. With the above constructions, es = L + A™.

Proof. Immediate from the preceding three lemmas. QED

THe CONSTRUCTION OF Eg¢

The map Spin(10) x Spin(6) — Spin(16) gives

Spin(6) —— Spin(10) x Spin(6) —— Spin(16) —— Eg

|

SU@B3) —— U(B) —— SO(6)

Consider the centraliser® of the image of this SU(3) in Eg; we will call its identity component
E¢. Note that since the identity component of a topological group is a closed (and normal)
subgroup, the group obtained, Eg, is automatically compact. We proceed to check that it
has the subgroup of type Spin(10) X U(1)/Z4, as claimed in theorem 3.1.1.

Consider the diagrams

Spin(10) x Spin(6) — Spin(16) — Eg

3The centraliser of a subgroup S C G is the set of elements in G which commute with S.
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and
(z,8) S x SU(3) > Spin(6)
(z%,8) S x SU(3) —— U(3) — SO(6)

where the maps are the obvious ones.* We have Spin(10) x S' x SU(3) — Spin(16) — Eg
where Spin(10) x S! centralises the (image of) SU(3) in Es. It remains to identify the kernel
of Spin(10) x S! — Eg.

The kernel of Spin(16) — Eg is Z, generated by eje; - - - e16 and the kernel of Spin(10) x
Spin(6) — Spin(16) is Z, generated by (-1, —1). Thus ker(Spin(10) x Spin(6) — Eg) has
four elements, generated by (e; - - - €19, €11 - - - e16) and (=1, —1), so this kernel is Z4. To see
that all four elements lie in S!, note that S! is the image of t > (cos t + (eq1e12) sin f)(cos t +
(e13e14) sint)(cos t + (e15e16) sint), and for t = /2, ,37/2, this image goes through
ej1e12 - - - e16, —1, and —eqqe12 - - - €16 respectively, corresponding to the points i, -1 and —i
of S! in C. This completes the check of subgroups mentioned in theorem 3.1.1.

IDENTIFICATION OF ¢

Call the subgroups Spin(10) x U(1)/Z4 and SU(3) H and K respectively.> We know that
eg = spin(16) + A* as a representation of Spin(16), and we have a subgroup H x K mapping
into Spin(16). We wish to determine the centraliser E¢ of K in Eg, so we write ¢g as a
representation of H X K, and take the part fixed under K. This is ¢s, and we regard it as a
representation of H.

When we restrict from Spin(16) to Spin(10) x Spin(6), spin(16) restricts to spin(10) +
spin(6) + A%O ® Aé, where we have introduced the notation A} := A'(K"). We can see this
as follows: since Spin(10) is the double cover of SO(n), it shares its Lie algebra so(n), the
skew-symmetric n X n matrices; hence, s0(16) can be decomposed into a block-diagonal
s0(10) + s0(6) plus a leftover 10 x 6 block, which is isomorphic to A%O ® Aé. On the other
hand, A* restricts to A* ® A* + A~ ® A~ by proposition 2.4.19.

Recall that we defined & to be the fundamental representation of S =U(1). Then, on
restricting Spin(6) to S! x SU(3) under our map S' x SU(3) — Spin(6), we find that spin(6)
restricts to® 1(1) + su(3) + (£* ® A% +&4® A;’). By looking at weights, we see that A*, A~
and A/ restrict respectively to & @1+ &1 QAL EP @1+ E@AJand E2 @ A + E2 @ AS.
Putting this all together gives

eg = spin(10) + u(1) + su(3)
+EOANHETOAH AL ®ALH AL ®ETPRA]
+ATRERI+ATRETRA+AT®ETR®I+AT®ERAS,
where ¢ is the part on which SU(3) acts trivially:
6 = spin(10) +u(1) + (AT @ 2+ A" ® E79).

This completes the proof of theorem 3.1.1.
Finally, note that we have a map E¢ X SU(3) — Eg, so we may consider ¢g as a
representation of E¢ X SU(3). Regarded thus,

g = +suB)+(EH+ AR E+ATREN @A+ (EP+A®ET+HA ®E)BAS;
4In proposition A.1, we show that Spin(6) = SU(4).

50ur strategy here is as in the proof of theorem A.5.
¢The roots of Spin(6) which are not roots of S L% SU(3) are +(x; + x ]-).
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this leads to a result of paramount importance for us.

Corollary 3.1.11. Eg has two representations, whose restrictions” to Spin(10) x U(1) are respecti-
vely E4+ A @ E2+ AT @& and &+ A{,® E72 + A” ® &. These are of degree 27 and complex
conjugate.

3.2 THEe E¢ ExTENsION OF Spin(10)

We only need a few more things to be able to write down a theorem for E4 as a grand
unified theory. Firstly, we have not shown that the above 27-dimensional representations
of E¢ are irreducible. This is in fact the case, but the proof of this result is unfortunately
quite involved, and we will omit it in this paper; the interested reader is referred to [4,
Ch. 11].

The second thing that we need to check is that these representations, call them N and
N, are unitary. This seems problematic, since we have no direct description of them; the
only thing we know is their dimension, and how they reduce to Spin(10) x U(1) — Eg.
Fortunately, there is a way to circumvent this difficulty. We have used several times already
that an equivalent charecterisation of a unitary representation V of a group G is the
requirement that the action of G on V' is an isometry—indeed, this is sometimes taken to
be the definition; with this in mind, we have the following handy result, often referred to
as Weyl's unitarian trick. It requires the notion of a Haar measure, which we do not define
here; see [19, Ch. 1.5].

Proposition 3.2.1. Any representation V of a compact group G possesses a G-invariant inner
product.

Proof (Sketch). Let b : V X V — C be any inner product, and define

c(u,v):= /G b(gu, gv)dg,

where the integral is normalised. c : V X V — C is then linear in u, conjugate linear in v,
G-invariant since the integral is left-invariant, and positive definite since the integral of a
positive continuous function is positive. QED

N + N endowed with this natural E¢-invariant inner product is thus a direct sum
of unitary irreps of the compact group Es. To extend theorem 2.5.3 and prove that
Es is a grand unified theory however, we need to check something still further: we
need a homomorphism A* + A~ — N + N as unitary representations of Spin(10) and
Eg respectively. But since Spin(10) < Spin(10) x U(1) — Es, and we know how N + N
restricts to Spin(10) x U(1), it suffices to produce a homomorphism between A* + A~ and
these restricted representations. But first, let us run through our usual checklist: the
restricted representations, as the direct sum of irreps, are clearly irreps. Are they unitary?
(i) £ was defined to be the fundamental representation of the unitary group U(1), so
there is nothing to check here. (ii) From proposition 2.5.1, the spinor representations
can be seen to be unitary: recall that these are defined via the creation and annihilation
operators, which are adjoint; we therefore have (I11,)(y) = 1,(v A ¥) = 1d¥, so this is

"We use the word “restriction” here a little loosely. What we mean is that we obtain a representation on
Spin(10) x U(1) as it is homomorphic to the subgroup Spin(10) x U(1)/Z4 of E¢. We will pick up this point in
the next section.
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indeed a unitary representation. Lastly, (iii) Spin(10) x U(1) > (s, u) acts unitarily on the
complex representation A%O ®&>5a®p,bRg:

(s ~a®u~p,s-b®u~q>,\%o®5z = (s-a,s~b>A%O(u-p,u-q>5z
= <a/ b)A}()(p/ q>§2
= <a ®p,b ®q>A}O®£2 7

where we simply used the definitions of the tensor product of representations and Hilbert
spaces, and the fact that Spin(10) and U(1) are each isometries on these representations.
So, (i), (ii) and (iii), together with the fact that the tensor product of unitary representations
is again unitary, means that we are done, and can write down the following commuting
diagram:

Spin(10) ~——— Spin(10) X U(1) ——— > E¢

| | !

AT+ A" — (AT®EN+ (A 8+ —3> N+N

We have but one final check. Recall that the homomorphism Spin(10) x U(1) — Eg has
the kernel Zy; it is hence incumbent on us to verify, just as we did for the SU(5) theory, that
this kernel acts trivially on every fermion. Explicitly, the four elements of the kernel are

{k1, ko, k3, ky} := {(1 1), (H1 ej, 1),(-1,-1),(- H1 €j,— 1)}

let us begin with the easiest pieces of the restrictions of N and N. For £ and &%, there
is nothing to check for Spin(10), and since the U(1) components of the k;’s are precisely
the fourth roots of unity, they do in fact act trivially. Now what about the representations
AT ® &1 and A~ ® £? The elements k; and k3 clearly act trivially. For kpand k4, recall the
construction of the spinor representations in proposition 2.4.15: we saw there that Hl e;j
acts as ([] €,)i%, where [] €, = +1 for A* respectively; coupling this with the fact that the
U(1) components act as i*1 means that ky, for example, acts on A* as i°®i1 =1. The
other three cases work out just as easily. The final representations we need to consider are
A7, ® &2, where Spin(10) acts by conjugation. Once again, k1 and k3 pose no problem. To
tackle k; and k4, we will need the following

Claim 3.2.2. Hl ej € Spin(2n) acts on v € A;n as v +— —0.

Proof. This is a direct computation. Since Clifford multiplication is linear, it suffices to
show this for v = e, for some 1 < k < 2n. Consider then

(e1---e2n) - ex = (e1- - ean)ex(er -~ e2n) ™
= (=" Fer- - eex exsr - ean(—e2n) - (=exsn) - (~en)
——
-1 1

= (12" ey - e (—ex)(—ex-1) -+ (—e1)
= (1" =D (—er) e1 - epa(—exo1) - (—en)

1
— QED

Thus, ky acts on A%O ® &2 as (—1) ® i = 1; the other cases are similar. We conclude that
the kernel Z4 does indeed act trivially on all the fermions in the E¢ theory. By theorem
2.5.3 then, we can write down
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Theorem 3.2.3. Eg is a grand unified theory, i.e. the following diagram commutes:

Gsm/Z¢ — Ep

L

F+F——3%N+N

3.3 THE NEw FERMIONS

We are now in uncharted territory: this latest extension of the Standard Model has, for
the first time, yielded new particles. We started with a 32 dimensional representation
F & F of all the standard model fermions, and found that they fit exactly into the irrep
A*C® of SU(5); this was in turn shown to be isomorphic to the spinor representation
A* + A~ of Spin(10). But now, we have added a significant number of dimensions: N & N
is 27 + 27 = 54 dimensional, which means that we have 11 new fermions and antifermions.
How can we understand them?

Let us think again about the SU(5) grand unified theory. There, we matched irreps,
one by one, of SU(5) and Ggy; this perhaps obscured the fact that the particles of the SU(5)
theory as such, are not characterised by the Gsy charges. Said another way, if we lived in a
universe governed by an unbroken SU(5) theory, there would be no need to think of the
Standard Model charges, in the same way that the representation theory of the strong force
is remarkably simple because its symmetry group SU(3) is unbroken at the vacuum. But
more often than not, we find ourselves in the opposite situation, and so out of necessity,
we characterise particles based on how they transform under the broken symmetry of
our vacuum, Ggy. In short, to understand these new fermions, we need to think about
symmetry breaking, and in particular, we need to understand what charges they carry
under Ggp1.

Happily, one can see a whole lot at the level of representation theory, without venturing
into the (complicated) dynamics of symmetry breaking; indeed, without saying so explicitly,
we have laid most of the groundwork. Consider again the irrep matching of the SU(5)
theory, equation (2.3.1). Once we confirmed that that Z kernel of ¢ : Gepy — SU(5) acted
trivially on F, matching irreps was precisely the act of understanding how the SU(5)
symmetry broke down to a Ggym theory. In much the same way, theorem 2.5.2 was the
attempt to see how Spin(10) broke to SU(5). In both cases, we had no need for any new
charges; with Eg, the situation is different. The proof that E¢ is a grand unified theory
rested on the inclusion Spin(10) < Spin(10) X U(1) — Eg¢, so a new U(1) charge seems to
be demanded by the mathematics; let us denote it with U(1)" to differentiate it from the
U(1) of electromagnetism. Then since we have no obvious reason to not do so, let us simply
declare that each particle now carries the U(1)’ charge Q’ dictated by the superscript of
the & representation to which it belongs. For example, the particles which live in the
representation 1 ® &~ of Spin(10) X U(1)’ will carry a charge Q’ of —4.

The ease with which we able to incorporate a new symmetry into our theory should
not obscure the fact that this has huge physical implications: if this U(1)’ symmetry were
to remain unbroken at the vacuum, this would imply the presence of a new force (similar
to electromagnetism) mediated by a hitherto unobserved massless boson (akin to the
photon). No such force has been detected to date, so let us take this into account and posit
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the following cascade of theories:

Gsm/Ze — SU(5) x U(1) ——— Spin(10) x U(1Y —— Eq

| ! ! |

F+F4+ - —=3 AN'CP°Q®Q ++ —3 A*@ET+A ®E+--- —3 N+ N

Following the discussion in the previous paragraphs, we have introduced here the notation
A*C® ® Q’ for the extended SU(5) theory? to indicate that the particle representations are
now tensored with an additional £9'; for the left-handed electron for example, we would
write e, € A*CP ® 71, since in the Spin(10) theory, e; lives in A*, and this is now tensored
with &1, In fact, it should be clear that this analysis works for all the Standard Model
fermions: we know already which Weyl spinor representation they live in, so it is a simple
matter to assign to them a Q’ = ¥1, according to whether they are in A*, respectively.

The first legitimately new particles appear in £4, but these are easy to understand since
they do not transform in any group other than U(1)". Hence, at the level of SU(5) x U(1)’,
we can simply state that they are the sole elements of the one-dimensional representations
1 ® &**; under this assignment, they would be antiparticles of each other, and not interact
with any of the Standard Model particles. We will return to this interesting point in section
4.3.

The representations A, ® &*2 will take the most work to sort through. Clearly, the
first step is to understand how the Spin(10) representation A%O breaks to SU(5). We make
the following

Claim 3.3.1. Under SU(5) < Spin(10), the representation A%O restricts to Aé + Aé, where SU(5)
acts on the former as its fundamental representation, and on the latter as the complex conjugate
thereof.

The proof of this will be in stages. The first thing we will do is to ask whether it suffices
to consider the same question at the level of Lie algebras, since in that case we have the
explicit embedding (and corresponding eigenvalue problem),

T: su(n) —— s0(2n) = spin(2n)

(3.3.1)
Ay +iAy — (_A/;Z ﬁj) ,
where Aj and A are real n X n matrices such that A{ =-Aq, Ag = Aj,and tr A, = 0. The
result that we will need comes from a classic query in the theory of representations: can
every representation of the Lie algebra of a Lie group be associated with a representation of
the group itself, where we moreover require that the differential of the group representation
returns the one of the algebra? The answer turns out to be in the affirmative in the case
where the Lie group is simply connected [87, p. 105], which works out nicely for us since
both SU(n) and Spin(2n) are indeed simply connected: Spin(2n) is simply connected by
virtue of being the universal cover of SO(2n); for a proof for SU(n), see [92].

Now as we saw above, Spin(2n) acts on A} . by conjugation; the differential of this action
is the commutator, X - v = [X, v], for X € spin(2n), v € A;n. Note that the multiplication

8Masiero’s paper [63] considers some of the phenomenological implications of such an extension to the
SU(5) theory. The article by King [54] is a general reference for extended SU(5) theories. Some of these
extensions are still viable as grand unified theories [1].
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on the right hand side of the equation is Clifford multiplication, where we canonically
embed both A} = C?>" and

s0(2n) = spin(2n) = span {ereS eClC™)|1<r<s< 2n}
into C1(C?"). How do we now relate this to our other embedding, (3.3.1)?
Lemma 3.3.2. For X € s0(2n) and v € C?",
X-v=[X 0],

where the on the left we have the standard action of so(2n) on C*", and on the right, Clifford
multiplication.

Proof. As with all linear algebra results, it suffices to check this on a basis. As we have
seen, a natural one for so(2n), the space of skew-symmetric matrices, is

{ers=Esr—Er5|1Sr<S§2n},

where E, is the 2n X 2n matrix with 1 in the rs entry, and 0 everywhere else. We have, for
ej a standard basis vector of C2n,

€rsej = Ojres — Ojser .

From proposition 2.4.10, the isomorphism between spin(2n) and so(2n) is given by
eyes = 2€,5; we thus compute,

[ers, 6]] = S[eres, 8]]

N -

= E (er(—26js - 6]'65) - (—26]7 - erej)es)

1
=3 (26jres - 25]'ser)

= eyse]' . QED

Therefore, we now have an honest-to-goodness eigenvalue problem for the matrix
( _AA12 ‘2? ) € spin(2n). A quick calculation shows that the two n-dimensional eigenspaces of

this matrix are spanned by (u, +iu), u € C":

Al A u _ (A1 + iAz)u - .
(—A2 Al) (iiu) - ((iiAl % Apyu) = A=A,

whence we conclude that SU(5) < Spin(10) does indeed act as its fundamental repre-

sentation (resp. complex conjugate fundamental representation) on Aé (resp. A_é). This
completes the proof of claim 3.3.1.

We are almost done. The last step we must make is to understand how the Aé and A_})
of SU(5) break down to Gsym/Ze so we can assign the Standard Model charges to these
particles; but this is easy. Indeed, the homomorphism from before,

¢: Gy — SUG),

a’g 0
(Dé,g,h) — ( 0 Oé_zh)
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contains all the information that we need. We can just read off the restricted representations
(recall that because of how the hypercharge representation Cy was defined, we have to
divide the exponent of « by 3):

SU(5) ——3 (U(1) x SU(2)) + (U(1) x SU(3))

| |

Al ——— (C1®Cy) + (Cy3 0 C3)

Let us consider a quick example to see how we might catalogue these particles: to the
particles in the C; ® C? doublet of U(1) x SU(2), we would assign as usual the isospins
+1/2, and they would each carry a hypercharge Y of 1. In addition, at the level of the
SU(5) theory and beyond, they would carry a new Q' = +2, according whether the Az

came from the Al ® £*2. Finally, we note that for the (antiparticle) representation A, one
simply passes to the complex conjugate of the representation on the bottom right of the
commuting diagram above.

We summarise all of the information in this section in table 3.1.° The hypercharge
Y therein gives the corresponding Standard Model U(1) representation Cy; only the
doublets (and hence the particles with non-zero isospin) transform in SU(2); the SU(3)
representations are written down explicitly. The electromagnetic charge Q can be obtained
from the Y and I3 columns via the NNG formula. The Q’ column gives the corresponding
U(1) representation that should be tensored with the representations of Gsy, SU(5) or
Spin(10). Finally, the corresponding table for N is easily obtained from this one by passing
to the dual representations and taking the opposite charges throughout.

9Up to the sign of Q’ (he chooses the opposite convention), we have reproduced Table 21 in [81], for
example.
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Table 3.1: Particles in the Representation N of Eg
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CHAPTER 4

AsPECTS OF PHENOMENOLOGY

As mathematically interesting as grand unified theories are, they are ultimately statements
about the real world. So in this section, we pose the following question: at the level
of group (representation) theory, what can we say about the phenomenology of these
theories? Clearly, a healthy amount of physics is required to motivate and supplement any
such discussion, but the aim is to stay as close to mathematics as possible; the relevant
physics is introduced where necessary.

In the first section, we discuss a proper prediction of grand unified theories, the
weak mixing angle, which has a simple closed formula in terms of the eigenvalues of the
intertwining operators I3 and Q. Following this, we will discuss anomalies, which are
not so much a phenomenological prediction as they are a basic physical requirement on
unification groups. They have a rather nice interpretation in terms of a certain Casimir
operator on the Lie algebras of said groups, so this issue is completely reduced to a
mathematical property that we can understand fairly easily, given the machinery we have
already built. Finally, section 4.3 functions as something of a survey section, where we
consider other expected signatures of the Eg theory, and discuss its outlook.

4.1 Tue WEAK MIXING ANGLE

One of the unambiguous predictions of grand unified theories is the weak mixing angle
or Weinberg angle, which we have already encountered in section 1.2.3. Recall that
equation (1.2.1) offered a rather geometric interpretation of this angle, as the parameter
that characterised the rotation of the W° — B boson plane after symmetry breaking; it can
also be written in terms of the gauge couplings ¢» and g1, of the SU(2) and U(1) groups of
the electroweak theory respectively, as

2
87
5

8T+

sin’ By = (4.1.1)

In 1974, Georgi, Quinn, and Weinberg derived a formula for the weak mixing angle 0.,
in grand unified theories [37]. The only assumption that they needed in the proof thereof
was that the U(1) x SU(2) group of the electroweak theory is embedded in the grand
unification group G in such a way that the NNG formula still holds. We have assumed
this throughout, so this theorem is applicable to all the grand unified theories we have
analysed; let us hence state and prove their result.

Theorem 4.1.1. Let R be some fermion representation of the unification group G. Then the weak

49
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mixing angle is given by

2, 5

fermions

2, @

fermions

sin® Oy, =

Proof. We follow the lecture notes of Bjorken [16]. The WP = 2[5 and B bosons, appropriate
to the broken SU(2) and U(1) theory, are gauge bosons of the full gauge group G; the
coupling of W to any fermion is proportional to I3, and the coupling of the B boson is
proportional to the hypercharge Y. Because W° and B are both gauge particles for the
group G, we must have, for any representation of G,

Z 2= Z Y2, 4.1.2)

fermions fermions

since there is a symmetry operation of the group that can transform WY into B, but that
transforms the representation R into itself.

Completing the proof is now a matter of simple algebra. From equation (1.2.1), we
must have that the electric charge is given by

Q x (Y cos Oy + I3sin Oy) ;

in order to have the difference of Q between two members of the same isospin doublet be
+1, we must set the constant of proportionality to (sin 6y,)7!, i.e.

Q=Iz3+cotbyY.

We now square this equation, and sum over all fermions. The cross term }, I3Y vanishes,
because the only non-zero contributions to this sum come from isospin doublets, and for
each doublet this term is zero (since Y is constant on a doublet, while the I3’s come with
opposite signs). We hence obtain

Z Q2 = Z 12 + cot? 0, Z Y2,

fermions fermions fermions

Utilising equation (4.1.2) above, we obtain the formula stated in the theorem. QED

In the same paper, Georgi et al. immediately applied this result to the SU(5) theory,
leading to the famous prediction sinéU(S) Ow = 3/8. It should be clear that since the Spin(10)
theory introduces no new fermions, the prediction for the Weinberg angle is same as for
SU(5). In our Eg theory however, we do have new fermions, so we should see a different
value; indeed, on consulting table 3.1 and doing the necessary arithmetic, we obtain the

following:

9
sing Oy = 55 = 045

As far as representation theory goes, this is all we can say. But it is too tempting to not
compare such a definite phenomenological prediction with the real world; unfortunately,
the comparison is none too comforting: one standard estimate [67] for the weak mixing
angle is sin? 6,, = 0.2223. Is there a way to fix this massive discrepancy?

The most plausible answer comes from renormalisation theory, a catch-all term for
techniques used to deal with the infinities that plague quantum field theory. We have
neither the desire nor the pages to get into any details here!, but we would like to at least

1We point the reader to [74, 79, 90] or any standard quantum field theory reference.
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state a result from Marciano [62] which succinctly accounts for renormalisation effects on
the value of sin? 0, in grand unified theories. What follows is hence necessarily sketchy;
the reader is encouraged to consult the original paper for an excellent discussion. The main
assumption that he needed in its derivation goes back to an earlier paper of Weinberg's [89]:
all gauge bosons in the grand unified theory must have large masses (on the order of some
superheavy Mg, say) compared with the W* and the Z, (the order of which we denote
by Mw) and also compared with the standard model fermions in the theory (also on the
order My ).2 The motivation for this was mostly phenomenological: effects mediated by
these gauge bosons had eluded detection thus far.? Of course, there was a further technical
aspect to this assumption, but since it involes some quantum field theory, we relegate it to
a footnote dedicated to the interested reader.* In any case, Marciano’s result is written as®

.2 w2 A0 aMw)|22 50 1 1
sin” O (M) = sin” O, 1_—271 ?cot GW_BNH Sin2 00 -2

_2N (;ﬁ)]lo Ms
3 sin?6), 3 g]\/IW

From left to right, here are the quantities we have not yet defined. The superscript 0 in
sin? 09, simply indicates that this is the theortical value of the weak angle given by the
theory, i.e. 9/20 in the case of Es. a(My) is the fine structure constant; it depends on the
mass scale because it is defined through the electric charge as e?/47, and e has a mass
scale dependence. Marciano provides the estimate a(Mw) ~ 1/128.5; we will use the same.
Next, the term Np is the number of complex Higgs doublets in the theory; we set Ny =1,
the minimum value. The quantity N is the number of fermion flavours: for the Standard
Model (and SU(5) and Spin(10)), this equals 6, as seen in table 1.3; similarly, from table 3.1,
we see that we have Ny = 4 X 3 = 12 for Eg, since we add two new flavours (one each in N

and N) per generation. Plugging all this in, the above formula simplifies to
9 M
sin?_ Oy (M) = 55 1= 0.01510g M_;v .

So for example, if we take the measured values sin? 6y, = 0.2223 and My = 80.385, we
see that the superheavy mass scale for the Eg theory is of the order Ms = 3.592 x 10'° GeV.
We caution that the value obtained from the formula is is quite sensitive to changes in
the value of sin? 0,, because of the logarithm; it decreases by about 50% for each increase

2He leaves open the possibility that there might be exotic fermions in the theory with masses on the order
of M. As we will see in section 4.3, this is the case with Eg. See also [75].

3Even today, the lower bounds on the masses of grand unified theory gauge bosons are at least two orders
of magnitude larger than the known masses of the W and Z bosons [73].

4The argument, as seen in [37], runs as follows. The gauge couplings—of the grand unified symmetry
group G, and the Standard Model subgroups U(1), SU(2) and SU(3)—are functions of the momentum scale
which we denote by ; in particular, equation (4.1.1) only holds when u is much larger than the superheavy
boson masses, where the breaking of G may be neglected. However, the observed values of the gauge
couplings refer to much smaller values of y, of the order of the W* and Z masses, or even smaller. The
problem is therefore to bridge the gap between superlarge values of 1, where G imposes relations among
the gauge couplings, and ordinary values of y1, where the gauge couplings are observed. In order to deal
with this, Georgi and collaborators employed a theorem from Appelquist et al. [6], which proved that all
matrix elements involving particles with masses much less than the superheavy scale could be calculated in
an effective renormalisable theory. In this case, one could simply consider the original theory with all the
superheavy particles omitted (but with coupling constants that could depend on the superheavy masses).
All other effects of the superheavy particles are suppressed by factors of an ordinary mass divided by a
superheavy mass.

5We note that this formula is specifically for theories with sin 09, # 3/8.
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of 0.005 in sin? 0,,. One final remark is that we fixed the value of Ny = 1 (keeping with
Marciano) since in general, Higgs scalars are often considered the ugliest features of gauge
theories, and one would prefer to have as few of them as possible®; if this restriction is
relaxed, there is some wiggle room in the above formulae to increase the value of sin? 6,,
by increasing the value of Ny, and this in turn obviously has a direct bearing on Mg; table
IT in [62] estimates the size of this effect.

4.2 ANoOMALY CANCELLATION

Insection 1.1.2, we discussed Lagrangian symmetries, and saw their paramount importance;
the transformation laws that we considered there were indeed the foundation for everything
that came after. We return to this theme now, but with a different question as our starting
point: which classical symmetries of the Lagrangian are elevated to quantum symmetries?

The business of quantising a classical Lagrangian is a messy one. By way of illustration,
consider the simplest case: given a Lagrangian £ of a (real) scalar field ¢, one defines the
generating functional as

Z[]] ::/quexp [i/d‘*x (£+]¢)] ,

where ¢ suggestively denotes a source term, akin to electromagnetism.” The measure of
integration, D¢, represents an integration over all possible field configurations.® We can
now define the effective action:

Mpal = WIJT- / drdxféa ,

where W[]] is defined implicitly via Z[J] = e""Ul, ¢ is the functional derivative®
OWI[]J]/6], and T = it is the so-called Wick-rotated time. Now, the effective action is given
its name for obvious reasons: just as in classical mechanics, where the equations of motion
are derived from the principle of stationary action, the equations of motion for the vacuum
expectation values of quantum fields can be derived from the requirement that the effective
action be stationary.’® The details, and examples of such calculations can be found in [74,
Ch. 9], or any other standard reference on quantum field theory; what we have here should
suffice to motivate an effective quantum action for a classical Lagrangian.

The first anomaly that we will consider is the chiral anomaly; to introduce the same,
we will need the Dirac equation. We have encountered in some detail already the Dirac
spinors in chapter 2, as elements of certain irreps of the Spin groups. This is a description
free of dynamics, and therefore, far removed from Dirac’s original conception of these
particles.! The equation describes all spin-1/2 massive particles for which parity is a

¢See section 4.3 for references for the Higgs mechanism in Eg.

"See [55, § 28-30] for a cogent presentation of the same.

8]t is common knowledge that foundational questions about the mathematical validity of this definition,
and about the path integral formalism in general, remain. See [5] for a mathematical overview, and [50] for a
physicist’s take on the same.

9See [68, Chs. 1.1.2,1.3.3]

0For example, if our Lagrangian includes a potential V(¢), at a low temperatures, the quantum field ¢
will not settle in a local minimum of V(¢) as in the classical case, but rather in a local minimum of the effective
potential.

In the 1928 paper [23] presenting his equation for the first time, he begins by asking “why Nature should
have chosen this particular model for the electron, instead of being satisfied with the point charge;” his
remarkable solution to this quandary was a theory that, for the first time, fully accounted for special relativity
in the context of quantum mechanics. For a captivating account of the history and a lucid derivation of the
equation, see [90, Ch. 1.1].
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symmetry, i.e. the leptons. In symbols, for a field ¢, which we take to be massless, and a
gaugeboson Ay, = 3, A “T,, written in a basis of generators' of the compact semi-simple
symmetry group G, the theory is described by the Lagrangian

L=y @0 - Ay . (4.2.1)
u

The y#, 0 < u < 3, are the gamma matrices, which form a basis for the Clifford algebra
Cl; 3(R); the subscript 1,3 denotes that instead of relation (2.4.1), we use {y#, "} = 2n*",
where n#" is the Minkowski metric with the (physicists’) signature (+ — ——). As in
section 1.1.2, the Lagrangian is invariant under the local gauge transformation ¢ — g1,
Ay gAug71 +0,8¢7", but there is now an additional global symmetry ¢ ei“V5¢,

where @ € R, and y° := iy¥y1y2y3 = (I‘éz —IOc12 ).13 This symmetry is chiral: in the standard

(Dirac) basis, the left- and right-handed Weyl components of Dirac 4-spinor correspond to
the first two and second two components of the 4-vector respectively; the effect of the eiar®
is then to rotate these Weyl spinors in opposite directions, by the angle a.

As with any other Lagrangian symmetry, the chiral symmetry corresponds to a current,
which in this case can be shown to be

j& = pytysy.

Recall that we need our theory of leptons to be chiral. The question of the hour is
therefore the following: does this classically conserved quantity (i.e. X, dy ]; = 0) stay
conserved when we pass to the quantised Dirac Lagrangian? The answer turns out to be
no. Unfortunately, deriving this result is a nuanced, technical calculation in quantum field
theory, far outside the scope of this paper; we list some references in a footnote.'* The final
result of this computation is stated as

1
M Auv

KA, 1,

1 2

= @tr Z €K/\tu'vak (A/\ﬁyAV + EA)LA‘UAV
KA, U,V

This is not particularly illuminating as it stands. One can show however [14, § 4] that the

right hand side can be rewritten such that it contains the term (recall that the A,’s are

written in terms of the group generators T,)

tr (Ta{sz Tc})L —tr (Ta{Tb/ Tc})R ’ (4-2~2)

where the subscript L (resp. R) denotes the representation of the left-handed (resp. right-
handed) fermions under consideration; our theory is said to be “anomaly-free” if this
quantity vanishes.

12We have already seen in section 1.1.2 that gauge bosons are Lie-algebra valued 1-forms; hence, they
can be expressed locally in a basis of (anti-Hermitian) generators {T,} of the Lie algebra g. For more details,
c.f[31, Ch. 4.6].

13We note here that adding a mass term mi) to the Lagrangian spoils this symmetry, which is why we
restrict ourselves to the massless situation. One can show that only such massless fermions contribute to
anomalies anyway; see [14, § 7.2].

14The lectures of Bilal [14] are specifically on this topic; Schwartz’s book [79, Ch. 30] also has a detailed
treatment; Nakahara [68, Ch. 13] derives the same result from a geometric point of view, making the connection
to Atiyah-Singer-Index theory; the book of Nash [69] goes even deeper into the mathematics.
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References [14, § 7.3] and [79, Ch. 30.4] show how the explicit check proceeds in the
case of the Standard Model gauge group; it is a surprisingly tame affair. In the case of the
U(1) — U(1) — U(1) anomaly for instance, equation (4.2.2) simply reduces to >; Y3 - > Y3,
and a glance at table 1.1 will confirm that this indeed vanishes. The checks for the other
subgroups of Ggy are just as straightforward.

Closer to our purposes, the vanishing of equation (4.2.2) is also a requirement on
the groups used for grand unified theories; what can we say about these? Georgi and
Glashow showed in [35] that if a group has only real (or pseudoreal) representations, it is
automatically anomaly-free—as far as simple Lie groups go, this immediately allowed
all theories with gauge groups SO(2n + 1) (including SU(2) = SO(3)), SO(4n) for n > 2,
Sp(2n) for n > 3, as well as all the exceptional Lie groups other than E4 (which we know
has complex representations). In the same paper, they went on to prove that all SO(n)’s,
excluding SO(6), are also anomaly-free, thus adding the case SO(4n +2) for n > 2 to the list
of allowed groups (note that this includes the Spin(10) theory). This left only the SU(n)’s,
for n > 3, and E¢. The case of the SU(5) theory is discussed in [66, Ch. 5.2] for example; it
suffices for us to note that the representation that we employed is indeed free of anomalies.
As for Eg, the following fact was clear to Giirsey and collaborators [40] right at the advent
of this theory:

Theorem 4.2.1. All representations of E¢ are anomaly-free.

The remainder of this section will be dedicated to sketching a proof of this result; we
will follow Okubo’s paper from 1977 [70]. At the crux of his proof is the following claim:
the calculation of an n-fermion closed-loop diagram is related to a study of the nth order
Casimir invariant of the algebra g of the symmtery group G. We will slowly work towards
understanding what this means, and how the proof proceeds therefrom.

Introducing Feynman diagrams in detail is outside our scope here'¢, but we must say a
few words: these diagrams are representations of certain mathematical expressions that
arise in perturbative (read: almost all) calculations in quantum field theory, usually of the
scattering amplitudes of particles. The chiral anomaly we have been considering thus far
is often called a triangular anomaly because to one-loop (first order), the Feynman diagram
looks like so.

Here, the external legs represent any of the gauge bosons of the theory, while the fermions
circulating in the internal lines can be in any relevant representation of the gauge groups.
So according to Okubo, since our anomaly arises in the 3-fermion closed-loop diagram,
we need to concern ourselves with the 3rd order Casimir invariant of E¢. To introduce
the same, we shift our analysis to the level of Lie algebras, recalling (section 3.3) that for
simply connected Lie groups, this involves no sacrifice of generality.

Definition 4.2.2 (Structure Constants). For a d-dimensional Lie algebra, consider any set
of d basis vectors, or generators, {t,} . Because of bilinearity, the Lie bracket is determined

151t is not necessary to carry out this check for all possible triples that can be made from U(1), SU(2) and
SU(3); cf. [79, Ch. 30.4].
16The reader is once again encouraged to consult [74, 79, 90] or any standard quantum field theory reference.
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uniquely if it is known on a basis set; therefore one can define the Lie bracket, and hence
the Lie algebra g abstractly through the expansions

d

[ta’ tb] — Z fubc £ ,

c=1
where the f?¢ are called the structure constants of g.

Because of the antisymmetry of the Lie bracket, the structure constants satisfy f*%. =
-f b % ; from the Jacobi identity, we further have

Zd:(fabcfaie + f7 feb, +fbdcfcae) =0.

c=1

The next idea that we wish to consider requires the tensor algebra of the vector space
(definition 2.4.1) over which g is defined. To endow this very general product with the
structure that g carries, we make an obvious identification: an element of the form (we
suppress the ® symbol for brevity)

®n
X1+ XiXi41Xi2 " Xn = X1X2*** Xi41XiXis2 ** Xn € V

is identified with
x1X2 - -+ [xi, Xiz1]Xign - 2 € VOO

This quotient still has the structure of an associative algebra (with a unit element), and is
called the universal enveloping algebra of g.

Definition 4.2.3 (Vector Operator). A collection of d elements {x,} belonging to the
universal enveloping algebra of g is called a vector operator on g if the following relation

holds:
d

[t7, x"] = Z £ ge (4.2.3)

c=1

Obviously, {f,} is a vector operator, but it is not in general the only one. We can also
define vector operators {x,} for a given n-dimensional representation p of g, if {¢,} and
{x,} are n X n matrices satisfying the structure equation and the relation above.

Let us restrict to the case that p is an irrep of g, and moreover demand that g be simple.
Then Okubo showed in [71] that there is a simple relationship between the number of all
linearly independent vector operators on the representation p, and the highest weight A of
that representation. This latter quantity is defined by

A =mA +maAy+---mA;,

where [ is the rank?” of g, the A;’s are its roots (definition 2.1.12), and the m;’s are non-
negative integers specified uniquely'® by the representation p. Let us denote the number
of m;’s which are zero by vy(p); then the number of linearly independent vector operators
v(p) is given by

v(p) =1=wo(p).

7We have technically only defined the notions of rank and roots for Lie groups, but it should be clear that
these concepts can be extended quite naturally to Lie algebras. For the details, see [43, Ch. 6].

18]t is not at all obvious that such a unique decomposition in terms of roots should exist for an arbitrary
irrep of g; we refer the reader to [43, Ch. 7] for a proof of this, the so-called highest weight theorem.
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In other words, v(p) is equal to the number of m;’s which are positive. We can apply this
theorem immediately: for the standard Lie algebras, their roots (and weights) have been
studied and tabulated [72]; consulting these, we see quickly that the algebras with Dynkin
diagram type A, for n > 2, have v(ad) = 2, and v(ad) = 1 for all other algebras. This fact
will be extremely important in what follows.

Let us consider the adjoint representation of g in some more detail. Set T, = ad t,, so
that the pg-th entry of this matrix is given by (T,)" g = paq ; the d X d matrices {T,} clearly
satisfy the structure equation

d

[Tu,Tb] — Zfahc T

c=1

Recall now the Killing form, definition 2.2.1; we will denote the same by g,, = tr T,,T}.
Introduce now the vector operator {X,} on the adjoint representation; by definition, it
satisfies [T?, X?] = Zle ft X¢. We further introduce the triple linear forms

Xpaq = (Xa)pq ’
d

X”bc = Zgaixlbc :
i=1

In particular, for {X,} = {T,}, the second equation reduces to Ty;. = Z?zl St ibc ;80 Type
is completely antisymmetric in its indices. Now, Okubo showed that an equivalent way of
writing the vector operator equation (4.2.3) is the following;:

U

Z fabc Xade + fabd Xeae + fube Xcda =0; (4.2.4)

a=1

he further showed that the X,;. satisfying these equations can be chosen to be either
completely symmetric or completely antisymmetric, and moreover, that the completely
antisymmetric X, must be proportional to the structure constants f,,.. Hence, by the
result in the previous paragraph, we conclude that for all simple Lie algebras other than
the A,’s, the X,;.’s must be antisymmetric, because {X,} must be proportional to {T,},
the one and only vector operator on the adjoint representation. For the A,,’s, there is an
additional vector operator.

In order to obtain the “upper-indices” version of the form X,;., we do the obvious
thing, raising indices with the Killing form: xabe = Zp,q,r g gbq g Xpqr; the form we
recover must clearly also be either symmetric or antisymmetric. If we then set

d

I = Z X T, T,
a,b,c=1

this defines a Casimir operator (of the third order) of g. These operators are sometimes
referred to as Casimir invariants'®, because they are invariant under the action of g on its
adjoint representation—they are, in other words, intertwining operators, as defined in
section 1.1.2. What is important for our purposes here is that the formula for I3 above is in
fact the most general form of a third-order Casimir operator, and that the coefficients X,
must be symmetric. So from the result in the previous paragraph, we conclude that I3 = 0
for every algebra other than the A,’s.?

YFor further discussion of these invariants, see [31, Ch. 17.8] and references therein.
2For completeness, we note that in the case of the antisymmetric X;;.’s, I3 reduces to a scalar multiple of
the Killing form, which is in fact the second-order Casimir invariant.
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We are now ready to understand the claim that the calculation of an n-fermion closed-
loop diagram is related to a study of the nth order Casimir invariant of g. Let {T,} be the
representation matrices of the {¢,} for a generic irrep of g; set

Xape = tr Ta{Tb/ Tc} .

Obviously, X, is completely symmetric. Moreover, it satisfies equation (4.2.4) if we
note the trivial identity tr[T,, T,{Ty, Tc}] = 0. Thus, X, is a symmetric triple form,
corresponding to some vector operator { X, }; it must hence vanish identically, and so must
equation (4.2.2). This completes the sketch of the proof that all representations of E¢ are
anomaly-free.?!

4.3 QOTHER SIGNATURES

Since grand unified theories have ever been within the purview of physicists, it is only
titting that we devote this final section of the paper to these tireless inquirers, for whom it
is never good enough that a theory be beautiful, and rightly so; they demand that it be
predictive, and hence, falsifiable. So in the following paragraphs, we will attempt to paint
in broad strokes the answers to some of the questions that have naturally arisen during
our analysis, but on which we have hitherto been silent; it is scarcely necessary to add that
we are striving neither for comprehensiveness nor exhaustiveness here.

Let us begin with the simplest question: what signatures might we expect from the E¢
theory? We quote from a recent survey paper precisely about this topic that will set the
tone for the rest of the discussion:

Signatures of E¢ include [an] extension of the Higgs sector; existence of neutral
Z' gauge bosons at masses above the electroweak scale. . .; the production
of new vector-like quarks and leptons, and manifestations of the neutral fer-
mion. . . through its mixing with other neutral leptons, giving rise to signatures
of “sterile” neutrinos. Up to now, with the possible exception of weak evidence
for sterile neutrinos there has been no indication of the extra degrees of freedom
entailed by the 27-plet of E¢. [53]

Setting aside for the moment that the outlook for the E¢ theory is rather bleak, let us try
and understand the terms above that we have not yet encountered.

We have refrained from speaking about the Higgs mechanism thus far, and unfortuna-
tely, our silence on the same will continue—references [9, 11, 18, 41, 42] are some early
papers that examine this mechanism within the context of mass scales in the Eg model.
One thread that runs through them all is worth examining, since it is directly concerned
with the most obvious thing one would think to look for to ratify the E¢ theory, namely,
new fermions. Here we introduce the Survival Hypothesis [10, 34]: stated succinctly, it says
that low-mass fermions are those that cannot receive Ggy invariant masses. To understand
what this means, recall from the previous section that mass terms spoil the invariance of
the Lagrangian under chiral symmetry; the survival hypothesis thus postulates that when
the grand unification symmetry group is broken down to the Standard Model gauge group,
the fermions which do not acquire mass are those that cannot receive mass terms invariant
under Gsyy; in particular, this means that all the particles that do admit such a mass term
will receive a superheavy mass, since the symmetry breaking occurs at grand unification
scales.?? Put another way, most fermions in a grand unified theory should have masses on

2'We have of course shown more: we have shown that all representations of every algebra other than
SU(n) for n > 3 are anomaly-free.
2In the previous section, for instance, the superheavy mass scale was found to be on the order of 101 GeV.
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unification scales; those that do not are associated with one of the two unbroken gauge
symmetry groups Ggv or U(1) x SU(2), since both of these demand chiral symmetry.?
The upshot is the following: we do not see the new fermions of the E¢ theory because they
are phenomenally heavy, many orders of magnitude outside the reach of even the most
powerful detectors. For a thorough examination of mass scales in grand unified theories
in general, and Eg in particular, see [75]. We note that this discussion is of course not valid
only for Eg, but is formulated as a general principle in grand unified theories; this is the
“fermion desert”. In Georgi’s words, “If [the above] picture is correct, physics between
300 GeV [the Standard Model mass scale] and 10'* GeV is boring. There is a grand plateau
in momentum scale on which the world is well-described by an SU(3) x SU(2) x U(1) gauge
theory. . . there will be no new interactions below 10 GeV.” [34]

Let us turn our attention now to the aforementioned Z’ bosons. A detailed analysis
of their phenomenology is outside the scope of this paper, but they arise quite naturally
in representation theory, and this we can certainly understand. If gauge bosons live in
the complexified adjoint representation of the symmetry group G, it is clear that there is
something special about the maximal set of elements in g that commute with each other,
i.e. the? Cartan subalgebra of g. In general, these commuting elements make for good
quantum numbers (charges); the best way to see this is by choosing the Cartan-Weyl basis
for g, which we describe now. Let us consider the complexified adjoint representation of g
(while suppressing the use of the ad operator notation): if g has rank / and dimension d,
let {x'}, fori=1,...,1, be the Cartan subalgebra; then one can show that the set {x'} can
be completed to a basis {x?, %} of g such that

[x, t%] = a(x')t® fori=1,2,...1,

where the eigenvalue a(x') is non-vanishing for at least one value of i. This is the Cartan-
Weyl basis for g, sometimes called the canonical or standard basis. The most pertinent
example of this construction is something that we have already encountered in the SU(2)
weak force. The relevant Lie algebra, s1(2, C), is of rank 1 and spanned by the W bosons;
they form a Cartan-Weyl basis since they satisfy

[WO, W*] = £2W* (W, W™ ]=W°.

Hence, we see that the basis for the 1-dimensional Cartan subalgebra is indeed given by a
quantum number operator, the isospin matrix I = 2WO.

To extend the notion of charges to gauge bosons, recall first this aspect of [3: in a
standard (doublet) basis for the space of weak-theory fermions C?, the isospin of a particle
was simply given by the eigenvalue of the action of the I3 operator on said fermion. It
should be clear that the correct generalisation of the above concept is the following: since
the gauge bosons transform in the adjoint representation of the symmetry group G, they
can act on each other through the adjoint action of g on itself>>; moreover, in the Cartan-Weyl
basis, the charges of the gauge bosons are given (up to normalisation) by their roots. In the
case of the SU(2) theory for instance, this yields the correct isospin for W*, i.e. +1, since
[I3, W*] = £tW*. But notice that we now have a highly interesting statement about these
number-generating gauge bosons themselves: all of their quantum charges must vanish
since they belong to the Cartan subalgebra (and hence commute with each other). In other
words, the number of neutral gauge bosons in a theory is given by the rank of its symmetry
group [59]. The bearing of this discussion on grand unified theories is straightforward:

2They could also be Higgs SU(2) doublets, but we ignore this possibility here.

2There are of course many different choices of a Cartan subalgebra for a given semisimple Lie algebra, but
all of these are related by automorphisms of g, so we abuse terminology and speak here as though our choice
were unique.

»(Clearly, this action is non-trivial only if G is non-abelian.
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when we break from Eq — Spin(10) — SU(5) — Ggsm, we break from a rank 6 group to
a 5 to a 4, and then once again to a 4. Hence, while additional neutral gauge bosons are
forbidden in the (standard) SU(5) theory, both Spin(10) and Eg each obtain one additional
neutral gauge boson when their symmetry is broken.

This is where representation theory ends and quantum field theory begins. The
literature on neutral Z’ bosons is vast and varied, and we will not undertake a review of the
same here; we point the reader instead to [57, 59] and references therein for summaries of
the physics and the phenomenology respectively; both cover Eg in some detail. Reference
[73] has the current exclusion limits on the masses of these Z’ bosons for the Spin(10) and
E¢ theories: the lower bounds are all on the order of 10° GeV.

Let us now consider sterile neutrinos. We have assumed throughout our analysis
that these exist, incorporating them into the SU(5) theory, and then consequently into the
Spin(10) and Eg theories. Rosner [77] recently carried out a phenomenological analysis
for the sterile neutrinos in the Eq theory, of which there are three, from the three copies
of N. In his framework, the traditional candidates for sterile neutrinos, the vi’s, obtain
extremely heavy masses and become unimportant, while the Spin(10) singlets (the final
entry in table 3.1) acquire light masses, and are promoted to sterile neutrino status. The
other exotic fermions in the theory remain heavy, and mix only weakly with the Standard
Model fermions, as per the survival hypothesis. Finally, he notes that only two of these
three Spin(10) singlets are required to account for present data in neutrino oscillation
experiments, leaving one neutrino free to be a candidate dark matter particle. This would
fit neatly into the picture of “dark electromagnetism” proposed by Ackerman et al. [2]:
in this scenario, dark matter particles interact via a new gauge boson corresponding to
some U(1) theory that is unbroken at the vacuum—the U(1)" gauge group that arises in
the breaking of the E¢ theory is a natural candidate for the same. Schwichtenberg however,
argues in [80] that the Spin(10) singlet is not the correct choice for a candidate dark matter

particle in the Eq theory. Instead, he makes a case for the exotic neutrino in the Al ® &2
representation of SU(5) x U(1)’ (this is the third entry from the bottom in table 3.1). Diving
into the details of this interesting debate is unfortunately beyond our scope here; we simply
wanted to note that the exotic fermions in the E¢ theory provide a playground to explore
such ideas.

We end with a brief discussion on perhaps the most famous prediction of grand unified
theories: proton decay. Simply put, since each inclusion of Gsy into the unification gauge
groups that we have been considering involves significant jumps in dimension—from 12 to
24 to 45 and finally to the 78-dimensional Ec—we obtain at each step a huge number of new
gauge bosons. These mediate new interactions between particles, one of which is the decay
of the proton, which is stable in the standard model; the review article [56] by Langacker
treats the subject of proton decay in depth. The original SU(5) model predicted a maximum
proton lifetime on the order of 103! years [28] which was subsequently disproved by the
Super-K(amiokande) experiment.?® Following a long period where the Spin(10) theory
was thought to be as dead as the SU(5), Bertolini et al. [13] re-examined proton decay in
Spin(10)and discovered that it was still viable. For the E¢ theory, [60] and [75] are two early
references that go into great detail regarding proton decay via many possible symmetry
breaking chains of E¢; one take-away point is that in almost every case, the proton decay
rate for the SU(5) theory is a lower-bound for the same in the E¢ theory, with the possibility
of extending the proton lifetime by some orders of magnitude above the SU(5) bound
depending on how certain parameters in the theory are chosen.

This brings us to our final point: the parameter space of grand unified theories is
(usually) large enough for all manner of tinkering and fine-tuning to match data. In some

2[1] is the most recent publication from the collaboration, summarising data from the 20 years (!) that this
experiment has been running.
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sense then, they still have a shot at corresponding to reality. And yet, we steadily seem
to be approaching a point where testing them is getting difficult to the point of being
infeasible. As a recent article notes,

But while [the aforementioned] Super-K could suddenly strike gold in the
next few years and confirm one of these models, it could also run for another 20
years, nudging up the lower limit on the proton’s lifetime, without definitively
ruling out any of the models.

Japanis considering building a $1 billion detector called Hyper-Kamiokande,
which would be between 8 and 17 times bigger than Super-K and would be
sensitive to proton lifetimes of 10% years after two decades. It might start
seeing a trickle of decays. Or it might not. “We could be unlucky,” [S. M.] Barr?”
said. “We could build the biggest detector that anyone is ever going to build
and protons decay just a little bit too slow and then we’re out of luck.” [27]

Indeed. So while the incompleteness and seeming arbitrariness of the Standard Model
remain strong motivators to seek a more complete, natural physics, it seems that the best
we can do right now, at least as regards grand unified theories, is simply to wait. It would
appear that nature is not so keen to give up her secrets just yet.

¥One of the inventors of the flipped SU(5) theory [12].



APPENDIX

THE CONSTRUCTION OF 5y

The reference for this appendix is [4]. For large values of 1, the Dynkin diagrams of type
Ay, By, Cy, Dy, are distinct. For small values of n, we have the possibility of exceptional
isomorphisms between the classical groups as follows.

(i) Spin(6) = SU(4). Both have dimension 15, rank 3 and the Dynkin diagram > .

(ii) Spin(5) = Sp(2). Both have dimension 10, rank 2 and the Dynkin diagram e—s.
(iii) Spin(3) = SU(2) = Sp(1) = S* c H.
(iv) Spin(4) = S3 x S5.

We prove the first two isomorphisms.

Proposition A.1. We have the following isomorphisms of Lie groups: Spin(6) = SU(4) and
Spin(5) = Sp(2).

Proof. We do both cases in parallel. Spin(5) has the representation A of degree 4 over
C and degree 2 over H. We can impose a Hermitian form, invariant under the compact
group Spin(5), giving us a homomorphism' from Spin(5) — Sp(2) which we also denote
with A. Similarly, Spin(6) has the representation A* of degree 4 over C and we have
A* : Spin(6) — U(4). We first wish to show that Im A* c SU(4).

Lett € T C Spin(6). Then t acts with eigenvalues defined by weights

1 1 1 1
{E(xl+xz+x3),§(xl—xz—xs),i(—xl+xz—x3),§(—x1—xz+x3)} ;

these add to zero so the eigenvalues multiply to 1 and t+ must act with determinant 1.
Hence, any gtg ™! acts with det1 and A* maps to SU(4).

Now A is faithful: if g € Spin(2n + 1) and g + 1in Hom¢(A, A) = CI(V) then g is 1.
Also A™ is faithful if n is odd, for if g acts as 1 on A", then ¢ € Spin(2n) acts as 1 on the
dual, A™, so g = 1in Hom¢(A", A*) + Home(A™, A7) = CI(V)g. Thus g = 1. Hence the
two maps A, A* are injective homomorphisms, and induce injective homomorphisms dA,
dA™; they are thus isomorphisms for dimensional reasons. Hence, A and A* map small
neighbourhoods in Spin(5), Spin(6) onto small neighbourhoods of Sp(2), SU(4) respectively.
But Sp(2) and SU(4) are connected, so A : Spin(5) — Sp(2) and A* : Spin(6) — SU(4) must
be surjections. QED

Corollary A.2. The group Spin(5) acts transitively on the unit sphere S’ C A.

This is because Sp(2) is defined to be the subgroup of GL(2, H) under which the inner product on H is
invariant.
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Proof. Sp(2) acts transitively on S7 c H2. QED

Corollary A.3. The group Spin(6) acts transitively on pairs (x,z), x € S> C R®, z € §7 C A™.
Moreover the subgroup fixing z € S” C A* may be taken, by a suitable choice of z, to be
SU(3) c Spin(6), where this inclusion arises by lifting the composite SU(3) — U(3) < SO(6) to
Spin(6).

Proof. Spin(6) covers SO(6), which acts transitively on S°. Taking a suitable x, e.g. x =
(0,...,0,1), the subgroup fixing x is Spin(5). The restriction of A* to Spin(5) is A (by
proposition 2.4.19) and Spin(5) acts transitively on z € S7 C A by the last corollary. The
weights of A™ are {%(xl + X2 + X3), %(x1 — X2 —X3),.. } and their restrictions to T ¢ SU(3)
are? {0, x1, x2, x3}; hence the restriction of A* to SU(3) is 1 + Al. So this SU(3) fixes points
of S c A™: in fact, a whole circle of them.> For any such fixed point, the subgroup
fixing it is no bigger, since in SU(4) = Spin(6) the subgroup fixing a unit vector in C* is an
SU(3). QED

Corollary A.4. The group Spin(7) acts transitively on triples (x, y, z) where x, y are orthogonal
and z € S7 C A.

Proof. Spin(6) covers SO(7), which is transitive on points y € S®. Choose y = (0, ..., 0, 1).
Then the subgroup fixing y is Spin(6). Now A restricts to A* + A~ over C (by proposition
2.4.19 again), but starting with A as a fixed vector space of dimension 8 over R, the restriction
to Spin(6) is the representation of dimension 8 underlying A* (or A~). Finally, note that by
the previous corollary, Spin(6) is transitive on pairs (x,z), x € S,z € 7 C A*. QED

Theorem A.5. Consider the subgroup G of Spin(7) which fixes a point z € S” C A. Then G is
a compact, connected, simply connected Lie group of rank 2 and dimension 14, with the Dynkin
diagram e—s and commonly called G,. Moreover, G, is transitive on pairs (x, y) of orthogonal
vectors in S¢ c R.

Proof. The last sentence follows from the above corollary. Now clearly, G is a closed
subgroup of Spin(7). Since Spin(7) is transitive on S7, we have dim G = dim Spin(7) —
dimS” =21 -7 = 14. Let H ¢ G be the subgroup that fixes y = (0,0, ...,1). Then H is
the same as the subgroup of Spin(6) which fixes z, and by a suitable choice of z we can
take H = SU(3) C Spin(6) (this was corollary A.3). Since H is connected and G/H = S° is
connected, we find that G is connected.* Similarly, G is simply connected.

We determine the roots of G. H = SU(3) acts on ) C g by the adjoint action;
we wish to know how H acts on g/, the tangent space to S® at y. By construction,
S® = Spin(7)/Spin(6), so we need to look at the action of Spin(6) on spin(7)/spin(6). This
is the geometrically obvious action where the tangent space to S%at(0,0,...,1)is RS, the
space of the first 6 coordinates, and Spin(6) acts on it as usual. The weights are hence
given by’ {+x1, +x, +x3}. Thus, T C SU(3) acts on g with weights® {0, 0, +(x1 —x2), +(x2 —
x3), £(x3 — x1), £x1, £x2, =x3}. We conclude that T is maximal’ (so G has rank 2), that
these are the roots of G, and that the Dynkin diagram is e—. QED

2This follows from 2.1.13 and 2.1.6.

3The representation 1 + Al =1+ C3 c C* of SU@3) has SU(3) acting by diag(1, A) for A € SU(3). Hence,
the action of SU(3) on S c C* fixes a (complex) circle. A familiar analogy is SO(2) rotating the 3-sphere about
the z-axis, which fixes an SY, the north and south poles.

4Use the homotopy exact sequence of the fibration H - G — G/H.

5This can be seen directly: the maximal torus T of Spin(6) is given in remark 2.4.13. Since we are in
an even-dimensional space, the eigenvalues of this rotation matrix occur in complex conjugate pairs, e®i%i,
Hence, the eigenvalues of the action of fon TR® = R® are +x j- See also remark 2.4.16.

¢6That is, with the (standard) weights of SU(3) given in example 2.1.13 together with the weights just
computed.

"The trivial representation occurs exactly twice in the list of the 14 (i.e. all) weights.
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G, starts life with two obvious representations: a 7-dimensional representation
G2 C Spin(7) acting on R7 with weights {0, +x1, +x2, +x3}, and the 14-dimensional adjoint
representation, Ad with weights as in the above theorem.
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