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1. Bousfield localization

The general idea of localization at a spectrum E is to associate to any spectrum X the “part of
X that E can see”, denoted by LEX . In particular, it is desirable that LE is a functor with the
following equivalent properties:

E ∧X ≃ ∗ =⇒ LEX ≃ ∗

If X → Y induces an equivalence E ∧X → E ∧ Y then LEX
≃
−→ LEY.

Definition 1.1. A spectrum X is called E-acyclic if E ∧X ≃ ∗. It is called E-local if for each E-
acyclic T , [T, E] = 0, where [T, E] denotes the group of stable homotopy classes. This is equivalent
to the statement that for each E-equivalence S → T , the induced map [T, X ] → [S, X ] is an
isomorphism.

A spectrum Y with a map X → Y is called an E-localization of X if Y is E-local and X → Y is
an E-equivalence.

If a localization of X exists, then it is unique up to homotopy and will be denoted by X
ηE
−−→ LEX .

Localizations of this kind were first studied by Adams [Ada74], but set-theoretic difficulties
prevented him from actually constructing them. Bousfield found a way of overcoming these problems
in the unstable category [Bou75]; for spectra, he showed in [Bou79] that localization functors exist
for arbitrary E.

We start by collecting a couple of easy facts about localizations.

Lemma 1.2. Module spectra over a ring spectrum E are E-local.

Proof. Since any map from a spectrum W into an E-module spectrum M can be factored through
E ∧W , it follows that there are no essential maps from an E-acyclic W into M . �

Lemma 1.3. If v : E → E is a self-map of a spectrum E (possibly of nonzero degree), then LE ≃
Lv−1E∨E/v, where E/v denotes the cofiber and v−1E the mapping telescope.

Proof. It suffices to show that the class of E-acyclics agrees with the class of (v−1E ∨E/v)-acyclics.
Since the latter is a module spectrum over the former, E-acyclics are clearly (v−1E ∨E/v)-acyclic;
conversely, if E/v ∧W ≃ ∗ then v : E ∧W → E ∧W is a homotopy equivalence, hence E ∧W ≃
v−1E ∧W . Thus if also v−1E ∧W ≃ ∗, W is E-acyclic. �

Lemma 1.4. Homotopy limits and retracts of E-local spectra are E-local.

Proof. The statement about retracts is obvious. For the statement about limits, first observe that
a spectrum X is E-local if and only if the mapping spectrum Map(T, X) is contractible for all
E-acyclic T . This is obvious because πk Map(T, X) = [ΣkT, X ], and if T is E-acyclic then so are
all its suspensions.

Now if F : I → {spectra} is a diagram of E-local spectra, the claim follows from the equivalence

Map(T, holimF ) ≃ holimMap(T, F )

�
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The following lemma characterizes E-localizations.

Lemma 1.5. The following are equivalent for a map of spectra X → Y :

• X → Y is an E-localization;
➀ X → Y is the initial map into an E-local target;
➁ X → Y is the terminal map which is an E-equivalence.

Proof. Obvious from the axioms. �

This characterization suggests two ways of constructing X → LEX :

➀ LEX = holim
X→Y

Y E-local

Y or

➁ LEX = hocolim
X→Y

E-equivalence

Y .

In both cases, these limits are not guaranteed to exist because the indexing categories are not
small. This is more than a set-theoretic nuisance and requires a deeper study of the structure of
the background categories.

I will first briefly discuss what can be done with approach ➀. The main construction will be closer
to method ➁.

➀ Localizations as limits. Instead of indexing the homotopy limit over all X → Y with Y E-local,
we could use the spaces in the Adams tower for E:

X → Totn
(

E∧(•+1) ∧X
)

,

which is a subdiagram because E ∧X is E-local for any X by Lemma 1.2, and E-locality satisfies
the 2-out-of-3 property for cofibration sequences of spectra.

If we are lucky, X → XÊ = Tot(E∧(•+1) ∧X) is an E-localization. This is not always the case –
X → XÊ sometimes fails to be an E-equivalence. Whether or not LEX ≃ XÊ, the latter is what
the E-based Adams-Novikov spectral sequence converges to and thus is of independent interest. If
LEX can be built from E-module spectra by a finite sequence of cofiber extensions and retracts,
then LEX ≃ XÊ [Bou79, Thm 6.10] (such spectra are called E-prenilpotent). For some spectra E,
every X is E-prenilpotent; these spectra have the characterizing property that their Adams spectral
sequence has a common horizontal vanishing line at E∞ and a horizontal stabilization line at every
Er for every finite CW-spectrum [Bou79, Thm 6.12]. A necessary condition for this is that E is
smashing, i.e., that LEX = X ∧ LES0 for every spectrum X .

➁ Localizations as colimits. Bousfield’s approach to constructing localizations uses colimits.
The basic idea for cutting down the size of the diagram the colimit is formed over is the following
observation:

To check if X is E-local, it is enough to show that for any E-equivalence S → T with #S, #T < κ

for some cardinal κ depending only on E, [T, X ]
∼=
−→ [S, X ].

At this point, it is not crucial what exactly we mean by #S. For a construction of LEX that is
functorial up to homotopy, it is enough to define #S to be the number of stable cells.

Given this observation, LEX can be constructed in a small-object-argument-like fashion by form-
ing homotopy pushouts

∐

S→T

E-eq.

S X

∐

S→T

E-eq.

T X(1)

and iterating this transfinitely (using colimits at limit ordinals). When the cardinal κ is reached,
X(κ) is E-local because it satisfies the lifting condition for “small” S → T .
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Theorem 1.6. The category of spectra has a model structure with

• cofibrations the usual cofibrations of spectra, i.e. levelwise cofibrations An → Bn such that

S1 ∧Bn ∪S1∧An
An+1 → Bn+1

are also cofibrations;
• weak equivalences the (stable) E-equivalences;
• fibrations given by the lifting property

The fibrant objects in this model structure are the E-local Ω-spectra.

Here are some explicit examples of localization functors.

Example 1.7. (1) E = S0. In this case, LE is the functor that replaces a spectrum by an
equivalent Ω-spectrum.

(2) E = M(Z(p)) = Moore spectrum. In this case LEX ≃ X(p) is the classical p-localization.

This is an example of a smashing localization, i.e. LEX ≃ X ∧ LES0, which in this case is
also the same as X ∧ E.

(3) E = M(Z/p). For connective X , LEX ≃ X p̂ is the p-completion functor

X p̂ = holim{· · · → X ∧M(Z/p2)→ X ∧M(Z/p)}.

(4) E = M(Q) = HQ. As in (2), LEX = LQX = X ∧ LQS0 = X ∧HQ is smashing; it is the
classical rationalization of X .

2. The Sullivan arithmetic square

The arithmetic square is a homotopy cartesian square that allows one to reconstruct a space if,
roughly, all of its mod-p-localizations and its rationalization are known. For the case of nilpotent
spaces, which is similar to spectra, this was first observed by Sullivan [Sul05].

Lemma 2.1. For any spectrum X, the following diagram is a homotopy pullback square:

X
∏

p LpX

LQX LQ

(

∏

p LpX
)

Q

ηp

LQ(
Q

ηp)

ηQ
Q

LQ

This is a special case of

Proposition 2.2. Let E, F , X be spectra with E∗(LF X) = 0. Then there is a homotopy pullback
square

LE∨F X LEX

LF X LF LEX

ηE

LF (ηE)

ηF ηF

In the case of Prop. 2.1, E =
∨

p M(Z/p), F = HQ. To see that LE =
∏

p Lp, we have to show
that there are no nontrivial homotopy classes from an E-acyclic space, which is immediate, and that

M(Z/p)∗(X)
∼=
−→M(Z/p)∗

(

∏

l

LlX

)

is an isomorphism for all p. The latter holds because smashing with M(Z/p) commutes with
products since M(Z/p) is a finite (two-cell) spectrum (use Spanier-Whitehead duality).

Furthermore, the condition E∗(LF X) = E∗(HQ∧X) = 0 is satisfied because H∗(M(Z/p); Q) = 0.
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Proof of the proposition. Note that the map denoted ηE in the diagram is the unique factorization
of ηE : X → LEX through LE∨F X , which exists because X → LE∨F X is an E-equivalence. The
same holds for ηF , and furthermore, these maps are E- and F -equivalences, respectively. Now let
P be the pullback. We need to see that (1) P is (E ∨ F )-local and (2) the induced map X → P
is an E- and an F -equivalence. For (1), take a spectrum T with E∗T = F∗T = 0. Then in the
Mayer-Vietoris sequence for the pullback,

· · · → [T, P ]→ [T, LEX ]⊕ [T, LF X ]→ [T, LF LEX ]→ . . . ,

the two terms on the right are zero, hence so is [T, P ].
For (2), observe that P → LF X is an F -equivalence because it is the pullback of ηF on LEX , and

since X → LF X is also an F -equivalence, so is X → P . The same argument works for P → LEX
except that here, the bottom map is an E-equivalence for the trivial reason that both terms are
E-acyclic by the assumption. �

3. Morava K-theories and related ring spectra

Given a complex oriented even ring spectrum E and an element v ∈ π∗E, we would like to
construct a new complex oriented ring spectrum E/v such that π∗(E/v) = (π∗E)/(v). This is
clearly not always possible. The machinery of commutative S-algebras of [EKMM97] (or any other
construction of a symmetric monoidal category of spectra, such as symmetric spectra) allows us
to make this work in many cases where more classical homotopy theory has to rely on ad-hoc
constructions (such as the Baas-Sullivan theory of bordism of manifolds with singularities).

In this section, let E be a complex oriented even commutative S-algebra and A an E-module
spectrum with a commutative ring structure in the homotopy category of E-modules, and which
is also a complex oriented even ring spectrum. Let us call this an E-even ring spectrum. A
commutative E-algebra would of course be fine, but we need the greater generality.

Theorem 3.1 ([EKMM97, Chapter V]). For any v ∈ π∗E, v−1A carries the structure of an E-even
ring spectrum. Furthermore, if v is a non-zero divisor then A/v is also an E-even ring spectrum.

Even if A is a commutative E-algebra (for example, A = E), the resulting spectrum is usually
not a commutative S-algebra.

Of course, this construction can be iterated to give

Corollary 3.2. Given a graded ideal I ⊳ π∗E generated by a regular sequence and a graded mul-
tiplicative set S ⊂ π∗E, one can construct an E-even ring spectrum S−1A/I with π∗S

−1A/I =
S−1(π∗A)/I.

In particular, this can be done for E = MU . For example, BP can be constructed in this way by
taking I = ker(MU ∗ → BP∗), which is generated by a regular sequence. It is currently not known
whether BP is a commutative S-algebra. However, the methods above allow as to construct all the
customary BP -ring spectra by pulling regular sequence back to E = MU ∗ and letting A = BP . For
example,

E(n) = v−1
n BP/(vn+1, vn+2, . . . )

K(n) = v−1
n BP/(p, v1, . . . , vn−1, vn+1, . . . )

P (n) = BP/(p, v1, . . . , vn−1)

B(n) = v−1
n BP/(p, v1, . . . , vn−1).

Any MU -even ring spectrum A give rise to a Hopf algebroid (A∗, A∗A) and an Adams-Novikov
spectral sequence

E2
∗∗

= CotorA∗A(A∗, A∗X) =⇒ π∗XÂ.

If MA denotes the stack associated to the Hopf algebroid (A∗, A∗A) and FX the graded sheaf
associated with the comodule A∗X , this E2-term can be expressed as

E2
∗∗

= H∗∗(Ma, FX).
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In particular, if f : A → B is a morphism of MU -even ring spectra, we get a morphism of spectral
sequences, and if f induces an equivalence of the associated stacks, then f induces an isomorphism
of spectral sequences from the E2-term on. In particular, in this case, XÂ ≃ XB̂ if we can assure
that the spectral sequences converge strongly. Note that we do not need an inverse map B → A.

Theorem 3.3. If f : A → B is a morphism of MU -even ring spectra inducing an equivalence of
associated stacks, then LA ≃ LB.

Proof. The argument outline above gives an almost-proof of this fact, but it puts us at the mercy of
the convergence of the Adams-Novikov spectral sequences to the localizations LAX and LBX . We
give an argument that doesn’t require such additional assumptions. Note that it is sufficient to show
that A∗X = 0 if and only if B∗X = 0. Assume A∗X = 0. Then the A-based Adams-Novikov spectral
sequence is 0 from E1 on, thus the B-based Adams-Novikov spectral sequence is also trivial from
E2 on. This time, the spectral sequence converges strongly because it is conditionally convergent
in the sense of Boardman [Boa99], which implies strong convergence if the derived E∞-term is 0 –
but this is automatic since the Er-terms are all trivial for r ≥ 0. Thus XB̂ is contractible.

Now the Hurewicz map X → B ∧ X factors as X → LBX → XB̂ → B ∧ X by the universal
property ➀ of the localization, since XB̂ is B-local. Thus X → B ∧ X is trivial. Using the ring

spectrum structure on B, we see that B ∧X → B ∧B ∧X
µ
−→ B ∧X , which is the identity, is also

trivial, so B ∧X ≃ ∗. �

In particular, this applies to the following cases:

Theorem 3.4. We have

LB(n) ≃ LK(n)

Let In = (p, v1, . . . , vn−1) ⊳ BP∗ and E(k, n) = E(n)/Ik for 0 ≤ k ≤ n ≤ ∞. Then

Lv−1
k

E(k,n) ≃ LK(k).

Proof. The first part is due to Ravenel [Rav84] and Johnson-Wilson [JW75], but they give a different
proof without the Adams-Novikov spectral sequence.

To apply Theorem 3.3, it is useful to extend the ground ring of the homology theories in question
from Fp to Fpn , which does not change their localization functors. The Hopf algebroids for B(n)⊗Fpn

and K(n)⊗Fpn both classify formal groups of height n. By Lazard’s theorem, there is only one such
group over Fpn up to isomorphism, which shows that the quotient map B(n) ⊗ Fpn → K(n)⊗ Fpn

induces an isomorphism of Hopf algebroids.
The second part works similarly by considering the maps of Hopf algebroids induced from

v−1
k E(k, n)← B(k)/(vn+1, vn+2, . . . )→ K(k)

which again all represent the stack of formal groups of height k.
�

Theorem 3.5. We have that

LE(n) ≃ LK(0)∨K(1)∨···∨K(n) ≃ Lv−1
n BP

.

Proof. With the notation of Theorem 3.4, since E(n, n) = K(n) and E(0, n) = E(n), it suffices to
show that

LE(k,n) ≃ LK(k)∨E(k+1,n).

By Lemma 1.3, LE(k,n) ≃ Lv−1
k

E(k,n)∨E(k+1,n). By Theorem 3.4, Lv−1
k

E(k,n) ≃ LK(k), and the result

follows by induction.
The second equivalence can be proved by a similar argument, not needed in this paper, and left

to the reader. �

5



Theorem 3.6. There is a homotopy pullback square

LK(1)∨K(2)X LK(2)X

LK(1)X LK(1)LK(2)X

ηK(2)

LK(1)(ηK(2))

ηK(1) ηK(1)

Proof. This is an application of Prop. 2.2. We need to see that K(2)∗(LK(1)X) = 0 for any X .

To see this, let α : ΣkM(Z/p)→ M(Z/p) be the Adams map, which induces multiplication with a
power of v1 in K(1) and is trivial in K(2). Here k = 2p− 2 for odd p and k = 8 for p = 2).

Let X be K(1)-local. Then so is X ∧M(Z/p), and since ΣkX ∧M(Z/p)
α
−→ X ∧M(Z/p) is a

K(1)-isomorphism, it is a homotopy equivalence. On the other hand, α∗ : K(2)∗(Σ
kX∧M(Z/p))→

K(2)∗(X ∧ M(Z/p)) is trivial, thus K(2)∗(X ∧ M(Z/p)) = 0. By the Künneth isomorphism,
K(2)∗(X) = 0. �

The same result holds true for any K(m) and K(n) with m < n; M(Z/p) and α then have to be
replaced by a type-m complex and its vm-self map in the argument. We briefly recall some basic
facts around the periodicity theorem.

Definition 3.7. A finite p-local CW -spectrum X has type n if K(n)∗(X) 6= 0 but K(k)∗(X) = 0
for k < n. For example, the sphere has type 0, the Moore spectrum M(Z/p) has type 1, and the
the cofiber of the Adams map has type 2.

Theorem 3.8 ([DHS88, HS98]). Every type-n spectrum X admits a vn-self map, i. e. a map
f : Σ?X → X which induces multiplication by a power of vn in K(n)∗(X).

The periodicity theorem implies that there exist type-n complexes for every n ∈ N. They can
be constructed iteratively, starting with the sphere, by taking cofibers of vk-self maps. Thus, there
exist multi-indices I = (i0, . . . , in−1) and spectra S0/(vI) such that BP∗(S

0/(vI)) = BP∗/(vI),

where (vI) = (pi0 , vi1
1 , . . . , v

in−1

n−1 ). These are sometimes called generalized Moore spectra. It is an
open question what the minimal values of I are (they certainly depend on the prime.)

4. The Hasse square

In this section, we will study algebraic interpretations of K(n)-localization in terms of formal
groups and elliptic curves.

Proposition 4.1. Let E be a complex oriented ring spectrum and define

E′ = holim
(i0,...,in−1)∈Nn

v−1
n E/(pi0 , vi1

1 , . . . , v
in−1

n−1 ).

Then LK(n)E ≃ E′.

Proof. As v−1
n E/In is a B(n)-module spectrum, it is B(n)-local by Lemma 1.2, thus by Theorem 3.4

also K(n)-local. Each spectrum v−1
n E/(vI) (using multi-index notation) is constructed from this by

a finite number of cofibration sequences, thus it is also K(n)-local. Since homotopy limits of local
spectra are again local (Lemma 1.4), E′ is K(n)-local, and it remains to show that K(n)∗(E) ∼=
K(n)∗(E

′). The coefficient rings of the Morava K-theories K(n) are graded fields, hence they have
Künneth isomorphisms. Thus it suffices to show that E ∧ X → E′ ∧ X is a K(n)-equivalence for
some X with nontrivial K(n)∗(X). Choose X = S0/(vJ) to be a generalized Moore spectrum of
type n, for some multi-index J . Then

E′ ∧X ≃ holim
I∈Nn

(

v−1
n E/(vI) ∧ S0/(vJ)

)

≃ v−1
n E/(vJ).

Thus K(n)∗(E ∧X) = K(n)∗(E/vJ) = K(n)∗(v
−1
n E/vJ) = K(n)∗(E

′ ∧X). �
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Now we will specialize to an elliptic spectrum E defined over the ring E0 with associated elliptic
curve CE over Spec E0. Proposition 4.1 in particular tells us that

π0LK(1)E ∼= lim
i

v−1
1 E0/(pi),

which is the ring of functions on Spf((E0)p̂)
ord, the ordinary locus of the formal competion of SpecE0

at p, i.e. the sub-formal scheme over which CE is ordinary. In particular, if E0 is an Fp-algebra,

π0LK(1)E ∼= v−1
1 E0 is just the (non-formal) ordinary locus of E0. Similarly,

π0LK(2)E ∼= lim
i0,i1

v−1
2 E0/(pi0 , vi1

1 ) = lim
i0,i1

E0/(pi0 , vi1
1 )

is the ring of functions on the formal completion of Spec E0 at the supersingular locus at p. The
last equality holds because any elliptic curve has height either 1 or 2 over Fp, thus v2 is a unit in

E0/(p, v1) and hence in E0/(pi0 , vi1
1 ).

Lemma 4.2. Any p-local elliptic spectrum E is E(2)-local.

Proof. We need to show that for any W with E(2)∗W = 0 , we have that E∗W = 0. By Theorems 3.4
and 3.5, this is equivalent to B(i) = 0 for 0 ≤ i ≤ 2. That is,

p−1BP ∧W ≃ ∗

v−1
1 BP/p ∧W ≃ ∗

v−1
2 BP/(p, v1) ∧W ≃ ∗.

Now since E is a BP -ring spectrum, the same equalities hold with BP replaced by E. It follows
from Lemma 1.3 that

E/(p, v1) ∧W ≃ v−1
2 E/(p, v1) ∧W ≃ ∗ and v−1

1 E/p ∧W ≃ ∗ ⇒ E/p ∧W ≃ ∗

E/p ∧W ≃ ∗ and p−1E ∧W ≃ ∗ ⇒ E ∧W ≃ ∗.

�

Corollary 4.3 (the “Hasse square”). For any elliptic spectrum E, there is a pullback square

Ep̂ //

��

LK(2)E

��

LK(1)E // LK(1)LK(2)E.

Proof. It follows from Lemma 3.6 that the pullback is LK(1)∨K(2)E. Now consider the arithmetic
square

LK(0)∨K(1)∨K(2)E //

��

LK(1)∨K(2)E

��

LK(0)E // LK(0)LK(1)∨K(2)E.

Since LpLK(0)X = LpLQX = ∗, applying the p-completion functor Lp, we see that top horizontal
map

LpE ≃ LpLK(0)∨K(1)∨K(2)E → LpLK(1)∨K(2)E ≃ LK(1)∨K(2)E

is an equivalence, hence the result. �
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