
CHAPTER 5

Modular Funtor

Given a modular tensor ategory C, in the previous hapter we onstruted

a 3-dimensional Topologial Quantum Field Theory (3D TQFT). Moreover, this

3D TQFT was based on an extended notion of a manifold (a usual manifold with

additional data). In this hapter, we will show that the notion of a modular tensor

ategory (MTC) is essentially equivalent to some geometri onstrution in dimen-

sion 2. The right notion here is that of a modular funtor, whih was introdued

by Segal (see [S℄). Our exposition mostly follows the papers [S, MS1, MS2, T℄

and folklore of mathematial physiists.

5.1. Modular funtor

Definition 5.1.1. A (topologial) d-dimensional modular funtor (MF for short)

is the following olletion of data:

(i) A vetor spae �(N) assigned to any oriented ompat d-manifoldN without

boundary.

(ii) An isomorphism f

�

: �(N

1

)

�

�! �(N

2

) of vetor spaes assigned to every

homeomorphism f : N

1

�

�! N

2

, whih depends only on the isotopy lass of f .

(iii) Isomorphisms �(;)

�

�! k, �(N

1

t N

2

)

�

�! �(N

1

) 
 �(N

2

), where k is the

base �eld.

These data have to satisfy the following axioms:

Multipliativity: (fg)

�

= f

�

g

�

, id

�

= id.

Funtoriality: the isomorphisms (iii) are funtorial.

Compatibility: the isomorphisms of part (iii) are ompatible with the anon-

ial isomorphisms N t ; = N , N

1

t N

2

= N

2

t N

1

, (N

1

t N

2

) t N

3

=

N

1

t (N

2

tN

3

).

Normalization: We have an isomorphism �(S

d

) = k, where S

d

is the d-

dimensional sphere.

Detailed statement of the funtoriality and ompatibility axioms an be found

in Remark 4.2.2, where the same onditions appear in the de�nition of TQFT.

Remark 5.1.2. Any (d+1)D TQFT (see De�nition 4.2.1) gives a d-dimensional

MF, beause the axioms of a MF, exept for the requirement that f

�

depends only

on the isotopy lass of f , are ontained in the axioms of a TQFT, and this last

ondition is satis�ed by Theorem 4.2.3.

This modular funtor is unitary: in addition to the data above, there are fun-

torial isomorphisms �(�)

�

�! �(�)

�

, where � is the manifold � with opposite

orientation, whih are ompatible with the isomorphisms of part (iii).

Definition 5.1.3. (i) We de�ne a ategory � with:

Objets: d-manifolds.
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94 5. MODULAR FUNCTOR

Morphisms: Mor

�

(N

1

; N

2

) = isotopy lasses of orientation-preserving home-

omorphisms N

1

�

�! N

2

.

This is a symmetri tensor ategory with the \tensor produt" given by disjoint

union, and the unit given by ;. (Note that this ategory is not additive: one an

not add homeomorphisms!)

(ii) For a manifold N , its mapping lass group �(N) is the group of isotopy

lasses of homeomorphisms N

�

�! N . In other words, �(N) := Mor

�

(N;N).

The ategory � is a groupoid, i.e., a ategory in whih every morphism is in-

vertible. One easily sees that d-dimensional modular funtor is the same as a

representation of the groupoid �, i.e., a tensor funtor �! Ve

f

(k). This explains

the origin of the term \modular funtor".

In partiular, by 5.1.1(ii), every MF de�nes a representation of the mapping

lass group �(N) of any d-manifold N on the vetor spae �(N).

From now on, let us assume that d = 2. Then every onneted ompat oriented

surfae is determined up to homeomorphism by its genus g, and de�ning a modular

funtor is equivalent to de�ning for every g � 0 a representation of the mapping

lass group �

g

. We quote here some lassial results regarding the mapping lass

groups.

Theorem 5.1.4 (Dehn). Let � be a ompat oriented surfae, and let  be a

simple losed urve on �. De�ne the Dehn twist t



2 �(�) by Figure 5.1.

1

Then

the elements t



generate the mapping lass group �(�).

c c

Figure 5.1. Dehn twist.

This theorem was later re�ned by Likorish [Li℄, who suggested a �nite set

of Dehn twists generating �(�). Finally, an approah allowing one to desribe

the generators and relations in �(�) was given in [HT℄. For surfaes of genus g

with 0 or 1 boundary omponents (or marked points), the ideas of [HT℄ were fully

developed in [Waj℄, where a omplete set of generators and relations for �

g

� �

g;0

and �

g;1

is written.

Example 5.1.5. Let g = 1, i.e., let � be a two-dimensional torus. Then, by

Theorem 4.1.3, �

1

' SL

2

(Z), whih an be desribed as the group with generators

1

Here we put some auxiliary lines on the surfae to demonstrate the ation of the home-

omorphisms. These lines are for illustration purposes only. Note that  is not required to be

oriented.
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s; t and relations (st)

3

= s

2

; s

4

= 1 (whih implies s

2

t = ts

2

). It an also be

generated by the elements

t

a

= t =

�

1 1

0 1

�

; t

b

=

�

1 0

1 1

�

;

whih orrespond to Dehn twists around the meridian and the parallel of the torus.

It turns out that for d = 2 the notion of modular funtor an be generalized by

allowing surfaes with \holes", i.e., with boundary.

Definition 5.1.6. An extended surfae is a ompat oriented surfae �, possi-

bly with boundary, together with an orientation-preserving parameterization �

i

: (��)

i

�

�!

S

1

of every boundary irle. Here (��)

i

is onsidered with the orientation indued

from �, and S

1

= fz 2 C j jzj = 1g with the ounterlokwise orientation.

By a genus of an extended surfae, we will mean the genus of the losed surfae

l(�) obtained by \pathing the holes of �", i.e., gluing a disk to every boundary

irle.

A homeomorphism of extended surfaes f : �

�

�! �

0

is an orientation-preserving

homeomorphism whih also preserves parameterizations.

Finally, for an extended surfae (�; �

i

: (��)

i

�

�! S

1

) we de�ne the operation

of orientation reversal by (�;��

i

) (note the minus sign!).

The notion of isotopy of homeomorphisms is trivially generalized to this ase,

as well as the notion of disjoint union. Thus, we an de�ne the extended groupoid

Teih similarly to De�nition 5.1.3(i).

Definition 5.1.7. (i) The (extended) Teihm�uller groupoid Teih is the ate-

gory with objets extended surfaes, and morphisms isotopy lasses of homeomor-

phisms of extended surfaes (see De�nition 5.1.6).

(ii) For any extended surfae �, its mapping lass group �(�) is the group of all

isotopy lasses of homeomorphisms �

�

�! �. (Sometimes the name \mapping lass

group" is used for the smaller group �

0

(�) of all isotopy lasses of homeomorphisms

�

�

�! � whih at trivially on the set of onneted omponents of the boundary.) If

� is a surfae of genus g with n boundary omponents, we will denote �(�) � �

g;n

.

Again, it an be shown that �

0

(�) is generated by Dehn twists (a omplete set

of relations for �

0

g;n

is given in [Ge1℄, [Luo℄, [Ge2℄), and �

g;n

is generated by Dehn

twists and the \braiding operation" shown in Figure 5.2.

2

1221

Figure 5.2. Braiding.

It will be useful in the future to give an alternative de�nition of an extended

surfae. We give below two suh de�nitions. Both of them are equivalent to De�-

nition 5.1.6 in the following sense:

2

See the footnote on page 94.
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Proposition 5.1.8. The extended groupoids Teih, de�ned by De�nitions 5.1.6,

5.1.9 and 5.1.10, are equivalent as ategories, and this equivalene preserves the op-

eration of orientation reversal.

Definition 5.1.9. An extended surfae is an oriented ompat surfae with

boundary and with a spei�ed point p

i

on every omponent of the boundary.

A homeomorphism of extended surfaes is an orientation-preserving homeo-

morphism �! �

0

whih maps marked points to marked points.

Orientation reversal is de�ned in the obvious way, by reversing the orientation

of � while leaving the points p

i

unhanged.

Definition 5.1.10. An extended surfae is an oriented ompat surfae � with-

out boundary, with marked points z

i

, and with non-zero tangent vetors v

i

attahed

to eah marked point.

A homeomorphism of extended surfaes is an orientation-preserving homeomor-

phism � ! �

0

whih maps marked points to marked points, and marked tangent

vetors to marked tangent vetors.

Orientation reversal is de�ned by (�; z

i

; v

i

) = (�; z

i

;�v

i

).

This de�nition is analogous to De�nition 4.4.1.

Proof of Proposition 5.1.8. To establish the equivalene of De�nitions 5.1.6

and 5.1.9, note that a parameterization of a boundary irle gives a distinguished

point p

i

= �

�1

i

(i). Sine the set of all homeomorphisms S

1

�

�! S

1

preserving ori-

entation and the distinguished point i 2 S

1

is ontratible, this is an equivalene

of ategories. Similarly, to establish the equivalene of De�nitions 5.1.6 and 5.1.10,

note that given � as in De�nition 5.1.6, we an glue to � n opies of the standard

disk D = fz 2 C j jzj � 1g (with reversed orientation), using the identi�ations of

the boundary irles of � with S

1

. This gives a new surfae l(�) without bound-

ary, with marked points images of 0 2 D, and tangent vetors images of the unit

vetor going along the real axis in D. As before, it is easy to hek that this gives

an equivalene of ategories.

Examples 5.1.11. (i) Let � be a two-dimensional torus \with one punture":

�� ' S

1

and � has genus 1. Then the mapping lass group �

1;1

= �(�) is

generated by the elements s; t with the relations (st)

3

= s

2

; s

2

is entral (ompare

with Example 5.1.5). Moreover, s

4

is the inverse of the Dehn twist around the

punture. The easiest way to hek this is to use the realization of the torus with

one punture as the quotient R

2

=Z

2

with a non-zero tangent vetor at the origin.

(ii) Let �

n

= R

2

, with n marked points on the x-axis and with the tangent

vetor v

i

going along this axis in positive diretion (all suh surfaes are anoni-

ally isomorphi). This surfae is not ompat, so it does not formally satisfy our

de�nition, but let us ignore this. Then the group �(�) is isomorphi to the group

FB

n

of all framed braids with n strands. This group is a semidiret produt of the

usual braid group B

n

and Z

n

(see De�nition 1.2.1). In general, there is indeed a

relationship between the group �(�), where � is an extended surfae with n holes,

and the framed braid group FB

n

(l(�)), where l(�) is the losed surfae obtained

by pathing the holes of �. This relationship is studied in detail in [B2℄.

The most important di�erene between extended surfaes and usual surfaes is

that extended surfaes an be glued (or sewed) together along the boundary irles.

Therefore, if we additionally require a modular funtor to behave niely under this
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operation, we ould de�ne �(�) by gluing � from simpler piees. This motivates

the following de�nition.

Definition 5.1.12. Let C be an abelian ategory over a �eld k, and let R be a

symmetri objet in ind�C

�2

(see Setion 2.4). Then a C-extended modular funtor

is the following olletion of data:

(i) To every extended surfae � is assigned a polylinear funtor �(�): C

��

0

(��)

!

Ve

f

, where �

0

(��) is the set of boundary omponents (or puntures, depending

on the point of view) of �. In other words, for every hoie of objets W

a

2 C at-

tahed to every boundary omponent of � (so, a runs through the set of onneted

omponents of ��) is assigned a �nite-dimensional vetor spae �(�; fW

a

g), and

this assignment is funtorial in W

a

.

(ii) To every homeomorphism f : �

�

�! �

0

is assigned a funtorial isomorphism

f

�

: �(�)

�

�! �(�

0

).

(iii) Funtorial isomorphisms �(;)

�

�! k, �(N

1

tN

2

)

�

�! �(N

1

)
 �(N

2

).

(iv)Gluing isomorphism: Let  � � be a losed urve without self-intersetions

and p be a marked point on . Cutting � along , we obtain a new surfae �

0

(whih

may be onneted or not). �

0

has a natural struture of an extended surfae in the

sense of De�nition 5.1.9 whih has the same boundary omponents as � plus two

more omponents 

1

, 

2

, whih ome from the irle  (with marked points p

1

, p

2

oming from p).

2

ΣcutΣ p

c

p

c c

p1 2

1

Figure 5.3. Cutting of a surfae.

Then we are given a funtorial isomorphism

�(�

0

; fW

a

g; R

(1)

; R

(2)

)

�

�! �(�; fW

a

g);(5.1.1)

where we use the notation of Setion 2.4.

The above data have to satisfy the following axioms:

Multipliativity: (fg)

�

= f

�

g

�

, id

�

= id.

Funtoriality: all isomorphisms in parts (iii), (iv) above are funtorial in �.

Compatibility: all isomorphisms in parts (iii), (iv) above are ompatible with

eah other.

Normalization: �(S

2

) = k.

As before, we leave it to the reader to write the expliit statements of the

funtoriality and ompatibility axioms, taking as an example the de�nitions in

Setion 4.2. From now on, we will always work with extended modular funtors

(unless otherwise spei�ed).

Definition 5.1.13. A C-extended MF is alled non-degenerate if for every ob-

jet V 2 ObC there exists an extended surfae � and fW

a

g � Ob C suh that

�(�;V; fW

a

g) 6= 0.
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The main goal of this hapter is to show that for a given semisimple abelian

ategory C de�ning a non-degenerate C-extended MF is essentially equivalent to

de�ning a struture of a modular tensor ategory on C, with the objet R =

L

V

i

�

V

�

i

, where fV

i

g are representatives of the equivalene lasses of simple objets in

C. The preise statements are given in Theorems 5.4.1 and 5.5.1.

Finally, let us introdue the notion of a unitary MF.

Definition 5.1.14. An extended modular funtor is alled unitary , if in addi-

tion to the data above, we are also given funtorial isomorphisms �(�)

�

�! �(�)

�

,

where � is the manifold � with opposite orientation. These isomorphisms must be

ompatible with the isomorphisms f

�

and the isomorphisms of part (iii) of De�ni-

tion 5.1.12 in the natural way. Also, we require the following ompatibility of the

unitary struture with the gluing isomorphism. Let h; i

�

: �(�) 
 �(�)! k be the

pairing indued by the isomorphism �(�) ' �(�)

�

. Let �;�

0

be as in part (iv)

of De�nition 5.1.12, and for f 2 �(�); g 2 �(�), write f =

P

f

i

, g =

P

g

i

with

f

i

2 �(�

0

;A

i

; B

i

), g

i

2 �(�

0

;B

i

; A

i

), using (5.1.1). Then:

hf; gi

�

=

X

a

i

hf

i

; g

i

i

�

0

(5.1.2)

for some non-zero onstants a

i

whih do not depend on �.?!

5.2. The Lego game

Let us denote by S

0;n

\the standard sphere with n holes":

S

0;n

= C P

1

n fD

1

; : : : ; D

n

g; D

j

= fz j jz � z

j

j < "g; z

1

< � � � < z

n

;(5.2.1)

where " > 0 is small enough so that the disks D

j

do not interset, and let us mark

on eah boundary irle a point p

j

= z

j

� "i. This endows S

0;n

with the struture

of an extended surfae whih is independent of the hoie of z

j

; " (i.e., surfaes

obtained for di�erent hoies of z

j

; " are anonially homeomorphi). Note that the

set of boundary omponents of the standard sphere is naturally indexed by num-

bers 1; : : : ; n; we will use bold numbers for denoting these boundary omponents:

�

0

(�S

0;n

) = f1; : : : ;ng.

Obviously, every extended surfae � an be obtained by gluing together stan-

dard spheres. Therefore, using the gluing axiom we an de�ne the vetor spae �(�)

one we know �(S

0;n

). However, the same surfae � an be obtained by gluing the

standard spheres in many ways, and in order for �(�) to be orretly de�ned we

need to onstrut anonial isomorphisms between the resulting vetor spaes. This

leads to the following problem.

Definition 5.2.1. Let � be an extended surfae. A parameterization of � is

the following olletion of data, onsidered up to isotopy:

(i) A �nite set C = f

1

; : : : g of simple non-interseting losed urves (uts) on

�, with one point marked on every ut (the uts do not have to be ordered).

(ii) A olletion of homeomorphisms  

a

: �

a

�

�! S

0;n

a

, where �

a

are the on-

neted omponents of � n C.

We denote the set of all parameterizations of � by M(�).

Our goal is to onstrut some number of edges (\moves") and 2-ells (\relations

among moves") whih would turn M(�) into a onneted and simply-onneted

2-omplex. This problem was �rst onsidered by Moore and Seiberg [MS1℄, who

onjetured a set of moves and relations. However, their paper ontains ertain gaps
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making it not rigorous even by the physiists standards. An aurate proof was

reently found independently by the authors [BK℄, and by [FG℄. Our exposition

follows the paper [BK℄ with minor hanges.

De�ne the homeomorphisms

z : S

0;n

�

�! S

0;n

;

b : S

0;3

�

�! S

0;3

(5.2.2)

as follows: z is rotation of the sphere whih preserves the real axis and indues a

yli permutation of the holes 1 7! 2 7! � � � 7! n 7! 1, and b is the braiding of the

2nd and 3rd puntures, as shown in Figure 5.2.

Also, for k; l � 0, denote by S

0;k+1

t

k+1;1

S

0;l+1

the surfae obtained by iden-

tifying the (k + 1)-st hole of S

0;k+1

with the �rst hole of S

0;l+1

, and de�ne the

map

�

k;l

: S

0;k+1

t

k+1;1

S

0;l+1

! S

0;k+l

(5.2.3)

by the ondition that it maps the �rst hole of S

0;k+1

to the �rst hole of S

0;k+l

and

preserves the real axis (these properties de�ne �

k;l

uniquely up to isotopy).

Now, let us de�ne the following edges (\simple moves") in M(�). To avoid

onfusion, we will write E : M

1

 M

2

if the edge E onnets parameterizations

M

1

;M

2

.

Z-move (rotation): IfM = (C; f 

a

g) 2M(�) and �

i

is one of the onneted

omponents of � n C, then we de�ne an edge

Z � Z

i

: M  (C; f 

a

; z Æ  

i

g

a6=i

):

B-move (braiding): If M = (C; f 

a

g) 2 M(�) and �

i

is a onneted om-

ponent of � n C whih has three holes, then we de�ne an edge

B � B

i

: M  (C; f 

a

; b Æ  

i

g

a6=i

):

F-move (fusion): If M = (C; f 

a

g) 2 M(�) and  2 C separates two

di�erent omponents �

i

;�

j

, with k + 1 and l + 1 holes respetively, and

 

i

() = k+ 1;  

j

() = 1, then we de�ne an edge

F � F



: M  (C n fg; f 

a

; �

kl

Æ ( 

i

t  

j

)g

a6=i;j

):

Before desribing the relations, it is onvenient to introdue some notation.

First of all, let us plae on eah of the standard spheres S

0;n

the graph m

0

as

shown in Figure 5.4 (for n = 4). This graph has one internal vertex, marked by

a star; all other verties are 1-valent and oinide with the marked points on the

boundary omponents of S

0;n

. The graph has a distinguished edge|the one whih

onnets the vertex � with the boundary omponent 1; in the �gure, this edge is

marked by an arrow. Also, this graph has a natural yli order on the set of all

edges, given by 1 < � � � < n < 1. Whenever we draw suh a graph in the plane, we

will always do it in suh a way that this order oinides with the lokwise order.

Every parameterization M of a given surfae � gives rise to a graph m =

S

 

�1

a

(m

0

) on �, whih we all the marking graph of M . It is easy to show that a

parameterization is uniquely determined by C and m; therefore, these graphs give

a way to visualize the parameterizations. In some ases, we will draw suh graphs

on � to illustrate a ertain sequene of moves. However, in many ases it suÆes

just to draw the orresponding graphs on the plane, and then the moves an be

reonstruted uniquely.
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4

*

1 2 3

Figure 5.4. A standard sphere (with 4 holes).

Exerise 5.2.2. Show that the moves Z;B; F onnet the parameterizations

orresponding to the marking graphs shown in Figures 5.5, 5.6 and 5.7 below.

*

α
Z

�� 

*

α

Figure 5.5. Z-move (\rotation").

*

α β

γ

B

�;�

�� 

α β

γ

*

Figure 5.6. B-move (\braiding").

* *
c F



�� *

Figure 5.7. F-move (\fusion" or \ut removal").

Next, one often needs ompositions of the form Z

a

F



(Z

m

i

t Z

n

j

), where  is

a ut separating omponents �

i

and �

j

(ompare with the de�nition of the F-

move). We will all any suh omposition a generalized F-move; for brevity, we will

frequently denote it just by F



. The Rotation axiom formulated below implies that
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suh a omposition is uniquely determined by the original parameterizationM and

by the hoie of the distinguished edge for the resulting parameterization F



(M).

Moreover, the Symmetry of F axiom along with the ommutativity of disjoint union,

also formulated below, imply that if we swith the roles of �

1

and �

2

, then we

get the same generalized F-move. Thus, the generalized F-move is ompletely

determined by the marking graph of M and by the hoie of the distinguished edge

for the resulting marking graph of F



(M).

Finally, let M 2M(�) and let �

i

be one of the omponents of �. As disussed

before, the parameterization  

i

de�nes an order on the set of boundary omponents

of �

i

. Let us assume that we have a presentation of �

0

(��

i

) as a disjoint union,

�

0

(��

i

) = I

1

t I

2

t I

3

t I

4

, where the order is given by I

1

< I

2

< I

3

< I

4

(some

of the I

k

may be empty). Then we de�ne the generalized braiding move B

I

2

;I

3

to

be the produt of simple moves shown in Figure 5.8 below (note that we are using

generalized F-moves, see above). It is easy to show that this �gure uniquely de�nes

the uts 

1

; 

2

; 

3

and thus, the generalized braiding move B.

I1 I4I2 I3

*

F

�1



1

F

�1



2

F

�1



3

�� 

I1 I4I2 I3

*

* *

*

B



1

;

2

�� 

B



1

;

2

�� 

I1 I4I3 I2

*

* *

*

F



1

F



2

F



3

�� 

I1 I4I2I3

*

Figure 5.8. Generalized braiding move.

Now let us impose some relations among these moves:

MF1: Rotation axiom: If �

i

is a omponent with n holes, then Z

n

i

= id.

MF2: Symmetry of F : If ;�

i

;�

j

are as in the de�nition of the F-move,

then Z

k�1

F



= F



(Z

�1

i

t Z

j

).

MF3: Assoiativity of F : If � is a onneted surfae of genus zero, and

M = (C;m) 2 M(�) is a parameterization with two uts, C = f

1

; 

2

g,

then

F



1

F



2

(M) = F



2

F



1

(M)(5.2.4)

(here F denotes generalized F-moves).

MF4: Commutativity of disjoint union: If E

1

; E

2

are simple moves that

involve non-interseting sets of omponents, then E

1

E

2

= E

2

E

1

.

MF5: Cylinder axiom: Let S

0;2

be a ylinder with boundary omponents

�

0

; �

1

and with the standard parameterization M

0

= (;; id). Let � be an

extended surfae, M 2 M(�) be a parameterization, and � be a boundary

omponent of �. Then, for every move E : M  M

0

we require that the
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following square be ommutative:

M t

�;�

1

M

0

Et

�;�

1

id

������! M

0

t

�;�

1

M

0

F

�

?

?

y

?

?

y

F

�

M ������!

E

M

0

;(5.2.5)

see Figure 5.9 below.

α,α S0,2Σ
1

α

α 0

= α1

*

*
F

�

��!

α,α S0,2Σ
1

0

*

α

'

Σ

α

*

Figure 5.9. Cylinder Axiom.

MF6: Braiding axiom: Let �

i

be a onneted omponent of � n C whih

has 4 holes. Denote the boundary omponents  

�1

i

(1); : : : ;  

�1

i

(4) of �

i

by

�; : : : ; Æ, respetively. Then:

B

�;�

= B

�;

B

�;�

;(5.2.6)

B

��;

= B

�;

B

�;

:(5.2.7)

For an illustration of Eq. (5.2.6), see Figure 5.10. Note that all braidings

involved are generalized braidings as de�ned above.

MF7: Dehn twist axiom: Let �

i

be a onneted omponent of �nC whih

has 2 holes: � =  

�1

i

(1); � =  

�1

i

(2). Then

Z

i

B

�;�

= B

�;�

Z

i

(5.2.8)

(as before, B denotes the generalized braidings). This axiom is equivalent to

the identity T

�

= T

�

, where T

�

is the Dehn twist de�ned in Example 5.2.4

below (see Figure 5.11).

Theorem 5.2.3. Let � be an extended surfae of genus zero. Denote by M(�)

the 2-omplex with a set of verties M(�), edges given by the B-, Z-, and F-moves

*

γα

δ

β

B

�;�

�� 

*

γ

δ

β α

B

�;

�� 

*

δ

β γ α

Figure 5.10. Braiding axiom (5.2.6).
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de�ned above, and 2-ells given by relations MF1{MF7. Then M(�) is onneted

and simply-onneted.

As mentioned above, this theorem was �rst proved (in a di�erent form) in

[MS1℄; our exposition follows [BK℄.

Example 5.2.4. Let � be an extended surfae,  : �

�

�! S

0;n

be a homeomor-

phism, and let � be one of the boundary omponents. Then one an onnet the

parameterization (;;  ) with (;; t

�

Æ ), where t

�

2 �(S

0;n

) is the Dehn twist around

� (see Figure 5.1), by the following sequene of moves:

T

�

= F



B

�;

F

�1



;

where  is a small losed urve around the hole � (see Figure 5.11).

β

*

α

T

�

�� 

β

*

α

=

β

*

α

Figure 5.11. Dehn twist (T

�

= T

�

).

Exerise 5.2.5. Let S

0;3

be the standard sphere with 3 holes, with the marking

as shown in the left hand side of Figure 5.6. Dedue from the axioms MF1{MF7

the following relation in M(S

0;3

):

T



= B

�;�

B

�;�

T

�

T

�

:(5.2.9)

Hint : this is analogous to Step 7 in the proof of Theorem 5.3.8.

Now, let us onsider extended surfaes of positive genus. In this ase, we need

to add to the omplex M(�) one more simple move and several more relations.

S-move: Let S

1;1

be a \standard" torus with one boundary omponent and

one ut, and with the parameterization M orresponding to the graph in

the left hand side of Figure 5.12. Then we add the edge S : M  M

0

where

the parameterization M

0

orresponds to the graph shown in the right hand

side of Figure 5.12.

More generally, let �

a

be a omponent of an extended surfae and  be

a homeomorphism  : �

a

�

�! S

1;1

. Then we add the move S :  

�1

(M)  

 

�1

(M

0

).

Remark 5.2.6. If � is a surfae of genus one with one hole, we an identify the

set of all parameterizations with one ut on � with the set of all homeomorphisms

 : �

�

�! S

1;1

. Then the S-move onnets the marking  with s Æ  , where s 2

�(S

1;1

) is as in Example 5.1.11(i).

Now, let us formulate the new relations. In addition to relations MF1{MF7,

let us also impose the following ones:

MF8: Relations for g = 1; n = 1: Let � be a marked torus with one hole �,

isomorphi to the one shown in the left hand side of Figure 5.13. For any

parameterizationM = (fg;  ) with one ut, we let T at on M as the edge
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c1

α

*

S

�� 

c2

α

*

Figure 5.12. S-move.

Dehn twist T



around  (see Example 5.2.4). Then we impose the following

relations:

S

2

= Z

�1

B

�;

1

;(5.2.10)

(ST )

3

= S

2

:(5.2.11)

The left hand side of relation (5.2.10) is shown in Figure 5.13. An illustration

of (5.2.11) an be found in [BK, Appendix A℄.

c1

α

*

S

�� 

c2

α

*

S

�� 

c1

α

*

Figure 5.13. The relation S

2

= Z

�1

B

�;

1

.

MF9: Relation for g = 1; n = 2: Let � be a marked torus with two holes

�; �, isomorphi to the one shown in Figure 5.14. Then we require

Z

�1

B

�;�

F

�1



6

F



1

= S

�1

F

�1



6

F



4

T



3

T

�1



4

F

�1



4

F



5

SF

�1



5

F



2

(5.2.12)

| see Figure 5.15, where all unmarked arrows are ompositions of the form

FF

�1

(see also [BK, Appendix B℄).

Note that, by their onstrution, the above relations are invariant under the

ation of the mapping lass group.

Remark 5.2.7. It is not trivial that relations (5.2.11, 5.2.12) make sense, i.e.,

that they are indeed losed paths in M(�). This is equivalent to heking that the

orresponding identities hold in the mapping lass group �(�). This is indeed so

(see, e.g., [B1, MS2℄). Of ourse, these relations an also be heked by expliitly

drawing the orresponding sequene of uts and graphs and heking that the �nal

one oinides with the original one, as done in [BK℄.
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**

1c

c2

βα

Figure 5.14. A marked torus with two holes.

c

c

**
α β

1

2

c

βα *

*

2

*

*

βα

c3

c4

c3 c4

c

c

**
α β

3

4

T

Z

T

**
α β

3c -1

c1

6c

6c6c

c

αβ

c

*

*

2

S -1

S

*

*

βα *

*

βα

3c

c5

c5

-1 B

Figure 5.15. The relation for g = 1; n = 2.

Example 5.2.8. Let � be a marked torus with one ut 

1

and one hole � (see

the left hand side of Figure 5.12). Then we have:

(ST )

3

= S

2

;(5.2.13)

S

2

T = TS

2

;(5.2.14)

S

4

= T

�1

�

:(5.2.15)

Indeed, (5.2.13) is exatly (5.2.11). Equation (5.2.14) follows from (5.2.10), the

Cylinder axiom, and the ommutativity of disjoint union, and (5.2.15) easily follows

from (5.2.10) and the braiding axiom.

In partiular, this implies that the elements t; s 2 �

1;1

(f. Example 5.1.11)

satisfy relations (5.2.13{5.2.15). In fat, it is known that these are the de�ning

relations of the group �

1;1

(see [B1℄).
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Now we an formulate our main result for arbitrary genus.

Theorem 5.2.9. Let � be an extended surfae. Let M(�) be the 2-omplex

with a set of verties M(�), edges given by the the Z-, F-, B-, and S-moves, and 2-

ells given by relations MF1{MF9. Then M(�) is onneted and simply-onneted.

Again, this theorem was stated (with minor inauraies) in [MS1℄, but the

proof given there was seriously awed. An aurate proof was found independently

in [BK℄ and, in a di�erent form, [FG℄. The formulation above is taken from [BK℄.

5.3. Ribbon ategories via the Hom spaes

In this setion C will be a semisimple abelian ategory with representatives

of the equivalene lasses of simple objets V

i

, i 2 I . We use the notations and

onventions of Setion 2.4.

In a semisimple abelian ategory, any objet A 2 C is determined by the olle-

tion of vetor spaes Hom(A; �). More formally, we have the following well-known

lemma.

Lemma 5.3.1. (i) Every funtor F : C ! Ve

f

is exat (reall that we are on-

sidering only additive funtors).

(ii) Let F : C ! Ve

f

be a funtor satisfying the following �niteness ondition:

F (V

i

) = 0 for all but a �nite number of i:(5.3.1)

Then F is representable, i.e., there exists an objet X

F

, unique up to a unique

isomorphism, suh that F (A) = Hom

C

(X

F

; A). Similarly, for a funtor G : C

op

!

Ve

f

there exists a unique Y

G

2 C suh that G(A) = Hom

C

(A; Y

G

).

(iii) For two funtors F; F

0

: C ! Ve

f

satisfying the �niteness ondition above,

there is a bijetion between the spae of funtor morphisms F ! F

0

and Hom

C

(X

F

0

; X

F

).

A similar statement holds for G;G

0

: C

op

! Ve

f

.

Therefore, to onstrut, say, a funtor F : C ! C, it suÆes to de�ne a bifun-

tor A : C

op

� C ! Ve

f

satisfying suitable �niteness onditions, and then de�ne

F (X) by the identity Hom(�; F (X)) = A(�; X); more formally, one would say \let

F (X) be the objet representing the funtor A(�; X)". Similarly, all the funtorial

isomorphisms an be de�ned in terms of vetor spaes.

Our goal in this setion is to rewrite the axioms of a ribbon ategory in terms

of the vetor spaes

hW

1

; : : : ;W

n

i := Hom

C

(1;W

1


 � � � 
W

n

):(5.3.2)

This was �rst done in [MS1℄. The following de�nition is essentially taken from

[MS1℄; for this reason, we think it is proper to ommemorate their names.

Definition 5.3.2. Moore{Seiberg data (MS data for short) for a semisimple

abelian ategory C is the following olletion of data:

Conformal bloks: A olletion of funtors h i : C

�n

! Ve

f

(n � 0), whih

are loally �nite in the �rst omponent: for every A

1

; : : : ; A

n�1

2 C, we have

hV

i

; A

1

; : : : ; A

n�1

i = 0 for all but a �nite number of i. (Here C

�n

denotes

the tensor produt C � � � �� C de�ned in 1.1.15.)

Rotation isomorphisms: Funtorial isomorphisms

Z : hA

1

; : : : ; A

n

i

�

�! hA

n

; A

1

; : : : ; A

n�1

i:

R: A symmetri objet R 2 ind�C

�2

(see Setion 2.4).
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Gluing isomorphisms: For every k; l 2 Z

+

funtorial isomorphisms

G : hA

1

; : : : ; A

k

; R

(1)

i 
 hR

(2)

; B

1

; : : : ; B

l

i

�

�! hA

1

; : : : ; A

k

; B

1

; : : : ; B

l

i:

Commutativity isomorphism: A funtorial isomorphism

� : hX;A;Bi

�

�! hX;B;Ai:

These data have to satisfy the axioms MS1{MS7 listed below.

MS1: Non-degeneray: For every i, there exists an objet X suh that

hX;V

i

i 6= 0.

MS2: Normalization: The funtor h i : C

0

� Ve

f

! Ve

f

is the identity

funtor.

MS3: Assoiativity of G: Let us onsider two funtorial isomorphisms

G

0

G

00

; G

00

G

0

: hA

1

; : : : ; R

0(1)

i 
 hR

0(2)

; B

1

; : : : ; R

00(1)

i 
 hR

00(2)

; C

1

; : : : ; C

n

i

�

�! hA

1

; : : : ; B

1

; : : : ; C

1

; : : : ; C

n

i;

where R

0

; R

00

are two opies of R, and G

0

; G

00

are the orresponding gluing

isomorphisms. Then G

0

G

00

= G

00

G

0

.

MS4: Rotation axiom: Z

n

= id: hA

1

; : : : ; A

n

i

�

�! hA

1

; : : : ; A

n

i.

MS5: Symmetry of G: For any m;n � 0 the following diagram is ommu-

tative:

hA

1

; : : : ; A

n

; R

(1)

i 
 hR

(2)

; B

1

; : : : ; B

m

i

G

����! hA

1

; : : : ; A

n

; B

1

; : : : ; B

m

i

P (Z
Z

�1

)

?

?

y

Z

m

?

?

y

hB

1

; : : : ; B

m

; R

(2)

i 
 hR

(1)

; A

1

; : : : ; A

n

i

GÆs

����! hB

1

; : : : ; B

m

; A

1

; : : : ; A

n

i

:

(Here P is the permutation of the two fators in the tensor produt and

s : R

op

�

�! R is as in Setion 2.4.)

MS6: Hexagon axioms: (i) The following diagram is ommutative:

hX;A;B;Ci

�

A;B

$$IIIIIIIII

�

A;BC //
hX;B;C;Ai

hX;B;A;Ci

�

A;C

::uuuuuuuuu

where �

A;BC

is de�ned as the omposition

hX;A;B;Ci

G

�1

���! hX;A;R

(1)

i 
 hR

(2)

; B; Ci

�
id

���! hX;R

(1)

; Ai 
 hR

(2)

; B; Ci

Z

�1

G(Z
id)

��������! hX;B;C;Ai;

and �

A;B

is de�ned as the omposition

hX;A;B;Ci

G

�1

Z

����! hC;X;R

(1)

i 
 hR

(2)

; A;Bi

id
�

���! hC;X;R

(1)

i 
 hR

(2)

; B;Ai

Z

�1

G

����! hX;B;A;Ci:

(ii) The same, but with � replaed by �

�1

.

MS7: Dehn twist axiom: Z�

A;B

= �

B;A

Z : hA;Bi

�

�! hA;Bi, where �

A;B

=

G(� 
 id)G

�1

is de�ned similarly to MS6.
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Now we desribe how the MS data are related with the tensor struture on the

ategory. Let C be a semisimple ribbon ategory. De�ne:

hA

1

; : : : ; A

n

i = Hom

C

(1; A

1


 � � � 
A

n

);(5.3.3)

R =

M

V

�

i


 V

i

; f. (2.4.7);(5.3.4)

Z : Hom(1; A

1


 � � � 
A

n

)

�

�! Hom(

�

A

n

; A

1


 � � � 
A

n�1

)(5.3.5)

�

�! Hom(1;

��

A

n


A

1


 � � � 
A

n�1

)

�

�! Hom(1; A

n


A

1


 � � � 
A

n�1

);

G :

M

Hom(1; A

1


 � � � 
A

n


 V

�

i

)
Hom(1; V

i


B

1


 � � � 
B

k

)(5.3.6)

�

�! Hom(1; A

1


 � � � 
A

n


 V

�

i

)
Hom(V

�

i

; B

1


 � � � 
B

k

)

�

�! Hom(1; A

1


 � � � 
A

n


B

1


 � � � 
B

k

);

� : Hom(1; X 
A
B)

�

�! Hom(1; X 
B 
A):(5.3.7)

Here we used the rigidity isomorphisms (2.1.13, 2.1.14), the isomorphisms Æ : V

�

�!

V

��

, and the fat that in a semisimple ategory, Hom(X;Y ) '

L

Hom(X;V

i

) 


Hom(V

i

; Y ).

Proposition 5.3.3. If C is a semisimple ribbon ategory, formulas (5.3.3){

(5.3.7) de�ne MS data.

The proof of this proposition is straightforward: if we use the tehnique of

ribbon graphs developed in Chapter 1, then all the axioms are obvious.

A natural question is whether this proposition an be reversed, i.e., is it true

that every olletion of MS data on a semisimple abelian ategory omes from a

struture of a ribbon ategory. It turns out that it is almost true; to get a preise

statement, we must somewhat weaken the rigidity axiom.

Let C be a monoidal ategory. We say that an objet V 2 ObC has a weak

dual if the funtor Hom(1; V 
 �) is representable. In this ase, we denote the or-

responding representing objet by V

�

: Hom(1; V 
X) = Hom(V

�

; X). Obviously,

� is funtorial: every morphism f : V ! W de�nes a morphism f

�

: W

�

! V

�

,

provided that V

�

;W

�

exist.

Definition 5.3.4. A monoidal ategory C is alled weakly rigid if every objet

has a weak dual and � : C ! C

op

is an equivalene of ategories.

Of ourse, every rigid ategory is weakly rigid; the onverse, however, is not

true. It is also useful to note that in every weakly rigid ategory we have a anonial

morphism i

V

: 1! V 
V

�

, orresponding to id 2 Hom(V

�

; V

�

) = Hom(1; V 
V

�

).

If the ategory is rigid, then i

V

de�ned in this way oinides with the one de�ned

by the rigidity axioms.

Definition 5.3.5. A weakly ribbon ategory is a weakly rigid braided tensor

ategory C endowed with a family of funtorial isomorphisms � : V

�

�! V satisfying

(2.2.8){(2.2.10).

As disussed in Setion 2.2, for a rigid ategory de�ning � satisfying (2.2.8){

(2.2.10) is equivalent to de�ning Æ : V

�

�! V

��

, so every ribbon ategory is also

weakly ribbon.
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Exerise 5.3.6. (i) Show that in every semisimple weakly ribbon ategory,

the map � : Hom(V

�

; X) ! Hom(1; X 
 V

��

) given by  7! ( 
 id)i

V

�

is an

isomorphism.

(ii) Show that in every semisimple weakly ribbon ategory one an de�ne a

family of funtorial isomorphisms Æ : V

�

�! V

��

by the ondition that the following

diagram be ommutative:

hV;Xi

'

����! Hom(V

�

; X)

�

?

?

y

?

?

y

�

hX;V i

id
Æ

����! hX;V

��

i

:

(iii) Show that in every semisimple weakly ribbon ategory, one has (�

A


id)f =

(id
�

B

)f for every f : 1! A
B. (Hint: use �

�

V

= �

V

�

.)

Note, however, that in general, (V 
W )

�

6' W

�


 V

�

, so the axiom Æ

V
W

=

Æ

V


 Æ

W

does not make sense.

Remark 5.3.7. The authors do not know any example of a semisimple abelian

ategory whih is weakly rigid but not rigid.

Now we an formulate the main theorem of this setion.

Theorem 5.3.8. Let C be a semisimple weakly ribbon ategory with simple ob-

jets V

i

; i 2 I. Then formulas (5.3.3){(5.3.7), with Æ de�ned as in Exerise 5.3.6,

de�ne MS data for C. Conversely, every olletion of MS data for a semisimple

abelian ategory C is obtained in this way.

Proof. The �rst statement of the theorem is parallel to Proposition 5.3.3.

The proof is also quite parallel; we just have to hek that all the arguments work

in a weakly rigid ategory as well as in a rigid one. This is left to the reader as an

exerise; part of it is ontained in Exerise 5.3.6. In partiular, the identity (2.2.8)

�

V
W

= �

WV

�

VW

(�

V


�

W

) will give the Rotation axiom, and the identity (2.2.10)

�

V

�

= �

�

V

will give the Dehn twist axiom.

The proof of the onverse statement is more ompliated. For onveniene, we

split it into several steps. To simplify the notation, we will write just h: : : ; Ri 


hR; : : :i, omitting the supersripts. Sine R is symmetri, this auses no problems.

The symmetry of G axiomMS5 implies that the order of the fators is not important

for de�ning G. We will impliitly use this.

Let us start by onstruting the duality and tensor produt on C from the MS

data.

Lemma 5.3.9. Given MS data for C, there exists an involution � : I ! I suh

that dimhV

i

; V

j

i = Æ

i;j

�

. Also, R is isomorphi (non-anonially) to

L

V

i

� V

i

�

.

Proof. De�ne A

ij

= dimhV

i

; V

j

i, and de�ne B

ij

by R '

L

B

ij

V

i

� V

j

. It

follows from the non-degeneray axiom and the existene of Z that A is a symmetri

matrix with no zero rows or olumns. From the symmetry of R, we get that B is

a symmetri matrix.

Writing the identity hV

i

; V

j

i = hV

i

; R

(1)

i 
 hR

(2)

; V

j

i we get the identity A =

ABA. We leave it to the reader to show that if A;B are symmetri matries with

non-negative integer entries and A has no zero olumns, then suh an identity is

possible only if A = B is a permutation of order 2. (Hint: use AB = (AB)

2

to

prove that AB either has a zero row or olumn, or it is the identity matrix.)
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1. De�ning the duality funtor. De�ne the funtor � by

Hom(V

�

; X) = hV;Xi(5.3.8)

(see Lemma 5.3.1). Then the previous lemma immediately implies V

�

i

' V

i

�

(not

anonially!). It is easy to see from this that � is an anti-equivalene of ategories.

In partiular, this implies that every objet V 2 C is ompletely determined by the

funtor hV; �i = Hom(V

�

; �).

Note that if the MS data ome from the struture of a weakly ribbon ategory

on C (see Proposition 5.3.3), then the � funtor de�ned above oinides with the

one given by the rigidity axioms.

2. R =

L

V

�

i

� V

i

. To prove this, let us write R '

P

X

i

� V

i

for some

X

i

2 ind�C. The isomorphism G gives, in partiular, an isomorphism

hA; V

�

i

i '

M

hA;X

i

i 
 hV

i

; V

�

i

i:

Sine hV

i

; V

�

i

i = Hom(V

�

i

; V

�

i

) = k, we get anonial isomorphisms hA; V

�

i

i =

hA;X

i

i. Thus, we have onstruted an isomorphism R '

L

V

�

i

� V

i

suh that the

isomorphism G : hX;Y i ' hX;Ri 
 hR; Y i is given by (5.3.6).

3. Tensor produt. De�ne the funtor 
 : C

�2

! C by

hX;A
Bi = hX;A;Bi;(5.3.9)

(it is well de�ned by the results of Step 1). More generally, de�ne the tensor produt

of n objets by the following formula:

hX;A

1


 � � � 
A

n

i = hX;A

1

; : : : ; A

n

i:

Next, de�ne isomorphisms

(5.3.10) A

1


 � � � 
A

i


 (B

1


 � � � 
B

k

)
A

i+1


 � � � 
A

n

' A

1


 � � � 
A

i


B

1


 � � � 
B

k


A

i+1


 � � � 
A

n

as the following omposition:

hX;A

1

; : : : ; A

i

; B

1


 � � � 
B

k

; A

i+1

; : : : ; A

n

i

' hX;A

1

; : : : ; A

i

; R;A

i+1

; : : : ; A

n

i 
 hR;B

1


 � � � 
B

k

i

' hX;A

1

; : : : ; A

i

; R;A

i+1

; : : : ; A

n

i 
 hR;B

1

; : : : ; B

k

i

' hX;A

1

; : : : ; A

i

; B

1

; : : : ; B

k

; A

i+1

; : : : ; A

n

i;

where the isomorphisms are, respetively, G

�1

, the de�nition of tensor produt,

and G.

Lemma 5.3.10. Let X be an expression of the form

X = (A

1


 (A

2


 � � � ))
A

n

with any grammatially orret parentheses arrangement (parentheses may enlose

any number of fators). Then any two isomorphisms

' : X ' A

1


 � � � 
A

n

;

obtained as a omposition of the morphisms of the form (5.3.10), are equal.

Proof. Easy indution arguments show that it suÆes to prove this statement

in the ase when we have just two pairs of parentheses. Thus, we need to onsider

the arrangements of the form � � � (� � � (� � � ) � � � ) � � � and � � � (� � � ) � � � (� � � ) � � � . For
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both of them the statement easily follows from the de�nitions and the assoiativity

of G.

This shows that 
 is indeed assoiative; in partiular, we an de�ne assoia-

tivity onstraint A
 (B 
 C) ' (A
B)
 C whih satis�es the pentagon axiom.

4. Unit. De�ne the objet 1 2 C by

h1; Xi = hXi(5.3.11)

(as before, it is well de�ned due to the results of Step 1).

De�ne morphisms hA

1

; : : : ; A

i

;1; A

i+1

; : : : ; A

n

i ' hA

1

; : : : ; A

i

; A

i+1

; : : : ; A

n

i as

the following omposition

hA

1

; : : : ; A

i

;1; A

i+1

; : : : ; A

n

i ' hA

1

; : : : ; A

i

; R;A

i+1

; : : : ; A

n

i 
 h1; Ri

' hA

1

; : : : ; A

i

; R;A

i+1

; : : : ; A

n

i 
 hRi ' hA

1

; : : : ; A

i

; A

i+1

; : : : ; A

n

i:

Note that this onstrution remains valid for n = 0, in whih ase, using the

normalization axiom, we get

h1i = k:(5.3.12)

Using the de�nition of tensor produt, we see that the isomorphism

hX;A

1

; : : : ; A

i

;1; A

i+1

; : : : ; A

n

i ' hX;A

1

; : : : ; A

i

; A

i+1

; : : : ; A

n

i

gives rise to an isomorphism

A

1


 � � � 
A

i


 1
A

i+1


 � � � 
A

n

' A

1


 � � � 
A

i


A

i+1


 � � � 
A

n

:(5.3.13)

Lemma 5.3.11. The following diagram, with the horizontal map given by the

assoiativity isomorphism and the two others by the unit isomorphisms (5.3.13), is

ommutative:

A
 (1
B)

""DD
DD

DD
DD

//
A
 1
B

~~||
||

||
||

A
B

:

Proof. Looking at the de�nitions, we see that the statement is equivalent to

the ommutativity of the following diagram:

hX;A;R

0

i 
 hR

0

;1
Bi ����! hX;A;R

0

i 
 hR

0

; Bi ����! hX;A;Bi

?

?

y

x

?

?

hX;A;1; Bi ����! hX;A;R

00

; Bi 
 h1; R

00

i ����! hX;A;R

00

; Bi 
 hR

00

i

where, as before, R

0

and R

00

are two opies of R. But this easily follows from the

assoiativity of G applied to the spae hX;A;R

00

; R

0

i 
 h1; R

00

i 
 hR

0

; Bi. We leave

the details to the reader.

Corollary 5.3.12. The isomorphisms 1 
X

�

�! X and X 
 1

�

�! X, given

by (5.3.13), satisfy the triangle axiom.

Combining this fat with the MaLane oherene theorem (Theorem 1.1.9), we

see that the MS data indeed de�nes a struture of a monoidal ategory on C.

5. De�nition of h i. Using the unit isomorphisms (5.3.13), we an identify
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hA

1

; : : : ; A

n

i

�

�! h1; A

1

; : : : ; A

n

i

�

�! Hom(1

�

; A

1


 � � � 
A

n

):

Next, let us onstrut an isomorphism 1

�

�! 1

�

. Using (5.3.12), we an write

Hom(1

�

;1) = h1i = k. Thus, 1 2 k gives an isomorphism 1

�

�! 1

�

; ombining this

isomorphism with the previous identity, we an identify

hA

1

; : : : ; A

n

i ' Hom(1; A

1


 � � � 
A

n

):(5.3.14)

6. Commutativity isomorphism. De�ne the ommutativity isomorphism

� : A
B ! B 
A using the following omposition:

hX;A
Bi = hX;A;Bi

�

�! hX;B;Ai = hX;B 
Ai:

Then one easily sees that the Hexagon axioms given in Theorem 1.2.5(iii) are im-

mediate orollaries of the Hexagon axioms for MS data. Thus, the MS data de�nes

a struture of a BTC on C.

7. Balaning. Consider the funtorial isomorphism

hV;Xi

�

�1

��! hX;V i

Z

�! hV;Xi:(5.3.15)

By Lemma 5.3.1, there exists a funtorial isomorphism �

V

: V

�

�! V suh that the

above omposition is given by �

V


 id

X

. One easily heks that �

1

= id and that

�

�1

W

1

= Z�

W

1

;W

2


���
W

n

= �

W

2


���
W

n

;W

1

Z

�1

: hW

1

; : : : ;W

n

i

�

�! hW

1

; : : : ;W

n

i

(this is where we need the Dehn twist axiom MS7).

To prove the identity �

A
B

= �

B;A

�

A;B

(�

A


 �

B

), note that it is equivalent to

�

B;A

�

A;B

�

A

�

�1

C

�

B

= id: hA;B;Ci

�

�! hA;B;Ci;(5.3.16)

whih follows from the identities?!

�

�1

A

= Z�

A;BC

= Z�

A;C

�

A;B

;

�

�1

B

= �

B;A

Z�

B;C

;

�

�1

C

= Z�

A;C

Z�

B;C

:

Finally, we leave it to the reader to show that the Dehn twist axiom MF7 is

essentially equivalent to the identity �

V

�

= �

�

V

. Thus, the so de�ned � satis�es the

balaning axioms (2.2.8){(2.2.10).

This ompletes the proof of Theorem 5.3.8.

It would be nie if we had some axiom for MS data whih would automatially

ensure that the orresponding BTC is rigid. However, the only way of doing it that

we know of is expliitly imposing the rigidity ondition. (It is laimed in [MS2℄

that rigidity follows from the other axioms; however, at some point, they say \we

an hek the universality property" without doing it expliitly|we were unable

to reonstrut their arguments.)

In the semisimple ase the rigidity ondition is equivalent to the non-vanishing

of ertain oeÆients, whih shows that \almost all" weakly rigid semisimple ate-

gories are rigid.

Let C be a semisimple weakly rigid monoidal ategory suh that V

��

' V (as

disussed above, this holds for any ategory obtained from MS data). Let '

i

: V

�

i

!



5.4. MODULAR FUNCTOR IN GENUS ZERO AND TENSOR CATEGORIES 113

V

�

i


 V

i


 V

�

i

be given by '

i

= id
i

V

i

. Using the assoiativity isomorphism, we

an write

'

i

= a

i


 id+

X

j 6=0

 

j

;

where a

i

are ertain morphisms 1 ! V

�

i


 V

i

, and  

j

are some morphisms whih

are obtained as the omposition

V

�

i

! V

j


 V

�

i

 

0

j


id

����! (V

�

i


 V

i

)
 V

�

i

:

Note that sine V

�

i


 V

i

ontains 1 with multipliity one, the morphisms a

i

lie in a

one-dimensional spae.

Proposition 5.3.13. Let C be a semisimple weakly rigid monoidal ategory

suh that V

��

' V , and let a

i

: 1 ! V

�

i


 V

i

be de�ned as above. Then C is rigid

i� a

i

6= 0 for all i 2 I.

Proof. If C is rigid, then e

V

i

a

i

= 1, whih immediately follows from taking

omposition of '

i

with e

V

i


 id. Thus, a

i

6= 0. Conversely, assume that a

i

6= 0.

Then de�ne e

V

i

: V

�

i


 V

i

! 1 by the ondition e

V

i

a

i

= 1; sine V

�

i


 V

i

ontains

1 with multipliity one, this is possible. From this ondition, we immediately see

that the omposition

V

�

i

id
i

V

i

����! V

�

i


 V

i


 V

�

i

e

V

i


id

����! V

�

i

is equal to identity; thus, the seond rigidity axiom (2.1.6) is satis�ed.

To hek the �rst rigidity axiom, denote the omposition

V

i

i

V

i


id

����! V

i


 V

�

i


 V

i

id
e

V

i

����! V

i

by 

i

; sine End(V

i

) = k, 

i

is a number. We need to show that 

i

= 1.

Consider the omposition

�: 1

i
i

��! V

i


 V

�

i


 V

i


 V

�

i

id
e
id

�����! V

i


 V

�

i

:

From the seond rigidity axiom (already proved), � = i

V

i

. On the other hand,

form the de�nition of 

i

, we have � = 

i

i

V

i

. This proves 

i

= 1 and thus, the �rst

rigidity axiom for V

i

.

Therefore, if a

i

6= 0, then V

i

is rigid. But sine a diret sum of rigid objets is

again rigid, every objet in C is rigid.

5.4. Modular funtor in genus zero and tensor ategories

In this setion we prove the �rst main theorem of this hapter, establishing that

the axioms of a (weakly) ribbon ategory are essentially equivalent to the axioms

of a modular funtor in genus zero.

Let C be a semisimple abelian ategory with representatives of the equivalene

lasses of simple objets V

i

, i 2 I . Let us all a C-extended modular funtor in genus

zero the same data as in De�nition 5.1.12 but with the spaes �(�) de�ned only

for � of genus zero; therefore, the only gluing allowed is the gluing of two di�erent

onneted omponents.

Theorem 5.4.1 (Moore{Seiberg [MS1℄). Let C be a semisimple weakly ribbon

ategory. Then there is a unique C-extended genus zero modular funtor satisfying

the properties (i){(iii) below.
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(i) For the standard sphere S

0;n

(see (5.2.1)):

�(S

0;n

;W

1

; : : : ;W

n

) = Hom

C

(1;W

1


 � � � 
W

n

) =: hW

1

; : : : ;W

n

i:(5.4.1)

(ii) R =

L

V

�

i


 V

i

, and the isomorphism s : R

�

�! R

op

is given by (2.4.8).

(iii) We have:

z

�

= Z; b

�

= �;(5.4.2)

where the homeomorphisms z; b are de�ned by (5.2.2), and the isomorphisms Z; �

are de�ned by (5.3.5), (5.3.7). Also, for every k; l � 0, the omposition

�(S

0;k+1

; : : : ; R

(1)

)
 �(S

0;l+1

;R

(2)

; : : : )! �(S

0;k+1

t

k+1;1

S

0;l+1

)

(�

kl

)

�

����! �(S

0;k+l

);

where the �rst arrow is the sewing isomorphism (5.1.1) and �

kl

is as in (5.2.3),

oinides with the isomorphism G de�ned by (5.3.6).

This modular funtor is non-degenerate and has the following properties :

(iv) Let t

i

: S

0;n

! S

0;n

be the Dehn twist around i

th

punture. Then, under

the isomorphism (5.4.1), (t

i

)

�

is given by the twist

�

W

i

: Hom

C

(1;W

1


 � � � 
W

n

)! Hom

C

(1;W

1


 � � � 
W

n

):

(v) If C is rigid, then this modular funtor is unitary, with the pairing (5.1.2)

h; i

S

0;n

: Hom

C

(1;W

1


 � � � 
W

n

)
Hom

C

(1;W

�

n


 � � � 
W

�

1

)! k

given by

h';  i : 1! 1
 1!W

1


 � � � 
W

n


W

�

n


 � � � 
W

�

1

! 1:

Here we identify k = End(1) and use the fat that for a standard sphere S

0;n

, there

is a anonial isomorphism S

0;n

�

�! S

0;n

, whih reverses the order of the puntures.

This isomorphism is given by the reetion around the imaginary axis.

Conversely, let � be a non-degenerate genus zero C-extended MF. Then there is

a unique struture of a weakly ribbon ategory on C suh that the above properties

(i){(iii) hold.

Proof. The proof is based on the omparison of the results of Setions 5.2

and 5.3. Sine by Theorem 5.3.8 the struture of a weakly ribbon ategory on C

is equivalent to what we alled MS data, it suÆes to show that a non-degenerate

genus zero MF de�nes MS data and vie versa.

Let us assume we are given a olletion of MS data. To onstrut a genus zero

MF, let us �rst onsider the pairs (�;M), where M = (C; f 

a

g) is a parameteriza-

tion of � (see De�nition 5.2.1). For eah suh pair, de�ne the vetor spae �(�;M)

as follows. For every ut , take a opy R



of the objet R, and de�ne

�(�;M) =

O

a

�(S

0;n

a

);(5.4.3)

where the index a runs through the set of onneted omponents of � nC, and for

eah onneted omponent �

a

, we assign R

(")



to every boundary omponent of �

a

whih is a ut, where " 2 f1; 2g is hosen so that for one of the ourrenes of R



we

take " = 1 and for the other we take " = 2 (note that eah R



appears exatly twie

in (5.4.3)). Sine R is symmetri, it does not matter whih ourrene is whih.
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More expliitly, the same formula an be written as follows. For eah ut  2 C,

hoose one of its sides as \positive" and the other as \negative". Then we an de�ne

�(�;M) =

M

i



2I; 2C

O

a

�(S

0;n

a

);(5.4.4)

where the sum is taken over all ways to assign an index i



2 I to every ut  2 C,

and for eah onneted omponent �

a

of � n C we assign V

i



to its boundary

omponent if it is the positive side of the ut , and V

�

i



if it is the negative side of

the ut . This formula depends on the hoie of \positive" side for eah ut; to

identify the formulas orresponding to di�erent hoies, one has to use the anonial

isomorphism V

�

i

� V

i

�

�! V

i

�

� V

�

i

�

de�ned in (2.4.8).

For example, if � is a sphere with 4 holes whih we index by �; �; ; Æ, and ' is

a parameterization with one ut  as in Figure 5.16, then the above formula gives

�(�; ';W

�

;W

�

;W



;W

Æ

) = hW

�

;W

�

; R

(1)

i 
 hR

(2)

;W



;W

Æ

i

=

M

i2I

hW

�

;W

�

; V

i

i 
 hV

�

i

;W



;W

Æ

i:

δ

c

βα

γ

Figure 5.16

Of ourse, every extended surfae � an be parametrized in many ways. How-

ever, if we onstrut a system of isomorphisms f

M;M

0

: �(�;M

0

)

�

�! �(�;M), om-

patible in the following sense: f

M;M

0

f

M

0

;M

00

= f

M;M

00

, then we an identify all of

these spaes with eah other and de�ne the spae �(�), whih is anonially iso-

morphi to eah of �(�;M) (see a formal de�nition in the proof of Theorem 4.4.3).

Moreover, suh a system of isomorphisms would automatially give a represen-

tation of the extended mapping lass groupoid Teih, as follows. Let f : �

1

�

�! �

2

be a homeomorphism of extended surfaes, and letM

2

be a parameterization of �

2

.

Then f gives rise to a parameterization M

1

of �

1

in the obvious way. Moreover,

f establishes a one-to-one orrespondene between the uts C

1

on �

1

and C

2

on

�

2

, and between the omponents (�

1

)

a

and (�

2

)

a

. Thus, f gives rise to an iden-

ti�ation �(�

1

;M

1

) =

L

i



2I; 2C

1

N

a

�(S

0;n

a

) = �(�

2

;M

2

). Combining this with

the isomorphisms �(�

1

) = �(�

1

;M

1

), �(�

2

) = �(�

2

;M

2

), we get an isomorphism

f

�

: �(�

1

)

�

�! �(�

2

). We leave it to the reader to hek that this isomorphism

does not depend on the hoie of M

2

and satis�es (fg)

�

= f

�

g

�

; id

�

= id. Also, it

is immediately obvious from (5.4.3) that the so onstruted modular funtor will

satisfy the gluing axiom.

Therefore, our goal is to onstrut a ompatible system of isomorphisms �(�;M

0

)

�

�!

�(�;M). By Theorem 5.2.3, every two parameterizations an be onneted by a

sequene of simple moves Z;B; F ; let us assign to these moves the isomorphisms
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Z; �;G given by the MS data. A omparison of the axioms MF1{MF7 and MS1{

MS7 shows that all the relations among the moves Z;B; F also hold for their ana-

logues Z; �;G; the only relation whih is not immediately obvious is the ylinder

axiom MF5, but it follows from the funtoriality of the morphisms Z; �;G. Thus,

every MS data de�nes a genus zero MF.

The onstrution in the opposite diretion is quite similar. Assume that we

have a genus zero MF. De�ne the funtors h i and the isomorphisms Z; �;G as in

the statement of the theorem. Again, a omparison of the axioms MF1{MF7 and

MS1{MS7 shows that these data satisfy the axioms of MS data. This ompletes

the proof of Theorem 5.4.1.

?!

Example 5.4.2. Consider the surfae � and the \assoiativity move" M

F



 

M

0

F

�1



0

 M

0

shown in Figure 5.17. Assign to the boundary omponents �; : : : ; Æ

objets A; : : : ; D. Then:

�(�;M) =

M

i2I

hA;B; V

i

i 
 hV

�

i

; C;Di;

�(�;M

0

) = hA;B;C;Di;

�(�;M

0

) =

M

j2I

hD;A; V

j

i 
 hV

�

j

; B; Ci:

Then the orresponding isomorphisms �(�;M) ! �(�;M

0

) ! �(�;M

0

) are given

by Figure 5.18 below.

δ

c

βα

γ

F



�!

γδ

α β

F

�1



0

���!

γ
c

δ

α β

:

Figure 5.17. Assoiativity move.

Ψ

D

Φ

A B i i C

!

ΨΦ

D

i

A B C

!

X

j2I

1

jI jd

j ΨΦ

D

i

CBjjA

:

Figure 5.18. Assoiativity isomorphism.
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5.5. Modular ategories and modular funtor for zero entral harge

In this setion, we will show, developing the ideas of the previous setion, that

the notion of a modular funtor (for arbitrary genus) is equivalent to the notion of

a modular tensor ategory. Reall that for every modular ategory we have de�ned

the numbers p

�

by (3.1.7). In this setion we onsider the speial ase of modular

ategories with p

+

=p

�

= 1. (For the modular ategories oming from onformal

�eld theory this identity holds if the Virasoro entral harge of the theory is equal

to 0 (f. Remark 3.1.20), hene the title of this setion.)

Theorem 5.5.1. Let C be a modular tensor ategory with p

+

=p

�

= 1. Then

there exists a unique C-extended modular funtor � whih satis�es onditions (i){

(iii) of Theorem 5.4.1. This MF is non-degenerate and satis�es onditions (iv), (v)

of Theorem 5.4.1 and ondition (vi) below.

(vi) Let S

1;1

be the torus with one hole. Identify

�(S

1;1

;A) =

M

hA; V

i

; V

�

i

i =

M

Hom(A

�

; V

i


 V

�

i

)

using the parameterization of S

1;1

shown in Figure 5.12. Let s : S

1;1

! S

1;1

be as

de�ned in (5.1.5). Then the orresponding

s

�

= S :

M

Hom(A

�

; V

i


 V

�

i

)!

M

Hom(A

�

; V

i


 V

�

i

)(5.5.1)

is given by Theorem 3.1.17.

Conversely, let C be a semisimple abelian ategory, and let � be a non-degenerate

C-extended MF. Assume for simpliity that the orresponding struture of a monoidal

ategory on C (see Theorem 5.4.1) is rigid. Then C is a modular tensor ategory

with p

+

= p

�

; in partiular, it has only a �nite number of simple objets.

Proof. Assume that C is a modular ategory. By Theorem 5.4.1, the struture

of a modular ategory on C de�nes a genus zero MF. Therefore, we only need to

show that this MF an be extended to positive genus. In order to do this, by

Theorem 5.2.9, we need to de�ne an isomorphism S : �(S

1;1

;M)

�

�! �(S

1;1

;M

0

),

where S

1;1

is the standard torus and M;M

0

are the parameterizations shown in

Figure 5.12, and then hek that relations MF8, MF9 are satis�ed.

Note that by de�nition

�(S

1;1

;M ;A) = �(S

1;1

;M

0

;A) =

M

i

hA; V

i

; V

�

i

i = Hom(A

�

; H);

where, as before, H =

L

V

i


V

�

i

. Thus, de�ning an isomorphism S : �(S

1;1

;M)

�

�!

�(S

1;1

;M

0

) is the same as de�ning a funtorial system of isomorphisms Hom(A

�

; H)

�

�!

Hom(A

�

; H) for every objet A. By Lemma 5.3.1, this is the same as de�ning an

isomorphism S : H ! H .

Let us �rst show that if we de�ne S as in the statement of the theorem, then

relations MF8, MF9 are satis�ed. Relations MF8 immediately follow from Theo-

rem 3.1.17 and the assumption p

+

= p

�

.

To hek relation MF9 for a torus with two holes, let us rewrite it in terms of

tensor ategories. ?!

Lemma 5.5.2. Let C be a semisimple ribbon ategory with �nite number of sim-

ple objets, and let S be an isomorphism

S =

M

S

ji

:

M

V

i


 V

�

i

!

M

V

j


 V

�

j

:(5.5.2)
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Then relation MF9 for S is equivalent to the following ondition:

kjS

i

k k i

j j

= Ski

i

kk i

jj

i

(5.5.3)

for every i; j; k 2 I.

The proof of this lemma will be given after the proof of the theorem.

It is easy to hek that the operator S de�ned by (3.1.32) satis�es (5.5.3).

Now, let us prove uniqueness. Assume that we have de�ned an operator S

of the form (5.5.2) suh that relations MF8, MF9 are satis�ed. Rewrite relation

MF9 in the form (5.5.3), put j = 0 and note that S

k0

: 1 ! V

k


 V

�

k

is a non-

zero multiple of i

V

k

. This immediately implies that S

ki

= a

k

S

st

ki

for some non-

zero onstant a

k

, where we temporarily denoted by S

st

the operator de�ned by

(3.1.32). Equivalently, we an write S = AS

st

, where the operator A : H ! H is

\diagonal": Aj

V

i


V

�

i

= a

i

id. Now, let us use the axiomMF8. In partiular, we have

TSTST = S. Sine S = AS

st

, and A ommutes with T , we get TS

st

TAS

st

T = S

st

.

On the other hand, the operator S

st

itself satis�es the axiom MF8, and thus,

TS

st

TS

st

T = S

st

. This implies A = id; S = S

st

.

The proof of the onverse statement|that a MF de�nes a struture of a mod-

ular ategory|is trivial. Indeed, the identity �(�) =

L

EndV

i

for � being a torus

without puntures implies that C has only �nitely many simple objets (sine �(�)

is �nite dimensional). Thus, we only have to hek that the matrix ~s, de�ned in

(3.1.1), is non-degenerate. But the identity S = AS

st

and the invertibility of S

imply that S

st

is invertible.

Proof of Lemma 5.5.2. Consider the diagram in Figure 5.15. Let m

1

be the

graph in the upper left orner; for onveniene, replae the graph m in the lower

right orner by m

2

= F



4

(m). Then the vetor spaes �(�;m

1

) and �(�;m

2

) are

given by

�(�;m

1

) =

M

i;j

hV

�

j

; A; V

i

i 
 hV

�

i

; B; V

j

i;

�(�;m

2

) =

M

k

hA; V

k

; V

�

k

; Bi;

(5.5.4)

where A;B are the objets assigned to the boundary omponents �; � respetively

(see (5.4.4)).

Then relation MF9 an be written as follows: for every �
	 2 hV

�

j

; A; V

i

i 


hV

�

i

; B; V

j

i, we have f(� 
 	) = g(� 
 	), where f is the isomorphism given by

the omposition of moves forming the left side and the bottom of the ommutative

diagram, and g|by the moves on the top and the right side. We represent this

identity pitorially, using Example 5.4.2, Eq. (5.2.9), and the graphial alulus of

Setion 2.3.

A simple manipulation with �gures shows that:
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f(�
	) =

Ψ

Ski

Φ

θ-1

B

j

k
k

ii

A
; g(�
	) =

ΨΦ

θ-1 Skj

j

BA
k

k

j
i

:

The identity f(�
	) = g(�
	) 8� is equivalent to:

Ψ

Ski

i

k
k

i

B

j

:

=

Ψ

Skj

i

k

j j

kB
:

We manipulate this as follows:

Ψ S

i

ki

i

k kB

j

:

=

Ψ

Skj

B

j ji

k k

;

and then anel 	, to get:

ki

j

S

i

k k

ji

i

:

=

S

i

kj

j j

k k

i

j

:

From this it is easy to get the statement of the lemma.

Corollary 5.5.3. Let C be an MTC with p

+

= p

�

. Denote

�(g;W

1

; : : : ;W

n

) = Hom

C

(1; H


g


W

1


 � � � 
W

m

)

where H =

L

V

i


 V

�

i

. Then we have an ation of the pure mapping lass group

�

0

g;n

on this spae. In partiular, for g = 1; n = 1 this ation oinides with the

one de�ned in Theorem 3.1.17.
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Indeed, let �(�) be the modular funtor orresponding to C; then it is easy to

see, using the gluing axiom, that if � is a surfae of genus g then �(�;W

1

; : : : ;W

n

)

is (not anonially) isomorphi to the spae �(g;W

1

; : : : ;W

n

) de�ned above.

Remark 5.5.4. In fat, Corollary 5.5.3 also holds for modular ategories with

p

+

=p

�

6= 1 if we replae the word \ation" by \projetive ation". This will be

disussed in Setion 5.7.

Exerise 5.5.5. Prove the following formula for the dimension of the spae

�(g) for g � 1 (n = 0):

dim �(g) =

X

i2I

�

1

s

2

0i

�

g�1

:(5.5.5)

Hint: Prove that dim �(g) = tr(a

g�1

), where a

ij

= dim �(g = 1;V

i

; V

�

j

); i; j 2 I .

Then prove that a =

P

k

N

k

N

k

�

, where N

k

is de�ned as in Proposition 3.1.12, and

use the Verlinde formula to diagonalize a.

5.6. Towers of groupoids

Looking at the previous two setions, one is tempted to say that there is some

\universal" set of relations whih must hold in any weakly ribbon ategory, and

these relations happen to oinide with the relations for the mapping lass group.

In this setion we sketh the appropriate language in whih one an formulate this

and other related results. Therefore, we do not really prove any new results here,

and we allow ourselves to be somewhat informal.

Let us start by onsidering our main example: the Teihm�uller tower Teih.

By de�nition, Teih is a ategory with objets all extended surfaes, and morphisms

isotopy lasses of homeomorphisms of extended surfaes (see De�nition 5.1.7(i)).

This ategory is a groupoid, i.e., any morphism in Teih is invertible. It also has

some additional strutures whih played an important role in the previous setions:

the disjoint union and gluing of surfaes. The general de�nition of a tower of

groupoids will be modeled on this example, so let us study it in more detail.

Temporarily, let us denote Teih by T . Below we list its properties.

(a) T is a groupoid.

(b) The disjoint union of surfaes t : T � T ! T and the empty surfae ; 2

ObT provide T with the struture of a symmetri tensor ategory.

() There is a funtor A : T ! Sets: for a surfae �, A(�) = �

0

(��) is the

set of its boundary omponents. Here Sets is the groupoid with objets �nite sets,

and morphisms bijetions. Note that A(�

1

t �

2

) = A(�

1

) t A(�

2

) and A(;) = ;

(anonial isomorphisms). In other words, A is a tensor funtor.

(d) There is a gluing operation: for every surfae � 2 ObT and an unordered

pair �; � 2 A(�), we have the surfae G

�;�

(�) = t

�;�

(�) obtained by identi�ation

of the boundary omponents �; � (f. De�nition 5.1.12(iv)). The gluing satis�es the

following properties:

Compatibility with A: A(G

�;�

(�)) = A(�) n f�; �g.

Compatibility with t: if �; � 2 A(�

1

), there is a anonial funtorial iso-

morphism G

�;�

(�

1

t �

2

) = (G

�;�

�

1

) t �

2

.

Assoiativity: if �; �; ; Æ 2 A(�) are distint, then there exists a anonial

funtorial isomorphism G

�;�

G

;Æ

(�) = G

;Æ

G

�;�

(�).
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Funtoriality: for eah morphism f : �! �

0

, we have an isomorphismG

f

: G

�;�

(�)!

G

�

0

;�

0

(�

0

), where �

0

= A(f)(�), �

0

2 A(f)(�) are the orresponding ele-

ments in A(�

0

). These isomorphisms satisfy G

f

1

f

2

= G

f

1

G

f

2

and G

id

= id.

Definition 5.6.1. A tower of groupoids (or just a tower) is the following ol-

letion of data:

(i) A groupoid T ;

(ii) A \disjoint union" bifuntor t : T � T ! T and an objet ; 2 ObT

satisfying the axioms of a symmetri tensor ategory;

(iii) A \boundary funtor": a tensor funtor A : T ! Sets;

(iv) A \gluing operation": for every � 2 Ob T and an unordered pair �; � 2

A(�), we have an objet G

�;�

(�) 2 T . The gluing should be assoiative, funtorial

and ompatible with t and A (see (d) above).

Example 5.6.2. Sets and Teih are towers of groupoids.

Remark 5.6.3. Sometimes it is useful to weaken the above de�nition by on-

sidering towers in whih the gluing operation G

�;�

is de�ned not for all but only

for some pairs �; �. In this ase, the identities G

�;�

t = t(G

�;�

� Id), G

�;�

G

;Æ

=

G

;Æ

G

�;�

in the de�nition above should be understood in the following way: if one

side is de�ned, then the other one is also de�ned and they are equal.

An example of suh a \partial" tower is given by the the Teihm�uller tower in

genus zero, Teih

0

, in whih objets are extended surfaes of genus zero and the

funtor G

�;�

is de�ned only if �; � belong to di�erent onneted omponents of �.

Remark 5.6.4. One an give a de�nition of what it means for a tower of

groupoids to be presented by generators and relations (but sine this is a little

boring, we don't do it here). Then the results of Setion 5.2 (and [BK℄) an be

reformulated as giving the generators and relations presentation of the Teihm�uller

tower Teih. One notes that this presentation is muh simpler than the presenta-

tions for individual mapping lass groups �(�). The idea of using the Teihm�uller

tower with the gluing operation for the study of mapping lass groups belongs to

Grothendiek [G℄. More results in this diretion an be found in [HLS℄.

Before giving more examples of towers, let us reformulate De�nition 5.6.1 in

a more funtorial way. This will be useful later when we de�ne funtors between

towers.

Let T be a tower of groupoids. Then T is a �bered ategory over Sets. For

any �nite set S, the �ber T

S

over S is the ategory with objets all pairs (�; ')

where � 2 Ob T and ' : A(�)

�

�! S is a bijetion. A morphism between two

objets (�

1

; '

1

); (�

2

; '

2

) 2 Ob T

S

is a morphism f 2 Mor

T

(�

1

;�

2

) suh that

'

1

= '

2

ÆA(f). Sine both T and Sets are groupoids, every �ber T

S

is a groupoid.

A bijetion of sets  : S

�

�! S

0

gives rise to a funtor  

�

: T

S

! T

S

0

: on objets

 

�

(�; ') = (�;  Æ '), and on morphisms  

�

(f) = f . It is obvious that

(� Æ  )

�

= �

�

Æ  

�

; id

�

= id;

in partiular, all funtors  

�

are isomorphisms of ategories.

Conversely, given a olletion of groupoids fT

S

g

S2ObSets

together with equiv-

ariane funtors  

�

as above, one an reonstrut the groupoid T and the funtor

A : T ! Sets.
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In terms of these data, t beomes a olletion of funtors

t

S;S

0

: T

S

� T

S

0

! T

StS

0

;

while ; 2 Ob T

;

. They satisfy obvious ommutativity, assoiativity and equivari-

ane onditions.

Similarly, the gluing gives a olletion of funtors

G

S

�;�

: T

S

! T

Snf�;�g

; S 2 ObSets; �; � 2 S

(the pair �; � is unordered). Indeed, for (�; ') 2 ObT

S

, we de�ne

G

S

�;�

(�; ') = (�

0

; 'j

A(�

0

)

) where �

0

= G

'

�1

�;'

�1

�

(�)

(reall that A(�

0

) = A(�)nf'

�1

�; '

�1

�g). For a morphism f : (�

1

; '

1

)! (�

2

; '

2

)

in T

S

, we de�ne G

S

�;�

(f) = G

f

(reall the funtoriality of gluing). Now the proper-

ties of gluing an be restated as follows.

Compatibility with A: already inorporated in the de�nition.

Compatibility with t: for any two sets S; S

0

and �; � 2 S, there exists a

anonial isomorphism of funtors G

StS

0

�;�

Æt

S;S

0

= t

Snf�;�g;S

0

Æ (G

S

�;�

� Id).

Assoiativity: if �; �; ; Æ 2 S are distint then there exists a anonial iso-

morphism of funtors G

Snf;Æg

�;�

ÆG

S

;Æ

= G

Snf�;�g

;Æ

ÆG

S

�;�

.

Funtoriality: already inorporated in the requirement that G

S

�;�

are fun-

tors.

Finally, there is one more property whih follows just from the de�nition of G

S

�;�

.

Equivariane: for any bijetion of sets  : S

�

�! S

0

, we have G

S

0

 �; �

Æ  

�

=

( j

Snf�;�g

)

�

ÆG

S

�;�

.

Definition 5.6.5. A tower of groupoids is a olletion of groupoids fT

S

g

S2ObSets

equipped with the following struture:

(i) Equivariane funtors  

�

: T

S

! T

S

0

for any  2 Mor

Sets

(S; S

0

), satisfying

(� Æ  )

�

= �

�

Æ  

�

and id

�

= id.

(ii) An objet ; 2 Ob T

;

and a olletion of funtors t

S;S

0

: T

S

� T

S

0

! T

StS

0

,

satisfying obvious ommutativity, assoiativity and equivariane onditions.

(iii) A olletion of funtors G

S

�;�

: T

S

! T

Snf�;�g

, satisfying the above assoia-

tivity, equivariane and ompatibility with t.

Proposition 5.6.6. De�nitions 5.6.1 and 5.6.5 are equivalent.

Proof. It was already skethed above. The details are left to the reader as an

exerise.

Definition 5.6.7. A tower funtor F between two towers of groupoids (T ;t; A;G)

and (T

0

;t

0

; A

0

; G

0

) is a funtor F : T ! T

0

whih preserves all the struture. More

preisely:

(i) There is an isomorphism of funtors A ' A

0

Æ F . Thus F gives rise to an

equivariant olletion of funtors F

S

: T

S

! T

0

S

, S 2 ObSets.

(ii) F is a tensor funtor, i.e., the funtors F Æt and t

0

Æ (F �F) : T �T ! T

0

are isomorphi.

(iii) For any �nite set S, there is an isomorphism of funtors F

Snf�;�g

ÆG

S

�;�

'

G

0

S

�;�

Æ F

S

: T

S

! T

0

Snf�;�g

. These isomorphisms are equivariant with respet to

bijetions of S.
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Exerise 5.6.8. Spell out property (iii) of De�nition 5.6.7 in terms of the

gluing operations G

�;�

from De�nition 5.6.1.

Example 5.6.9. A : T ! Sets is a tower funtor for any tower T .

There is an even more eonomial way to reformulate the de�nition of a tower.

Looking at the equivariane properties of the olletions fT

S

g and fG

S

�;�

g, one

an notie that they an be ombined if we allow more maps between sets. We

introdue a ategory Sets

℄

with the same objets as in Sets (i.e., �nite sets), but

with more morphisms: all maps between sets that are omposed of bijetions and

the elementary injetions i

S

�;�

: S n f�; �g ,! S. (This de�nition was inspired by

[BFM℄.) Let Sets

℄

be the dual ategory of Sets

℄

, i.e., the ategory with the same

objets but with all arrows inverted. All morphisms in Sets

℄

are omposed of

bijetions and the elementary morphisms

Æ

S

�;�

: S ! S n f�; �g; S 2 ObSets

℄

; �; � 2 S (unordered):

Now if we de�ne

(Æ

S

�;�

)

�

= G

S

�;�

: T

S

! T

Snf�;�g

;

we will have (� Æ  )

�

= �

�

Æ  

�

for �;  2 Mor

Sets

℄ . Note that Sets

℄

is again a

symmetri tensor ategory with respet to t.

Proposition 5.6.10. A tower of groupoids is the same as a symmetri tensor

ategory T �bered over Sets

℄

suh that all �bers T

S

(S 2 ObSets

℄

) are groupoids.

In other words, we have parts (i) and (ii) of De�nition 5.6.5 with Sets replaed with

Sets

℄

.

In this language a tower funtor F between two towers is just a olletion of

funtors F

S

: T

S

! T

0

S

, equivariant with respet to Mor

Sets

℄ , and suh that the

orresponding funtor F : T ! T

0

is a tensor funtor. A natural transformation �

between two tower funtors F ;G : T ! T

0

is a Mor

Sets

℄ -equivariant olletion of

natural transformations �

S

between the funtors F

S

;G

S

. Then, as usual, F : T !

T

0

is alled an equivalene of towers if there exists a tower funtor F

0

: T

0

! T

suh that the tower funtors FF

0

and F

0

F are isomorphi to Id.

After introduing all this abstrat nonsense let us now give some examples and

appliations.

Example 5.6.11. Let C be an abelian ategory and R 2 ind�C

�2

be a sym-

metri objet.

3

We de�ne the tower of groupoids Fun(C) as follows.

Objets: all pairs (S; F ) where S is a �nite set and F is a funtor C

�S

! Ve

f

.

Morphisms: Mor((S

1

; F

1

); (S

2

; F

2

)) onsists of all pairs (f; ') where ' : S

1

�

�!

S

2

is a bijetion, f : F

1

�

�! '

�

F

2

is an isomorphism of funtors, and '

�

F

2

is

the omposition C

�S

1

'

�

�! C

�S

2

F

2

�! Ve

f

.

Boundary funtor: A(S; F ) = S.

Disjoint union: (S

1

tS

2

; F

1


F

2

: C

�(S

1

tS

2

)

! Ve

f

), and similarly for mor-

phisms. The objet ; is the obvious one.

Gluing: given byG

�;�

(S) = Snf�; �g andG

�;�

(F ) = F (: : : ; R

(1)

; : : : ; R

(2)

; : : : ),

where R

(1)

; R

(2)

are put in the plaes orresponding to the indies �; �.

3

Here and below we use the same notation as in Setion 2.4.
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Definition 5.6.12. Let C be an abelian ategory and R 2 ind�C

�2

be a sym-

metri objet. A representation of a tower T in C is a tower funtor � : T ! Fun(C).

The following theorem, whih follows immediately from the de�nitions, elui-

dates the notion of a modular funtor.

Theorem 5.6.13. A C-extended modular funtor is the same as a represen-

tation � of the Teihm�uller tower Teih in C with the additional normalization

ondition �(S

2

) = id : C

0

= Ve

f

! Ve

f

.

In a similar way one an rewrite the notion of MS data (see Setion 5.3). In

order to introdue the orresponding tower of groupoidsMS, we will �rst need the

following de�nition.

Definition 5.6.14. A marking graph is a graph m without yles (a \forest")

with the following additional data:

(i) The verties of m are split into two subsets, \internal" and \external"

Verties(m) = Int(m) t Ext(m);

so that every external vertex is 1-valent, and there are no edges onneting two

external verties.

(ii) For every internal vertex v 2 Int(m), an order on the set of all edges ending

at v is given.

Remark 5.6.15. The marking graphs with 3-valent internal verties are essen-

tially the same as \Bratelli diagrams" used in physis literature.

Graphs of this type appeared in our disussion of parameterizations of extended

surfaes (see Setion 5.2). In the �gures, we use � for internal verties and � for

external verties. To show the order, we draw the edges in a lokwise order and

mark the �rst edge by an arrow.

We de�ne a CW omplex M

0

in a way parallel to the de�nition of M(�) for

genus 0 (see Setion 5.2). The verties of M

0

are all marking graphs. We de�ne

the simple moves Z;B; F by Figures 5.5, 5.6 and 5.7, respetively. The relations in

M

0

are obtained from MF1{MF7 by forgetting the surfaes.

Example 5.6.16. The Moore{Seiberg tower MS is the tower of groupoids de-

�ned as follows.

Objets: all marking graphs.

Morphisms: Mor(m

1

;m

2

) onsists of all paths in the CW omplex M

0

on-

neting m

1

with m

2

, modulo homotopy. (In other words, as a groupoidMS

is the fundamental groupoid of M

0

.)

Boundary funtor: A(m) = Ext(m).

Disjoint union and ;: obvious.

Gluing: if �; � 2 Ext(m) are in di�erent onneted omponents, then we

de�ne G

�;�

(m) to be the graph obtained by identifying the verties � and

�. The order at the new internal vertex � = � is given by e

�

< e

�

where e

�

is the edge of m ending at �.

Note that MS is a \partial" tower in the sense of Remark 5.6.3.

Theorem 5.6.17. Let C be a semisimple abelian ategory. Then MS data for C

is the same as a non-degenerate representation � of the Moore{Seiberg tower MS

in C with the additional normalization ondition �(�) = id: Ve

f

! Ve

f

, where �

is the marking graph with one vertex and no edges.
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Proof. Given a olletion of MS data, let us onstrut a representation � of

the towerMS. For a marking graph m, de�ne the funtor �(m) : C

�Ext(m)

! Ve

f

similarly to (5.4.3). In other words, if W

v

are the objets assigned to the external

verties v 2 Ext(m), then we let

�(m)(fW

v

g) =

O

u2Int(m)

hX

e

1

u

; : : : ; X

e

k

u

u

i;

where e

1

u

; : : : ; e

k

u

u

are the edges adjaent to u, in the order de�ned by u, and X

e

=

W

v

if e onnets u with an external vertex v, or X

e

= R if e onnets two internal

verties.

The de�nition of the funtorial isomorphisms whih we assign to the morphisms

of graphs is obvious. We also have obvious isomorphisms �(m

1

tm

2

) ' �(m

1

) 


�(m

2

) and �(G

�;�

(m)) ' G

�;�

(�(m)); in the latter isomorphism both sides oinide

with �(m)(: : : ; R

(1)

; : : : ; R

(2)

; : : : ).

Now, a omparison of the relations MS1{MS7 and the relations MF1{MF7,

used in the de�nition ofM

0

, shows that the so de�ned � is indeed a representation

of MS.

Conversely, given a representation � of the tower MS, de�ne the MS data as

follows:

hW

1

; : : : ;W

n

i = �(m

n

)(W

1

; : : : ;W

n

)

wherem

n

is the \standard" marking graph, with one internal vertex and n external

verties. Again, it is lear how to de�ne the isomorphisms Z; �;G and hek that

all the relations are satis�ed.

It is lear by its de�nition that the towerMS is just the projetion on the level

of marking graphs of another tower PTeih

0

: the parametrized Teihm�uller tower

in genus zero. On its hand, PTeih

0

is the genus zero part of a tower PTeih whih

appeared impliitly in Setion 5.2 and whih we now proeed to de�ne.

Example 5.6.18. The parameterized Teihm�uller tower PTeih is the tower of

groupoids de�ned as follows.

Objets: all pairs (�;M), where � is an extended surfae andM = (C; f 

a

g)

is a parameterization of � (see De�nition 5.2.1).

Morphisms: Mor((�

1

;M

1

); (�

2

;M

2

)) onsists of all pairs (f; ') where f : �

1

�

�!

�

2

is a homeomorphism of extended surfaes and ' is a path in M(�

2

)

onneting f(M

1

) with M

2

. The omposition of morphisms is given by

(f; ') Æ (g;  ) = (f Æ g; ' Æ f( )).

Boundary funtor: A(�;M) = A(�) = �

0

(��) | the set of boundary om-

ponents of �.

Disjoint union and ;: the usual ones.

Gluing: G

�;�

(�;M) = (t

�;�

(�);t

�;�

M), where t

�;�

(�) is obtained from �

by gluing the boundary omponents �; �, and the parameterization t

�;�

M

is obtained from M by adding � = � as a new ut and keeping the homeo-

morphisms  

a

unhanged.

Note that by Theorem 5.2.9 the path ' is uniquely de�ned by f , so we ould

as well omit ' from the above de�nition of morphisms. However, it will be useful

for us to have the de�nition in this form.
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Now we an reformulate the main results of the previous setions in a muh

more transparent way.

Theorem 5.6.19. (i) The towers of groupoids Teih and PTeih are equivalent.

Similarly, their genus zero parts Teih

0

and PTeih

0

are equivalent.

(ii) The towers PTeih

0

and MS are equivalent.

Proof. (i) To prove the �rst statement, onsider the obvious forgetting funtor

PTeih ! Teih. It suÆes to hek that this funtor is bijetive on morphisms.

By Theorem 5.2.9, for every two parameterizations M;M

0

of an extended surfae

� there exists a unique path in M(�) onneting them. Thus, in a pair (f; ') 2

Mor

PTeih

, the path ' is uniquely determined by f , whih is equivalent to saying

that the forgetting funtor gives a bijetion Mor

PTeih

�

�! Mor

Teih

. The proof for

genus zero is ompletely parallel.

(ii) To prove the seond statement, onsider the funtor PTeih

0

!MS whih

assigns to the pair (�;M) the marking graph ofM . Obviously, every marking graph

an be obtained in this way. Thus, it suÆes to prove that this funtor gives a

bijetion of the spaes of morphisms. This is immediate from omparing the moves

and relations and the following rigidity lemma.

Lemma 5.6.20. Let � be an extended surfae, M 2 M(�) be a parameteriza-

tion, and m the orresponding marking graph. Let f : �

�

�! � be a homeomorphism

whih preserves the graph m pointwise.

4

Then f is homotopi to identity.

This ompletes the proof of Theorem 5.6.19.

A omparison of the theorems above makes the relation between genus zero

modular funtors and weakly ribbon strutures on a semisimple ategory obvious.

5.7. Central extension of modular funtor

In Setion 5.5 we have onstruted a C-extended modular funtor (MF) starting

from any modular tensor ategory C satisfying p

+

=p

�

= 1. As with TQFT on-

struted from C, the gluing axiom fails when p

+

=p

�

6= 1. There are two approahes

to deal with the general ase.

First, we an ontent ourselves with a modi�ation of the gluing axiom, whih

says that it holds only up to a multipliative fator. This is similar to the notion

of a projetive representation of a group.

The seond approah is to try to onstrut a kind of a \entral extension" of the

modular funtor. This was done independently by several authors; our exposition

follows an unpublished manusript [BFM℄ by Beilinson, Feigin, and Masur.

We begin with some preliminaries. Let V be a sympleti real vetor spae

of dimension 2g, g 2 N. Let �

V

be the set of all Lagrangian subspaes of V ,

i.e., maximal isotropi subspaes of V . This is a ompat manifold. Let T

V

be

the Poinar�e groupoid of �

V

; by de�nition, objets of this groupoid are points of

�

V

and morphisms are homotopy lasses of paths onneting two points. It is

onvenient to de�ne T

V

for V = 0 as the ategory with only one objet 0 and

Hom

T

0

(0; 0) = Z.

The proof of the following lemma is straightforward and will be omitted.

4

It is not suÆient to require that f(m) = m, as f ould interhange omponents of m.
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Lemma 5.7.1. (i) For any two sympleti vetor spaes V

1

, V

2

, there exists a

anonial map �

V

1

� �

V

2

! �

V

1

�V

2

.

(ii) Let N � V be an isotropi subspae, i.e., suh that the restrition of the

sympleti form on N is 0. Then the spae N

?

=N is sympleti, and there exists a

anonial map �

N

?

=N

! �

V

whih assigns to a Lagrangian subspae L � N

?

=N

the subspae �

�1

(L) � N

?

� V , where � : N

?

! N

?

=N is the natural projetion.

The indued map of fundamental groupoids T

N

?

=N

! T

V

is an equivalene.

Corollary 5.7.2. For any point a 2 �

V

, the fundamental group �

1

(�

V

; a) is

isomorphi to Z.

Corollary 5.7.2 implies that the group Z ats freely on Mor

T

V

(L

1

; L

2

) for any

L

1

; L

2

2 �

V

. (In other words, Mor

T

V

(L

1

; L

2

) is a Z-torsor .) Hene we have a

non-anonial identi�ation

Mor

T

V

(L

1

; L

2

)

�

�! Z:(5.7.1)

Let us hoose suh identi�ations for all L

1

; L

2

2 �

V

. If ' : L

1

! L

2

and  : L

2

!

L

3

are two morphisms in T

V

, orresponding to numbers m;n 2 Z, then in general

 ' : L

1

! L

3

orresponds to some p 6= m+ n. The di�erene

�(L

1

; L

2

; L

3

) := p�m� n(5.7.2)

is alled the Maslov index of the subspaes L

1

; L

2

; L

3

.

Let � be an extended surfae, as in Setion 5.1. We denote by l(�) the surfae

without boundary obtained from � by gluing disks to all boundary irles, and let

H(�) := H

1

(l(�);R):(5.7.3)

The intersetion form makes H(�) a sympleti spae of dimension 2g where g is

the genus of � (i.e., of l(�)). Introdue the notations

�

�

:= �

H(�)

; T

�

:= T

�

�

:(5.7.4)

When � is of genus zero, we have H(�) = 0 and �

�

is a point. In this ase, it is

onvenient to de�ne T

�

as the ategory with only one objet 0 and Hom

T

�

(0; 0) = Z.

The next lemma is left as an exerise.

Lemma 5.7.3. (i) There exists a anonial map a : �

�

1

��

�

2

! �

�

1

t�

2

. (How-

ever, it is not a homeomorphism.)

(ii) Let the surfae � be obtained by sewing two surfaes along one boundary

omponent : � = �

1

t

�;�

�

2

. Then H(�

1

t �

2

) ' H(�). Therefore, there exists a

anonial homeomorphism g

�;�

: �

�

1

t�

2

�

�! �

�

.

(iii) Let � be obtained from �

0

by gluing two boundary irles �

1

; �

2

in the

same onneted omponent : � = t

�

1

;�

2

�

0

. These two irles give a yle � 2

H(�). Then we laim that H(�

0

) ' �

?

=R�. Therefore, we have a anonial map

g

�

1

;�

2

: �

�

0

! �

�

whih indues an equivalene T

�

0

�

�! T

�

.

Exerise 5.7.4. Let � be an extended surfae, and let C be a ut system on �,

i.e., a �nite set of losed simple non-interseting urves on � suh that the onneted

omponents �

a

of � n C have genus zero (f. De�nition 5.2.1). By Lemma 5.7.3,

this de�nes a map

Q

�

�

a

! �

�

. Sine, by de�nition, eah �

�

a

is a point, this map

gives an element y

C

2 �

�

. Show that y

C

is the subspae in H

1

(l(�);R) spanned

by the lasses [℄;  2 C.
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Now we an de�ne the \entral extension" of the Teihm�uller tower whih was

de�ned in Setion 5.6.

Definition 5.7.5. The entral extension

^

Teih of the Teihm�uller tower Teih

is the tower of groupoids de�ned as follows.

Objets: all pairs (�; y), where � is an extended surfae and and y 2 �

�

.

Morphisms: Mor((�

1

; y

1

); (�

2

; y

2

)) onsists of all pairs (f; �), where f : �

1

�

�!

�

2

is an orientation preserving homeomorphism and � 2 Mor

T

�

2

(f

�

y

1

; y

2

).

Here f

�

: �

�

1

! �

�

2

is the map indued from f .

Boundary funtor: A(�; y) = �

0

(��) is the set of boundary omponents of

�.

Disjoint union: (�

1

; y

1

) t (�

2

; y

2

) = (�

1

t �

2

; a(y

1

� y

2

)), where a : �

�

1

�

�

�

2

! �

�

1

t�

2

is as in Lemma 5.7.3(i). The objet ; is the obvious one.

Gluing: G

�;�

(�; y) = (t

�;�

(�); g

�;�

(y)), where g

�;�

: �

�

! �

t

�;�

(�)

is as in

Lemma 5.7.3(ii), (iii).

This groupoid is a entral extension of the usual Teihm�uller groupoid in the

following sense: we have an obvious funtor

^

Teih! Teih ompatible with all the

operations, and for eah (�; y) 2 Ob

^

Teih, the kernel of the map Aut

^

Teih

(�; y)!

Aut

Teih

(�) is Aut

T

�

(y) = Z (see (5.7.1)). In other words, denoting for an extended

surfae � and y 2 �

�

the extended mapping lass group by

^

�(�; y) := Aut

^

Teih

(�; y);(5.7.5)

(up to an isomorphism, this does not depend on the hoie of y), we an write the

following exat sequene:

0! Z!

^

�(�; y)! �(�)! 0:(5.7.6)

Note that for � of genus zero, �

�

is a point, and we have a anonial isomorphism

^

�(�) = Z� �(�), i.e., the above exat sequene splits. For positive genus, this is

not so.

Example 5.7.6. Let � = S

1;1

be the torus with one punture, and let �; �

be the meridian and the parallel of the torus, so that H(�) = R[�℄ � R[�℄ (see

Figure 5.19). Then �

�

= RP

1

= S

1

. Let s; t 2 �

1;1

be the elements of the mapping

lass group de�ned in Example 5.1.11.

β
α

Figure 5.19

For y = [�℄ we will desribe the entral extension

^

�(�; y). Note that t

�

([�℄) =

[�℄, s

�

[�℄ = [�℄. Let us hoose a path � in �

�

onneting the points [�℄ and [�℄.
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Now, de�ne elements

^

t; ŝ; ̂ 2

^

�(�; y) by

^

t = (t; id), ŝ = (s; �), ̂ = (; id), where

 = s

2

ats on H(�) by v 7! �v, and thus, ats trivially on �

�

. Then we laim

that the group

^

�(�; y) is generated by the elements

^

t; ŝ; ̂;  with the relations

ŝ

2

= ̂; (ŝ

^

t)

3

= ŝ

2

; ; ̂ are entral,(5.7.7)

where  = (id; ) is the generator of the fundamental group �

1

(�

�

; y) = Z.

Similarly, if we onsider a torus without puntures, then the mapping lass

group �(S

1;0

; y) is generated by the same elements with the additional relation

̂

2

= 1. The proof of both of these statements is left to the reader as an exerise.

Remark 5.7.7. One sees that for � = S

1;1

, the exat sequene (5.7.6) trivially

splits. For � = S

1;0

, we have �(�) = SL

2

(Z), and one an hek that the above

exat sequene does not split, but it \splits over Q": if we denote by

^

�(�; y)

Q

=

^

�(�; y)�

Z

Q the group obtained by adding to

^

�(�) frational powers of , then the

exat sequene

0! Q !

^

�(�; y)

Q

! �(�)! 0

does split. However, it an be shown that for g > 1 the exat sequene (5.7.6) for

�

g;0

does not split even over Q.

Now we an formulate the notion of a modular funtor with a entral harge.

Reall that we have de�ned the notion of a representation of a tower of groupoids

in an abelian ategory C (see De�nition 5.6.12), and the modular funtor an be

de�ned as a representation of the Teihm�uller tower (see Theorem 5.6.13).

Definition 5.7.8. Let C be an abelian ategory. A C-extended modular funtor

with (multipliative) entral harge K 2 k

�

is a representation of the tower

^

Teih,

with the additional normalization ondition �(S

2

) = k, and suh that for every

extended surfae � and y 2 �

�

the generator  of Aut

T

�

(y) = Z� Aut

^

Teih

(�; y)

ats as multipliation by K.

For those readers who do not like the language of towers of groupoids, this

de�nition an be spelled out expliitly as follows.

Definition 5.7.9. A modular funtor with (multipliative) entral harge K 2

k

�

is the following olletion of data:

(i) Let � be a ompat oriented surfae with boundary, with a point and an

objet of C attahed to any boundary irle, and let y 2 �

�

. To any suh (�; y)

the modular funtor assigns a �nite dimensional vetor spae �(�; y).

(ii) To any morphism

~

f : (�; y) ! (�

0

; y

0

) the modular funtor assigns an iso-

morphism of the orresponding vetor spaes

~

f

�

: �(�; y)

�

�! �(�

0

; y

0

).

(iii) Funtorial isomorphisms �(;)

�

�! k, �(�

1

t �

2

; y

1

� y

2

)

�

�! �(�

1

; y

1

) 


�(�

2

; y

2

).

(iv) A symmetri objet R 2 ind�C

�2

(see Setion 2.4).

(v) Gluing isomorphism: Let �

0

be the surfae obtained from � by utting

� along a irle. Then we require that there is an isomorphism

�(�

0

; y;R

(1)

; R

(2)

)! �(�; g(y))(5.7.8)

where g is as in Lemma 5.7.3(ii), (iii).

These data have to satisfy the same axioms as in De�nition 5.1.12 and the

following additional relation. Note that for every (�; y) the group �

1

(�

�

; y) is
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anonially isomorphi to Z. (The orientation of � gives a hoie for the sign of

the generator .) Then we require that 

�

: �(�; y) ! �(�; y) be a multipliation

by K.

Theorem 5.7.10. Any modular tensor ategory gives rise to a modular funtor

with entral harge K = p

+

=p

�

. Conversely, if � is a C-extended modular funtor

with entral harge K, then it de�nes on C a struture of a weakly ribbon ategory.

If this ategory is rigid, then C is a modular ategory with p

+

=p

�

= K.

Proof. The proof is similar to the proof in the ase of zero entral harge

(p

+

= p

�

). It is based on an analogue of Theorem 5.2.9, giving the set of moves

and relations among the parameterizations. However, now we have to extend the

notion of parameterization as follows.

Let � be an extended surfae and y 2 �

�

. An extended parameterization

^

M

is a pair (M;'), where M is a parameterization of � (see De�nition 5.2.1), and

' 2 Mor

T

�

(y; y

M

), where y

M

2 �

�

is the Lagrangian subspae de�ned by the ut

system C of M (see Example 5.7.4).

Sine the moves B;F; Z do not hange y

M

, we an lift eah of them to a move

between extended parameterizations by letting

^

B = (B; id), et. We also have a

new move  : (M;')  (M; Æ '), where  is the generator of Aut

T

�

(y

M

; y

M

) =

Z. Finally, the move S an be lifted to a move

^

S as in Example 5.7.6. Then

eah of relations MF1{MF7 makes sense as a relation among the moves

^

Z; : : : ;

^

F .

As for relations MF8, MF9, they an be uniquely lifted to relations among the

moves between the extended parameterizations by replaing Z; : : : S by

^

Z; : : : ;

^

S

and inserting an appropriate power of  to make it into a losed loop in

^

M(�).

We will denote the orresponding axioms by MF

^

8, MF

^

9. Let us also add an axiom

MF

^

10 requiring that  be entral. Then it is easy to dedue from Theorem 5.2.9

that the orresponding 2-omplex

^

M(�) is onneted and simply-onneted.

Now to show that every MTC de�nes a modular funtor, we an follow the

same approah as before, i.e., �rst de�ne �(�; y;

^

M), and then assign to every move

^

E :

^

M  

^

M

0

an isomorphism �(�; y;

^

M) ! �(�; y;

^

M

0

) so that all the relations

MF1{MF

^

10 are satis�ed.

Let us de�ne �(�; y;

^

M) = �(�;M) (thus, it does not depend on the hoie of

y and ') and assign to the moves

^

Z;

^

B;

^

F the same isomorphisms as before (i.e.,

Z; �;G). Assign to  the isomorphism given by multipliation by p

+

=p

�

. Finally,

assign to

^

S the operator S=

p

p

+

=p

�

, where S is de�ned in Theorem 3.1.17. Expliit

alulation shows that for so de�ned

^

S, relations MF

^

8, MF

^

9 are satis�ed. For MF

^

8,

this alulation essentially oinides with the one done in Example 5.7.6.

The proof in the opposite diretion is absolutely parallel to the one for the

genus zero ase; thus, we omit it.

5.8. From 2D MF to 3D TQFT

Starting from a modular tensor ategory C with p

+

=p

�

= 1, we have on-

struted a C-extended 3-dimensional Topologial Quantum Field Theory (Setion 4.4)

and a C-extended 2-dimensional modular funtor (Setion 5.1). We have also

showed that onversely, if C is a semisimple abelian ategory then any C-extended

2-dimensional modular funtor gives rise to a struture of a modular ategory on C

(provided that the rigidity ondition is satis�ed).
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Shematially, we have:

C-extended 3D TQFT

MTC C

44jjjjjjjjjjjj

fn

&.UUUUUUUUUUU

UUUUUUUUUUU

C-extended 2D MF

:

This indiates that there must be also a diret onstrution relating (C-extended)

3D TQFT with (C-extended) 2D MF.

3D TQFT ! 2D MF. This impliation has already been disussed before:

in fat, the axioms of 2D MF (exept the gluing axiom) are part of the axioms

of 3D TQFT, f. Remark 5.1.2. To prove that the gluing axiom also follows from

the axioms of 3D TQFT, we again use the version of extended surfae from De�ni-

tion 5.1.10.

Let �

0

V

be the surfae obtained from a surfae � by utting a irle from it

and labeling the two new boundary omponents with objets V and V

�

, as in

De�nition 5.1.12 (see Figure 5.20).

2

ΣcutΣ p

c

p

c c

p1 2

1

Figure 5.20

In aordane with the proof of Proposition 5.1.8, instead of �

0

V

we onsider the

surfae �

00

= �

00

V

obtained from �

0

V

by replaing the boundary irles with marked

points with tangent vetors at them. We an shrink �

00

, so that it is \inside" �, as

in Figure 5.21 below.

p cut V *V

Σ Σ
Σ

p p
1 2

Figure 5.21

Then we \�ll in the spae between � and �

00

", i.e., we onsider a 3-manifoldM

with boundary �M = �t�

00

(see Figure 5.22). This M is a C-marked 3-manifold,

hene it gives a vetor

�(M) 2 �(�M) ' Hom

k

(�(�

00

); �(�)):

Considered as a map �(�

0

V

) ! �(�), this gives the required gluing map (5.1.1).

One an easily hek that this de�nition is orret and satis�es all the properties

of De�nition 5.1.12.
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Figure 5.22

2D MF ! 3D TQFT. This impliation is muh more diÆult and, to the

best of our knowledge, no omplete onstrution of it is known. There are two ap-

proahes: the �rst one, due to L. Crane [C℄ (see also [Ko℄), is based on the Heegaard

splitting; the seond one, due to M. Kontsevih and to I. Frenkel (unpublished), is

based on Morse theory.

Following Crane [C℄, we will onstrut (non-extended) 3D TQFT starting from

a C-extended 2D MF. We do not know how to extend this onstrution to a C-

extended 3D TQFT.

We will use the following well-known theorem in topology (for referenes, see

[Cr℄).

Theorem 5.8.1 (Reidemeister{Singer). Let M be a onneted losed oriented

3-manifold. Then:

(i) M an be presented as a result of gluing of two solid handlebodies :

M =M

'

= H

1

t

'

H

2

;

where ' : �H

1

�

�! �H

2

. Suh a presentation is alled a Heegaard splitting.

(ii) Two suh M

'

and M

'

0

are homeomorphi i� ' : �H

1

�

�! �H

2

an be

obtained from '

0

: �H

0

1

�

�! �H

0

2

by a sequene of the following moves :

(a) H

1

= H

0

1

, H

2

= H

0

2

, '

0

is isotopi to '.

(b) H

1

= H

0

1

, H

2

= H

0

2

, '

0

= y Æ ' Æ x, where x 2 N

H

1

, y 2 N

H

2

and

N

H

:= fhomeomorphisms of �H whih extend to Hg:

() Stabilization. Let H

0

1

= H

1

#T , H

0

2

= H

2

#T , where T is a solid torus and

# denotes a onneted sum of topologial spaes (see Figure 5.23 below). Let '

0

=

'#s, where s : �T

�

�! �T is the homeomorphism of the 2-torus whih has a matrix

�

0 �1

1 0

�

in the standard basis f�; �g of H

1

(�T;R). Then M

'

0

'M

'

#S

3

'M

'

.

# =

Figure 5.23. Conneted sum of 3-manifolds.

Now suppose that we have a C-extended modular funtor. Let H be a solid

handlebody whose boundary �H is a surfae of genus g. We will onstrut a vetor

v

0

(H) 2 �(�H) as follows.
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Choose some non-interseting \uts", i.e., disks embedded in H , whih ut

H into ontratible piees. This also gives a system of uts on �H and thus, a

deomposition of �H into spheres with holes: �H =

S

�

a

. Consider all possible

labelings i : futsg ! I of the utting irles by simple objets of C (see Figure 5.24).

3iV2iV1

iV6i

V

V4

iV5

i

Figure 5.24

Then, by the gluing axiom,

�(�H) '

M

i

O

a

�(�

a

; fV

"

i



g

���

a

):

Here �

a

are the omponents of �H , the notation  � ��

a

means that the ut  is

one of the boundary omponents of �

a

, and V

"

is either V or V

�

hosen so that

every V

i



appears in the tensor produt one as V

i



and one as V

�

i



.

Let us hoose all i



= 0, i.e., all V

i



= 1. Then �(�

a

;1; : : : ;1) = k. Therefore,

this gives a vetor

v

0

(H) =

O

a

(1 2 �(�

a

;1; : : : ;1)) 2 �(�H):

(ompare with Remark 4.5.4).

Theorem 5.8.2 (Crane [C℄). The vetor v

0

(H) does not depend on the hoie

of the uts. Moreover, v

0

(H) is N

H

-invariant.

Proof. Obviously, any two systems of uts of H into a union of solid balls an

be related to one another by a sequene of the following moves:

(a) the ation of N

H

, and (b) the F-move.

It is easy to see that v

0

(H) does not hange under the move (b). As for (a),

one needs a desription of the generators of N

H

. Suh a desription is known

[Su℄. Then one heks that v

0

(H) is invariant under these generators|this is not

diÆult|we refer to [C℄, [Ko℄ for the details.

The fat that v

0

(H) is N

H

-invariant follows from (a).

Now we will use Theorems 5.8.1 and 5.8.2 to onstrut invariants of losed

3-manifolds.

Let M = M

'

= H

1

t

'

H

2

be as in 5.8.1. The map ' : �H

1

�

�! �H

2

gives an

isomorphism of vetor spaes '

�

: �(�H

1

)

�

�! �(�H

2

) = �(�H

2

)

�

. We de�ne

�(M) := D

g�1

('

�

(v

0

(H

1

)); v

0

(H

2

));(5.8.1)

where D = s

�1

00

is de�ned by (3.1.15).

The prefator D

g�1

is hosen in order that �(M) be invariant under the stabi-

lization move 5.8.1(). Indeed, let H

0

= H#T . Then �H

0

= �H#�T , where �T is
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the 2-torus. By the onstrution of v

0

(H

0

) it is lear that

v

0

(H

0

) = v

0

(H)
 v

0

(T ):

Then

�(M

0

) = D

g

(('#s)

�

(v

0

(H

1

)
 v

0

(T )); v

0

(H

0

2

))

= �(M)D (s

�

v

0

(T ); v

0

(T )) = �(M)Ds

00

= �(M):

Therefore, we have onstruted an invariant � of losed 3-manifolds. To on-

strut 3D TQFT, we have to de�ne �(M) for any 3-manifold M with boundary.

To do so, we need a variant of Heegaard splitting for 3-manifolds with boundary.

There is suh a theorem, due to Motto [Mo℄. His result is similar to what we had

before, only one has to onsider not only handlebodies but also \hollow handle-

bodies". A hollow handlebody is a handlebody with some parts of its interior ut

out. Hene, it has both \inner" and \outer" boundary. We glue two suh hollow

handlebodies by identifying their outer boundaries, the remaining inner boundaries

give the boundary of the resulting 3-manifold.

Then we an repeat the above onstrution of �(M) for manifolds M with

boundary. This gives the impliation

C-extended 2D MF! (non-extended) 3D TQFT:

In order to go one step further, i.e., to onstrut a C-extended 3D TQFT, one needs

an analog of Heegaard splitting and Reidemeister{Singer theorem for manifolds with

boundary and marked points. To the best of our knowledge, suh a result is not

available at the moment. Hopefully, this is only a temporary diÆulty. Finally, let

us note that if we start with a non-extended 2D MF, without gluing axiom, the

onstrution of 3D TQFT would fail.


