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Abstrat

In the late nineteenth entury, C. S. Peire developed a graphial sys-

tem for handling the �rst-order alulus of relations. This system, alled

Beta, is reformulated here in modern terms, using developments in ate-

gorial logi and geometrial representations of monoidal ategories. First,

we de�ne the notion of (ategorial prediate) theory as a partiular ase

of Lawvere's hyperdotrines (with Boolean �bers and satisfying the Bek-

Chevalley ondition), and express the syntax of �rst-order logi in terms

of free theories on prediate languages. Observing that eah (ategorial

prediate) theory gives rise to (and is embedded in) a monoidal 2-ategory

of relations, the goal of the paper is to give a geometri presentation for the

monoidal 2-ategory of relations of a free theory on a prediate language,

obtaining Peire's alulus as a result.

This geometri presentation is based on \string diagrams," akin to the

Feynman diagrams in theoretial physis, and developed for alulations

in general monoidal ategories by Joyal-Street. The alulus of string

diagrams is extended by adjoining rewrite rules, so that terms in �rst-

order logi are represented by deformation equivalene lasses of ertain

string diagrams, and inferenes between terms are represented by ertain

rewrites of diagrams. The geometri alulus whih so arises, whih we

identify with Peire's system Beta, is shown to be sound and omplete

with respet to �rst-order logi.

1991 Math. Subj. Class.: 18C10, 18D10, 18B10, 18F99, 03G30, 01A55

1 Introdution

Toward the end of the 19th entury, the Amerian logiian C. S. Peire devel-

oped a remarkable alulus of planar graphs for expressing logial formulae and

inferenes. Existential graphs, as he alled them, evolved as a way of handling

the \logi of relatives" (i.e., the alulus of relations) whih Peire, beginning

in 1870, had invented as an outgrowth of his studies on Boolean algebra ([15℄).

Although little was published in Peire's lifetime on existential graphs, he ex-

pliitly refers to this alulus as his \hef d'oeuvre," and as an outline of the

logi of the future.
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Existential graphs were developed in three stages of logial omplexity. Al-

pha graphs, the initial part of his system, are geometrial representations of

propositional assertions, i.e., Boolean ombinations of propositional variables.

(A rigorous modern formulation of system Alpha an be found in [4℄.) Next

ome Beta graphs, whih geometrially represent �rst-order relational expres-

sions. The basi operation, the relational produt or omposition, was seen

by Peire as analogous to Boolean onjuntion (and so there is a lose tie-in

between his rules for Alpha and rules for Beta) but, as Peire reognized, in-

volved existential quanti�ation as an essential omponent. Thus, as Peire

pereived, Beta ould be used as a vehile for expressing inferenes in predi-

ate logi, partiularly those involving logial quanti�ation, in the same way

that �rst-order relational alulus adequately aptures the language of �rst-

order logi. Finally, there are Gamma graphs, whih Peire never brought to

fruition and indeed were highly speulative by his own admission. Our reading

is that Peire was hinting at ideas found in modal logi, temporal logi, and

\variable sets" (toposes), and that he suggests possibilities for \geometrizing"

higher-order logi, but lari�ation of these points will have to await a future

paper.

A remarkable feature about Beta graphs, the fous of the present paper,

is their metaphorial bakground: Peire, guided by analogies with hemistry,

pitured an n-ary relation as something like an element with \valeny n." Com-

position of relations R and S is then pitured as a \bonding" between two or

more elements, as between atoms in a moleular on�guration. For instane,

if R is a prediate expression with free variables x, y, and S is a prediate ex-

pression with free variables y, z, w, then the relational omposite expressed by

9

y

R(x; y) ^ S(y; z; w) is pitured by drawing a \line of identity" onneting R

to S:

y

z w

SR

x

This metaphor of hemial bonding aords well with modern logial terminol-

ogy, where we say for example that the variable y is \bound" in the omposite

expression.

Now, with a di�erent set of sienti� ontexts in mind (namely, the use of

graphs in partile physis and relativity �a la Feynman and Penrose), Joyal and

Street ([10℄) have introdued a mathematial theory of so-alled string diagrams,

in order to make rigorous the use of suh diagrams in generalized tensor alulus.

The idea is that the lines or edges in a string diagram represent linear spaes

(e.g., Hilbert spae representations of Lie groups), and nodes where lines meet

represent intertwining operators. (Thus an operator of the form

V

1


 : : :
 V

m

�!W

1


 : : :
W

n

is represented by a node inident to m edges oming from above and n edges
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from below.) As Joyal and Street show, the appropriate language for formalizing

string diagrams is monoidal (or tensor) ategory theory, whereby string diagrams

are viewed as morphisms in a freely generated monoidal ategory.

The basi insight behind our approah to Peire's system Beta is that the

alulus of relations is pro�tably viewed as a ertain type of monoidal ategory

(or rather a monoidal biategory; f. [6℄), where relations are ertain morphisms

between sets whih ompose by relational omposition. (More exatly, we deal

with formal relations viewed as arrows between types, working in a typed at-

egorial representation of �rst-order logi.) Then, applying the mahinery of

string diagrams to present suh monoidal ategories, the graphs that result are

essentially the same as Peire's Beta graphs. The details of this approah re-

quire several ingredients not found in the string diagram alulus of [10℄, suh

as surgeries on string diagrams, and the use of Peire's \sep lines" to handle

logial negation.

This paper is organized as follows. In setion 2, we give a purely ategorial

formulation of �rst-order logi based on Lawvere's notion of hyperdotrine ([11℄;

we need a partiular variant of hyperdotrines: where the base need only be

artesian, not artesian losed, and the �bers are Boolean algebras, and suh

that the Bek-Chevalley ondition is satis�ed). This gives a presentation of �rst-

order logi whih avoids the usual syntati mahinery of variables, in terms of

a hyperdotrine freely generated from a prediate language. In setion 3, we

sketh part of the onstrution of this free hyperdotrine, emphasizing that it is

embedded in a formal alulus of relations whih is onstruted geometrially as

the paper progresses. In setion 4, we introdue a variant of Joyal-Street string

diagrams, and more espeially the notion of surgery needed to give geometri

presentations of monoidal ategories. We use string diagrams and surgeries

to onstrut the base ategory of the free hyperdotrine, as well as relations

whih reet the adjoint relationship between re-indexing and quanti�ation,

together with the Bek-Chevalley ondition. In setion 5, we \fold in" the rules

of Peire's system Alpha, whih expresses the Boolean algebra strutures on

the �bers; this ompletes our desription of Peire's Beta. In setion 6, we

prove our main theorem: that the monoidal biategory whih was onstruted

geometrially in the preeding setions is isomorphi to the monoidal biategory

of relations generated by the free hyperdotrine whih represents �rst-order logi

(relative to a given prediate language). That is to say, that Beta is sound and

omplete with respet to �rst-order logi.

2 Languages and theories

De�nition 1 A (prediate) language onsists of a set of prediates P , a set of

sorts S, and a typing funtion � : P ! S

�

, where S

�

is the free monoid on S.

Viewing a set S as a disrete ategory and the free monoid on S

�

as a

monoidal ategory, a typing funtion � : P ! S

�

amounts to a funtor � :

S

�

! Set. To get � from � , de�ne �(w) as the set �

�1

(fwg). To get � from
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�, de�ne P as the disjoint sum �

w2S

�

�(w), and if p 2 P , de�ne �(p) as w

whenever p 2 �(w). In what follows, we usually view a language as a pair

(S; � : S

�

! Set).

De�nition 2 A morphism or translation of languages (S; �)! (S

0

; �

0

) onsists

of a funtion f : S ! S

0

together with a natural transformation � : �! �

0

f

�

.

Equivalently, a morphism of languages (S; P; P

�

! S

�

) ! (S

0

; P

0

; P

0

�

0

! (S

0

)

�

)

onsists of a pair of funtions f : S ! S

0

, � : P ! P

0

ompatible with the

typing funtions: if p has type hs

1

; : : : ; s

n

i, then �(p) has type hfs

1

; : : : ; fs

n

i.

As an example of a morphism, onsider a set-theoreti model of a prediate

language. A model assigns to eah sort s 2 S a set, say F (s). This gives a

funtion F : S ! Ob(Set), from S to the lass of sets, also denoted Set

0

. The

model then assigns to eah prediate p of type hs

1

; : : : ; s

n

i a subset �(p) of the

produt Fs

1

� : : :� Fs

n

. Now let � be the omposite funtor given by

Set

�

0

�

! Set

P

! Set;

where the �rst map sends a list of sets S

1

; : : : ; S

n

to their artesian produt

and the seond map is the (ontravariant) power set funtor: this gives a large

prediate language (Set

0

;� : Set

�

0

! Set). Then a set-theoreti model of a

language (S; �) may be desribed as a morphism (F; �) : (S; �)! (Set

0

;�) into

the language of sets.

The language of sets arries a lot of extra struture, suh as the Boolean

algebra strutures on power sets. A ertain amount of this struture suÆes to

model the semanti aspets of �rst-order logi. We abstrat this struture in

the following de�nition, based on Lawvere's theory of hyperdotrines [11℄:

De�nition 3 A (ategorial prediate) theory onsists of a ategory C with �-

nite produts, together with a ontravariant funtor T : C ! Bool (or a o-

variant funtor C

op

! Bool) mapping to the ategory of Boolean algebras, suh

that

(1) For eah morphism f : A ! B in C, f

�

= T (f) : TB ! TA has a left

adjoint 9

f

: TA! TB;

(2) Given a pullbak

P

k //

h

��

A

f

��
B

g

//
C

in C, the following diagram ommutes:

TA

k

�

//

9

f

��

TP

9

h

��
TC

g

�

//
TB:
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The arhetypal example of a theory is the theory of sets (Set; P : Set

op

! Bool)

in whih we regard the ontravariant power set funtor as valued in the ategory

of Boolean algebras. In this ase, Pf : PB ! PA sends a subset D � B to

its inverse image f

�1

(D) � A; the left adjoint 9

f

: PA ! PB orresponds to

taking diret images along f . The adjuntion of (1) says

(�) f(C) � D if and only if C � f

�1

(D):

As is well known, diret images model existential quanti�ation: if, for example,

� : A � B ! B is projetion to the seond fator, and if C � A � B is the

extension of a prediate p(a; b) relative to some set-theoreti model, then the

image

�(C) = fb j 9a 2 A : p(a; b)g

is the extension of the formula 9

a

p(a; b). In order to apture the taking of diret

images in Boolean algebras more general than power sets, one rewrites (�) as

9

f

C � D if and only if C � f

�

D;

and so we require that eah f

�

= Tf have a left adjoint 9

f

. It follows that

universal quanti�ation, de�ned by 8

f

= :9

f

:, is right adjoint to f

�

.

Condition (2), alled the Bek-Chevalley ondition, also holds in the theory

of sets (as the reader an easily verify) and �gures prominently in type-theoreti

versions of �rst-order ategorial logi. To translate between the version given

here and standard presentations of �rst-order logi, the reader should bear in

mind that here we never write an inferene p ` q between p; q unless they have

the same type. At the semanti level, this ensures that their extensions E(p)

and E(q), relative to a given model, belong to the same Boolean algebra, so that

E(p) � E(q) makes sense. (Syntatially, it means that p and q have the same

free variables; however, in our approah, variables are not needed.) Thus, if we

wish to ompare the logial strengths of formulas p and q whose types do not

math, we may retype them by pulling them bak to expressions f

�

p and g

�

q

over a ommon type T (syntatially: adjoin some dummy free variables), and

ompare the retyped expressions. The Bek-Chevalley ondition ensures that

the meaning or interpretation of quanti�ation is preserved under suh retyping

operations.

To translate between theories (C; T : C

op

! Bool), we introdue the follow-

ing de�nition:

De�nition 4 A morphism or translation of theories (C; T )! (C

0

; T

0

) onsists

of a produt-preserving funtor F : C ! C

0

together with a natural transforma-

tion � : T ! T

0

F

op

suh that for all morphisms f : A! B in C, the following

diagram ommutes:

TA

�

A //

9

f

��

T

0

FA

9

Ff

��
TB

�

B

//
T

0

FB:
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By \produt-preserving" we mean that the map hF�

A

; F�

B

i : F (A � B) !

FA � FB is an isomorphism. In our framework, produts are not anonially

given, but are de�ned, as usual, only up to isomorphism. In order to have

adequate ontrol over this feature, we need a further level of struture.

De�nition 5 Given two translations (F; �), (G; ): (C; T )! (C

0

; T

0

), a mod-

i�ation (F; �) ! (G; ) between them is a natural transformation F

�

! G suh

that the following diagram ommutes:

T

� //

 ""E
EE

EE
EE

EE
T

0

F

op

T

0

�

op

zzttttttttt

T

0

G

op

:

We thus have a 2-ategory of theories, translations between theories, and mod-

i�ations between translations.

Eah theory (C; T ) has an underlying language, onstruted as follows. The

set of sorts of the language is the set of objets C

0

= Ob(C). The funtor

C

�

0

! Set is de�ned up to isomorphism as a omposite

C

�

0

�

! C

T

! Bool

j j

! Set;

where j j : Bool ! Set is the underlying-set funtor and � sends a �nite list of

objets in C to their produt. Of ourse, there is no unique hoie of produt,

so in general there are many underlying languages of a theory, but they are all

anonially isomorphi. Thus, it is harmless to suppose that we have hosen an

underlying language UT for every theory T . If (F; �) : (C; T ) ! (C

0

; T

0

) is a

theory morphism, then we have a diagram

C

�

0

� //

(F

0

)

�

��

C

F +j�j

��

jT j

  B
BB

BB
BB

B

� +

Set

(C

0

0

)

�

�

//
C

0

jT

0

j

>>||||||||

;

where � : F�

�

! �F

�

0

is a anonial isomorphism whih arises by virtue of

preservation of produts by F . Hene, the pasting of the 2-ells,

jT

0

j� � j�j� : jT j�! jT

0

j�F

�

0

;

gives an underlying morphism between underlying languages, so we have an

underlying funtor

U : T h! Lang
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from the ategory of theories to the ategory of languages.

The syntax of �rst-order logi may be desribed as the onstrution of a

theory FL whih is freely generated from a language L. This means that given

a modeling � : L ! UT of a language L in a theory T , one an extend to a

translation �̂ : FL ! T between theories, uniquely up to invertible modi�a-

tion: the ategory of translations and modi�ations T h(FL; T ) is equivalent to

the disrete ategory or set of morphisms Lang(L;UT ), in a 2-natural sense.

The onstrution we give of FL avoids the usual variable-based syntati ma-

hinery in favor of ategorial and geometrially based onstrutions whih are

intimately onneted with Peire's system Beta.

3 The free theory of a language

The ategory of types C of FL is the \free ategory with �nite produts" gener-

ated by the set of sorts S of L, and may be desribed by means of \wreath prod-

uts." Let Fin be the ategory of �nite ardinals f1; : : : ; ng (empty if n = 0)

and funtions between them. If D is any ategory, then there is a ategory

Fin

R

D whose objets are pairs (m; f1; : : : ;mg

x

! D), where m 2 Fin

0

and x

is a funtor on f1; : : : ;mg as a disrete ategory; the morphisms (m;x)! (n; y)

are pairs (f; �), where f : m ! n is a morphism in Fin and � : x ! yf is a

natural transformation. An objet (m;x) amounts to a list hx

1

; : : : ; x

m

i of ob-

jets in D, so that (Fin

R

D)

0

= D

�

0

; a morphism is a funtion f together with

a list h�

1

; : : : ; �

m

i of morphisms in D, where �

i

: x

i

! y

fi

. In partiular, for

eah objet hx

1

; : : : ; x

m

i there arem morphisms k

i

: (1; x

i

)! (m; hx

1

; : : : ; x

m

i),

where the image 1 ! m is fig and where k

i

: x

i

! x

i

is the identity. These

morphisms are injetions whih realize hx

1

; : : : ; x

m

i as the oprodut �

m

i=1

x

i

in

Fin

R

D. It is easy to show that Fin

R

D is the free ategory with �nite sums

�(D) generated by D, in the sense that if E is any ategory with �nite sums

(oproduts), there is a (2-)natural equivalene

Cat(D;E) ' Coprod(Fin

R

D;E)

between the funtor ategory on the left and the ategory of oprodut-preserving

funtors on the right. The free ategory with produts is similarly formed as

�(D) = (Fin

R

D

op

)

op

. If D is a disrete ategory S, then �(S) = Fin

R

S and

�(S) = (�S)

op

. Given a prediate language L = (S; S

�

�

! Set), the ategory of

types of FL is de�ned to be �(S).

To omplete the desription of FL, we need to onstrut an appropriate

funtor �(S)

op

�

! Bool (or �(S)! Bool). The reader should think of (�S)

0

=
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S

�

0

as the olletion of types of the free theory, and of

Form

��

=

P

T2S

�

0

�(T )

�

T2S

�

0

!

��

S

�

0

�

=

P

T2S

�

0

1

as the olletion of all formulas or terms in the free theory, �bered over the

olletion of types. �(S) must be allowed to at both ontravariantly Form!

S

�

0

(by pullbak operations f

�

) and ovariantly (by existentially quantifying),

and of ourse loally (i.e., on a �ber Form

T

= �(T ) over a type T ) there must

be an appropriate Boolean algebra struture.

To handle all this struture, it is useful to view the formulas p of type

hx

1

; : : : ; x

n

i as formal n-ary relations of type x

1

� : : :�x

n

and, following Peire,

to express the struture in terms of geometrized alulus of relations. Working in

a two-sided relational alulus (e.g., of relations R : A! B between sets, where

the relational omposite of A

R

! B

S

! C is de�ned by RS(a; ) = 9

b

R(a; b) ^

S(b; )), we reall that the ategory of relations arries a monoidal produt 
.

Namely, given R : A! B and S : C ! D, R
S : A�C ! B�D is de�ned by

(R 
 S)(ha; i; hb; di) = R(a; b) ^ S(; d), and the monoidal unit is the terminal

set 1.

Remark 1 If C is any regular ategory, then there is a monoidal ategory

Rel(C), where the objets are objets of C and whose morphisms A ! B are

relations, i.e., moni arrows R ,! A�B. In fat, this is a monoidal 2-ategory,

sine relations of type A! B may be partially ordered by inlusion. Similarly,

there is a monoidal biategory Span(C) of spans in C, if C has �nite limits.

Remark 2 Rel(C) is ompat losed: eah funtor A
 { has a right adjoint

of the form A

�


 { (by taking A

�

= A). We remark that 
 is not the arte-

sian produt in Rel(C) (in fat, ompat losed ategories and, more generally,

�-autonomous ategories whose monoidal produt is the artesian produt are

equivalent to posets). In fat, the artesian produt is given by taking oprod-

uts in C, if and only if C is a lextensive ategory [5℄).

Our strategy for onstruting the theory FL on a language L (with S as

set of sorts) will be as follows. We build a monoidal (2-) ategory of relations

where the set of objets or 0-ells is S

�

, generated from prediates p 2 �(T )

in L (viewed as morphisms [i.e., relations℄ p : T ! 1 to the unit 1 of S

�

) and

monoidal subategories �(S) and �(S). The theory FL is retrieved as follows.

Formulas of type T in FL will be de�ned as morphisms T ! 1. Pullbak

operations and quanti�ations will then be de�ned as speial ases of relational

omposition. Conjuntion of two formulas R : A ! 1 and S : A ! 1 is de�ned

as the omposite

A

Æ

! A
A

R
S

! 1
 1

�

=

1
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in whih we pull bak along the diagonal Æ : A! A�A in �(S).

The desired monoidal ategory is formed by extending the method of string

diagrams and their deformations, used in [11℄. The extension is twofold. First,

we give presentations of monoidal ategories by means of surgery rules on string

diagrams ([3℄). Seond, to inorporate negation operations, we follow Peire

and introdue so-alled \sep lines": simple losed urves whih surround subdi-

agrams of string diagrams (and regarded as negating these subdiagrams when

viewed as subexpressions). The omplete olletion of deformations and surgery

rules on diagrams is the geometri orrelate of the rules of inferene in the �rst-

order relational alulus, and may be viewed as a modern formulation of Peire's

system Beta.

4 The geometry of positive formulas

In this setion, we begin by introduing a variant of the string diagram alulus

of [10℄ for symmetri monoidal ategories, and a notion of surgery on diagrams

needed to onstrut presentations of (symmetri) monoidal ategories. After

presenting the ategories �(S) and �(S), we onstrut a monoidal 2-ategory

Rel

+

(L) whih gives the desired relational alulus for positive �rst-order for-

mulas. Throughout this setion we assume familiarity with the terminology and

results of [10℄, inluding the notions of topologial graph with boundary and of

tensor sheme.

4.1 Permutative diagrams

De�nition 6 A permutative diagram onsists of a topologial graph G with

boundary �G � G

0

(i.e., a subset of G

0

onsisting of nodes with valeny 1)

together with a ontinuous map G

�

! [a

0

; b

0

℄� [a

1

; b

1

℄ suh that

(1) �

�1

(fa

0

; b

0

g � [a

1

; b

1

℄) is empty;

(2) �

�1

([a

0

; b

0

℄� fa

1

; b

1

g) = �G;

(3) The omposite G�G

0

,! G

�

! [a

0

; b

0

℄� [a

1

; b

1

℄

�

2

! [a

1

; b

1

℄, when restrited

to eah onneted omponent of G�G

0

, is a smooth embedding;

(4) �(x) = �(y) ) x = y holds for x 2 �G and for all but �nitely many

x 2 G.

These axioms have the following onsequenes: by (1) and (2), for eah x 2

G

0

� �G, �(x) = (a; b) is interior to the retangle [a

0

; b

0

℄ � [a

1

; b

1

℄. Let I =

G

0

� �G be the set of \interior" nodes. If K is a onneted omponent of

G � I , then by (3), K is a losed, open, or half-open line segment. If x 2 I

is an endpoint of (the losure of) K, then �(K) lies entirely above or entirely

below �(x), again by (3). We refer to the onditions of the preeding sentene

by saying K lies above/below x (2 K). In that ase, if �(x) = (a; b), then for

9



all suÆiently small � > 0, the line y = b � � intersets �(K) exatly one.

Finally, by (4), if we onsider the set of omponents K

i

suh that x 2 �K

i

and K

i

lies above/below x, then there exists � > 0 so small that for 0 < Æ < �,

�(K

i

)\�(K

j

)\([a

0

; b

0

℄�fb�Æg) is empty whenever i 6= j. Thus, for x 2 I there

is a left-to-right order �

x

=�

x

on those omponentsK

i

lying above/below x, given

by the order of the horizontal (absissa) oordinates of �(K

i

)\([a

0

; b

0

℄�fb�Æg).

De�nition 7 Let T = (A;S;A

h�;�i

! S

�

� S

�

) be a tensor sheme; let D =

(G; �G; �) be a permutative diagram, with I = G

0

� �G. A labeling of D in T

onsists of a pair of funtions �

1

: I ! A, �

2

: �

0

(G � I) ! S suh that for

eah x 2 I, ��

1

x = h�

2

K

1

; : : : ; �

2

K

m

i, where hK

1

; : : : ;K

m

i is the order �

x

,

and ��

1

x = h�

2

L

1

; : : : ; �

2

L

n

i, where hL

1

; : : : ; L

n

i is the order �

x

.

Eah T -labeled permutative diagram is desribed by a quadruple (�; �

1

; �

2

; �),

where � : G! R

2

is a ontinuous map, �

1

: I ! A is a node-labeling funtion,

�

2

: �

0

(G � I) ! S is a string-labeling funtion, and � is a poset struture on

the set of onneted omponents of G � I (given by taking the disjoint sum of

the orders �

x

, �

x

, where x ranges over I). Thus, given a tensor sheme T and a

graph with boundary (G; �G), the set �(G; �G;T ) of all T -labeled permutative

diagrams over (G; �G) may be topologized as a subspae of

Map(G;R

2

)�A

I

� S

�

0

(G�I)

� Pos(�

0

(G� I));

where Map(G;R

2

), the set of ontinuous maps � : G ! R

2

, is given the

ompat-open topology, whereas A

I

, the set of funtions I ! A, S

�

0

(G�I)

,

and Pos(�

0

(G � I)), the set of poset strutures on �

0

(G � I), are given the

disrete topologies.

De�nition 8 A deformation of T -labeled permutative diagrams is a path  :

I ! �(G; �G;T ).

A deformation is thus a homotopy through T -labeled diagrams, where the

node labelings and string labelings remain onstant, as do the linear orders on

the soure and target strings of nodes x 2 I . The left-right orders on points in

(t)(�G)\ ([a

0

; b

0

℄�fb

1

g) and in (t)(�G)\ ([a

0

; b

0

℄�fa

1

g) remain onstant as

well by ondition (4). De�ning T -labeled diagrams to be deformation equivalent

if there is a path between them in �(G; �G;T ), eah deformation-equivalene

lass has a well-de�ned domain and odomain in S

�

, de�ned as the ordered lists

of labels of strings whih abut these respetive ordered lists of points.

Proposition 1 (f. [10℄) Deformation-equivalene lasses of T -labeled permu-

tative diagrams are the morphisms of a symmetri strit monoidal ategory,

naturally equivalent (as a symmetri monoidal ategory) to the free symmetri

monoidal ategory on the tensor sheme T .

To exhibit the symmetri monoidal struture, we need the following de�ni-

tion:

10



De�nition 9 Let � : G ! [a

0

; b

0

℄ � [a

1

; b

1

℄ be a permutative diagram. A sub-

diagram onsists of the pullbak of � along a subretangle [

0

; d

0

℄ � [

1

; d

1

℄ ,!

[a

0

; b

0

℄ � [a

1

; b

1

℄ suh that �

�1

(f

0

; d

0

g � [

1

; d

1

℄) is empty and �

�1

([a

0

; b

0

℄ �

f

1

; d

1

g) � fx 2 G � I j �(x) = �(y) ) x = yg. The pullbak or restrition is

denoted res �.

It is straightforward that H = �

�1

([

0

; d

0

℄� [

1

; d

1

℄), with �H = �

�1

([

0

; d

0

℄�

f

1

; d

1

g), is a topologial graph with boundary, and that � : (H; �H)! [

0

; d

0

℄�

[

1

; d

1

℄ is a permutative diagram. Indeed, the restrition of � to eah of the ret-

angular setors shown de�nes a permutative diagram in an analogous manner:

b1

d0c0

a1

d1

c1

a0 b0

.

If [

0

; d

0

℄ = [a

0

; b

0

℄ and 

1

= a

1

or d

1

= b

1

, then there are two vertially

juxtaposed permutative subdiagrams of G, and we regard G as their vertial

omposite (i.e., morphism omposition). Similarly, if [

1

; d

1

℄ = [a

1

; b

1

℄ and



0

= a

0

or d

0

= b

0

, then there are two horizontally juxtaposed permutative

subdiagrams, and G is their horizontal omposite (i.e., tensor produt). Given

two objets u = hs

1

; : : : ; s

m

i and v = ht

1

; : : : ; t

n

i, the symmetry isomorphism

u 
 v �! v 
 u is represented by a diagram in whih eah string labeled s

i

rosses eah string labeled t

j

. Up to deformation, any permutative diagram G

is omposed of diagrams of the following types:



 .   .   .

 .   .   .

,a

where the �rst diagram is a single S-labeled string, the seond is a rossing

of two (S-labeled) strings, orresponding to a symmetry isomorphism, and the

third orresponds to an element a 2 A of the tensor sheme (with strings labeled

appropriately by letters of �(a), �(a)).

In the sequel, we will use a shemati to indiate subdiagrams and their

domains and odomains:

11



f

u

v

indiates a subdiagram f with domain u and odomain v; more preisely, u; v 2

S

�

are word labels hu

1

; : : : ; u

m

i and hv

1

; : : : ; v

n

i, where u

i

labels the ith string

from the left along the top edge of the subdiagram, et. As an example of this

usage, our notion of deformation equivalene entails equalities of the following

type within a subdiagram:

s t

u v

s t

u v

= ,f g fg

where, for example, the rossing of the \strings" labeled s and t is a shemati

shorthand for a multiple string rossing of multipliity mn, if s = hs

1

; : : : ; s

m

i

and t = ht

1

; : : : ; t

n

i. The equality, of ourse, is the geometri reetion of the

naturality of the symmetry isomorphism.

4.2 Surgery

Our theory also makes use of ertain \surgeries" on permutative diagrams.

De�nition 10 Let � : G ! [a

0

; b

0

℄ � [a

1

; b

1

℄ be a permutative diagram, with

subdiagram res � : H ! [

0

; d

0

℄� [

1

; d

1

℄. Suppose  : H

0

! [

0

; d

0

℄� [

1

; d

1

℄ is

a permutative diagram suh that res � and  have the same C

1

germs on their

boundaries: restrit to the same funtion on some neighborhood of [

0

; d

0

℄ �

f

1

; d

1

g in [

0

; d

0

℄ � [

1

; d

1

℄. De�ne a new permutative diagram �[H=H

0

℄, with

underlying graph G

0

de�ned by (G�H) [H

0

, �G

0

= �G, and �[H=H

0

℄ : G

0

!

[a

0

; b

0

℄� [a

1

; b

1

℄ de�ned by

�[H=H

0

℄(x) =

�

�(x) if x 2 G�H ;

 (x) if x 2 H

0

:

Abusing language, we all this the surgial replaement of H by H

0

. This on-

strution permits onsideration of equivalene relations on symmetri monoidal

ategories freely generated from a tensor sheme.

More formally, if T = (A;S;A ! S

�

� S

�

) is a tensor sheme, then a T -

surgery rule is a pair of (deformation-equivalene lasses of) T -labeled diagrams

of the form (� : H ! R

2

;  : H

0

! R

2

) whih have idential domain and

12



odomain (as words in S

�

). Given a set of T -surgery rules, de�ne an equivalene

relation on deformation-equivalene lasses of T -diagrams, generated by the

relation G ; G

0

, where G

0

is obtained from G by surgial replaement of one

T -labeled subdiagram � : H ! R

2

by another  : H

0

! R

2

, where (�;  ) is a

pair of representatives of a T -surgery rule.

A permutative diagram presentation of a symmetri monoidal ategory M

is de�ned to be a tensor sheme T together with a set of T -surgery rules suh

that the symmetri monoidal ategory of T -labeled permutative diagrams mod-

ulo deformation- and surgery-equivalene is isomorphi to M . In the sequel,

T -surgeries are also used to onstrut ertain symmetri monoidal ategories

enrihed in the ategory of posets. Namely, if hom(u; v) denotes the set of de-

formation lasses of T -diagrams with soure u and target v, then instead of

onsidering the equivalene relation generated by a set of T -surgeries, one may

onsider the poset struture on hom(u; v) indued by the reexive transitive

losure ; on the set of T -surgeries (identifying f and g if f ; g and g ; f).

The poset struture oinides with the equivalene relation in ase the set of

T -surgeries is already a symmetri relation on diagrams, i.e., if the inverse of

every surgery rule is a surgery rule. Thus, we will sometimes stipulate that

ertain surgery rules are invertible.

The same idea applies to progressive string diagrams for monoidal ategories

in the sense of Joyal-Street, where rossings of strings are not allowed. We now

give two examples for the monoidal ase.

Example 1 Let T be the tensor sheme given by S = 1, A = fm;ug, and

A

h�;�i

! S

�

� S

�

as indiated in the string diagrams

m u .

Let R be the equivalene relation generated by the surgery moves

13





m



m

m

u

 m

m

m

u

;

.

The monoidal ategory, generated by deformation lasses of planar progressive

diagrams modulo these surgery moves, is isomorphi to the simplial ategory

� (of �nite ordinals and weakly inreasing maps, inluding the empty ordinal).

Example 2 Let T be the tensor sheme given by S = 1, A = fi; Æ

0

; Æ

1

g, and

A

h�;�i

! S

�

� S

�

as indiated in the string diagrams

.i d1d0

Let R be the equivalene relation generated by the surgery moves

.
i

d0

i

d1

The monoidal ategory with presentation hT;Ri is preisely the ubial ategory

2.

4.3 Presentation of �(S) and �(S)

Next, returning to the symmetri monoidal ase, we present the ategory �(S).

�(S) is generated by deformation lasses of permutative diagrams on a tensor

14



sheme (A

�

; S; A

�

h�;�i

! S

�

� S

�

), with A

�

= fÆ

s

j s 2 Sg [ f�

s

j s 2 Sg, and

ds es

s s

ss

to indiate the soure-target funtion h�; �i : A

�

! S

�

� S

�

.

To desribe the surgery moves, whih are based partly on naturality require-

ments for diagonal maps Æ and projetion maps �, we �rst need to desribe

derived arrows Æ

w

and �

w

for w 2 S

�

. If u = hs

1

; : : : ; s

n

i and if v = us, we

de�ne Æ

v

indutively as

su

,u ssu
du ds

where it is understood that the soure of Æ

u

onsists of n strings with the

label sequene hs

1

; : : : ; s

n

i and the target of 2n strings with the label sequene

s

1

: : : s

n

s

1

: : : s

n

. Similarly, �

v

is de�ned indutively as

s

eseu

u

.

The shema for the surgery rules is as follows: given a subdiagram f , we have
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f
u

v
e e

u

;

;d

f
u

v
d

v v

ff

vv

u

u u

(S1)

whih orrespond to naturality of Æ and �, and we also have

u u

.d

e e

du

u

u

u

(S1)

whih orrespond to triangular equations for the adjoint pair � a �, where � is

the diagonal funtor �(S)! �(S)��(S) and � is the produt �(S)��(S)!

�(S). Displaying this set of surgery rules by (S1), we have the following theorem.

Theorem 1 The symmetri monoidal ategory generated by the tensor sheme

A = fÆ

s

j s 2 Sg [ f�

s

j s 2 Sg, modulo the surgery rules (S1), is isomorphi to

�(S).

The opposite ategory �(S) is obtained by inverting all diagrams of �(S). In

pratie, we drop the labels Æ and � sine no ambiguity will result in our dia-

grams. Peire alls a on�guration of strings whih meet at a Æ a \ligature,"

and a string ending at an � a \loose end"; we will use this terminology in the

sequel.

4.4 Pullbaks and quanti�ers

As we remarked earlier, both �(S) and �(S) at (ontravariantly) on the set

of formulas Form(L) of the free theory FL of a language L = (S; S

�

�

! Set).

As also remarked, we follow Peire and view all onstruts of the theory (the

elements of Form(L), and also of �(S) and �(S)) as formal relations whih
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an be omposed horizontally (the relational or horizontal produt R
 S) and

vertially (the relational omposite RS). The ations by �(S) and �(S), by

pulling bak and existentially quantifying, emerge as operations derived from

horizontal and vertial ompositions, whih are viewed here and by Peire as

more basi.

Thus, we will present a monoidal 2-ategoryRel

+

(L), taking the generating

tensor sheme to be A

�

[ A

�

[ P

h�;�i

! S

�

� S

�

, where A

�

! S

�

� S

�

and

A

�

! S

�

� S

�

are the tensor shemes used to present �(S) and �(S), where

P is the set of prediates of L, and where h�; �i(p) = (type of p, 1), with 1 the

unit of S

�

. Those (deformation lasses of) permutative diagrams generated by

this tensor sheme and with target 1 (i.e., the empty target) will be referred

to as positive geometri formulas. The olletion of diagrams with given soure

and target will be partially ordered, via a olletion of surgery rules desribed

under (S2) and (S3).

In addition to the surgery rules used to present �(S) and �(S), we need

surgery rules (S2) to reet the adjoint relationship between pullbak operations

f

�

and existential quanti�ers 9

f

. Later in this paper, we will see that these rules

are also derivable from Peire's so-alled Alpha rules.

If p is a positive geometri formula of soure type v and if f : u ! v is

a morphism of �(S) viewed as a permutative diagram, we de�ne f

�

p as the

diagram



f
u

v
p .

If q is of soure type u and f is as before, then f

op

: v ! u in �(S) is obtained

by inverting the diagram for f , and we de�ne 9

f

q as



f  
op

v

u
q

.

The unit and ounit of the adjuntion 9

f

a f

�

are expressed by surgery rules

(noninvertible in general):
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u

.

;

(S2)

v


v

u

f

v

f  
op


v

u

f  
op

f

u

A basi example onerns existential quanti�ation via the taking of diret im-

ages along a projetion map (i.e., � : s ! 1 in �(S)): the �rst move, for the

unit 1 ! f

�

9

f

, is already in Peire's work and is alled \breaking in positive

regions":




.; 

s

s

s

s

This is the ase where f = �

s

: s! e.

Remark 3 These moves denote the unit and ounit of 9

f

a f

�

where f =

�

s

: s ! 1. Notie that we have dropped the label � (as the label is superu-

ous). Both the unit and ounit moves of the preeding example are instanes of

Peire's weakening rule, given in x4.2.

Lemma 1



.
s=

s

s

ss

Proof: The equality means that eah diagram an be derived from the other

through surgeries. To get from the right to the left, we apply a unit
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,



where f = Æ

s

. To get from left to right, apply the sequene



 .=


where the �rst step is a loal breaking, the seond step indiates a deomposition

into subdiagrams, and the third applies surgery rules for �(S) and �(S) to these

subdiagrams. q. e. d.

Remark 4 The equality of Lemma 1 may be viewed as an instane of Peire's

iteration rule, given in x4.2.

The next two lemmas follow from Theorem 1: we isolate them for future

onveniene.

Lemma 2

= .

Cf. [5℄: eah objet u has a omonoid struture. Lemma 3 asserts oommuta-

tivity.
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Lemma 3

= .

4.5 Bek-Chevalley rules

Next, we introdue surgery rules (S3) whih orrespond to the Bek-Chevalley

ondition. These onern pullbaks in �(S) or pushouts in �(S) = Fin

R

S;

to visualize these pushouts geometrially, and ultimately to get an eÆient set

of rules whih are neessary and suÆient for Bek-Chevalley, �rst we observe

that a (permutative) diagram for a morphism in Fin

R

S has two ingredients:

(1) A diagram for the underlying map in Fin (the ase S = 1);

(2) A labeling of eah onneted omponent of a Fin-diagram by an element

of S.

Condition (2) is lear: eah string of a generating diagram Æ

op

s

or �

op

s

in the

tensor sheme for �(S) is labeled by the same element s 2 S, and onneted

omponents of larger diagrams preserve this feature. The feature means essen-

tially that the arguments below, written in the ase for Fin, apply generally

to Fin

R

S. For example, sine Fin admits all pushouts, our next observation

yields the following result:

Proposition 2 �(S) (�(S)) admits all �nite pushouts (pullbaks).

Seond, we observe that a pushout P , as in

A

f //

g

��

B

k

��
C

h

//
P

;

may be visualized as the set of onneted omponents of a permutative diagram

obtained by gluing together the diagrams for A

f

! B and A

g

! C along the

set of nodes orresponding to A. Topologially it makes no di�erene whether

these diagrams read \top-down" or \bottom-up" (we get the same onneted

omponents regardless); we may hoose, for example,
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f

A

B

g

C

This is the diagram used for the omposite operation g

�

9

f

, and we alulate

the set of onneted omponents of the omposite diagram to get the pushout.

Example 3

A

g

f

C

B

1

1

1 2

2

2 3

has one onneted omponent, so P = 1, and the remaining morphisms h, k of

the pushout in Fin are given as:

P

h

k

C

B

1

1

1 2

2

.

The seond diagram represents the omposite 9

h

k

�

, where h and k are diagonal

maps in �(S). Sine g

�

9

f

= 9

h

k

�

by Bek-Chevalley, we are obliged to inlude

a surgery rule whih permits surgial replaement of eah of the two preeding

diagrams by the other.

To get a omplete set of surgery rules whih apture the Bek-Chevalley

ondition, we study geometri representations of pushouts in Fin along lines

similar to those of Example 3. We observe that epi-mono fatorization in Fin

indues epi-mono fatorization in Fin

R

S, so that it suÆes to analyze the

possibilities in Fin for the following three ases:

� pushing out a mono along a mono;
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� pushing out a mono along an epi;

� pushing out an epi along an epi.

The �rst two possibilities are ases where Bek-Chevalley holds automatially:

any moni in Fin deomposes into a sequene of monis of type n! n+1; thus,

if g : n ! n + 1 is a moni and n

f

! m is any map in Fin, then (without loss

of generality) the gluing of diagrams of f and g is represented by the left-hand

diagram below:

,

f

n

n + 1

m

n

g

f

m

f
n

n + 1

m

m + 1

h

k
m

and now, in the seond diagram, eah of the onneted omponents of f (one for

eah element in m) rosses the dotted line exatly one, so that the pushout P

has ardinalitym+1, and the Bek-Chevalley equality g

�

9

f

= 9

k

h

�

, for g moni,

follows from instanes of deformation equivalene for permutative diagrams as

displayed in the equation.

The last possibility is slightly more interesting, but simple to analyze nonethe-

less. Eah epi deomposes into a sequene of epis of type n+1! n. In pushing

out one epi of this type along another, one an arrange the diagrams (by ma-

nipulating symmetry isomorphisms and Lemma 3) until one has a subdiagram,

involving a pushout of two instanes of the epi 2! 1 (possibly \expanded" by

appliations of m� { or {�m), �tting into one of the following ases:
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;

.

;(1)

(3)

(2) 

or

or

The Bek-Chevalley equality pertaining to ase (1) follows from Lemma 1. For

ase (3), it follows from a deformation resulting in, respetively,

.or

This leaves ase (2), disussed in the prior example. Summarizing, the Bek-

Chevalley ondition is equivalent to ertain deformations plus (invertible) surgery

moves

23



;

(S3)

.

Remark 5 An interesting alternative to the string diagram representations of

Peire's system Beta, as given here, involves onsideration of \surfae diagrams"

(see [12, 1℄). In this formulation, instead of representing morphisms in �(S) and

�(S) by planar immersions of one-dimensional topologial graphs, one thikens

the graphs out to two-dimensional surfaes with boundary (by embedding the

graphs in R

3

and taking their normal bundles; for example, the graph of Æ

is thikened out to a \pair of pants"). These surfae diagrams give oriented

obordisms between sets of irles, and the surgery rules (S1) together with

the Bek-Chevalley rules (S3) are aptured preisely by obordism equivalene.

Thus, among the surgery rules disussed thus far, only the rules (S2) for adjun-

tions 9

f

a f

�

hange the obordism type of suh surfae diagrams. Thus, if C

2

denotes the symmetri monoidal ategory of two-dimensional obordisms, then

the symmetri monoidal ategory generated by �(S) and �(S) (as symmetri

monoidal subategories), and subjet to the Bek-Chevalley equations, may be

presented as a wreath produt C

2

R

S, whose morphisms are two-dimensional

obordisms with onneted omponents labeled in S. In the sequel, we refer to

this fat by alling the rules of (S1) and (S3) obordism rules.

5 Rules for �rst-order diagrams

In this setion, we omplete our formulation of Peire's system Beta, �rst by

expanding our lass of diagrams so as to inlude \lines of negation," and orre-

spondingly expanding our notion of deformation between suh diagrams. Se-

ond, after giving rules of interpretation of these diagrams, we adjoin surgery

rules to reet Boolean algebra struture.

5.1 Negation

To inorporate negation, we essentially follow Peire and introdue the following

de�nition:
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De�nition 11 A sep line (on a Rel

+

(L)-diagram with underlying graph G

�

!

[a

0

; b

0

℄�[a

1

; b

1

℄) is the boundary of a retangle [

0

; d

0

℄�[

1

; d

1

℄ � [a

0

; b

0

℄�[a

1

; b

1

℄

suh that

(1) �

�1

(f

0

; d

0

g � [

1

; d

1

℄) is empty;

(2) �

�1

([

0

; d

0

℄� f

1

g) ontains no node labeled by an element of A

�(S)

[ P ,

and �

�1

([

0

; d

0

℄�fd

1

g) ontains no node labeled by an element of A

�(S)

[

P .

A �rst-order diagram onsists of a Rel

+

(L)-diagram together with a �nite ol-

letion of noninterseting sep lines. A �rst-order form (or form for short) is a

�rst-order diagram with empty target. A �rst-order subdiagram of a �rst-order

diagram D onsists of a subdiagram � : H ! [

0

; d

0

℄� [

1

; d

1

℄ of the underlying

Rel

+

(L)-diagram of D (suh that [

0

; d

0

℄ � [

1

; d

1

℄, relative to any given sep

line of D, ontains the sep line or is exterior to it), together with all of the sep

lines ontained in [

0

; d

0

℄� [

1

; d

1

℄. A subform is suh a subdiagram with empty

target.

The intention is that a sep line negates the region it enloses. Keeping

the notation used in the preeding de�nition, the retangle [

0

+ Æ; d

0

� Æ℄ �

[

1

+ Æ; d

1

� Æ℄ de�nes a subdiagram for all suÆiently small Æ, and under some

model (S; S

�

�

! Set) ! (Set

0

;Set

�

0

�

! Set), the subdiagram is interpretable

(independently of suÆiently small Æ) as a relation R ,! A � B on sets A and

B, where A is the interpretation of the soure of the subdiagram, and B of its

target. The semantis of plaing a sep line around suh a region, as in the prior

de�nition, is to take the omplement of R in A�B. \Sepping" an be iterated,

where one sep line is interior to another; if there are no nodes between two suh

sep lines, then the appropriate semantis of multiple seppings is the iterating of

negations or omplementations.

A further intention is that there is a spae of �rst-order diagrams on a graph

G labeled in a tensor sheme T (topologized as a subspae

�(G; �G;T ) ,! Map(G;R

2

)�A

I

� S

�

0

(G�I)

�Pos(�

0

(G� I))� exp(R

4

);

where the last fator denotes the free ommutative topologial monoid on the

spae of quadruples (

0

; d

0

; 

1

; d

1

) representing sep lines), and that the logial

interpretation of a �rst-order diagram is invariant under deformation (i.e., along

a path in the spae of �rst-order diagrams).

De�nition 12 A deformation of T -labeled �rst-order diagrams is a path  :

I ! �(G; �G;T ).

In pratie, this means that the top of the sep line in a diagram undergoing

deformation is allowed to pass bak and forth over nodes labeled as Æ, � in A

�(S)

,

and over \rossing points" (where � : G! R

2

is not injetive). It orresponds

to the fat that pullbak operations f

�

, for f a morphism in �(S), ommute

with negation :, as required in the de�nition of (ategorial prediate) theory
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(where f

�

= T (f) is a morphism of Boolean algebras). Sine the ategory of

relations is self-dual, the bottoms of sep lines may pass bak and forth aross

nodes labeled in A

�(S)

and over rossing points.

For the reader's onveniene, we present a few examples of �rst-order dia-

grams, deformations, and their interpretations as formulas in �rst-order logi.

In these examples, solid retangles denote sep lines and a dotted line represents

the boundary of a diagram or subdiagram, p and q are prediates or formulas

labeling nodes, and the strings abutting these nodes have been labeled, not by

the appropriate sorts but by variable terms of those sorts. (It is hoped that this

last onvention will assist the reader in making the translation into the stan-

dard variable-based notation whih aompanies these diagrams, even though

our approah eshews variables.)

In interpreting subdiagrams, distint variables are assigned to eah sort of

the soure and eah sort of the target, and are then assigned to eah string

whose losure is interior to the subdiagram; two distint variables are expliitly

asserted to be equal if they label the same strings, or strings whih meet at a

ligature. Horizontal juxtapositions of subdiagrams are interpreted as onjun-

tions. In interpreting vertial omposites, variables whih label strings whih

meet at a boundary between two subdiagrams are identi�ed (i.e., should be

literally the same).

Example 4

.

x

y

[x = y]

x

y

[x = y]5

In the �rst diagram, the soure variable x and the target variable y are asserted

to be equal; in the seond diagram, the equality is negated by the sep line.

Example 5

x y

z

9z[z = x ^ z = y℄.
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As in Example 4, this is also an equality prediate (with two free variables x, y).

However, Example 4 should be interpreted as an identity arrow X ! X in the

monoidal ategory of relations; Example 5, as an arrow of the form 1! X �X

mated with the identity X ! X .

In the next example, a deformation equivalene between diagrams is inter-

preted as an equality between formulas.

Example 6

x y x y

=p p
x xy

:(p(x) ^ [y = y℄) = :p(x) ^ [y = y℄.

When vertially omposing two subdiagrams, variables are identi�ed aross

boundaries (e.g., the instanes of x or y in the example).

Example 7

x y

z

pp

9x9y:(9z[z = x ^ z = y℄) ^ p(x) ^ p(y).

This asserts that there exist two distint elements x, y whih satisfy p.

Example 8

x y

pp

z

x y
z

=

pp
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9z9x9y(z = x ^ z = y) ^ p(x) ^ q(y) ^ :[z = z℄ =

(9x9y9z[z = x ^ z = y℄ ^ p(x) ^ q(y)) ^ ?;

where ? denotes \false." Observe that the �rst of these expressions is self-

ontraditory.

Example 9

=

x y
pp

x y
pp

z z

9x9y9z:[z = x ^ z = y℄ ^ p(x) ^ p(y) =

9x9y9u9v9z[z = u ^ z = v℄ ^ :[u = x ^ v = y℄ ^ p(x) ^ p(y):

This says that there exist two elements of a given type, and at least one of them

satis�es p.

We extend the surgery rules (S1), (S2), and (S3) to the lass of �rst-order

diagrams as follows. First, suh a surgery rule an only be applied to a subdia-

gram whih, relative to any given sep line , is interior or exterior to . We say

that suh a subdiagram is oddly enlosed if it is in the open interior of an odd

number of sep lines, and evenly enlosed otherwise. If a subdiagram is evenly

enlosed, then (S1), (S2), and (S3) may be applied to it; if it is oddly enlosed,

then the inverse of (S1), (S2), and (S3) may be applied to it. Sine (S1) and

(S3) are already invertible by de�nition, this onvention has an e�et only on

the unit and ounit rules (S2). However, as mentioned earlier, (S2) is derivable

from the rules of \system Alpha," given below. If we drop (S2) for now and

retrieve it later from Alpha, we may say that the sep-parity onvention has no

e�et on the rules (S1), (S3) (i.e., \rules of obordism"; f. remark 5) given thus

far.

Example 10 The following moves are valid inside a single sep line:




;

 

u

u

u .
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where in the graph at the beginning of the seond move both strings are labeled

by the same sort. Peire would view this example as an instane of Alpha

weakening: to oddly enlosed regions, an expression may be added (just as

an inferene may be weakened by adding an extra hypothesis); from evenly

enlosed regions, an expression may be deleted (just as an inferene is weakened

by deleting a onlusion). For instane, in the seond move above, one adds an

assertion whih equates two variables (f. Example 4).

5.2 Boolean algebras and system Alpha

We formulate the remainder of Peire's rules (based on his system Alpha [4℄) as

follows.

(1) Given a �rst-order diagram G and a �rst-order subdiagram p whose un-

derlying Rel

+

(L)-diagram is a subdiagram of a Rel

+

(L)-subdiagram of G

of the form



p

v

u

,

where the \empty" subdiagram D onsists only of the loose ends la-

beled u and v, a �rst-order diagram deformation-equivalent to p may be

(smoothly) attahed to the u-string and v-string inside D, provided that

D is enlosed by any sep line whih enloses p:



p

v

u



p

v

u

p .

This surgery rule, alled Alpha iteration, is invertible.

(2) The following direted move may be applied whenever a �rst-order subdi-

agram p is evenly enlosed:
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v

.

u
u

v

p

This surgery rule is reversed if p is oddly enlosed. This is the Alpha

weakening rule.

(3) Two nested sep lines may be inserted or removed, provided that no nodes

lie in the region between them, e.g.,



.


pp

This invertible rule is alled double sep elimination/introdution.

As shown in [4℄, the Alpha rules may be exploited to put a Boolean algebra

struture on the set of (deformation lasses of) �rst-order diagrams with given

soure and target. Given diagrams f; g : u! v, their onjuntion is



f

v

u

,g

and the negation of f is given by surrounding the diagram f by a sep line.

The atual ase onsidered in [4℄ is, in the ontext of this paper, the ase

where one restrits to diagrams of the form T ! 1 whih have no subdia-

grams belonging to �(S) (orresponding to quanti�er-free formulas); we all

these \propositional forms." This restrition puts some obvious restritions on

whih surgeries are allowed (e.g., (S2) must be removed); the remaining set of

surgeries we all propositional surgeries. Then deformation lasses of proposi-

tional forms, modulo propositional surgeries, is essentially equivalent to a typed

form of propositional logi. That is to say: if we de�ne a propositional theory
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as in de�nition 3 but drop onditions (1) and (2) in that de�nition (i.e., if we

drop quanti�ation), and if we de�ne a translation of propositional theories as

in de�nition 4 but drop the quanti�ation-preservation ondition, then we have

the following result:

Theorem 2 (see [4℄) Deformation lasses of propositional forms on a prediate

language L, modulo propositional surgery, is isomorphi (as a �(S)-�bration)

to the free propositional theory on L.

It is straightforward to extend the methods of [4℄ to show that deformation

lasses of diagrams in hom(u; v), modulo all of the surgery rules, form a Boolean

algebra. As an example, we present \modus ponens" (f ) g) ^ f ; g for

f; g 2 hom(u; v):

 

g



ff g f f g fY YLemma 3

deformation
Lemma 2

deiteration

deformation

weakening

g

g

double sep
elimination

Y

Y

cobordism

We also present the \dual" of modus ponens, f ; (g ) (f ^ g)):
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f f





g fY YY cobordism weakening
double sep

introduction

deformation
f

g fg



deformation

Y

Yfgg

iteration

Lemma 2

Similarly, it is easy to show that equivalene lasses of diagrams u! v form

a meet-semilattie (using iteration and weakening), a lattie (using the sep-

parity onvention and double-sep elimination/introdution), a Heyting algebra

(using modus ponens and its dual above), and �nally a Boolean algebra (Heyting

algebra plus double-sep elimination/introdution).

6 Soundness and ompleteness of Beta

In this setion, we show that the �rst-order relational alulus (and inferenes

therein) is expressed preisely by �rst-order diagrams and deformations and

surgery rules thereon.

6.1 The monoidal 2-ategory Rel(C; T )

We begin by realling the relationship between �rst-order logi and �rst-order re-

lational alulus, whereby eah theory (C; T ) gives rise to a monoidal 2-ategory

Rel(C; T ) of two-sided relations. As we shall see, eah theory (C; T ) an be re-

trieved in turn from Rel(C; T ).

For the theory of sets, Rel(Set;Set

op

P

! Bool) is onstruted as follows.

Objets of Rel(Set; P ) are sets A;B; : : :, and hom(A;B) is de�ned as P (A�B)

(viewed as the set of relations from A to B). The monoidal produt

hom(A;B)� hom(C;D)




�! hom(A� C;B �D)

is de�ned as a omposite

P (A�B)� P (C �D)! P (A�B � C �D)

�

! P (A� C �B �D);
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where the �rst map sends a pair of subsets to their produt, and the seond one

arises from middle-four interhange. Composition of morphisms (i.e., relational

produt)

hom(A;B)� hom(B;C) ! hom(A;C)

(R(a; b); S(b; )) 7! 9

b

R(a; b) ^ S(b; )

may be de�ned as a omposite

P (A�B)� P (B � C)




! P (A�B

2

� C)

(1�Æ

B

�1)

�

! P (A�B � C)

9

b

! P (A� C)

(R(a; b); S(b

0

; )) 7! R(a; b) ^ S(b; ) 7! 9

b

R(a; b) ^ S(b; ):

The idea is to generalize this onstrution for the theory of sets to any theory

(C; T ), to obtain a formal alulus of relations Rel(C; T ).

Before establishing the monoidal ategory axioms on Rel(C; T ), we �rst gen-

eralize a few well-known results whih onern the ovariant power set funtor

P : Set! Set.

Given a theory (C; T ), let 9 : C ! Bool denote the ovariant funtor de�ned

on objets by 9A = TA and on morphisms f : A! B by 9f = 9

f

: TA! TB.

Let M : C ! Pos be the omposite

C

9

! Bool

j j

! Pos;

where j j is the underlying poset funtor. We de�ne struture maps � : MX �

MY ! M(X � Y ) and � : 1 ! M1; � is the map from a singleton 1 whih

names the element \true": the maximal element in the Boolean algebra T1.

The map � is given by a omposite

jTX j � jTY j

hjT�

X

j;jT�

Y

ji

�! jT (X � Y )j � jT (X � Y j

^

�! jT (X � Y )j:

Lemma 4 The map � is natural.

Proof: We must show that

TX � TY

�

�

X

��

�

Y //

9

f

�9

g

��

T (X � Y )� T (X � Y )

^ //
T (X � Y )

9

f�g

��
TX

0

� TY

0

�

�

X

0

��

�

Y

0

//
T (X

0

� Y

0

)� T (X

0

� Y

0

)

^

//
T (X

0

� Y

0

)

ommutes, i.e., for A 2 TX and B 2 TY , we have

�

�

X

0

9

f

A ^ �

�

Y

0

9

g

B = 9

f�g

(�

�

X

A ^ �

�

Y

B):

To prove this, we apply Bek-Chevalley (BC) in onjuntion with \Frobenius

reiproity (Frob),"

(Frob) 9

f

(f

�

B ^ {) = B ^ 9

f

{;
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whih obtains by taking left adjoints on the equation f

�

(B ) {) = (f

�

B )

f

�

{).

We have

�

�

X

0

9

f

A ^ �

�

Y

0

9

g

B

BC

= 9

f�1

�

�

X

A ^ 9

1�g

�

�

Y

B

Frob

= 9

1�g

((1� g)

�

9

f�1

�

�

X

A ^ �

�

Y

B)

BC

= 9

1�g

(9

f�1

(1� g)

�

�

�

X

A ^ �

�

Y

B)

Frob

= 9

1�g

9

f�1

((1� g)

�

�

�

X

A ^ (f � 1)

�

�

�

Y

B)

fun

= 9

f�g

(�

�

X

A ^ �

�

Y

B): q: e: d:

Theorem 3 The triple (M; �; �) : C ! Pos is a lax monoidal funtor.

Proof: The statement is the onjuntion of Lemma 4 together with the statement

that the following diagrams ommute:

TX � TY � TZ

�

XY

�1//

1��

Y Z

��

T (X � Y )� TZ

�

X;Y�Z

��
TX � T (Y � Z)

�

X�Y;Z

//
T (X � Y � Z);

1� TX

��1 //

�

��

T1� TX

�

��
TX

T (1�X);

M�

oo

and

TX � TY

� //

�

��

T (X � Y )

T�

��
TY � TX

�

//
T (Y �X):

The ommutativity of these diagrams, whih is left to the reader, is straight-

forward; e.g., for the �rst (seond, third) diagram, one ombines assoiativity

(identity, symmetry, resp.) together with funtoriality and the fat that maps

of the form f

�

preserve onjuntion ^. q. e. d.

Lemma 5 Given f : X ! X

0

, g : Y ! Y

0

, the following diagram ommutes:

TX

0

� TY

0

� //

f

�

�g

�

��

T (X

0

� Y

0

)

(f�g)

�

��
TX � TY

�

//
T (X � Y ):
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Proof: The fat that the diagram

TX

0

� TY

0

�

�

X

0

��

�

Y

0//

f

�

�g

�

��

T (X

0

� Y

0

)� T (X

0

� Y

0

)

^ //

(f�g)

�

�(f�g)

�

��

T (X

0

� Y

0

)

(f�g)

�

��
TX � TY

�

�

X

��

�

Y

//
T (X � Y )� T (X � Y )

^

//
T (X � Y )

ommutes is trivial: ommutativity of the left square follows from funtoriality;

the right square ommutes beause (f � g)

�

is a Boolean map. q. e. d.

Now we de�ne the monoidal 2-ategoryRel(C; T ). Objets of Rel(C; T ) are

types, i.e., objets of C. Morphisms A

R

! B are triples hA;B;R 2 M(A� B)i;

the hom set hom(A;B) is partially ordered by the relation � oming from

the Boolean algebra struture on M(A � B), and instanes R � S may be re-

garded as 2-ells. (Observe that 2-ell isomorphisms are equalities.) A monoidal

produt is de�ned on objets A;B; : : : by taking artesian produts in C. On

morphisms, the monoidal produt

hom(A;B) � hom(C;D)




! hom(A� C;B �D)

is de�ned as the omposite

M(A�B)�M(C �D)

�

!M(A�B � C �D)

�

!M(A� C �B �D);

where the seond map is M (or jT j) applied to a middle-four interhange. The

unit of 
 is the objet 1 2 C. Composition

hom(A;B) � hom(B;C)! hom(A;C)

is de�ned by the omposite

M(A�B)�M(B�C)

�

!M(A�B

2

�C)

(1�Æ

B

�1)

�

! M(A�B�C)

M(1��

B

�1)

! M(A�C);

and the unit is the equality prediate

1

�

!M1

�

�

!MA

MÆ

A

! M(A�A):

Lemma 6 Rel(C; T ) is a (poset-enrihed) ategory.

Proof: In this, and in other proofs in this setion, most details are left to the

reader; we give a sketh as follows. To save spae, we abbreviate M(A � B)

to AB, and in a similar way M(A

1

� : : : � A

n

) to A

1

: : : A

n

, unless n = 1

(where we write MA

1

instead). Assoiativity of vertial omposition amounts
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to ommutativity of a diagram of the form

AB �BC � CD

��1 //

1��

Thm 3

��

ABBC � CD

(1Æ

B

1)

�

�1//

�

Lem 5

��

ABC � CD

(1�1)�1 //

�

Lem 4

��

AC � CD

�

��
AB �BCCD

� //

1�(1Æ

C

1)

�

Lem 5

��

ABBCCD

(1Æ

B

1)

�

//

(1Æ

C

1)

�

fun

��

ABCCD

(1�1) //

(1Æ

C

1)

�

BC

��

ACCD

(1Æ

C

1)

�

��
AB �BCD

� //

1�(1�1)

Lem 4

��

ABBCCD

(1Æ

B

1)

�

//

(1�1)

BC

��

ABCD

(1�1) //

(1�1)

fun

��

ACD

(1�1)

��
AB �BD

�

//
ABBD

(1Æ

B

1)

�

//
ABD

(1�1)

//
AD:

Similarly, one of the the unit laws for vertial omposition follows from

M1�AB

�

�

�1 //

�

Lem 5

''OOOOOOOOOOO
MA�AB

MÆ

A

�1//

�

Lem 4

''OOOOOOOOOOO
AA�AB

�

''NNNNNNNNNNN

1�AB

��1

88qqqqqqqqqq

�

AB

Thm 4

��<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

< 1AB

(�

AB

)

fun

��

(�1)

�

//
AAB

(1�1) //

(Æ1)

�

wwoooooooooooo
AAAB

(1Æ1)

�

BC

wwooooooooooo

AB

(Æ1) //

1

wwoooooooooooo
AAB

(1�1)

fun

ssgggggggggggggggggggggggggg

AB

: q: e: d:

Before proeeding further, we point out that both of the preeding ommu-

tative diagram proofs were disovered with the help of beta diagram moves,

whih were subsequently translated into ommutative squares. Assoiativity,

for example, orresponds to the move

B

R S U R S U

C

C

B

A D A D

,

(RS)U R(SU)

whih may be deomposed into a sequene of four moves, whih loally have the

form:
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BC

func

func

BC

(1)

(2)

(3)

(4)

These moves are subsequently translated into the squares labeled \BC," \fun"

in the ommutative diagram proof of assoiativity.

Thus, ommutative diagram proofs (of this result and of others in this sub-

setion) may be analyzed into two distint omponents: one whih involves

instanes of Theorem 3 and Lemmas 4 and 5 (and whih are onneted with

assertions that interpretations of ertain beta diagrams are independent of the

order in whih the diagrams are onstruted), and another involving instanes

of funtoriality of T and M and \BC" (whih are onneted with ertain defor-

mations and surgery rules applied to these beta diagrams).

In the spirit of the beta methodology, we therefore express proofs of ertain

results in this subsetion using ertain beta moves whih are ertainly shorter,

and in our opinion easier to omprehend, than proofs involving large ommuta-

tive diagrams. (And in these ases, the translation from Beta to ommutative
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diagrams is straighforward enough to remove any objetion that this proedure,

prior to establishing that Beta is sound, is irular).

The next result expresses beta surgery equivalenes whih translate into

parts of the diagrams for the unit laws in the ourse of proving Lemma 6 (parts

labeled \fun" and \BC").

Lemma 7

= = .

Lemma 8 The monoidal produt 
 of Rel(C; T ) is funtorial with respet to

vertial omposition in Rel(C; T ).

Proof: It suÆes to show that (1) A
 { and {
B are funtorial for objets

A;B; (2) the following interhange diagram ommutes:

A� C

A�S //

R
C

��

R
S

%%KK
KK

KKK
KKK

A�D

R
D

��
B � C

B
S

//
B �D:

The proof that A
 { preserves omposition is given as follows:

BC

func

B

R S

C

A

(A   R) (A   S)

A D

qq

B

R S

C

A A D B

R S

C

A

A   (RS)

A D

q

Lemma 7 .

The remaining details of (1) are left to the reader. The proof that the lower

triangle of (2) ommutes is given as follows:
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BC
func

B

R S

C

A D B

R S

A D

Lemma 7 .

BC

B

R

A DBC

S

C

C

Remaining details of (2) are left to the reader.

Finally, we observe that 
 is symmetri monoidal: the assoiativity, sym-

metry, and unit onstraints may be de�ned as those indued from onstraints

for (C;�), via a funtor C ! Rel(C; T ) given below (their naturality will be

left as an exerise). q. e. d.

Theorem 4 Rel(C; T ) is a ompat symmetri monoidal 2-ategory.

Proof: By the preeding results, Rel(C; T ) is a symmetri monoidal ategory

enrihed in the ategory of posets. The adjuntion whih expresses ompatness,

hom(X 
 Y; Z)

�

=

hom(X; (Y 
 Z));

follows immediately from M((X � Y )� Z)

�

=

M(X � (Y � Z)). q. e. d.

Next, we show how to retrieve the theory (C; T ) from Rel(C; T ). De�ne

funtors C ! Rel(C; T ) and from C

op

! Rel(C; T ), both ating as identities

on objets, and whih send a morphism f : A ! B to the value 1 under the

omposite given respetively as:

1

�

!M1

�

�

!MA

M(h1;fi)

! M(A�B); 1

�

!M1

�

�

!MA

M(hf;1i)

! M(B �A):

It is trivial that eah of these morphism assignments preserves identities.

Lemma 9 C ! Rel(C; T ) and C

op

! Rel(C; T ) are funtorial.

Proof: We show C ! Rel(C; T ) preserves ompositions in the following

diagram; the ase for C

op

! Rel(C; T ) is similar:

1� 1

���//
M1�M1

�

�

��

�

//

�

Lem 5

��

MA�MB

(h1;fi)(h1;gi)//

�

Lem 4

��

AB �AC

�

��
1

�

= Thm 3

OO

�

��

11

(���)

�

//

(h1;1i)

�

fun

��

AB

(h1;fih1;gi)//

(h1;fi)

�

��

ABBC

(1Æ1)

�

BC

��
M1

1

//
M1

�

�

//
MA

(h1;f;gfi) //

(h1;gfi) ''PPPPPPPPPPPP ABC

(1�1)

fun

��
AC:
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q. e. d.

It is now lear that both C ! Rel(C; T ) and C

op

! Rel(C; T ) are strit

monoidal funtors, in view of the observation preeding Theorem 4.

Let Form denote the set of 1-ells of Rel(C; T ) whih are of the form A! 1.

By de�nition of Rel(C; T ), there is a natural bijetion

Form

�

=

P

A2C

0

TA:

Let C

1

�

C

0

Form denote the pullbak of the domain or typing funtion Form!

C

0

along the odomain funtion C

1

! C

0

. The funtor C ! Rel(C; T ) indues

a map

C

1

�

C

0

Form! Rel(C; T )

1

�

C

0

Form;

whih one may ompose with Rel(C; T )

1

�

C

0

Form

omp

! Form, where omp is

de�ned by omposition in Rel(C; T ). The result is a map

C

1

�

C

0

Form

P

! Form:

Lemma 10 P (A

f

! B;B

p

! 1) = A

f

�

p

! 1.

Proof:

B1

//

Thm 3

�

= %%JJ
JJ

JJ
JJ

JJ

1

��8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8 M1�B1

�

�

�1 //

�

Lem 5

��

MA�B1

(h1;fi)�1//

�

Lem 4

��

AB �B1

�

��
1B1

(�1)

�

//

fun

��

AB1

(h1;fi1) //

(h1;fi1)

�

��

ABB1

(1Æ1)

�

BC

��
B1

(f1

�

)

//
A1

(h1;fi1) //

1

''OOOOOOOOOOOO AB1

(1�1)

fun

��
A1:

q. e. d.

A similar onstrution results by pulling bak (C

op

)

1

od

! C

0

along Form!

C

0

and forming the omposite Q of

(C

op

)

1

�

C

0

Form! Rel(C; T )

1

�

C

0

Form

omp

! Form;

where the �rst map is indued from C

op

! Rel(C; T ). If A

f

op

! B denotes a

morphism in C

op

, then by imitating the proof of Lemma 10, one may show that

Q(B

f

! A;B

q

! 1) = A

9

f

g

! 1. In this way, the struture of a theory (C; T ) is

ompletely retrieved from the struture of the monoidal 2-ategory Rel(C; T ):

Theorem 5 The funtors C

op

T

! Bool and C

9

! Bool of a theory, viewed

as �brations, are isomorphi to the (split) �brations (Form ! C

0

; P ), (Form

! C

0

; Q).
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6.2 Soundness and Completeness

Let �(L) denote the monoidal ategory of �rst-order diagrams modulo defor-

mation equivalene. There is a reexive transitive relation �

�

on �(L), gener-

ated by surgery rules; let �(L)= �

�

denote the poset-enrihed ategory where

hom(u; v) arries the poset struture indued from �

�

. The goal of this subse-

tion is to prove

Theorem 6 There is an isomorphism of (ompat, monoidal) poset-enrihed

ategories

�(L)= �

�

�

=

�! Rel(�(S); �);

where (�(S); � : �(S)

op

! Bool) is the free (ategorial prediate) theory on L.

It is in this sense that Peire's Beta is isomorphi to �rst-order relational al-

ulus.

The proof proeeds as follows. First, we onstrut a funtor q : �(L) !

Rel(�(S); �) whih is the identity on objets and whih is de�ned on morphisms

by indution on the rank of representative �rst-order diagrams, where the rank is

de�ned as the number of sep lines and interior and rossing nodes. We show that

the funtor q respets deformation equivalene; then we show that q respets

the surgery relations on �, and then show that q is a surjetion of 2-ategories.

The theorem follows easily from there.

Let D be a �rst-order diagram. To de�ne q(D), the idea is to partition D

into �rst-order subdiagrams: to tile the retangle R in whih D is immersed into

subretangles, in suh a way that D an be obtained through a suession of

horizontal and vertial ompositions. If eah subdiagram has a lesser rank than

D, then by indution the value of q on eah subdiagram will have been de�ned,

and we de�ne q(D) as the orresponding iterated omposite in the monoidal

ategory Rel(�(S); �).

The only trouble is that not all tilings an be sensibly interpreted as om-

posites. Reall that two subdiagrams are (horizontally or vertially) omposed

by \erasing" an edge they have in ommon (given by a dotted line, as in Lemma

1).

De�nition 13 (see [7℄): A tiling of a retangle is omposable if repeatedly re-

plaing two tiles with a ommon edge by a single tile whih is their union an

eventually redue the tiling to a single tile.

The basi instane of an unomposable tiling is the \pinwheel,"

,
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and we will take advantage of deformation equivalene to ensure that this will

not our.

For example, onsider the �rst-order diagram D given by

,

where the solid retangular lines are sep lines. In order to evaluate q(D), we

deform two of the sep lines to obtain

,

whereupon it beomes possible to tile D into omposable subdiagrams as shown

by the dotted lines.

Suppose D is a �rst-order diagram whih is not surrounded by a sep line, up

to deformation equivalene. [If this ondition is not met, we an de�ne q(D) as

:q(D

0

), where D

0

is obtained by removing the outermost sep line of D.℄ A sep

line of D is maximal if it is not interior to any other sep line. Sine D is not

deformable to a diagram surrounded by a single sep line, one of the following

ases holds:

� D has two or more maximal sep lines;

� D has one maximal sep line and nodes exterior to that sep line;

� D has no sep lines.

In the latter two ases, it is relatively trivial to deompose D into a omposable

tiling, i.e., a deomposition into subdiagrams of lesser rank than D. In the �rst

ase: sine the sep lines are disjoint, D an be tiled so that eah tile de�nes

a �rst-order subdiagram and ontains at most one maximal sep line (whih we

assume to be in the tile's interior), and we just need to ensure that this tiling is

omposable. This neessitates the following abstrat onsiderations on tilings,

given in [7℄.

Given a tiling of a retangle, we de�ne partial orders �

1

and �

2

on the set

of tiles A;B; : : :, where A �

1

B if the right edge of A meets the left edge of B

in more than one point, and A �

2

B if the top edge of A meets the bottom
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edge of B in more than one point. (The partial orders �

1

and �

2

are the

reexive transitive losures of these two relations.) Tilings of retangles may

be abstratly haraterized in terms of suh double orders (alled tileorders), so

that, for example, the pinwheel tiling given above may be referred to in terms

of its tileorder.

Theorem 7 (see [7℄) A tileorder fails to be omposable if and only if every

sequene of ompositions eventually yields a tileorder ontaining a pinwheel as

a sub-double-order.

If a pinwheel (arising from a tiling of a �rst-order diagram, as desribed

above) is reahed, we simply deompose it further, as we indiated earlier:

,

The only obstrution ours when one of the dotted lines of the deomposition

passes through a (maximal) sep line of a tile. All one needs to do here is to

apply an isotopy to the tile ating as the identity on a neighborhood of the tile's

boundary, and whih shrinks the sep line and the retangle it surrounds into a

smaller subretangle. Then, without loss of generality, we may assume that the

sep line lies above or below the dotted line, so that the deomposition an be

arried out.

Now we de�ne q : �(L) ! Rel(�(S); �) by indution, by tiling a (defor-

mation equivalene lass of a) �rst-order diagram D into subdiagrams D

0

of

lesser rank in the manner given above, and omposing their values q(D

0

) in the

monoidal ategory Rel(�(S); �). If D has rank less than 2, then without loss

of generality, D is either one of the primitive diagrams given in the disussion

of x3.1 after de�nition 9, or the seond diagram of Example 4. In the former

ase, D ould be a single string or ould have a single rossing node, where

q(D) is an identity or a symmetry isomorphism, or ould have a single node

labeled Æ or �, where q(D) is the image of a diagonal or projetion map under

�(S) ! Rel(�(S); �), or ould have a node labeled Æ

op

or �

op

, where q(D) is

the image of �(S)

op

! Rel(�(S); �), or ould have a node labeled p 2 P in the

prediate language, where q(D) is the evident morphism h�(p); 1; p 2 �(�(p)�1)i

in Rel(�(S); �). In the ase where D onsists only of a sep line surrounding

strings, q(D) is hA;A;:E

A

2 �(A�A)i, where E

A

is the equality prediate:

1

�

! �1

�

�

! �A

9

Æ

! �(A�A);

and A is the soure/target of D.

Lemma 11 The funtor q : �(L)! Rel(�(S); �) is well-de�ned.
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Proof: The well-de�nedness of q may be analyzed into three distint ompo-

nents: (1) the ase where, during a deformation t 7! D

t

, a node of D

t

rosses

a sep line of D

t

; (2) the ase of the deformation where two nodes interhange

their relative heights. We must also show (3) that q(D) is independent of the

tiling of D. In ases (1) and (2), we must show that q(D

t

) is independent of

t. But ases (2) and (3) are essentially onsequenes of the theory of [10℄ (plus

the fat that Rel(�(S); �) is a symmetri monoidal ategory). As for ase (1),

we may onsider separately the ase (1a) where a node rosses the top of a sep

line; the argument for this ase essentially follows from Lemma 10 plus the fat

that f

�

, for f a morphism of �(S), preserves negation. Case (1b), where a node

rosses the bottom of a sep line, is dual (here we invoke the fat that A 
 { is

adjoint to itself, as in Theorem 4, so that Rel(�(S); �) is self-dual). Thus, q is

well-de�ned. q. e. d.

Next, we must verify that q indues a well-de�ned map

�(L)= �

�

! Rel(�(S); �)

by showing that if f ;

�

g, then q(f) � q(g). Now the partial order ;

�

is

generated from surgery rules (S1), (S2), (S3) [taking into aount the sep-parity

onvention℄ and the rules of Alpha. But q respets (S1) by Theorem 5 and

onstrution of �(S) (Theorem 1), and similarly (S2) and (S3) by Theorem 5

and onditions (1) and (2) of De�nition 3. The fat that the rules of Alpha are

respeted by q is overed under the Soundness Theorem of [4℄: the hardest rule

to verify is iteration, but this essentially follows from reursive appliation of

the Boolean equations

f ^ :(f ^ g) = f ^ :g

f ^ (g ^ h) = f ^ (f ^ g ^ h):

Details are left to the reader. Thus we have proved

Lemma 12 (Soundness of Beta): The map ~q : �(L)= �

�

! Rel(�(S); �) in-

dued from q is well-de�ned.

Lemma 13 (Completeness of Beta): The poset-enrihed funtor ~q : �(L)= �

�

!

Rel(�(S); �) is surjetive on 1-ells and on 2-ells.

Proof: Surjetivity on the level of 1-ells may be deomposed into two parts:

(a) showing that relations of the form A ! 1 in Rel(�(S); �) are in the image

of q; (b) all relations of the form A! B in Rel(�(S); �) are in the image of q.

Statement (b) follows easily from statement (a): from (a), we have that every

relation of the form hA � B; 1; R 2 T (A � B)i is the image of a orresponding

beta diagram of the form

R

A B
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under q. The orresponding relation hA;B;R 2 T (A�B)i is then the image of

R

A B

Here impliit use is made of ompatness of Rel(�(S); �) (Theorem 4) and of

�(L)= �

�

(see Lemma 7).

As for statement (a): Relations of the form A! 1 orrespond bijetively to

elements in �

w2S

�

�(w) by Theorem 5. Formulas, i.e., elements in �

w2S

�

�(w),

are formed by applying rules (i){(iv), whih are aompanied by the �rst-order

diagrams whose image under q is the given formula:

(i) p 2 �

w2S

�

�(w) is an element of �

w2S

�

�(w) (image of

p

s1 sn
.  .  .

(ii) If p; q 2 �(w), then p ^ q 2 �(w), :p 2 �(w) (image of

w

qp

w
  ,

qp

  ,
w

.
p

w

(iii) If p 2 �(w) and V

f

!W in �(S), then f

�

p 2 �(v) (image of

f
v

w
p

.

(iv) If p 2 �(v) and V

f

!W in �(S), then 9

f

p 2 �(w) (image of

f  op

w

v
p

.
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This ompletes the proof of statement (a), so that q is surjetive on 1-ells.

Surjetivity on the level of 2-ells is proved by showing that every instane

of the relation p � q between 1-ells in Rel(�(S); �) follows from a relation

f ;

�

g in �(L)= �

�

. It suÆes to hek the ase where p; q : A! 1, i.e., where

p and q are formulas of the free theory FL (f. the redution of statement (b)

by statement (a) earlier in this proof). But by freeness, instanes of p � q here

follow purely from the axioms of theories and equations of �(S). As we saw

in x3.3, the equations of �(S) are overed by (S1), the adjuntions 9

f

a f

�

by

(S2), Bek-Chevalley by (S3), and the Boolean algebra axioms are overed by

the disussion at the end of x4.2. Thus the surjetivity at the 2-ell level is lear.

q. e. d.

Proof of Theorem 6: Let;

�

� �(L)

1

��(L)

1

and;

�

� �(L)

1

��(L)

1

denote

the reexive and transitive relations on the 1-ells of �(L) indued by pulling

bak the 2-ell relations � in �(L)= �

�

and in Rel(�(S); �) along the respetive

quotient maps �(L) ! �(L)= �

�

and �(L)

q

! Rel(�(S); �). It suÆes to show

;

�

=;

�

. That ;

�

�;

�

follows from Lemma 12. That ;

�

�;

�

follows from

Lemma 13. The proof is omplete. q. e. d.

The authors are very grateful to Saunders Ma Lane for his sustained support

and his interest in this paper.
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