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1 Introduction

This is a self-contained presentation of the proof that the Univalence Axiom implies Functional Extension-
ality. It was developed by Peter LeFanu Lumsdaine and Andrej Bauer, after a suggestion by Steve Awodey.
Peter has his own Coq file with essentially the same proof.

Our proof contains a number of ideas from Voevodsky’s proof. Perhaps the most important difference is
our use of the induction principle for weak equivalences, see weq induction below. We outline the proof in
human language at the end of the file, just before the proof of extensionality.

This file is an adaptation of a small part of Vladimir Voevodsky’s Coq files on homotopy theory and
univalent foundations, see https://github.com/vladimirias/Foundations/.

The main difference with Voevodsky’s file is rather liberal use of standard Coq tricks, such as notation,
implicit arguments and tactics. Also, we are lucky enough to avoid universe inconsistencies. Coq is touchy-
feely about universes and one unfortunate definition seems to be enough to cause it to encounter a universe
inconsistency. In fact, an early version of this file encountered a universe inconsistency in the last line of the
main proof. By removing some auxiliary defnitions, we managed to make it go away.

This file also contains extensive comments about Coq. This is meant to increase its instructional value.

2 Basic definitions

Suppose A is a space and P : A → Type is a map from A to spaces. We can think of P as a family of
spaces indexed by A. Actually, P should be thought of as a fibration, because in the intended interpretation
dependent types correspond to fibrations.

From such a P we can build a total space over the base space A so that the fiber over x : A is P x. This
of course is just Coq’s dependent sum construction, which is written as {x : A & P x}. The elements of {x
: A & P x} are pairs, written existT P x y in Coq, where x : A and y : P x. The primitive notation for
dependent sum is sigT P.

Coq is very picky about what point belong to what space. For example, if x : A is a point in the base
space and y : P x is a point in the fiber P x then, mathematically speaking, y is also a point in the total
space sigT P. But Coq wants explicit notation for y as a point of sigT P. In Coq this is written as existT
P x y.

Given a point p : sigT P of the total space, we can reconstruct the corresponding base point as projT1
p and the point in the fiber as projT2 p.

We proceed to the definition of the identity map. The notation fun x ⇒ e is Coq’s way of writing a map
which takes x to e.

Definition idmap A := fun x : A ⇒ x.

The definition below defines composition of functions. The curly braces around A B C means that A,
B and C are implicit arguments. This means that we do not have to write them because Coq will compute
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them (from the types of g and f ). If we insist, we can specify the implicit arguments. For example compose
(A:=X ) (B :=Y ) f g means that A is set to X and B to Y. By writing @compose we get a version of compose
without explicit arguments. So instead of writing compose (A:=X ) (B :=Y ) (C :=Z ) f g it is better to write
@compose X Y Z f g. But for the most part the implicit arguments notation is extremely convenient. In
the rare cases when Coq cannot figure out what the implicit arguments are, it tells us so.

Definition compose {A B C} (g : B → C ) (f : A → B) (x : A) := g (f x ).

In Coq it is possible to define all sorts of new notations. One should not exaggerate with strange notations,
it can be quite convenient to define special notation for commonly used notions.

We define special notation g o f for composition of functions. The printing comment (which is not visible
after coqdoc has processed it) tells how to display the notation in LaTeX.

Notation ”g ’o’ f” := (compose g f ) (left associativity, at level 37).

3 Paths

Next we define the space of paths between two given points. This is a central concept in homotopy theory.

Inductive paths {A} : A → A → Type := idpath : ∀ x, paths x x.

We introduce notation x  y for the space paths x y of paths from x to y. We can then write p : x  
y to indicate that p is a path from x to y.

Notation ”x ˜˜¿ y” := (paths x y) (at level 70).

The Hint Resolve @idpath line below means that Coq’s auto tactic will automatically perform apply
idpath if that leads to a successful solution of the current goal. For example if we ask it to construct a path
x  x, auto will find the identity path idpath x, thanks to the Hint Resolve.

In general we should declare Hint Resolve on those theorems which are not very complicated but get
used often to finish off proofs. Notice how we use the non-implicit version @idpath (if we try Hint Resolve
idpath Coq complains that it cannot guess the value of the implicit argument A).

Hint Resolve @idpath.

The definition of paths requires an explanation. The idpath clause tells Coq that for every x : A there is
a path idpath x, which we think of as the identity path from x to x.

Furthermore, because paths is defined as an inductive type, Coq automatically generates an associated
induction principle paths rect (as well as some other variant induction principles which we ignore here). The
induction principle is a bit complicated (type ”Print paths rect.” to see it), so let us explain what it says.
Suppose P is a fibration over paths in A, i.e., for any two points x y : A and a path p : x  y we have a
space P x y p. Now suppose u is an element of P x x (idpath x ). The induction principle paths rect allows
us to conclude that u can be transported to an element of P x y p.

Another way of reading the induction principle is as follows. Suppose P is a property of maps. Then in
order to show that P holds of all paths p : x  y it is sufficient to check that P holds of the identity paths
idpath x : x  x.

A special case of the induction principle paths rect happens when the fibration P depends just on the
points of A rather than paths in A: a point u : P x in the fiber over x : A can be transported along a path
p : x  y in the base to the fiber P y. See the transport theorem below.

If we read x  y as ”x and y are equal” then the transport along paths in the base becomes the logical
principle of substitution of equals for equals: if P x holds (as witnessed by u) and x  y then P y holds. We
shall not comment further on this double reading of paths which reaveals a fascinating connection between
homotopy theory and logic.

A typical use of paths rect is as follows. Suppose we want to construct a point v in some space V x y p
which depends on a path p : x  y. We employ the Coq induction tactic (which applies paths rect) to a
hopefully easier problem of constructing a point u of the space V x x (idpath x ).
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We now prove some basic fact about paths.

Paths can be concatenated.

Definition concat {A} {x y z : A} : (x  y) → (y  z ) → (x  z ).
Proof.
intros p q.
induction p.
induction q.
apply idpath.

Defined.

The concatenation of paths p and q is denoted as p @ q.

Notation ”p @ q” := (concat p q) (at level 60).

A definition like concat can be used in two ways. The first and obvious way is as an operation which
concatenates together two paths. The second use is a proof tactic when we want to construct a path x  
z as a concatenation of paths x  y  z. This is done with apply @concat, see examples below. We will
actually define a tactic path via which uses concat but is much smarter than just the direct application
apply @concat.

Paths can be reversed.

Definition opposite {A} {x y : A} : (x  y) → (y  x ).
Proof.
intros p.
induction p.
apply idpath.

Defined.

Notation for the opposite of a path p is ! p.

Notation ”! p” := (opposite p) (at level 50).

In the previous two proofs we always used the same proof strategy: apply induction on paths and then
apply idpath. Such tactics can be automated in Coq, as shown below where a new tactic path induction is
defined. It can handle many easy statements.

Ltac path induction :=
intros; repeat progress (
match goal with
| [ p :  ` ] ⇒ induction p
| ⇒ idtac

end
); auto.

You can read the tactic definition as follows. We first perform intros to move hypotheses into the
context. Then we repeat while there is still progress: if there is a path p in the context, apply induction to
it, otherwise perform the idtac which does nothing (and so no progress is made and we stop). After that,
we perform an auto.

The notation [... ` ... ] is a pattern for contexts. To the left of the symbol ` we list hypotheses and to
the right the goal. The underscore means ”anything”.

In summary path induction performs as many inductions on paths as it can, then it uses auto.

Next we show basic properties of paths and composition of paths. Note that all statements are ”up to
homotopy”, e.g., the composition of p and the identity path is not equal to p but only conntected to it with
a path. We call paths between paths homotopies. The following lemmas should be self-explanatory.

Lemma idpath left unit A (x y : A) (p : x  y) : (idpath x @ p)  p.
Proof.
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path induction.
Defined.

Lemma idpath right unit A (x y : A) (p : x  y) : (p @ idpath y)  p.
Proof.

path induction.
Defined.

Lemma opposite right inverse A (x y : A) (p : x  y) : (p @ !p)  idpath x.
Proof.
path induction.
Defined.

Lemma opposite left inverse A (x y : A) (p : x  y) : (!p @ p)  idpath y.
Proof.

path induction.
Defined.

Lemma opposite concat A (x y z : A) (p : x  y) (q : y  z ) : !(p @ q)  !q @ !p.
Proof.

path induction.
Defined.

Lemma opposite opposite A (x y : A) (p : x  y) : !(! p)  p.
Proof.

path induction.
Defined.

We place the lemmas just proved into the Hint Resolve database so that auto will know about them.

Hint Resolve
idpath left unit idpath right unit
opposite right inverse opposite left inverse.

Lemma concat associativity A (w x y z : A) (p : w  x ) (q : x  y) (r : y  z ) :
(p @ q) @ r  p @ (q @ r).

Proof.
path induction.

Defined.

Homotopies of concatenable maps can be concatenated.

Definition homotopy concat A (x y z : A) (p p’ : x  y) (q q’ : y  z ) :
(p  p’ ) → (q  q’ ) → (p @ q  p’ @ q’ ).

Proof.
path induction.

Defined.

A path p : x  y in a space A is mapped by f : A → B to a map map f p : f x  f y in B. Note that
we cannot transfer p by just composing it with f because p is not a function. Instead, we use the induction
principle.

Lemma map {A B} {x y : A} (f : A → B) (p : x  y) : f x  f y.
Proof.

path induction.
Defined.

The next two lemmas state that map f p is ”functorial” in the path p.

Lemma idpath map A B (x : A) (f : A → B) : map f (idpath x )  idpath (f x ).
Proof.
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path induction.
Defined.

Lemma concat map A B (x y z : A) (f : A → B) (p : x  y) (q : y  z ) :
map f (p @ q)  (map f p) @ (map f q).

Proof.
path induction.

Defined.

It is also the case that map f p is functorial in f.

Lemma idmap map A (x y : A) (p : x  y) : map (idmap A) p  p.
Proof.

path induction.
Defined.

Lemma composition map A B C (f : A → B) (g : B → C ) (x y : A) (p : x  y) :
map (g ◦ f ) p  map g (map f p).

Proof.
path induction.

Defined.

Other facts about map.

Lemma opposite map A B (f : A → B) (x y : A) (p : x  y) : ! (map f p)  map f (! p).
Proof.

path induction.
Defined.

Lemma map cancel A B (f : A → B) (x y : A) (p q : x  y) : p  q → (map f p  map f q).
Proof.
intro h.
path induction.

Defined.

So far path induction has worked beautifully, but we are soon going to prove more complicated theorems
which require smarter tactics, so we define some.

This time we first declare some Hint Resolve hints, but notice that we put them in the ”hint database”
path hints. In general various hints (resolve, rewrite, unfold hints)) can be grouped into ”databases”. This
is necessary as sometimes different kinds of hints cannot be mixed, for example because they would cause a
combinatorial explosion or rewriting cycles.

A specific Hint Resolve database db can be used with auto with db.

Hint Resolve
concat map
opposite map map cancel
opposite concat opposite opposite
homotopy concat : path hints.

By the way, we can add more hints to the database later.

Next we define a simple strategy which tries a number of more complicated lemmas and uses the first
one that makes progress (that is the meaning of the first keyword), after which it performs an auto using
the path hints database.

Ltac path tricks :=
first
[ apply homotopy concat
| apply opposite map
| apply opposite opposite
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| apply opposite concat
| apply map cancel
| idtac] ; auto with path hints.

The path via x tactic is used to construct a path a  b as a composition of paths a  x and x  b. It
also applies the path tricks to help user get rid of the easy cases.

Ltac path via x := apply @concat with (y := x ); path tricks.

Here are several more facts about map which have slightly more involved proofs. We use the just defined
tactics. The proofs a little too manual, obviously we need even better tactics which will allow us to argue
about paths as if they were equalities.

Lemma map naturality A (f : A → A) (p : ∀ x, f x  x ) (x y : A) (q : x  y) :
map f q @ p y  p x @ q.

Proof.
induction q.
path via (p x ).
apply idpath left unit.
apply opposite; apply idpath right unit.

Defined.

Hint Resolve map naturality : path hints.

Lemma homotopy natural A B (f g : A → B) (p : ∀ x, f x  g x ) (x y : A) (q : x  y) :
map f q @ p y  p x @ map g q.

Proof.
induction q.
path via (p x ).
path via (idpath (f x ) @ p x ).
path via (p x @ idpath (g x )).
apply opposite; auto.
Defined.

Lemma concat cancel right A (x y z : A) (p q : x  y) (r : y  z ) : p @ r  q @ r → p  q.
Proof.
intro a.
induction p.
induction r.
path via (q @ idpath x ).

Defined.

Lemma concat cancel left A (x y z : A) (p : x  y) (q r : y  z ) : p @ q  p @ r → q  r.
Proof.
intro a.
induction p.
induction r.
path via (idpath x @ q).
apply opposite; auto.

Defined.

Lemma concat move over left A (x y z : A) (p : x  z ) (q : x  y) (r : y  z ) :
p  q @ r → p @ !r  q.

Proof.
intro a.
apply concat cancel right with (r := r).
path via (p @ (!r @ r)).
apply concat associativity.
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path via (p @ idpath z ).
path via p.

Defined.

Lemma endomap homotopy commute A (f : A → A) (p : ∀ x, f x  x ) (x : A) : map f (p x )  p (f x ).
Proof.

path via (map f (p x ) @ (p x @ !p x )).
path via (map f (p x ) @ idpath (f x )); apply opposite; auto.
path via ((map f (p x ) @ p x ) @ !p x ).
apply opposite; apply concat associativity.
apply concat move over left.
apply @concat with (y := (p (f x ) @ map (idmap A) (p x ))).
apply homotopy natural with (g := idmap A).
apply homotopy concat ; auto.
apply idmap map.

Defined.

Lemma map action A (f : A → A) (p : ∀ x, f x  x ) (y z : A) (q : f z  y) :
map f (p z ) @ q  map f q @ p y.

Proof.
path via (p (f z ) @ q).
apply endomap homotopy commute.
apply opposite; apply map naturality.

Defined.

4 Homotopy between maps

There are two senses in which maps f and g can be ”homotopic”:

• homotopic: there is a path f  g, or

• pointwise homotopic: for each x in the domain of f there is a path f x  g x.

Let us verify that ”homotopic” implies ”pointwise homotopic”.

Lemma happly {A B} {f g : A → B}: (f  g) → (∀ x, f x  g x ).
Proof.

path induction.
Defined.

The converse of happly is known as extensionality of maps in type theory and cannot be proved without
further assumptions.

At first sight it seems clear from a topological point of view that extensionality should fail: for maps f, g
: A → B to be homotopic it is not sufficient to know that there is a path p x : f x  g x for every x : A
(consider the unit circle in the complex plane with f and g the identity and conjugation, respectively). In
fact, the notion ”pointwise homotopic” does not seem to be a very good one, topologically speaking.

However, since we are in a setting where all maps are continuous, the assignment p of paths p x : f x
 g x itself is continuous in x, which is sufficient to conclude that f and g are homotopic!

The main point of this file is the proof that the Univalence axioms implies extensionality for maps.

We move on to study how paths interact with fibrations. Let us first verify that we can transport points
in the fibers along paths in the base space. This is actually a special case of the paths rect induction principle
in which the fibration P does not depend on paths in the base space but rather just on points of the base
space.

Theorem transport {A} {P : A → Type} {x y : A} (p : x  y) : P x → P y.
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Proof.
path induction.

Defined.

The following lemma tells us how to construct a path in the total space from a path in the base space
and a path in the fiber.

Lemma total paths (A : Type) (P : A → Type) (x y : sigT P) (p : projT1 x  projT1 y) :
(transport p (projT2 x )  projT2 y) → (x  y).

Proof.
intros q.
destruct x as [x H ].
destruct y as [y G ].
simpl in × ` ×.
induction p.
simpl in q.
path induction.

Defined.

A path in the total space can be projected down to the base.

Definition base path {A} {P : A → Type} {u v : sigT P} :
(u  v) → (projT1 u  projT1 v).

Proof.
path induction.

Defined.

5 Basic homotopy notions

Just like in the case of homotopy of maps, there are two possible definitions of a contractible space:

• a space A is contractible if there is a path from the identity map on A to a constant map on A, or

• a space A is contractible if there is a point x : A and for every y : A a path y  x.

The pointwise version is the more useful one. An element of contractible A is a pair whose first component
is a point x and the second component is a pointwise retraction of A to x.

Definition contractible A := {x : A & ∀ y : A, y  x}.
A homotopy fiber for a map f at y is the space of paths of the form f x  y.

Definition hfiber {A B} (f : A → B) (y : B) := {x : A & f x  y}.
Here is yet another tactic which helps us prove that a homotopy fiber is contractible. This will be useful

for showing that maps are weak equivalences.

Ltac contract hfiber y p :=
match goal with
| [ ` contractible (@hfiber ?f ?x ) ] ⇒

eexists (existT (fun z ⇒ f z  x ) y p);
let z := fresh ”z” in
let q := fresh ”q” in
intros [z q ]

end.

Let us explain the tactic. It accepts two arguments y and p and attempts to contract a homotopy fiber
to existT y p. It first looks for a goal of the form contractible (hfiber f x ), where the question marks in
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?f and ?x are pattern variables that Coq should match against the actualy values. If the goal is found, then
we use eexists to specify that the center of retraction is at the element existT y p of hfiber provided by
the user. After that we generate some fresh names and perfrom intros.

We prove a lemma that explains how to transport a point in the homotopy fiber along a path in the
domain of the map.

Lemma transport hfiber A B (f : A → B) (x y : A) (z : B) (p : x  y) (q : f x  z ) :
transport (P := fun x ⇒ f x  z ) p q  !(map f p) @ q.

Proof.
induction p.
path via q.
path via (!(idpath (f x )) @ q).
path via (idpath (f x ) @ q).
apply opposite; auto.

Defined.

6 Weak equivalences

A weak equivalence is a map whose homotopy fibers are contractible.

Definition is wequiv {A B} (f : A → B) := ∀ y : B, contractible (hfiber f y).

wequiv A B is the space of weak equivalences from A to B.

Definition wequiv A B := { w : A → B & is wequiv w }.
Strictly speaking, an element w of wequiv A B is a pair consisting of a map projT1 w and the proof

projT2 w that it is a weak equivalence. Thus, in order to apply w to x we must write projT1 w x. Coq is
able to do this automatically if we declare that projT1 is a coercion from wequiv A B to A → B.

Definition wequiv coerce to function : ∀ A B, wequiv A B → (A → B).
Proof.
intros A B w.
exact (projT1 w).

Defined.

Coercion wequiv coerce to function : wequiv ¿-¿ Funclass.

The identity map is a weak equivalence.

Definition idweq A : wequiv A A.
Proof.
∃ (idmap A).
intros x.
contract hfiber x (idpath x ).
apply total paths with (p := q).
simpl.
compute in q.
path induction.

Defined.

Every path between spaces gives a weak equivalence.

Definition path to weq {U V } : U  V → wequiv U V.
Proof.
intro p.
induction p as [S ].
exact (idweq S ).
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Defined.

From a weak equivalence from U to V we can extract a map in the inverse direction.

Definition weq inv {U V } : wequiv U V → (V → U ).
Proof.
intros [w H ] y.
destruct (H y) as [[x p] ].
exact x.

Defined.

The extracted map in the inverse direction is actually an inverse (up to homotopy, of course).

Lemma weq inv is section U V (w : wequiv U V ) : ∀ y : V, w (weq inv w y)  y.
Proof.
intro y.
destruct w as [w G ].
simpl.
destruct (G y) as [[x p] c].
exact p.

Defined.

Lemma weq inv is retraction U V (w : wequiv U V ) : ∀ x : U, (weq inv w (w x ))  x.
Proof.
intro x.
destruct w as [w H ].
simpl.
destruct (H (w x )) as [[y p] c].
assert (q := c (existT x (idpath (w x )))).
assert (r := base path q).
exact (!r).

Defined.

The last general fact about weak equivalences that we need is that they are injective on paths, which is
not too surprising, given that they have sections.

Lemma weq injective U V : ∀ (w : wequiv U V ) x y, w x  w y → x  y.
Proof.
intros w x y.
simpl.
intro p.
assert (q := map (weq inv w) p).
path via (weq inv w (w x )).
apply opposite; apply weq inv is retraction.
path via (weq inv w (w y)).
apply weq inv is retraction.

Defined.

7 Univalence implies Extensionality

At this point we start using the Univalence Axiom. It states that the path to weq map which turns paths
into weak equivalences is itself a weak equivalence.

Axiom univalence : ∀ U V, is wequiv (@path to weq U V ).

The axioms allows us to go in the other direction: every weak equivalence yields a path.

Definition weq to path {U V } : wequiv U V → U  V.
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Proof.
apply weq inv.
∃ (@path to weq U V ).
apply univalence.

Defined.

The map weq to path is a section of path to weq.

Lemma weq to path section U V : ∀ (w : wequiv U V ), path to weq (weq to path w)  w.
Proof.
intro w.
exact (weq inv is section (existT (@path to weq U V ) (univalence U V )) w).

Defined.

We can do better than weq to path, we can turn a fibration fibered by weak equivalences to one fiberered
over paths.

Definition pred weq to path U V : (wequiv U V → Type) → (U  V → Type).
Proof.
intros Q p.
apply Q.
apply path to weq.
exact p.

Defined.

The following theorem is of central importance. Just like there is an induction principle for paths, there is
a corresponding one for weak equivalences. In the proof we use pred weq to path to transport the predicate
P of weak equivalences to a predicate P’ on paths. Then we use path induction and transport back to P.

Theorem weq induction (P : ∀ U V, wequiv U V → Type) :
(∀ T, P T T (idweq T )) → (∀ U V (w : wequiv U V ), P U V w).

Proof.
intro r.
pose (P’ := (fun U V ⇒ pred weq to path U V (P U V ))).
assert (r’ : ∀ T : Type, P’ T T (idpath T )).
intro T.
exact (r T ).
intros U V w.
apply (transport (weq to path section w)).
exact (paths rect P’ r’ U V (weq to path w)).

Defined.

We should strive to make the following lemma shorter. The lemma states that a map which is pointwise
homotopic to the identity is a weak equivalence.

Lemma weq pointwise idmap A (f : A → A) : (∀ x, f x  x ) → is wequiv f.
Proof.
intros p y.
contract hfiber y (p y).
apply total paths with (p := ! (p z ) @ q).
simpl.
eapply concat.
apply transport hfiber.
path via (map f (!q @ p z ) @ q).
path via (map f (! (!p z @ q))).
eapply concat.
path tricks.
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path tricks.
path via ((map f (!q) @ map f (p z )) @ q).
path via (map f (!q) @ (map f (p z ) @ q)).
apply concat associativity.
path via (map f (!q) @ (map f q @ p y)).
apply map action.
path via ((map f (!q) @ map f q) @ p y).
apply opposite; apply concat associativity.
path via (idpath (f y) @ p y).
path via (! map f q @ map f q).
apply opposite; apply opposite map.

Defined.

We need one more axiom, which is about eta-expansion of functions.

Definition eta {A B} := (fun (f : A → B) ⇒ (fun x ⇒ f x )).

Axiom eta axiom : ∀ {A B} (h : A → B), eta h  h.

The eta axiom essentially states that eta is a weak equivalence.

Theorem etaweq A B : wequiv (A → B) (A → B).
Proof.
∃ (@eta A B).
apply weq pointwise idmap.
apply eta axiom.

Defined.

Another important ingridient in the proof of extensionality is the fact that exponentiation preserves weak
equivalences, i.e., if w is a weak equivalence then post-composition by w is again a weak equivalence.

Theorem weq exponential : ∀ {A B} (w : wequiv A B) C, wequiv (C → A) (C → B).
Proof.
intros A B w C.
∃ (fun h ⇒ w ◦ h).
generalize A B w.
apply weq induction.
intro D.
apply (projT2 (etaweq C D)).

Defined.

We are almost ready to prove extensionality, but first we need to show that the source and target maps
from the total space of maps are weak equivalences.

Definition path space A := {xy : A × A & fst xy  snd xy}.
Definition src A : wequiv (path space A) A.
Proof.
∃ (fun p ⇒ fst (projT1 p)).
intros x.
eexists (existT (existT (fun (xy : A × A) ⇒ fst xy  snd xy) (x,x ) (idpath x )) ).
intros [[[u v ] p] q ].
simpl in × ` ×.
induction q as [a].
induction p as [b].
apply idpath.

Defined.

Definition trg A : wequiv (path space A) A.
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Proof.
∃ (fun p ⇒ snd (projT1 p)).
intros x.
eexists (existT (existT (fun (xy : A × A) ⇒ fst xy  snd xy) (x,x ) (idpath x )) ).
intros [[[u v ] p] q ].
simpl in × ` ×.
induction q as [a].
induction p as [b].
apply idpath.

Defined.

And finally, we are ready to prove that extensionality of maps holds, i.e., if two maps are pointwise
homotopic then they are homotopic. First we outline the proof.

Suppose maps f g : A → B are extensionally equal via a pointwise homotopy p. We seek a path f  g.
Because eta f  f and eta g  g it suffices to find a path eta f  eta g.

Consider the maps d e : S → path space T where d x = existT (f x, f x ) (idpath x ) and e x = existT
(f x, g x ) (p x ). If we compose d and e with trg we get eta f and eta g, respectively. So, if we had a path

from d to e, we would get one from eta f to eta g. But we can get a path from d to e because src ◦ d = eta
f = src ◦ e and composition with src is an equivalence.

Theorem extensionality {A B : Set} (f g : A → B) : (∀ x, f x  g x ) → (f  g).
Proof.
intro p.
pose (d := fun x : A ⇒ existT (fun xy ⇒ fst xy  snd xy) (f x, f x ) (idpath (f x ))).
pose (e := fun x : A ⇒ existT (fun xy ⇒ fst xy  snd xy) (f x, g x ) (p x )).
pose (src compose := weq exponential (src B) A).
pose (trg compose := weq exponential (trg B) A).
apply weq injective with (w := etaweq A B).
simpl.
path via (projT1 trg compose e).
path via (projT1 trg compose d).
apply map.
apply weq injective with (w := src compose).
apply idpath.

Defined.

And that is all, thank you.
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