BOUSFIELD LOCALIZATION AND THE HASSE SQUARE

TILMAN BAUER

1. BOUSFIELD LOCALIZATION

The general idea of localization at a spectrum F is to associate to any spectrum X the “part of
X that F can see”, denoted by LgX. In particular, it is desirable that Lg is a functor with the
following equivalent properties:

EFANX 2% = LpX ~x
If X — Y induces an equivalence EA X — EAY then LgX = LgY.

Definition 1.1. A spectrum X is called E-acyclic if EA X ~ . It is called F-local if for each E-
acyclic T, [T, E] = 0, where [T, E] denotes the group of stable homotopy classes. This is equivalent
to the statement that for each E-equivalence S — T, the induced map [T, X] — [S,X] is an
isomorphism.

A spectrum Y with a map X — Y is called an E-localization of X if Y is E-local and X — Y is
an F-equivalence.

If a localization of X exists, then it is unique up to homotopy and will be denoted by X ~2 LpX.

Localizations of this kind were first studied by Adams [AdaT74], but set-theoretic difficulties
prevented him from actually constructing them. Bousfield found a way of overcoming these problems
in the unstable category [Bou75]; for spectra, he showed in [Bou79] that localization functors exist
for arbitrary F.

We start by collecting a couple of easy facts about localizations.

Lemma 1.2. Module spectra over a ring spectrum E are E-local.

Proof. Since any map from a spectrum W into an E-module spectrum M can be factored through
E NW, it follows that there are no essential maps from an F-acyclic W into M. O

Lemma 1.3. Ifv: E — E is a self-map of a spectrum E (possibly of nonzero degree), then Lg ~
L,-1gvE/s, where E/v denotes the cofiber and v~ LE the mapping telescope.

Proof. Tt suffices to show that the class of E-acyclics agrees with the class of (v"!EV E /v)-acyclics.
Since the latter is a module spectrum over the former, E-acyclics are clearly (v"'E V E/v)-acyclic;
conversely, if /v AW =~ % then v: EAW — E AW is a homotopy equivalence, hence E AW ~
v EAW. Thus if also v ' EAW ~ %, W is E-acyclic. O

Lemma 1.4. Homotopy limits and retracts of E-local spectra are E-local.

Proof. The statement about retracts is obvious. For the statement about limits, first observe that
a spectrum X is FE-local if and only if the mapping spectrum Map(T, X) is contractible for all
E-acyclic T. This is obvious because 7 Map(7T, X) = [S*T, X]|, and if T is E-acyclic then so are
all its suspensions.
Now if F': I — {spectra} is a diagram of E-local spectra, the claim follows from the equivalence
Map(T, holim F') ~ holim Map(T, F)
O

Date: October 11, 2009.



The following lemma characterizes E-localizations.

Lemma 1.5. The following are equivalent for a map of spectra X — Y :

e X —Y is an E-localization;
0 X — Y is the initial map into an E-local target;
0 X — Y is the terminal map which is an E-equivalence.

Proof. Obvious from the axioms. O

This characterization suggests two ways of constructing X — LpX:
O LgX = holim Y or

X—-Y
Y E-local

0 LgX = hocolim Y.
X—-Y
E-equivalence
In both cases, these limits are not guaranteed to exist because the indexing categories are not
small. This is more than a set-theoretic nuisance and requires a deeper study of the structure of
the background categories.
I will first briefly discuss what can be done with approach [J. The main construction will be closer
to method 0.

O Localizations as limits. Instead of indexing the homotopy limit over all X — Y with Y E-local,
we could use the spaces in the Adams tower for E:

X — Tot” (E“'*” A X) ,

which is a subdiagram because E A X is E-local for any X by Lemma 1.2, and E-locality satisfies
the 2-out-of-3 property for cofibration sequences of spectra.

If we are lucky, X — Xz = Tot(E **+D A X) is an E-localization. This is not always the case —
X — X sometimes fails to be an F-equivalence. Whether or not LpX ~ X g, the latter is what
the E-based Adams-Novikov spectral sequence converges to and thus is of independent interest. If
LpX can be built from E-module spectra by a finite sequence of cofiber extensions and retracts,
then LgX ~ X i [Bou79, Thm 6.10] (such spectra are called E-prenilpotent). For some spectra E,
every X is E-prenilpotent; these spectra have the characterizing property that their Adams spectral
sequence has a common horizontal vanishing line at F, and a horizontal stabilization line at every
E, for every finite CW-spectrum [Bou79, Thm 6.12]. A necessary condition for this is that E is
smashing, i.e., that LgX = X A LgS° for every spectrum X.

0 Localizations as colimits. Bousfield’s approach to constructing localizations uses colimits.
The basic idea for cutting down the size of the diagram the colimit is formed over is the following
observation:

To check if X is E-local, it is enough to show that for any E-equivalence S — T with #S, #1T < k
for some cardinal k depending only on E, [T, X] =N [S, X].

At this point, it is not crucial what exactly we mean by #S. For a construction of Ly X that is
functorial up to homotopy, it is enough to define #S to be the number of stable cells.

Given this observation, Ly X can be constructed in a small-object-argument-like fashion by form-
ing homotopy pushouts

IIsS——X

s—T
E-eq.

|

L T— %X
E-eq.

and iterating this transfinitely (using colimits at limit ordinals). When the cardinal & is reached,
X(x) is E-local because it satisfies the lifting condition for “small” S — T'.
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Theorem 1.6. The category of spectra has a model structure with

e cofibrations the usual cofibrations of spectra, i.e. levelwise cofibrations A, — By, such that
Sl A By Usira, An+1 - Bn+1

are also cofibrations;
o weak equivalences the (stable) E-equivalences;
e fibrations given by the lifting property
The fibrant objects in this model structure are the E-local )-spectra.

Here are some explicit examples of localization functors.

Example 1.7. (1) E = S° 1In this case, Lg is the functor that replaces a spectrum by an
equivalent -spectrum.
(2) E = M(Z,)) = Moore spectrum. In this case LgX ~ X, is the classical p-localization.
This is an example of a smashing localization, i.e. LgX ~ X A LS, which in this case is
also the same as X A E.
(3) E = M(Z/p). For connective X, LgX ~ X, is the p-completion functor

X, =holim{--- — X A M(Z/pQ) — XAM(Z/p)}.
(4) E=M(Q)=HQ. Asin (2), LpX = LgX = X A LgS® = X A HQ is smashing; it is the
classical rationalization of X.
2. THE SULLIVAN ARITHMETIC SQUARE

The arithmetic square is a homotopy cartesian square that allows one to reconstruct a space if,
roughly, all of its mod-p-localizations and its rationalization are known. For the case of nilpotent
spaces, which is similar to spectra, this was first observed by Sullivan [Sul05].

Lemma 2.1. For any spectrum X, the following diagram is a homotopy pullback square:

x| I1, L, X

77&{ JHL@

L p
Lox M) (Hp LpX)

This is a special case of

Proposition 2.2. Let E, F, X be spectra with E.(LrpX) = 0. Then there is a homotopy pullback
square
ne

LeyrX LpX
nr J J"]F
L
LFX r(nE) LFLEX

In the case of Prop. 2.1, E =\, M(Z/p), F' = HQ. To see that Lg = [], L,, we have to show
that there are no nontrivial homotopy classes from an E-acyclic space, which is immediate, and that

M(Z/p).(X) = M(Z/p). (H le)
l

is an isomorphism for all p. The latter holds because smashing with M(Z/p) commutes with
products since M (Z/p) is a finite (two-cell) spectrum (use Spanier-Whitehead duality).
Furthermore, the condition F, (LX) = E.(HQAX) = 0 is satisfied because H,(M(Z/p); Q) = 0.
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Proof of the proposition. Note that the map denoted ng in the diagram is the unique factorization
of ng: X — LgX through Lg,rX, which exists because X — LgyrX is an E-equivalence. The
same holds for np, and furthermore, these maps are E- and F-equivalences, respectively. Now let
P be the pullback. We need to see that (1) P is (E V F)-local and (2) the induced map X — P
is an E- and an F-equivalence. For (1), take a spectrum T with E,T = F,T = 0. Then in the
Mayer-Vietoris sequence for the pullback,

o > [T, P] = [T,LpX)® [T, LpX] — [T,LpLpX] — ...,

the two terms on the right are zero, hence so is [T, P].

For (2), observe that P — LrX is an F-equivalence because it is the pullback of ng on Ly X, and
since X — LpX is also an F-equivalence, so is X — P. The same argument works for P — LgX
except that here, the bottom map is an F-equivalence for the trivial reason that both terms are
F-acyclic by the assumption. O

3. MORAVA K-THEORIES AND RELATED RING SPECTRA

Given a complex oriented even ring spectrum F and an element v € w,FE, we would like to
construct a new complex oriented ring spectrum E/v such that 7. (E/v) = (7w E)/(v). This is
clearly not always possible. The machinery of commutative S-algebras of [EKMMO97] (or any other
construction of a symmetric monoidal category of spectra, such as symmetric spectra) allows us
to make this work in many cases where more classical homotopy theory has to rely on ad-hoc
constructions (such as the Baas-Sullivan theory of bordism of manifolds with singularities).

In this section, let £ be a complex oriented even commutative S-algebra and A an E-module
spectrum with a commutative ring structure in the homotopy category of E-modules, and which
is also a complex oriented even ring spectrum. Let us call this an FE-even ring spectrum. A
commutative E-algebra would of course be fine, but we need the greater generality.

Theorem 3.1 ([EKMM97, Chapter V]). For anyv € m.E, v~ A carries the structure of an E-even
ring spectrum. Furthermore, if v is a non-zero divisor then A/v is also an E-even ring spectrum.

Even if A is a commutative E-algebra (for example, A = E), the resulting spectrum is usually
not a commutative S-algebra.
Of course, this construction can be iterated to give

Corollary 3.2. Given a graded ideal I <w,E generated by a regular sequence and a graded mul-
tiplicative set S C m.E, one can construct an E-even ring spectrum S™*A/I with m,S™1A/I =

S—H(m A)/I.

In particular, this can be done for E = MU. For example, BP can be constructed in this way by
taking I = ker(MU, — BP.), which is generated by a regular sequence. It is currently not known
whether BP is a commutative S-algebra. However, the methods above allow as to construct all the
customary BP-ring spectra by pulling regular sequence back to £ = MU, and letting A = BP. For
example,

E(n) = v,'BP/(vpi1,Vni2,--.)

K(n) = v,'BP/(p,vi,...,0n_1,Vnt1,---)
P(n) = BP/(p,viy...,0n-1)

B(n) = v,'BP/(p,v1,...,0n_1).

Any MU-even ring spectrum A give rise to a Hopf algebroid (A, A.A) and an Adams-Novikov
spectral sequence
E?, = Cotorg, a(As, A X) = m. X ].
If M4 denotes the stack associated to the Hopf algebroid (A., AxA) and Fx the graded sheaf
associated with the comodule A,X, this E%-term can be expressed as
E?, = H** (M, Fx).
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In particular, if f: A — B is a morphism of MU-even ring spectra, we get a morphism of spectral
sequences, and if f induces an equivalence of the associated stacks, then f induces an isomorphism
of spectral sequences from the Fs-term on. In particular, in this case, X 3 ~ X g if we can assure
that the spectral sequences converge strongly. Note that we do not need an inverse map B — A.

Theorem 3.3. If f: A — B is a morphism of MU -even ring spectra inducing an equivalence of
associated stacks, then L, ~ Lp.

Proof. The argument outline above gives an almost-proof of this fact, but it puts us at the mercy of
the convergence of the Adams-Novikov spectral sequences to the localizations L4 X and LpX. We
give an argument that doesn’t require such additional assumptions. Note that it is sufficient to show
that A, X = 0if and only if B,X = 0. Assume A, X = 0. Then the A-based Adams-Novikov spectral
sequence is 0 from E' on, thus the B-based Adams-Novikov spectral sequence is also trivial from
E? on. This time, the spectral sequence converges strongly because it is conditionally convergent
in the sense of Boardman [Boa99], which implies strong convergence if the derived Eo.-term is 0 —
but this is automatic since the E,.-terms are all trivial for » > 0. Thus X 3 is contractible.

Now the Hurewicz map X — B A X factors as X — LgX — Xp — B A X by the universal
property O of the localization, since X g is B-local. Thus X — B A X is trivial. Using the ring
spectrum structure on B, we see that BA X — BABA X £ B A X, which is the identity, is also
trivial, so B A X =~ . 0

In particular, this applies to the following cases:

Theorem 3.4. We have
Lpm ~ Lrm
Let I, = (p,v1,...,0n—1) < BP, and E(k,n) = E(n)/I for 0 <k <n <oo. Then

nglE(k,n) = LK(k)

Proof. The first part is due to Ravenel [Rav84] and Johnson-Wilson [JWT75], but they give a different
proof without the Adams-Novikov spectral sequence.

To apply Theorem 3.3, it is useful to extend the ground ring of the homology theories in question
from IF), to Fp,n, which does not change their localization functors. The Hopf algebroids for B(n)®@Fpn
and K (n) ®Fpn both classify formal groups of height n. By Lazard’s theorem, there is only one such
group over F,» up to isomorphism, which shows that the quotient map B(n) @ Fpn — K(n) @ Fyn
induces an isomorphism of Hopf algebroids.

The second part works similarly by considering the maps of Hopf algebroids induced from

v 'E(k,n) «— B(k)/(Vng1, Uns2, ... ) — K(k)

which again all represent the stack of formal groups of height k.

Theorem 3.5. We have that
LEg@m) ~ Lkoyvk@)yv--vi (@) ~ L,-1pp-

Proof. With the notation of Theorem 3.4, since E(n,n) = K(n) and E(0,n) = E(n), it suffices to
show that

Lpkn) =~ Lr(k)vE(H+1,n)-
By Lemma 1.3, Lgkn) = nglE(k,n)vE(kH,n). By Theorem 3.4, ka—lE(kﬂl) =~ Ly (ry, and the result
follows by induction.

The second equivalence can be proved by a similar argument, not needed in this paper, and left
to the reader. g



Theorem 3.6. There is a homotopy pullback square

MK (2)
Lxaywr@eX ————— Lg@X

MK (1) J lm{(l)

L y(MK(2))
LimyX - L)Lk @2)X

Proof. This is an application of Prop. 2.2. We need to see that K(2).(Lg1)X) = 0 for any X.
To see this, let a: X*M(Z/p) — M(Z/p) be the Adams map, which induces multiplication with a
power of v1 in K (1) and is trivial in K(2). Here k = 2p — 2 for odd p and k = 8 for p = 2).

Let X be K(1)-local. Then so is X A M(Z/p), and since S*X A M(Z/p) = X A M(Z/p) is a
K (1)-isomorphism, it is a homotopy equivalence. On the other hand, a.: K(2).(S*X AM(Z/p)) —
K(2).(X AN M(Z/p)) is trivial, thus K(2).(X A M(Z/p)) = 0. By the Kiinneth isomorphism,
K(2).(X)=0. O

The same result holds true for any K(m) and K(n) with m < n; M(Z/p) and « then have to be
replaced by a type-m complex and its v,,-self map in the argument. We briefly recall some basic
facts around the periodicity theorem.

Definition 3.7. A finite p-local CW-spectrum X has type n if K(n).(X) # 0 but K(k).(X) =0
for k < n. For example, the sphere has type 0, the Moore spectrum M (Z/p) has type 1, and the
the cofiber of the Adams map has type 2.

Theorem 3.8 ([DHS88, HS98]). Every type-n spectrum X admits a v,-self map, i. e. a map
f: %X — X which induces multiplication by a power of v, in K(n).(X).

The periodicity theorem implies that there exist type-n complexes for every n € N. They can
be constructed iteratively, starting with the sphere, by taking cofibers of vg-self maps. Thus, there
exist multi-indices I = (ig,...,i,—1) and spectra S°/(v!) such that BP.(S°/(v!)) = BP./(v),
where (v1) = (po,v!',...,v;"7). These are sometimes called generalized Moore spectra. Tt is an
open question what the minimal values of I are (they certainly depend on the prime.)

4. THE HASSE SQUARE

In this section, we will study algebraic interpretations of K (n)-localization in terms of formal
groups and elliptic curves.

Proposition 4.1. Let E be a complex oriented ring spectrum and define

’_ . -1 i9 01 in—1
E = h?hm)GNnvn E/(p*, o1, ... 0, ).
[OEERER] n—1

Then LymE ~ E'.

Proof. As v, 'E/I, is a B(n)-module spectrum, it is B(n)-local by Lemma 1.2, thus by Theorem 3.4
also K (n)-local. Each spectrum v, ' E/(v!) (using multi-index notation) is constructed from this by
a finite number of cofibration sequences, thus it is also K (n)-local. Since homotopy limits of local
spectra are again local (Lemma 1.4), E’ is K(n)-local, and it remains to show that K(n).(E)
K(n)«(E"). The coefficient rings of the Morava K-theories K (n) are graded fields, hence they have
Kiinneth isomorphisms. Thus it suffices to show that F A X — E' A X is a K(n)-equivalence for
some X with nontrivial K(n).(X). Choose X = S°/(v”’) to be a generalized Moore spectrum of
type n, for some multi-index J. Then
E'NX ~ }}(élérrp (UglE/(vI) /\SO/(UJ)) ~ UglE/(vJ).
Thus K(n).(EAX) = K(n).(E/v’) = K(n)«(v; E/v7) = K(n).(E' A X). O
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Now we will specialize to an elliptic spectrum FE defined over the ring Fy with associated elliptic
curve C'g over Spec Ey. Proposition 4.1 in particular tells us that

moLic B = lmv; Bo/ (p),

which is the ring of functions on Spf((Ep),)°*, the ordinary locus of the formal competion of Spec Eq

at p, i.e. the sub-formal scheme over which Cg is ordinary. In particular, if Ey is an [Fp-algebra,
oLy E = vy 'Ey is just the (non-formal) ordinary locus of Ey. Similarly,

oL (o) B = lim vy Eo/(p, 0') = lim Eo/(p°, vy')

is the ring of functions on the formal completion of Spec Ey at the supersingular locus at p. The
last equality holds because any elliptic curve has height either 1 or 2 over IF,,, thus v, is a unit in
Eo/(p,v1) and hence in Eq/(p™,v}').

Lemma 4.2. Any p-local elliptic spectrum E is E(2)-local.

Proof. We need to show that for any W with E(2),W = 0, we have that E,W = 0. By Theorems 3.4
and 3.5, this is equivalent to B(i) = 0 for 0 <4 < 2. That is,

p'BP AW =~ x
vi'BP/p AW ~ x
vy 'BP/(p,v1) AW = x.

Now since E is a BP-ring spectrum, the same equalities hold with BP replaced by E. It follows
from Lemma 1.3 that

E/(p,v)) A\W ~ v E/(p,v1) AW ~x and v] 'E/pAW ~x = E/pAW ~x
E/pAW ~xand p 'EAW ~% = EAW ~x.

Corollary 4.3 (the “Hasse square”). For any elliptic spectrum E, there is a pullback square

E; e LK(Q)E

| |

Proof. Tt follows from Lemma 3.6 that the pullback is Ly (1)yk(2)F. Now consider the arithmetic
square
Lrxoyvrvre —— Lroyvie)F

LgoyB —— Lo Lraywvr@)E-

Since LpLg )X = LpLoX = *, applying the p-completion functor L,, we see that top horizontal
map

LyE ~ LpLK(O)\/K(l)\/K(2)E - LpLK(l)vK(Q)E = LK(l)vK(Q)E

is an equivalence, hence the result. O
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