
A syntax for linear logic

Philip Wadler (wadler�9 g lasgow, ac. uk)

Department of Computing Science, University of Glasgow, G12 8QQ, Scotland

Abs t rac t . There is a standard syntax for Girard's linear logic, due to
Abramsky, and a standard semantics, due to Seely. Alas, the former is
incoherent with the latter: different derivations of the same syntax may
be assigned different semantics. This paper reviews the standard syntax
and semantics, and discusses the problem that arises and a standard
approach to its solution. A new solution is proposed, based on ideas
taken from Girard's Logic of Unity. The new syntax is based on pattern
matching, allowing for concise expression of programs.

1 I n t r o d u c t i o n

Somewhere inside linear logic, there is a programming language struggling to
get out. We wish to define an analogue of lambda calculus to solve the following
equat ion:

lambda calculus

in tu i t ionis t ic logic -- l inear logic

What does this language look like?
One would think the answer should be straightforward by now. There is the

linear logic of Girard [Gir87], there is the syntax of Abramsky [Abr90], and there
is the semantics of Seely [See89]. Each of these has become a standard.

Abramsky was inspired by the earlier work of Lafont [Laf88] and HolmstrSm
[Ho188], and in turn inspired related systems by Chirimar, Gunter, and Riecke
[CGR92], Lincoln and Mitchell [LM92], Mackie [Mac91], Troelstra [Tro92], and
Wadler [Wad90, Wad91].

Seely provided a categorical model, that subsumes other models such a s
coherence spaces [Gir87], event spaces [Pra91], games [LS91], and the Geometry
of Interaction [AJ92].

Unfortunately, Abramsky's syntax is incoherent with Seely's semantics: dif-
ferent derivations of the same term may yield different semantics. The basic
problem is tha t Promotion does not commute with substitution. All of the above
syntaxes suffer from a similar problem in one form or another, meaning that it is
difficult to assign them a meaning in any of the above models. (While the above
rightly credits Abramsky's influence, it would be wrong to burden him with too
much blame. His syntax is coherent with the operational model he uses.)

This difficulty was spotted previously by myself [Wad92]. Other researchers
have not only observed the problem, but also proposed a solution in the form of
a syntax that 'boxes' the Promotion rule, in much the same way that boxes are
used in proof nets. Notable in this regard is the work of Benton, Bierman, de

514

Paiva, and Hyland [BBdPH92], which provides a thorough introduction to nat-
ural deduction and sequent versions of linear logic, their categorical semantics,
and the associated proof theory.

This paper presents a new syntax for linear logic that resolves the Promotion
problem. The new syntax follows naturally from the idea of using patterns in
sequents to represent destructors. It is closely related to Girard's Logic of Unity,
LU (though without the polarities) [Gir91]. Indeed, the syntax presented here
is based on a suggestion from Jean-Yves Girard, who pointed out to me that
the problems I had noted with the standard syntax are resolved in the syntax of
LU. The syntax also bears a passing resemblance to Moggi's calculus for monads
[Mog89].

The syntax has been expressed in a way such that Dereliction and Promotion
are made explicit, but Contraction and Weakening are left implicit. Even though
linear logic is a 'resource conscious' logic, it seems adequate to be conscious of
Dereliction and Promotion alone. The semantics introduces sufficient coherence
properties so that the precise order in which Contraction and Weakening is
applied is irrelevant. Such details may safely be omitted from the programme,
yielding a more economic mode of expression. For those who truly desire to
control all the details, a variant syntax that makes Contraction and Weakening
explicit is given at the end.

Another approach to giving a syntax for linear logic based on LU appears
in more recent work [Wad93]. That paper presents a more tutorial introduction:
it is based on natural deduction rather than sequent calculus, so it takes less
advantage of pattern matching, and it stresses the syntactic aspects of proof
reduction while ignoring the semantics.

The remainder of this paper is organised as follows. Section 2 presents
Abramsky's syntax. Section 3 presents Seely's semantics. Section 4 presents the
new syntax. Section 5 compares the new syntax with Girard's Logic of Unity.
Section 6 sketches some variations on the new syntax.

2 O l d s y n t a x

For simplicity, we restrict ourself to the connectives | (tensor product), --o
(linear implication), & (product), and] (of course). A type (or proposition) is
built from these connectives and base types.

A,B,C::=XI(A| I(A-oB) (A&B) I!A

Let A, B, C range over types, and X range over base types.
For each of these types, there are terms to construct and destruct values of

that type.

t, u ::= ~ I (t, u) I (let (~, y) = t in u) I (~x . t) t (t ~) I
(t, u) I (let (x , _) = t in u) I (let (_, y) = t in u) I
It I (let !x = t in u) I (let (x @ y) = t in u) I (let _ =tinu)

515

Let t, u range over terms, and f , x, y, z range over variables. The use here of
' let (x, y) = t in u ' in comparison with Abramsky ' s 'let t be x | y in u' merely
reflects a preference for the tradit ional notation, not any significant difference.

An a s s u m p t i o n has the form xl : At , . . . , x~ : Am where all the variables
are distinct, and n > 0. Let F and A range over assumptions. Write s A for
the catenation of two assumptions; whenever this appears it is assumed tha t the
variables of F and A are disjoint. Finally, a j u d g e m e n t has the form F F t : A.

The rules for this version of linear logic are shown in Figure 1. Each rule has
zero or more hypotheses above the horizontal line, and a conclusion below. There
is one rule for each te rm form, with the exception of the two rules Exchange and
Cut. The Exchange rule expresses that the order of assumptions is irrelevant.
The Cut rule uses the notat ion u [t / x] to stand for the te rm derived from u by
subst i tut ing t for all occurrences of z.

Id
x : A F ' x : A

Exchange F, x : A, y . B, `6 f- t : C
F , y B , x A , _ 4 ~ - t C

s x : A , , 6 ~ - u : B Cut
Jr, ,6 ~- ~ [t / x] : B

F I - t : A , 6 t - u : B
| | /~, ,6 P (t, u) : (A | B)

F , x : A , y : B ~ - t : C
f, z : (A | b(let (x , y) = z i n t): C

- - o - R _F, x : A F t : B
/~ F (~x. t): (A-o B) -o -L

F F t : A y : B , A t - u : C
F, f : (A ---o B), ,6 F- u[(] t) /y] : C

& - R
F b t : A I ~ F u : B

_P F (t, u) : (A & B)

&-L F , x : A b t : C
L z: (A*: B) F 0et (x,_) = z in t): C

1 ~ , y : B t - t : C
F , z : (A & B) F(let (_ , y) = z i n t): C

Promotion xt : !A1, . . . , x , : !An F- t : B Dereliction
xl : ! A I , . . . , x ~ : ! A n F ! t : ! B

_F, x : A F t : B
P, z:!A~-(let ! x = z i n t) : B

Contraction F, x : !A, y : !A b t : B
/~, z: !A F- (let (x@y) = z in t): B

F F t : B
Weakening P, z : ! A t - (l e t _ = z i n t) :B

Fig. I. Old syntax

The rules are given in sequent calculus style, so constructors are represented
by rules (such as Q-R) where the connective appears in the consequent of the
conclusion (to the right of F), and destructors are represented by rules (such as
| where the connective appears in the antaceedent of the conclusion (to the

516

left of k). Promot ion constructs a term with 'of course' type: it is a !-R rule.
Dereliction uses a variable with 'of course' type once, Contraction duplicates it,
and Weakening discards it: we refer to these collectively as !-L rules.

The -o -L rule only allows one to apply a variable to a term. Readers may be
more familiar with the application rule of Natural Deduction, which allows one
to apply a te rm to a term.

F F - t : (A - o B) A F - u : A
.--o-F,

v, A~- (t u) : B

This rule is derived as follows.

F k t : (A - ~ B)

A F u : A y : B F y : B

A , f : (A --r F- (f u) : B

Id

---o-L

Cut
V, A k (ra u) : B

Id
x : ! A F x : ! A

Dereliction
(*) z : !!A F- (let !z = z in x) : !A

Promotion
z :!!A F- !(let !z = z in z) :!!A

and also the derivation
Id Id

x : !A t- x : !A y : !A k y : !A
Dereliction Promot ion

(**) z : !!A k (let !x = z in z) : !A y : [A k !y: !!A
Cut

z : [!A k [(let !J: = z in z) : !!A.

At first this may seem vaguely disturbing. ~Ve shall see shortly that it is pro-
foundly disturbing, because each of these derivations is at tached to a different
semantics.

has the derivation

z : ! ! A / ! (l e t !x = z in z) : !!A

Note the central role played here by Cut. Sequent and natural deduction versions
of linear calculus are presented and shown equivalent by Lincoln and Mitchell
[LM92]. Various mixtures of the two systems have been used by various re-
searchers [BBdPH92, CGR92, Wadg0, Wadgl].

Here are a few example judgements.

k (Ax. Ay. l e t _ = y in x) : A--o ! B - o A
k (At. As. Ax. let !f = r in let !g = s in let (y@z) = x in f y ! (g z)) :

!(!A -o !B --o C) ---o !(!A --~ B) ---o !A ---o C
F- (Ax. let (y, z) = x in

! { l e t ! r = y i n l e t _ = z i n r , let ! s = z i n l e t _ = z i n s)) :
(!A | !B) --o !(A & U)

Because of the Cut rule, an unnerving property of this system is that terms
do not uniquely encode derivations. For example, the judgement

3 S e m a n t i c s

517

This section presents Seely's model of linear logic, restricted to the case of in-
tuitionistic linear logic. Seely's model is normally thought of as deriving f rom
. - au tonomous categories, but the dualising object * is only required to model
classical linear logic.

Anticipating that objects will model types and assumptions, and that arrows
will model terms, let A, B, C and F, A range over objects, and t, u, v range over
arrows.

A model of intuitionistic linear logic is provided by a category with the
following structure.

- I t is symmetr ic monoidal closed, with unit object 1, tensor | and internal
hom --o. The transpose of t : F | A ~ B is curry(t) : F --~ (A -o B) , and
the counit is apply : (A --o B) | A --* B.

- I t possesses finite products, with terminal T and product &. The unique
arrow to the terminal is () : F --+ T, the mediat ing morphism of t : F --~ A
and u : F ---+ B is (t, u) : F --* A ~ B , and the projections are fst : A ~ z B --~ A
and snd : A & B --* B.

- I t possesses a comonad !. The Kleisli operator of t : !A ~ B is kleisli(l) :
!A ---* !B, and the counit is counit : !A --* A.

- There are isomorphisms 1 -~ !T and !A | !B _ !(A & B). These induce a
comonoid structure on each object !A that is natural in A, given by

!A discard 1 = !A ~ !T ~_ 1,

!A duplicate)!A| !A !A !(id,id})
= !(A ~ A) ~ !A | !A.

A categorical model is obtained by associating with each base type an object
in our category, inducing a map from types to objects. Write A for both a

t y p e and its corresponding object. Each assumption F = xl : A1, . . . , Xn : An
possesses a corresponding object F = AI | | A~; the empty assumption
corresponds to the unit object 1.

Each judgement F t- t : A corresponds to an arrow t : F ~ A. Figure 2
shows how each derivation induces an arrow which is its semantics.

Since a given judgement may have more than one derivation, we must verify
tha t all possible derivations of a judgement assign it the same semantics. This
proper ty is called coherence, and its importance was noted by Breazu-Tannen,
Coquand, Gunter and Scedrov [BCGS91]. In our case, two derivations of a judge-
ment can differ only in their use of the Exchange or Cut rules, since uses of all
other rules are encoded in the term. Coherence is guaranteed for Exchange by
the fact tha t | is symmetr ic monoidal.

Unfortunately, the Cut rule does indeed introduce incoherence, when used
in conjunction with Promotion. The derivation (.) given previously induces the

518

--o-L

I d - - id

A - - ~ A
Exchange

t

F O A | 1 7 4 C
t

F | 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4 C

Cut

t u
F --* A A | A -~ B

F O A *| A | ~ B

t ~
F - ~ A A - - + B

| t| |
F | A |

t

F O A | C
t

F | ~ _ F | 1 7 4 -~ C

t

F | 2 4 7 B
--o-R

1" ~ (A - |

t u
.F .--+ A B | A --* C

F O (A -o B) O A t|174 ,wp~v@ia ,~ A | 1 7 4 1 7 4 , , B |

t u

F - ~ A F----+B
& -R (t,,,)

F , (A & B)

&-L

t

F | C

F | (A & B) id| * , F | C

t

F O B - - ~ C

F O (A & B) "~| F O B *-~ C

Promotion

t

!A1 O " " O !A,~ ~ !(AI & - " & A,~) --~ B

!AI | 1 7 4 !A~ -- !(AI & " " & A~) ~l,~i~(t) B

Derefiction

t

F O A - + B
i d l e | t

F | ~ F O A - - § B

Contraction
F |

t

F | 1 7 4 B
i d @ d u p l i c a t c - - . . - - . - - . t

I'6b[[A. . __ . ~_ F O ! A | --* B

Weakening
F O ! A

t

F - - ~ B
id@di.*,~ard t

, F | B

Fig. 2. Semantics

519

semantics
- - Id

id
!A ~ !A

Dereliction
~*~ !!A co~it, !A

Promotion
!!A kl~i~ti(co,,,~it)~ !iA.

The derivation (**) given previously induces the semantics

(**)

Id Id
id id

!A ---. !A !A ---* !A
Dereliction Promotion

counit kleisli(id)
!!A ~ !A !A ~ !!A

Cut
counit kleisli(id)

!!A ~ !A ~ !!A.

These are not necessarily equal. The arrow for (*) is necessarily the identity, but
the arrow for (**) is not. We thus have the following.

C o u n t e r e x a m p l e . The syntax of Figure 1 is not coherent with the se-
mantics of Figure 2.

This problem arises only with the Promotion rule.

T h e o r e m . The syntax of Figure 1 is coherent with the semantics of
Figure 2 if Promotion is not used. If a term does not contain ! as a
constructor, then all derivations of it will have the same semantics, even
if they use Cut.

The proof is by examination of overlapping rules.
All of the variations of Abramsky's syntax cited above suffer from this prob-

lem in one form or another. In a natural deduction system, this problem reveals
itself in a failure of the Substitution Lemma: substitution does not commute with
Promotion [Wad92]. The same difficulty is at the root of problems that Lincoln
and Mitchell [LM92] and Chirimar, Gunter, and Riecke [CGR92] encountered
with Subject Reduction theorems, forcing them to be restricted in various ways.

One way to fix the problems is to restrict the class of categorical models. In an
earlier paper [Wad92], it was shown that substitution commutes with Promotion
if and only if the categorical model satisfies counit; kleisli(id) = id. This is not
very satisfactory, as none of the models cited at the beginning of this paper
satisfy this restriction. Nonetheless, similar restrictions appears in the work of
O'Hearn [O'He91] and Filinski [Fi192], and this may explain why.

Another fix is to revise the syntax of Promotion, so that it records explicitly
what substitutions have occured. This suggestion has been made by Benton,
Bierman, de Paiva, and Hyland [BBdPH92] and by l~eddy [Red91]. The syntax
of promotion is changed so that the term !t is replaced by ! [u l / x l , . . . , u ~ / x ,] t ,
where x l , . . . , x~ are all the free variables of t. Here the square brackets are

520

concrete syntax; this concrete syntax is chosen to resemble the meta -syn tax for
substitution, since the roles are similar. The revised Promot ion rule is as follows.

Promot ion ' zl : !A1, . . . , z,~ : !An ~- t : B
zl : !A1, . . . , z~ : !AN ~- ! [z l / x , , . . . , z ~ / z n] t : B

After promotion, the free variables of the te rm are z l , . . . , z,~, and any substitu-
tions for these variables will be explicit in the term. By acting as a barrier to
substitution, the new syntax performs much the same role that boxing does in
proof nets [Gir87]. It is possible to show that this 'boxed ' syntax is coherent: all
derivations of a te rm have the same semantics.

Returning to our example, the first derivation becomes

Id
z : ! A ~ - z : ! A

(*) y : !!A F- (let !x = y in x) : !A Dereliction

Promot ion '
z : !!A ~- ![z/y](let !x = y in x) : !!A

and the second becomes
Id Id

z : ! A I - z :!A y :!A~- y :!A
Dereliction Promotion'

(**) z : ! ! A F - (l e t ! z = z i n z) : ! A w : ! A ~ - ! [w / y] y : ! ! A
Cut

z : !!A f- [[(let !z = z in x) / y] y : !!A.

Now the terms are different, so it is not a problem that they are assigned different
semantics.

The key idea here is that there is a barrier around Promot ion indicating what
substi tutions occur. The next section will reveal a different syntax that erects a
similar barrier.

4 N e w s y n t a x

The new syntax makes three significant changes. First, it introduces a notion of
pattern. Whereas previously assumptions paired variables with types, now they
will pair pat terns with types. Second, the various instances of ' let ' that appeared

previously , associated with the Q-L, k-L, and !-L rules, are now all consolidated
into a single ' let ' . Third, there is no explicit indication of Contract ion or Weak-
ening in the terms. (This third change is convenient but not essential, and we
will see how to undo it in the next section.)

For each type, there is now a term to construct values of tha t type, and a
pattern to destruct values of that type. The exception is --% which has terms for
both construction and destruction. There is also a ' let ' term.

p , q : : = x I (p, q) l (p , D l (_, q) l !x
t,u : : = x] (t , u) l (Ap. t) l (t u) l (t, u) l !t I (l e t p = t i n u)

Let p, q range over patterns, t, n range over terms, and f , z, y, z range over
variables. Note that pat terns for the types | and & may be nested, but pat terns

521

for the type ! may not. We will see below that this system guarantees coherent
semantics, but that if nested ! patterns were allowed then coherence would again
be lost.

An assumption now has the form t)i : A1 , . . . , /) n : An where n >_ 0 and no
variable appears more than once in all of the patterns combined. Again, let F, A
range over assumptions, and judgements have the form F ~- t : A.

The rules for this version of linear logic are shown in Figure 3. With the
exception of the new rule Let, there is a one-to-one correspondence between
rules in the old syntax and rules in the new syntax. The Q-L, &-L, and !-L rules
now all introduce patterns rather than 'let ' terms. The introduction of ' let ' terms
has been factored out into a separate Let rule. The three !-L rules all introduce
the same pattern, so there is no explicit indication of Contraction or Weakening.
The appearance of ! patterns in Contraction helps to explain the restriction to
variables, since this makes the substitution associated with Contraction easier
to express. Promotion is changed so that in addition to requiring that all types
in the assumption begin with a !, all patterns in the assumption must also do
SO.

This last change is the critical step - the ! patterns will act as a barrier to
substitution, just as the 'boxed' syntax at the end of the last section did. What
was written ! [u l / x l , . . . , Un/Xn]t in the boxed syntax is here written

let !yi = ul in - . . let !yn = un in Z [!ys / z l , . . . , ! yn /xn] .

Note that ![ui/xi]t is concrete syntax, whereas t[!yilxi] is meta-syntax for sub-
stitution. Although here the new syntax appears less compact than the boxed
syntax, in practice the new syntax will often be more compact because of pat tern
matching, and because Contraction and Weakening are not explicitly indicated.

The Let rule has no logical content, as erasing the terms from the hypothesis
or the conclusion gives the same logical judgement, /', A F B. Indeed, the Let
rule can be simply considered a convenient abbreviation, as it can be derived
from the - o rules and Cut.

�9 I d I d
F , p : A ~ - u : B z : A ~ - x : A y : B F y : B

- o - R --o- L
v (A -o B) f : (A - o B), x : A F (f x) : B

Cut
F, x : A F ((,~p. u) x) : B

Thus, we can take (let /) = x in u) as an abbreviation for ((),p. u) x).
The rules in Figure 2 for assigning a semantics to the derivation of a term still

apply. The Let rule assigns the judgement in the conclusion the same semantics
as the judgement in the hypothesis.

T h e o r e m . The syntax of Figure 3 is coherent with the semantics of
Figure 2.

The proof is by examining the possible overlaps between rules.

522

Id
x : A ~ - x : A

Exchange F , p : A , q : B , z 2 t - t : C
F,q B , p ~ A , A t - t C

F t - t : A x : A , A ~ - u : B
Cut

r , ~ ~ u[t /x] : B
Let

f , p : A I - u : B
F , x : A ~ - (l e t p = x i n u) : B

|
F t - t : A A t - u : B
11, A F- (t , u) : (A | B) |

F, p: A, q: B F - t : C
/1, (p, q) : (A | B) l- t : C

- o - R F, p : A b t : B -o-L
/~ ~- (Ap. t) : (A --o B)

F t - t : A y : B , A ~ - u : C
_F,] : (A --o B), A t- u[(] t)/y]) : C

&-R
F t - t : A F t - u : B

F b (t ,u) : (A& B)

&-L F , p : A b t : C F , q : B b t : C
F , (p , _) : (A & B) t - t : C F , (_ , q) : (A & B) f - t : C

Promotion !xl : !At, . . , !x~ : !Am t- t : B Dereliction
!x/ : ! A 1 , . . . , ! x ~ :!An b ! t : ! B

F , z : A P t : B
1 ~, !z:!A~- t: B

Contraction F, ! x : A , ! y : A b t : B
F, !z : A ~ t[z/x,z/y] : B

_PF-t:B
Weakening F, !z : !A F- t : B

Fig. 3. New syntax

Here are the example j u d g e m e n t s of Section 2 revisited.

I- (Ax. A!y. x) : A - o !B --o A
(~!I. ~!g. A!x. f !x !(g !x)): !(!A -o !B -~ C) -o !(!A -o B) -o !A -o C

t- (A(!r, !s). !(r, s)) : (!A | !B) --o !(A & B)

T h e new syn tax is considerably more compac t .
Re tu rn ing to our ma in example , the first der ivat ion becomes

(,)
Id

z : ! A b z : ! A
Derelict ion

!z : !!A F- z : !A
P r o m o t i o n

!z : ! !A t- !z :!!A.

The second der ivat ion is no longer valid. The P r o m o t i o n rule no longer ap-
plies, because it contains pa t t e rns not in the p roper form. In order to ob ta in the
s ame semant ics as previously, the der ivat ion mus t be rewri t ten . T h e old use of
the Id rule, which yielded x : !A ~- x : !A, is replaced with a use of Id, Derelict ion,
and P romot ion , which yields !y : !A F- !y : !A. Both der ivat ions have the s ame

523

semantics (the identity arrow), but further promotion is only possible for the
latter.

(**)
Id

z : ! A t - z : ! A
Dereliction

!z : !!At- z : !A

Id
z : A P z : A

Dereliction
! x : ! A ~ - z : A

Promotion
!z : !A ~- !z : !A

Promotion
!z : !A t- !!z : !!A

Let
w : ! A ~ - l e t ! z = w i n ! ! z : ! ! A

Cut
!z :!!A t- (let !x = z in !!z) :!!A.

The new (.) and (**) have the same semantics as the old. As with the boxed
semantics, we now have distinct terms yielding distinct semantics. Every old
derivation carries into a new derivation with the same semantics; the only change
needed may be to replace some uses of Id with Id, Dereliction, and Promotion,
as above; and to add some uses of Let.

If nested ! patterns were allowed, the coherence property would again be lost.
Consider the (i l legal)judgement !!z : !!A t- Ix : !A. There are two different proof
trees tha t yield this judgement. The first applies rules in the order Id, Derelict,
Promote, Derelict and has semantics counit; kleisli(counit), which simplifies to
counir second applies rules in the order Id, Derelict, Derelict, Promote and
has semantics kleisli(counit; counit), which does not simplify to counir Hence
the restriction that ! patterns cannot be nested. There is no similar problem for
| or & patterns.

Since there are no longer explicit terms for Contraction and Weakening, these
must be checked for coherence. Coherence here is guaranteed by the fact that
discard and duplicate form a comonoid: duplicating and then discarding is the
same as the identity; two duplications in different orders have the same meaning,
and so on. The situation is very similar to that for Exchange, and indeed there
appears to be no more reason for textually indicating each use of Contraction
or Weakening than there is for indicating each use of Exchange.

The new syntax satisfies a pleasing number of equivalences. In the case where
the 'let ' is simply binding a variable, it can be replaced by substitution. Further,
whenever a constructor meets a corresponding destructor, it can be substituted
out. Finally, ' let ' satisfies a pair of familiar laws. All these points are summarised
in the following.

524

T h e o r e m . The following equations hold for the syntax of Figure 3 with
the semantics of Figure 2.

(1) (let x = t i n u) = nil~z]
(2) (let (p, q) = (l, u) in v) = (let p = t in (let q = u in v))
(3) ((Ap. u)1) = (let p = I in u)
(4) (let (p,_) = (t, u) in v) = (let p = I in v)
(5) (let {_, q) = (l, u) in v) = (let q = u in v)
(6) (let !x = !t in u) = u[l/x]
(7) (let iv = I in p) = 1
(8) (let q = (l e t p = t i n u) in v) = (let p = t in (let q = u i n v))

These laws assume no collision of bound variables; e.g., in law (2), the
free variables of u must not be bound in p.

Law (1) is immediate from coherence. Laws (2)-(6) and (8) follow immediately
from the categorical semantics. Law (7) is proved by induction on the pattern.

Here are equations (6)-(8) again, with the last two instantiated to the special
case of ! patterns.

(let !z = !t in u) = u[t/x]
(let ! x = l i n ! x) = t

(let !y - (let !x = t i n u) in v) -- (let !x = I in (let !y = u in v))

These are reminiscent of the three equations satisfied by Moggi's calculus for
monads [Mog89]. For our syntax the first equation depends on the right counit
law for comonads and the second equation depends on the left counit law for
comonads; while for Moggi's calculus the first equation depends on the left unit
law for monads, and the second equation depends on the right unit law for
monads. However, the analogy goes awry with the third equation. Moggi's last
equation depends on the associative law for monads, while our last equation has
nothing to do with the associative law for comonads. (However, the associative
laws for comonads is important in verifying the coherence of the new syntax.)

5 L o g i c o f U n i t y

The system described here is closely related to Girard's Logic of Unity (LU)
[Gir91]. Indeed, it was inspired by it: the trick that avoids coherence problems
was stolen from LU. To clarify the relation, this section present an appropriately
simplified version of LU. Major differences from Girard's LU are that this version
is restricted to the intuitionistic fragment, and there are no polarities.

In this variant of LU, there are two sorts of assumptions, linear and intu-
itionistic. Linear assumptions pair patterns with types, so they have the form
Pl : A1, . . .p ,~ : A~, while intuitionistic assumptions pair variables with types,
so they have the form xl : A 1 , . . . x n : An. Linear assumptions may not be
contracted or weakened, while intuitionistic assumptions may'. The Contraction
rule is much more neatly expressed in terms of variables because it involves

525

substitution, which partly explains the restriction to variables in intuitionistic
assumptions. Let /', A range over linear assumptions, and ~, ~P range over intu-
itionistic assumptions. A judgement has the form F; �9 t- t : A, where the linear
and intuitionistic assumptions are separated by a semicolon.

The rules for this variant of LU are shown in Figure 4. There is a close
correspondence with our new syntax of Figure 3, here called LL for short. The
previous Id rule is split into two rules, Id and Id-Int, the first dealing with a
linear assumption and the second dealing with an intuitionistic one. Similarly,
the previous Exchange rule is split into Exchange and Exchange-Int. The logical
rules for | and -o deal with linear assumptions. Promotion and Deriliction are
logical rules of ! and deal with the relation between the two sorts of assumptions,
while Contraction and Weakening have metamorphosed from logical rules of ! to
structural rules dealing with intuitionistic assumptions.

Id Id-Int
x : A ; F - x : A ; x : A ~ - x : A

Exchange F , p : A , q : B , A ; #F- t : C
r , q B , p - - ~ , A ; ~ - t C

Exchange-Int F; # , x : A , y : B , ~ - t : C
F; q~,y B , x A, g J b t C

Cut
F; O ~ - t : A x : A , A; ~ b u : B

Let F, A; ~, ~ t- u[t/x] : B

| F; ~ b t : A A ; k ~ b u : B O-L
F, A; 4~, ~ b (t ,u) : (A | B)

F , p : A ; ~ I - u : B
F , x : A ; O F - (l e t p = x i n u): B

F , p : A , q: B; ~ - t : C
F, (p,q): (A| B); ~5~- t : C

-o-R
F, p : A; ~ 5 ~ - t : B

r ; �9 e (~v. t): (A --o B)
-o-L

1~; q S I - t : A y : B , A ; ~ P b u : C
F, f : (A-o B), A; ~, ~V b u[(f t)/y]): C

&_R F; ~ - t : A F ; ~ F - u : B
r ; �9 s (t, u): (A ~ B)

~-L I~' P: A; ~ l - t : C
F, (p,_): (A & B); ~SF- t : C

F, q: B; ~ t - t : C
F, (_, q) : (A & B); ~sb t : C

Promotion
; O t - t : B

; # ~ - ! t : ! B
Dereliction

F , !z : !A; # F - t : B
_F; z : A, q~ t- t : B

Contraction F; ~ , x : A , y : A F - t : B
F; q~, z : A ~ t [z / x , z / y] : B

l ~ ; ~ - t : B
Weakening /~; ~5, z : A b t : B

Fig. 4. A version of the Logic of Unity

It is possible to translate LU into LL. A judgement of the form F; ~ ~-
I : A in LU corresponds to a judgement F , ! r ~- t : A in LL, where i f ~ is

526

xl : At , . . . , xn : An then !~ is !xl : !A1, . . . , !xn : tAn.
Each rule in LU corresponds to the rule of the same name in LL, with two

spectacular exceptions. Id-Int in LU translates to a combination of Id and Derr
liction in LL.

Id-Int ~-~
; x : A F x : A

Id
x : A t - x : A

Dereliction
! x : ! A t - x : A

On the other hand, both the hypothesis and conclusion of the Dereliction rule
of LU translate to the same judgement of LL.

Dereliction F, !z : !A; �9 P t : B
F; z : A , 4) F t : B

~-+ F, !z : !A, !~ k" t : B

Thus Id-Int in LU corresponds to Dereliction in LL, while Dereliction in LU
corresponds to nothing at all!

The translation induces the obvious semantics: the semantics of a judgement
in LU is the the same as the semantics of the corresponding judgement in LL.
Analogues of the theorems of Section 4 hold.

There are a number of rules which one would expect of LU, which can be
derived from the rules given here. The most important of these is Cut-Int.

Cut-Int ; ~ F t : A A; x : A , ~ F u : B
A; # , g , F (l e t !x = !t in u) : B

This rule is derived as follows.

A; x : A , V / F u : B
Dereliction

; r t : A A, !x :!A; ~ P b u : B
Promotion Let

; r A, y : ! A ; ~ - l e t ! x = y i n u : B

A;~,~t-(let !x=!tin u):B

Observe that the semantics of (let !x = !~ in u) is identical to the semantics of
u[r which may offer further scope for simplification.

6 V a r i a t i o n s

Many programmers are unfamiliar with the -r rule of the sequent calculus, and
may find the -o -E rule of natural deduction more natural. On the other hand,
the use of sequent calculus seems to naturally capture the pattern matching in
the | and & rules, so there may be some value in exploring a hybrid of the two
systems. One variation would simply replace the -o-L rule by --o-E. This might
be easier for programmers to follow, though important logical properties such as
cut-elimination would be lost.

527

The work presented here extends straightforwardly to handle sums.

|
F t - t : A F t - u : B

F P (i n l t) : (A | B) r e (inr u): (A �9 B)

F F z : (A ~ B) A , p : A ~ - t : C A , q : B b u : C
@ - L

F, A F (case z of{inlp --* t ; inr q ~ u}) : C

These rules do not exploit the power of pattern matching as thoroughly as one
might hope; for instance, patterns of the form (inlp) and (inr q) cannot appear
nested inside other patterns. An open question is whether there is a different
approach that allows for such nested patterns. One path in this direction is
indicated by the work of Breazu-Tannen, Kesner, and Puel [BTKP93].

Another variation is to include patterns to indicate Contraction and Weak-
ening. The grammar of patterns is divided into patterns and of-course patterns,
the former being a superset of the latter.

p , q ::= x I (p ,q) L (p ,_) l (_ ,q) l o
o, r ::= (o r) I _

Let p, q range over patterns, and o, r range over of-course patterns. The new
rules are as follows.

Promotion ol : IA1 , . . . , o,~ :!AN t- t : B Dereliction F, z : A ~- t " B
ol : !A1, . . . , on : !An F It : IB F, !z : !A F t : B

Contraction F, o : A , r : A t- t : B F ~- t : B
F, (o@r) : A F t : B Weakening F, _ : IA F t : B

Dereliction, Contraction, and Weakening introduce the three different sorts of
of-course pattern, while Promotion allows any of-course pattern. This variation
is included simply to illustrate that the approach used here does not preclude
the use of specific patterns to indicate Contraction and Weakening. However,
in practice there does not seem to be much value in including such detailed
information.

Acknowledgements . I am grateful to Jean-Yves Girard, Samson Abramsky,
Robert Seely, Martin Hyland, Valeria de Paiva, and Uday Reddy for their in-
sights into linear logic. One of the MFPS referees made detailed and valuable
suggestions for improvement.

References

[Abr90]

[AJ92]

S. Abramsky, Computational interpretations of linear logic. Presented at
Work,~hop on Mathematical Foundations of Programming Language Se-
mantics, 1990. To appear in Theoretical Computer Science.
S. Abramsky and R. Jagadeesan, New foundations for the geometry of
interaction. In 7'th Symposium on Logic in Computer Science, IEEE Press,
Santa Cruz, California, June 1992.

528

[Bar79]

[BBdPH92]

[BCGS91]

[BTKP93]

[CGR92]

[fi192]

[Gir87]
[Gir91]
[Ro188]

[Laf88]

[LM92]

[LS91]

[Mac91]

[Mog89]

[O'He91]

[Pra91]

[Red91]
[See89]

[Tro92]
[Wad90]

[Wad91]

[Wad92]

M. Barr, *-Autonomous Categories. Lecture Notes in Mathematics 752,
Springer Verlag, 1979.
N. Benton, G. Bierman, V. de Paiva, and M. Hyland, Type assignment

for intuitionistic linear logic. Draft paper, August 1992.
V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov, Inheritance
as explicit coercion. Information and Compututation, 93:172-221, 1991.
(An earlier version appeared in Symposium on Logic in Computer Science,
IEEE Press, Asilomar, California, June 1989.)
V. Breazu-Tannen, D. Kesner, L. Puel, A typed pattern calculus. In 8'th
Symposium on Logic in Computer Science, Montreal, June 1993.
J. Chirimar, C. A. Gunter, and J. G. Riecke. Linear ML. In Symposium on
Lisp and Functional Programming, ACM Press, San Francisco, June 1992.
A. Filinski, Linear continuations. In Symposium on Principles of Program-
ming Languages, ACM Press, Albuquerque, New Mexico, January 1992.
J.-Y. Girard, Linear logic. Theoretical Computer Science, 50:1-102, 1987.
J.-Y. Girard, On the unity of logic. Manuscript, 1991.
S. HolmstrSm, A linear functional language. Draft paper, Chalmers Uni-
versity of Technology, 1988.
Y. Lafont, The linear abstract machine. Theoretical Computer Science,
59:157-180, 1988.
P. Lincoln and J. Mitchell, Operational aspects of linear lambda calculus.
In 7'th Symposium on Logic in Computer Science, IEEE Press, Santa Cruz,
California, June 1992.
Y. Lafont and T. Streicher. Game semantics for linear logic. In 6'th Sympo-
sium on Logic in Computer Science, IEEE Press, Amsterdam, July 1991.
I. Mackie, Lilac: a functional programming language based on linear logic.
Master's Thesis, Imperial College London, 1991.
E. Moggi, Computational tambda-calculus and monads. In ~'th Symposium
on Logic in Computer Science, IEEE Press, Asilomar, California, June
1989.
P. W. O'Hearn, Linear logic and interference control. In Conference on
Category Theory and Computer Science, Paris, September 1991. LNCS,
Springer Verlag.
V. Pratt, Event spaces and their linear logic. In A M A S T '91: Algebraic
Methodology And Software Technology, Iowa City, Springer Verlag LNCS,
1992.
U. Reddy, Acceptors as Values. Manuscript, December 1991.
R. A. G. Seely, Linear logic, *-autonomous categories, and cofree coal-
gebras. In Categories in Computer Science and Logic, June 1989. AMS
Contemporary Mathematics 92.
A. S. Troelstra, Lectures on Linear Logic. CSLI Lecture Notes, 1992.
P. Wadler, Linear types can change the world! In M. Broy and C. Jones,
editors, Programming Concepts and Methods, Sea of Galilee, Israel, North
Holland, April 1990.
P. Wadler, Is there a use for linear logic? In Conference on Partial Evalu-
ation and Semantics-Based Program Manipulation (PEPM), New Haven,
Connecticut, ACM Press, June 1991.
P. Wadler, There's no substitute for linear logic. Presented at Workshop on
Mathematical Foundations of Programming Language Semantics, Oxford,
April 1992.

[Wad93]

529

P. Wadler, A taste of linear logic. In Mathematical Foundations o] Com-
puter Science, Gdansk, Poland, LNCS, Springer Verlag, August 1993.

