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Abstrat

It is well known that one an build models of full higher-order dependent type theory

(also alled the alulus of onstrutions) using partial equivalene relations (PERs)

and assemblies over a partial ombinatory algebra (PCA). But the idea of ategories

of PERs and ERs (total equivalene relations) an be applied to other strutures

as well. In partiular, we an easily de�ne the ategory of ERs and equivalene-

preserving ontinuous mappings over the standard ategory Top

0

of topologial

T

0

-spaes; we all these spaes (a topologial spae together with an ER) equilogial

spaes and the resulting ategory Equ. We show that this ategory|in ontradis-

tintion to Top

0

|is a artesian losed ategory. The diret proof outlined here uses

the equivalene of the ategory Equ to the ategory PEqu of PERs over algebrai

latties (a full subategory of Top

0

that is well known to be artesian losed from

domain theory). In another paper with Carboni and Rosolini (ited herein) a more

abstrat ategorial generalization shows why many suh ategories are artesian

losed. The ategory Equ obviously ontains Top

0

as a full subategory, and it nat-

urally ontains many other well known subategories. In partiular, we show why, as

a onsequene of work of Ershov, Berger, and others, the Kleene-Kreisel hierarhy

of ountable funtionals of �nite types an be naturally onstruted in Equ from

the natural numbers objet N by repeated use in Equ of exponentiation and binary

produts. We also develop for Equ notions of modest sets (a ategory equivalent to

Equ) and assemblies to explain why a model of dependent type theory is obtained.

We make some omparisons of this model to other, known models.

1 Introdution

The genesis of this paper is the manusript [38℄ \A New Category?" privately

irulated by Dana Sott in Deember of 1996. During the last part of his
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graduate ourse on Domain Theory he had realized that by using some basi

and well-known properties of domains (spei�ally, algebrai latties) the at-

egory of equivalene relations on T

0

-spaes not only was an extension of the

topologial ategory but was artesian losed.

The present paper inorporates original motivation, de�nitions, and proofs of

the earlier manusript, and we then give an equivalent de�nition suggesting

relationships to the extensive work on partial equivalene relations over par-

tial ombinatory algebras (hereafter, PCAs). In our onferene paper [9℄, the

reader will �nd an abstrat framework due to Carboni and Rosolini in whih

the ategories of equilogial spaes and partial equivalene relations over PCAs

�t. Indeed, it is shown that there is a larger ategory than that of equilogi-

al spaes that is artesian losed. However, we shall not disuss the abstrat

ategorial framework here (namely, that of exat ompletions of ategories).

As in the earlier manusript, our desire here is to give a fairly onrete desrip-

tion of the strutures involved and the onstrutions from them. By extending

the �rst treatment, we use an alternate equivalent de�nition of the ategory

of equilogial spaes to give a de�nition of a model of dependent type theory

and logi, analogous to the work over PCAs. We also disuss how far that

analogy extends.

The �nal setion of the paper shows how the work of Y. Ershov and E. Berger

onerning the Kleene-Kreisel hierarhy of ountable funtionals and exten-

sions an be inorporated into the ategory of equilogial spaes. In terms of

the type theory, it turns out that the higher types over the integers N ! N ,

(N ! N ) ! N , ((N ! N ) ! N ) ! N , et., are indeed the ountable

funtionals, as expeted. In order to see this, we have to add appropriate

ategorial de�nitions to Berger's work.

Note added in February, 2001. Sine the writing of this paper in 1998,

muh progress has been made in understanding equilogial spaes and their

relationship to other ategories. The relationship to tripos theory hinted at in

the disussion in Setion 4 has been worked out [7,8℄; in partiular, the open

problem mentioned at the end of the disussion in Setion 4 has been solved,

see [7,8℄. Also, the relation between equilogial spaes and domains with to-

tality desribed in Setion 5 has been extended to hierarhies of dependent

types [4,3℄, and a relation to type-two e�etivity has been disovered [3℄. Also

other researhers have ontributed greatly to the study of equilogial spaes;

see the papers ited here for referenes and disussions of their related work.

2 Motivation

The familiar ategories Set andTop, onsisting of sets and arbitrary mappings

and of topologial spaes and ontinuous mappings, have many well known lo-
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sure properties. For example, they are both omplete and oomplete, meaning

that they have all (small) limits and olimits. They are well-powered and o-

well-powered, meaning that olletions of subobjets and quotients of objets

an be represented by sets. They are also niely related, sine Set an be

regarded as a full subategory of Top, and the forgetful funtor that takes

a topologial spae to its underlying set preserves limits and olimits (but

reets neither).

The ategory Set is also a artesian losed ategory, meaning that the funtion-

spae onstrut or the internal hom-funtor is very well behaved, in the sense

that the funtor � � B is adjoint to B ! � for all objets B. However, it has

been known for a long time that in Top no suh assertion is available, beause

in general it is not possible to assign a topology to the set of ontinuous fun-

tions making this adjointness valid|exept under some speial onditions on

the spae B. Many remedies have been proposed, notably, (a) utting down

to ompatly generated spaes, or (b) expanding the ategory to the ategory

of �lter spaes (or a related kind of limit spae). These are interesting sugges-

tions, but both have some drawbaks. Suggestion (a) applies only to Hausdor�

spaes, and suggestion (2)|whih the authors onsider the more interesting

from a logial point of view|introdues very unfamiliar spaes at the higher

types (i.e., after iterating the funtion-spae onstrut several times). It re-

mains to be seen whether the suggestion of this paper an be regarded as more

onrete or more helpful than either (a) or (b).

Our solution to the problem of artesian losedness is motivated by domain

theory. The new ategory is formed from the ategory Top

0

of topologial

T

0

-spaes by using spaes together with arbitrary equivalene relations, to

form the ategory, to be alled alled Equ, where the mappings are (suitable

equivalene lasses of) ontinuous mappings whih preserve the equivalene

relations. (A more preise de�nition will be given below.) Let us all these

spaes equilogial spaes and the mappings equivariant. It seems surprising

that this ategory has not been notied before|if in fat it has not. It is easy

to see that Equ is omplete and oomplete and that it embeds Top

0

as a full

and faithful subategory (by taking the equivalene relation to be the identity

relation).

What is perhaps not so obvious is that Equ is indeed artesian losed. The

proof of artesian losedness outlined here uses old theorems in domain theory

originally disovered by Sott: in partiular, an injetive property of algebrai

latties treated as topologial spaes and the fat that they form a artesian

losed ategory (along with ontinuous funtions). A more abstrat, ategori-

al proof an be found in [9℄ or in [37℄. Also, in Setion 4 we give an alternative

onrete proof. Of ourse, algebrai latties are just one of many artesian

losed ategories proposed for domain theory|and not the most popular one.

They allow, however, for some helpful embeddings of T

0

-spaes.

For a long time Sott has been distressed that there are too many proposed
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ategories of domains and that their study has beome too arane. It was

hoped that the idea of syntheti domain theory would be the natural solution|

but that theory has been slowed by many tehnial problems. The related idea

of axiomati domain theory is likewise hampered by the need to overome

tehnial diÆulties. Despite very good work in both these diretions, he does

not feel that a �nal theory has emerged. Perhaps some of the ideas that have

been used in these other approahes an be transplanted to the study of Equ,

whih seems to be a rih and fairly natural ategory with many subategories.

The basi idea of the syntheti approah is to establish a typed �-alulus

one and for all, and then to single out useful types (or domains) by means of

speial properties|just as is done in several other branhes of mathematis.

As far as Equ is onerned, the possibilities seem good, but this is still work

in progress. We are enouraged, however, by the results so far obtained, some

of whih are presented here.

3 Equilogial Spaes

We begin by de�ning some notation and alling to mind some basi de�nitions

and theorems onerning T

0

-spaes and algebrai latties. We then turn to the

de�nition of equilogial spaes.

T

0

-Spaes and Algebrai Latties. Topologial spaes will be onsidered

as strutures T = hT;


T

i, where T is the set of points of the spae, and where




T

is the set of open sets of T . We shall often write jT j = T , so as not to

have to use a speial letter for the points of a spae. Complete latties (and,

more generally, posets) will be onsidered as strutures L = hjLj;�

L

i, where

�

L

is the partial ordering of the set jLj. Completeness of ourse demands that

every subset S � jLj has a least upper bound

W

S 2 jLj.

De�nition 3.1 The neighborhood �lter of a point x 2 jT j of a topologial

spae T is de�ned by the equation:

T (x) = fU 2 


T

j x 2 U g:

The spaes we shall be onerned with are the T

0

-spaes, where the topology

distinguishes the points.

De�nition 3.2 A topologial spae is a T

0

-spae provided that for every

pair of distint points there is an open set that ontains one but not the

other. Another way to say this ondition is to say that for all x; y 2 jT j, if

T (x) = T (y), then x = y. The ategory of all suh spaes and ontinuous

mappings between them is denoted by Top

0

.
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De�nition 3.3 The speialization ordering of a topologial spae T is

de�ned by:

x �

T

y () T (x) � T (y);

for all x; y 2 jT j.

De�nition 3.4 Let L be a omplete lattie. The �-topology on the lattie

is de�ned as the olletion of all upward losed subsets U � jLj suh that

whenever S � jLj and

W

S 2 U , then

W

S

0

2 U for some �nite subset S

0

� S.

The olletion of all suh subsets is denoted by �

L

.

The following theorems are now well-known. Proofs an, e.g., be found in [16℄.

Theorem 3.5 Given a omplete lattie L, the struture hjLj;�

L

i is a T

0

-spae

whose speialization ordering is exatly �

L

.

For the powerset spaes PA the �-topology is very easy to desribe: the open

sets U � PA are the families of \�nite harater"; that is, a subset X � A

belongs to U if, and only if, some �nite subset of X belongs to U . This is the

same as giving PA the topology that orresponds to the produt topology

on 2

A

where the two-element set has the topology with one open point and

one losed point. The powerset spaes have an important role as being able to

embed every T

0

-spae. The following elementary result is key to the subsequent

development.

Theorem 3.6 (The Embedding Theorem) Given a T

0

-spae T , the map-

ping x 7! T (x) is a topologial embedding of T into P 


T

onsidered as a spae

with the �-topology.

Powerset spaes also have another important property onerning ontinuous

funtions whih allows for the transfer of funtions over to the powerset spae.

Theorem 3.7 (The Extension Theorem) If Y is a subspae of a topolog-

ial spae X , and if f : jYj ! PA is ontinuous, then the funtion f has a

ontinuous extension to all the points of X .

Sott notied the above theorems in 1970/71 and also pointed out that it in

fat holds for all ontinuous retrats of the powerset spaes|these are the

ontinuous latties|but for our purposes here, the above suÆes.

Powerset latties an be generalized to algebrai latties, namely those om-

plete latties that an be represented isomorphially as omplete sublatties

of a powerset losed under arbitrary intersetions and direted unions. (These

latties an be haraterized in other ways as well; see, e.g., [13,16℄.) The �-

topology on an algebrai lattie is just the restrition of the topology of the

powerset spae. An algebrai lattie is a ontinuous retrat of the powerset

ontaining it, but not all suh retrats are algebrai.

The reason for onsidering algebrai latties is that the lattie of ontinuous

funtions between powerset spaes is not usually a powerset spae, but it is

an algebrai lattie. And this extends to all algebrai latties. Hene, we have

the well known theorem (see [13,16℄):
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Theorem 3.8 The ategory ALat is artesian losed.

The Category of Equilogial Spaes. We have now reviewed suÆient

material to be able to give two de�nitions of the ategory of equilogial spaes

and to show that the two de�nitions are equivalent. We will then prove that

the ategory is artesian losed.

De�nition 3.9 The ategory Equ of equilogial spaes is de�ned as fol-

lows.

(1) Objets are strutures E = hjEj;


E

;�

E

i, where hjEj;


E

i is a T

0

-spae

and �

E

is an (arbitrary) equivalene relation on the set jEj.

(2) The mappings between equilogial spaes are the equivalene lasses of

ontinuous mappings between the topologial spaes that preserve the

equivalene relation (equivariant mappings), where the equivalene re-

lation on mappings is de�ned by

f �

E!F

g () 8x; y 2 jEj:

�

x �

E

y =) f(x) �

F

g(y)

�

:

We remark that it has to be proved that �

E!F

atually is an equivalene

relation, but this is an elementary exerise. It also has to be proved that the

equilogial spaes and equivariant maps form a ategory, but this an also be

safely left to the reader.

One odd feature of this de�nition is that the equivalene relation of an equi-

logial spae may have very little to do with the topology. This means that

in some ases the only equivariant mappings between two spaes might be

the onstant maps, or the only automorphisms of a given spae might be the

identity|despite a rih underlying topology. Thus, future investigations may

suggest limiting the equivalene relations. But, for now, the general properties

of the ategory seem to work out well for arbitrary equivalene relations, so

we have not been motivated to make any further restritions in this paper.

Reall that a ategory is omplete if it has all (small) produts and equalizers

of all pairs of parallel arrows. Similarly, a ategory is oomplete if it has

all (small) oproduts and oequalizers of all pairs of parallel arrows. Also

reall that a regular subobjet is a subobjet whih arises as the equalizer of

a pair of parallel arrows and that a ategory is regular well-powered if the

regular subobjets of every objet onstitute a set. Dually, a regular quotient

is a quotient whih arises as the oequalizer of a pair of parallel arrows and

a ategory is regular o-well-powered if no objet has a proper lass of non-

isomorphi regular quotients.

Theorem 3.10 The ategory Equ is omplete, oomplete, and it is regular

well-powered, and regular o-well-powered.

4

4

The authors are indebted to Peter Johnstone for pointing out that, ontrary to

the assertion made in Sott's original unpublished manusript, Equ is not well

powered, for there are fairly simple examples of objets in the ategory with an
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Proof. The proof proeeds along standard lines making use of the orre-

sponding properties of topologial spaes.

Take produts �rst. The produt (of any number) of topologial spaes is a

spae with a produt topology. The produt of equivalene relations is an

equivalene relation. The projetion mappings are learly equivariant. And,

if we have a family of (equivalene lasses of) equivariant mappings into the

various fator spaes, then (after applying the Axiom of Choie to pik repre-

sentatives) we an obtain in the usual way one equivariant mapping into the

produt that ombines all the separate mappings.

Next, take equalizers. Suppose f; g : jEj ! jFj are two (representatives of)

equivariant mappings. Form the set f x 2 jEj j f(x) �

F

g(x) g. Endow this set

with the subspae topology and with the restrition of the equivalene relation

�

E

. This struture, along with the obvious inlusion mapping into E , is the

desired equalizer. Thus, Equ is a omplete ategory.

On to oproduts. The oprodut of topologial spaes is just a disjoint union

of the underlying sets with the topology on the union generated by the union

of all the topologies. For equivalene relations, we have only to note that the

union of equivalene relations on disjoint sets is indeed an equivalene relation.

The injetion mappings from the separate spaes into the union are obvious,

as well as is the lifting property of a family of mappings from the separate

spaes into a given target spae.

Next, we disuss oequalizers. Suppose f; g : E ! F are two (representatives

of) equivariant mappings. On jFj we form the least equivalene relation on-

taining both �

F

and the set of pairs f (f(x); g(x)) j x 2 jEj g. Using this

equivalene relation on jFj, we form the equilogial spae G. There is an ob-

vious equivariant mapping  : F ! G represented by the identity. This is the

desired oequalizer. Thus, Equ is a oomplete ategory.

Finally, we turn to well-poweredness. The properties of being regular well-

powered and regular o-well-powered follow from the orresponding properties

of Top

0

and the ategory of equivalene relations; one just has to be areful to

hek that the regular subobjets are obtained by seleting some equivalene

lasses and taking the union of them to form a subspae; likewise, forming

a regular quotient is just making the equivalene relation oarser (putting

equivalene lasses together). And, be warned that there are subobjets and

quotients whih are not formed in this simple way.

The proof just given is skethy in the handling of equivalene lasses of maps,

and, in the onstrution of the equalizer and oequalizer, it has to be heked

that the strutures suggested have the required universal properties. But, this

argument|modulo equivalene lasses|is exatly similar to what is done for

the ategory Top

0

. We remark that the ategory of equivalene relations on

sets is inluded here: a set is just a disrete topologial spae (and these form

unbounded number of non-isomorphi subobjets.
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a full subategory of Top

0

). Of ourse, with the aid of the Axiom of Choie, it

is quikly shown that the ategory of equivalene relations is equivalent to the

ategory of sets (via the obvious use of quotient sets). However, the ategory

Equ introdued here is not equivalent to the ategory Top

0

. For one thing,

no topology is being put on the quotient spae jEj=�

E

. And this ategory has

a property|artesian losure|that Top

0

does not share.

To investigate Equ further, we introdue a losely onneted ategory.

De�nition 3.11 The ategory PEqu of partial equilogial spaes is de-

�ned as follows.

(1) Objets are strutures A = hjAj;


A

;�

A

i, where hjAj;


A

i is the �-

topology of an algebrai lattie, and where �

A

is a partial equivalene

relation, i.e., reexive only on a subset of jAj.

(2) The mappings between partial equilogial spaes are the equivalene

lasses of ontinuous mappings between the algebrai latties that pre-

serve the partial equivalene relation, where the equivalene relation on

mappings is de�ned as before by

f �

A!B

g () 8x; y 2 jAj:

�

x �

A

y =) f(x) �

B

g(y)

�

:

These mappings will also be alled equivariant.

If we onsider the relation f �

A!B

g as being de�ned between arbitrary

ontinuous funtions, then equivariant maps for the ategory PEqu are the

(equivalene lasses of) the funtions f satisfying f �

A!B

f , sine that means

that the funtion preserves the underlying equivalene relation. This remark

gives a hint as to how we will de�ne funtion spaes, but �rst we want to hek

the equivalene of ategories.

Theorem 3.12 The ategories Equ and PEqu are equivalent.

Proof. The naturally suggested funtor from PEqu to Equ is the one that

takes hjAj;


A

;�

A

i and restrits the topology to the subspae on the subset

f x 2 jAj j x �

A

x g. On this subset the equivalene relation is \total". The

mappings are likewise restrited. Call the funtor R (for \restrition"). Now,

if f : A ! B is a map of PEqu, then R(f) = f � jR(A)j : R(A) ! R(B) is

valid as a map of Equ, and identities and ompositions are preserved.

We note �rst that the funtor R is faithful by de�nition. Then, the funtor R is

full in view of The Extension Theorem (beause ontinuous funtions between

T

0

-spaes an be extended to any algebrai latties embedding them). Finally,

the funtor R is essentially surjetive on objets by virtue of The Embedding

Theorem (and note that the equivalene relation on the T

0

-spae does not

have to be extended but remains partial). This is enough to show that the

ategories are equivalent.

The idea of partial equivalene relations has been very widely employed. Sott

believes he �rst alled general attention to it in the late '60s after extrating
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it from the studies by G. Kreisel and A. Troelstra on extensional theories

of higher-type funtionals in reursion theory. However, it has been mostly

used reently in the ontext of giving types to (quotients of) subsets of a

universal model of some sort. We think allowing partial equivalene relations

over a large ategory (suh as algebrai latties) is possibly a new idea; but,

ertainly, many familiar proofs get reused in the new ontext. The following

theorem is an example of this reuse.

Theorem 3.13 The ategory Equ is artesian losed.

Proof. In view of the previous theorem, we will show that PEqu is artesian

losed. Given strutures A and B in PEqu we de�ne the struture A! B so

that

(i) jA ! Bj is the set of ontinuous funtions between the latties jAj and

jBj;

(ii) 


A!B

is the �-topology on this algebrai lattie;

(iii) �

A!B

is the partial equivalene de�ned previously.

We have to show, that for any three strutures in PEqu, say, A, B, and C,

there is a one-one orrespondene between funtions in the two spaes:

(A� B ! C) and (A! (B ! C)):

As we know, there is a partiular one-one orrespondene that is an isomor-

phism of the underlying algebrai latties (and a homeomorphism of topo-

logial spaes). It only remains to show that the isomorphism preserves the

partial equivalene relation on the ompound spae. This is a \self-proving"

theorem, in the sense that one the question is stated it is just a matter of

unpaking the de�nitions to �nish it o�.

4 Equilogial Spaes, Type Theory and Logi

We have now already seen that the ategory of equilogial spaes provides a

model of the simply-typed �-alulus, inasmuh as Equ is artesian losed. In

this setion we show that Equ in fat supports a muh more expressive type

theory and logi, whih an be introdued by using the method of assemblies.

Here, as elsewhere in the paper, we have favored a onrete exposition over a

more abstrat and eonomial presentation.

For simpliity, we sometimes write an objet A = hjAj;


A

;�

A

i of PEqu as

(A;�

A

) with A the algebrai lattie hjAj;


A

i and �

A

the partial equivalene

relation �

A

. We then write jAj for the underlying set of the algebrai lattie

A.
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Modest Sets and Assemblies. We �rst introdue yet another equivalent

de�nition of the ategory Equ, whih will allow us to proeed by analogy to

the ategory of partial equivalene relations over a PCA (see, e.g., [11℄).

De�nition 4.1 The ategory Assm(ALat) of assemblies over the ate-

gory of algebrai latties is de�ned as follows.

(1) Objets are triples (X;A;E) with X 2 Set, A 2 ALat, and the mapping

E : X ! P jAj in Set is suh that E(x) is non-empty for all x 2 X. We

all the elements in E(x) realizers for x.

(2) The morphisms from an objet (X;A;E) to an objet (X

0

; A

0

; E

0

) are

funtions f : X ! X

0

in Set for whih there exists a ontinuous funtion

g : A! A

0

in ALat suh that

8x 2 X:8a 2 E(x):g(a) 2 E

0

(f(x)):

We all suh a funtion g a realizer for f , and say that g traks f .

De�nition 4.2 An objet (X;A;E) of Assm(ALat) is alled modest if, and

only if,

8x; x

0

2 X:

�

x 6= x

0

=) E(x) \ E(x

0

) = ;

�

:

The full subategory of Assm(ALat) formed by the modest objets is re-

ferred to as the ategory of modest sets over algebrai latties is denoted

Mod(ALat).

Roughly speaking a modest set is an assembly where a realizer a 2 E(x) arries

enough information to determine the element x 2 X uniquely. An example of

an assembly whih is not isomorphi to any modest set is (f0; 1g;P f0g; E),

where E(0) = E(1) = P f0g. Here, the realizers tell us nothing at all about

the di�erenes between 0 and 1. (A term suh as \separated" might have

been more desriptive than \modest" | but see the further omments on

terminology below.)

Readers familiar with ategories of realizability models based on PCAs will

immediately note the similarity of the above de�nitions to the well-known

de�nitions of the ategories of modest sets and assemblies over a PCA (see,

e.g., [19,11,28,26℄). Those ategories both embed into the so-alled realizability

topos over the PCA [19℄. We do not get a orresponding embedding into a

topos, however; we shall disuss why below.

One useful intuition is to think of the ategory of algebrai latties as providing

a typed universe of realizers (f. the untyped universe of realizers provided by

a PCA). Indeed for many onlusions we do not use any properties of algebrai

latties beyond the fat that it is a artesian losed ategory. For example, we

might use the artesian losed ategory �

0

ALat of ountably based algebrai

latties, equivalent to the ategory of algebrai sublatties of P N . In this ase,

modest sets are really modest in the sense of having their ardinality bounded

by 2

�

0

. It turns out also that one an obtain more general results based on

10



only a weakly artesian losed ategory of realizers [9℄; we shall not go into

that here, preferring for onreteness to stay with the example of all algebrai

latties.

Theorem 4.3 The ategories Equ, PEqu, and Mod(ALat) are all equiva-

lent.

Proof. De�ne a funtor F : Mod(ALat)! PEqu by F (X;A;E) = (A;�

A

),

where a �

A

a

0

() 9x 2 X:a; a

0

2 E(x). When applied to a morphism

f : (X;A;E) ! (X

0

; A

0

; E

0

) in Mod(ALat), the funtor F gives the equiva-

lene lass of a realizer g : A ! A

0

(g in ALat) for f whih exists by virtue

of f being a morphism in Mod(ALat). The de�nition of F is learly inde-

pendent of the hoie of g. It is straightforward to verify that the funtor F is

full and faithful and essentially surjetive on objets. For the latter, given an

objet (A;�

A

) 2 PEqu, onsider the objet (f a 2 jAj j a �

A

a g=�

A

; A; E) 2

Mod(ALat) with E the identity funtion on equivalene lasses.

We now use the alternative desription of Equ provided by the above theorem

to present some of its ategorial properties in a di�erent way. Some of the

properties we have already seen, but the alternative desriptions below are

useful. Along the way, we onsider Assm(ALat), sine the onstrutions are

basially the same and we shall make use of Assm(ALat) below.

First, let us denote that inlusion funtor fromMod(ALat) to Assm(ALat)

by I. We now hek some ategorial properties diretly.

Theorem 4.4 Both Assm(ALat) and Mod(ALat) are artesian losed and

the inlusion preserves the artesian losed struture:

Proof. The terminal objet of Assm(ALat) is (1

Set

; 1

ALat

; E

1

) with 1

Set

=

f�g, 1

ALat

= f�

0

g, and E

1

(�) = f�

0

g. Clearly it is modest and terminal in

Mod(ALat).

The binary produt of (X;A;E

X

) and (Y;B;E

Y

) is (X � Y;A � B;E) with

E(x; y) = E

X

(x) � E

Y

(y). Here we make use of the binary produts in the

ategory of algebrai latties, in analogy with the way in whih the produt

operation of a PCA is used to prove that the ategory of assemblies and

modest sets over suh has binary produts. If (X;A;E

X

) and (Y;B;E

Y

) are

both modest, then also their produt so de�ned is modest.

The exponential of (X;A;E

X

) and (Y;B;E

Y

) is (Z;B

A

; E) with Z = f f 2

Y

X

j 9g : A ! B:g traks f g; E(f) the set of elements of B

A

whih trak f ,

i.e., E(f) = f g 2 B

A

j 8x 2 X:8a 2 E

X

(x):g(a) 2 E

Y

(f(x)) g. If (X;A;E

X

)

and (Y;B;E

Y

) are both modest, then also (Z;B

A

; E) is modest.

Theorem 4.5 Both Assm(ALat) and Mod(ALat) have �nite limits and

the inlusion preserves the �nite limits.

Proof. By the previous theorem it suÆes to onsider equalizers. The equal-

izer of f; g : (X;A;E

X

) ! (Y;B;E

Y

) is (f x 2 X j f(x) = g(x

0

) g; A; E

0

X

),

11



where E

0

X

is E

X

restrited to the subset, together with the obvious inlusion

map. Let us also write out the pullbak of f and g in

P

//

��

_
� (Y;B;E

Y

)

g

��
(X;A;E

X

)

f

//
(Z;C;E

Z

)

The objet P is (f (x; y) 2 X � Y j f(x) = g(y) g; A� B;E) with E(x; y) =

E

X

(x)� E

Y

(y).

A morphism f : (X;A;E

X

)! (Y;B;E

Y

) is a monomorphism inAssm(ALat)

(or in Mod(ALat)) exatly if f is an injetive funtion of sets; it is an epi-

morphism exatly if f is a surjetive funtion. Let us now onsider regular

subobjets.

Reall that a regular ategory is a ategory with �nite limits and (stable under

pullbak) image fatorizations (see, e.g., [10℄).

Theorem 4.6 Both Assm(ALat) and Mod(ALat) are regular ategories.

Proof. By the previous theorems, it suÆes to show that we have stable

image fatorizations. The image fatorization of f : (X;A;E

X

) ! (Y;B;E

Y

)

is

(X;A;E

X

)

f

//

e

(( ((QQQQQQQQQQQQ
(Y;B;E

Y

)

(X=�; A; E

0

X

)

66
m

66mmmmmmmmmmm

where

8x; x

0

2 X:

�

x � x

0

() f(x) = f(x

0

)

�

and E

0

X

([x℄) =

[

x

0

2[x℄

E

X

(x

0

):

For the mappings, we set e(x) = [x℄ (whih is traked by the identity), and

m([x℄) = f(x) (whih is traked by a realizer for f).

Theorem 4.7 The regular subobjets of an objet (X;A;E

X

), both in the at-

egory Assm(ALat) and in Mod(ALat) are in bijetive orrespondene with

the powerset of X.

Proof. This follows easily from the desription of equalizers.

In terms of PEqu, a regular subobjet of an objet (A;�

A

) onsists of the

algebrai lattie A together with a partial equivalene relation orresponding

to a olletion of the equivalene lasses of �

A

.

The well-known relationship between the ategory of assemblies over a PCA

and the ategory of sets (see, e.g., [20,19℄) an easily be generalized to our situ-

ation as well: The ategory Set of sets embeds into the ategory of assemblies

by the funtor r : Set ! Assm(ALat) where r(X) = (X; 1

ALat

; E) with

E(x) = �, for all x 2 X, and r(f : X ! Y ) = f , trivially realized. Then one

12



an show that r is full and faithful, preserves �nite limits, and oequalizers of

kernel pairs (hene is exat in the sense of Barr [2℄) and exponentials. De�ne

the \global setions" funtor �: Assm(ALat)! Set by �(X;A;E) = X and

�(f) = f . Then � is faithful and exat. Moreover, one an easily prove the

following theorem.

Theorem 4.8 The funtor � is left adjoint to r with �r = id.

The ategorial relationship between modest sets and assemblies is given by

this theorem:

Theorem 4.9 The ategory Mod(ALat) is a reetive subategory of the

ategory Assm(ALat).

Proof. The reetion funtor R : Assm(ALat) ! Mod(ALat) is de�ned

as follows. On objets (X;A;E), let R(X;A;E) = (X=�; A; E

0

) where x � x

0

if, and only if, E(x) \E(x

0

) 6= ; and E

0

([x℄) =

S

x2[x℄

E(x

0

). On morphisms f ,

let R(f) be the mapping [x℄ 7! [f(x)℄.

Modeling Dependent Type Theory. In this subsetion we show that the

ategoryMod(ALat), and thus PEqu, models dependent type theory. Types

are indexed objets ofMod(ALat); the indexing is by objets ofMod(ALat).

The regular subobjets an be used to give us logi to reason about the types

and with respet to whih we have full subset types and full quotient types.

See [18,24,26℄ for more on subset types and quotient types. The same holds for

Assm(ALat), but here, in addition, the logi is higher order | in short, the

point is that the regular subobjet lassi�er is not an objet of Mod(ALat)

but it is an objet of Assm(ALat); we explain this in more detail below.

All this works by analogy to the situation for modest sets and assemblies over

a PCA. But the analogy seems to stop here; for example, the modest sets over

a PCA form essentially an internal ategory in the orresponding ategory of

assemblies and an be used to give a model of the alulus of onstrutions

with an imprediative universe of types. We do not have a orresponding result

with modest sets and assemblies over the ategory of algebrai latties as we

will explain.

Before embarking on the tehnial development, let us onsider an example.

Let Y be a losed type (an objet of Mod(ALat)) and let N denote the

type of natural numbers. Further assume u : Y ! N in Mod(ALat). In the

dependent type theory we an then form the type

Q

y : Y: fn 2 N j n � u(y) g

onsisting of all funtions, whih, given a y produes an n greater or equal to

u(y). Here fn 2 N j n � u(y) g is a well-formed (subset) type in the ontext

y : Y .

13



For the tehnial development, we make use of B. Jaobs' �brational de-

sription of models of dependent type theory [23,25,26℄, whih is related to

the D-ategories [14℄, ategories with attributes [12,30℄, display-map ate-

gories [40,21℄, and omprehensive �brations [32℄. See [23℄ for a omprehen-

sive introdution. We make a point of desribing the models in a so-alled

\split" way, so as to avoid problems with interpreting dependent type theory.

See, for example, [29,34,31,35,17℄ for a disussion of this issue. As this se-

tion progresses, we assume more and more familiarity with the ategories of

modest sets, assemblies and realizability toposes over PCAs. See, for example,

[19,22,33℄ for bakground on these ategories.

We �rst de�ne a ategory of uniform families of objets of the ategory

Mod(ALat). Uniformity refers to the fat that eah objet of the family will

have the same underlying algebrai lattie. The idea is that a dependent type,

in a ontext interpreted as the objet I, will be a family of objets indexed by

the objet I in Mod(ALat).

De�nition 4.10 The ategory UFam(Mod(ALat)) is de�ned as follows.

(1) Objets are triples of the form (I; A; (X

i

; E

i

)

i2X

I

), where

I = (X

I

; A

I

; E

I

) 2Mod(ALat) and

(X

i

; A; E

i

) 2Mod(ALat), for all i 2 X

I

:

(2) Morphisms from (I; A; (X

i

; E

i

)

i2X

I

) to (J;B; (Y

j

; E

0

j

)

j2X

J

), with

I = (X

I

; A

I

; E

I

) and J = (X

J

; A

J

; E

J

);

are pairs of the form (f; (f

i

)

i2X

I

), with

f : I ! J in Mod(ALat) and f

i

: X

i

! Y

f(i)

in Set;

for whih there exists a g : A

I

! A ! B in ALat suh that g traks f

uniformly, that is,

8i 2 X

I

:8a

i

2 E

I

(i):8x 2 X

i

:8a 2 E

i

(x):g(a

i

)(a) 2 E

0

f(i)

(f

i

(x));

(3) The identity morphism on an objet I = (X

I

; A

I

; E

I

) is (id ; (id)

i2X

I

).

(4) The omposition of (f; (f

i

)

i2X

I

) and (g; (g

j

)

j2X

J

) is (gÆf; (g

f(i)

Æ f

i

)

i2X

I

).

We think of a family (I; A; (X

i

; E

i

)

i2X

I

) as a type in ontext I, whose �ber

at i in X

I

is (X

i

; A; E

i

)

i2X

I

. There is an obvious forgetful funtor

U : UFam(Mod(ALat))!Mod(ALat)

given by (I; A; (X

i

; E

i

)

i2X

I

) 7! I and (f; (f

i

)

i2X

I

) 7! f .

Theorem 4.11 The funtor U : UFam(Mod(ALat)) ! Mod(ALat) is a

split �bration whih is equivalent, as a �bration, to the odomain �bration over

Mod(ALat).
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Proof. First de�ne split artesian liftings: Suppose u : I ! J inMod(ALat)

and let (J;B; (Y

j

; E

0

j

)

j2X

J

) be an objet over J . Then

(u; (id)

i2X

I

) : (I; B; (Y

u(i)

; E

0

u(i)

)

i2X

I

)! (J;B; (Y

j

; E

0

j

)

j2X

J

)

is the artesian lifting over u.

Now onsider the standard odomain �bration

od: Mod(ALat)

!

�!Mod(ALat)

where, as usual, Mod(ALat)

!

is the ategory of ommutative squares, with

objets morphisms ' : X ! I of Mod(ALat) and with morphisms from

' : X ! I to  : Y ! J pairs (u; f) of morphisms in Mod(ALat) suh

that

X

f

//

'

��

Y

 

��
I

u

//
J

ommutes.

De�ne the funtor P as in

UFam(Mod(ALat))

P //

**TTTTTTTTTTTTTTT
Mod(ALat)

!

od

uulllllllllllll

Mod(ALat)

by mapping an objet (I; A; (X

i

; E

i

)

i2X

I

), with I = (X

I

; A

I

; E

I

), to

(

`

i2X

I

X

i

; A

I

� A;E)

�

! I;

with E(i; x) = E

I

(i)� E

i

(x). The funtor P maps a morphism

(u; (f

i

)

i2X

I

) : (I; A; (X

i

; E

i

)

i2X

I

)! (J;B; (Y

j

; E

0

j

)

j2X

J

);

with I = (X

I

; A

I

; E

I

) and J = (X

J

; A

J

; E

J

), to the square

(

`

i2X

I

X

i

; A

I

� A;E)

fu;fg

//

�

��

(

`

j2X

I

Y

j

; A

J

�B;E

0

)

�

��
I

u

//
J

where fu; fg is the funtion (i; x) 7! (u(i); f

i

(x)) traked by

�(a

i

; a): (r

u

(a

i

); g(a

i

)(a)) : A

I

� A! A

J

�B;

with r

u

: A

I

! A

J

a realizer for u : I ! J and g a realizer for the family

(f

i

)

i2X

I

. This is, of ourse, a morphism in ALat sine it is de�ned in the

internal typed lambda alulus language of ALat.

15



One an now verify that P is a full and faithful �bered funtor. Moreover

we an de�ne a �bered funtor Q : Mod(ALat)

!

! UFam(Mod(ALat))

mapping ' : X ! I, with I = (X

I

; A

I

; E

I

) and X = (X

X

; A

X

; E

X

) to the

family (I; A

X

; (X

i

; E

i

)

i2X

I

) with X

i

= '

�1

(i) and E

i

(x) = E

X

(x); a morphism

(u; f) as in

X

f

//

'

��

Y

 

��
I

u

//
J

is mapped by Q to (u; (f)

i2X

I

). It an then be veri�ed that Q is also a �bered

funtor and that PQ

�

=

id vertially and that QP

�

=

id vertially.

Consider a type-in-ontext (I; A; (X

i

; E

i

)

i2X

I

). The funtor P , from the proof

above, applied to this type-in-ontext yields the projetion

(

`

i2X

I

X

i

; A

I

� A;E)

�

! I

morphism inMod(ALat). This projetion morphism gives rise to a substitu-

tion funtor

�

�

: UFam(Mod(ALat))

I

! UFam(Mod(ALat))

(

`

i2X

I

X

i

;A

I

�A;E)

:

We think of this funtor as follows. It takes a type in ontext I and views it

as a type in the extended ontext (

`

i2X

I

X

i

; A

I

�A;E), orresponding to the

weakening rule

I ` X : Type I ` Y : Type

I; x : X ` Y : Type

The interpretation of I; x : X ` Y : Type is the funtor �

�

applied to the inter-

pretation of I ` Y : Type. To model dependent sums and dependent produts,

we need to have left adjoints

`

and right adjoints

Q

to the funtor �

�

.

It is easy to see that (I

Set

; 1

ALat

; (1

Set

; E

1

)

i2X

I

) is a terminal objet in the

�ber over I = (X

I

; A

I

; E

I

), where E

1

(�) = f�g. The terminal objet funtor

1 : Mod(ALat) ! UFam(Mod(ALat)) maps an objet I = (X

I

; A

I

; E

I

)

to the terminal objet over I and a morphism u : I ! J to the morphism

(u; (�x: �)

i2X

I

). This terminal objet funtor has a right adjoint

fg : UFam(Mod(ALat))!Mod(ALat)

de�ned by, for I = (X

I

; A

I

; E

I

), f(I; A; (X

i

; E

i

)

i2X

I

)g = (

`

i2X

I

X

i

; A

I

�A;E)

with E(i; x) = E

I

(i) � E

i

(x). That is, fg = domÆP where P was de�ned

in the proof of the previous theorem. Briey, if (u; (f

i

)

i2X

I

) is a morphism

from 1(I) to (J;B; (Y

j

; E

j

)

j2X

J

), with I = (X

I

; A

I

; E

I

) and J = (X

J

; A

J

; E

J

)

then its adjoint transpose from I to f(J;B; (Y

j

; E

j

)

j2X

J

)g is �i: (u(i); f

i

(�)),

realized by

�a

i

: �a: (r

u

(a); r

f

(a

i

)(�

0

)) : A

I

! A! B;
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where r

u

is a realizer for r and r

f

is a realizer for the family (f

i

)

i2X

I

. Thus

the onstrutions are exatly analogous to the ase for modest sets over a

PCA. In summa, sine the terminal objet funtor has a right adjoint and the

projetion funtor P is full we have a split full omprehension ategory with

unit.

Next, we argue that the ompression ategory has split produts. What this

means is that, for any family X = (I; A; (X

i

; E

i

)

i2X

I

) over I = (X

I

; A

I

; E

I

)

with projetion �

X

: fXg = (

`

i2X

I

X

i

; A

I

�A;E)! I, the reindexing funtor

�

�

X

has a right adjoint

Q

X

, whih satis�es a Bek-Chevalley ondition. De�ne

Q

X

�

(

`

i2X

I

X

i

; A

I

� A;E); C; (Z

k

; E

k

)

k2

`

i2X

I

X

i

�

to be

�

I; A! C; (f f : X

i

!

[

x2X

i

Z

(i;x)

j 8x 2 X

i

:f(x) 2 Z

(i;x)

g; E

0

i

)

i2X

I

�

;

where

E

0

i

(f) = f g : A! C j \g traks f" g

= f g : A! C j 8x 2 X

i

:8a 2 E

i

(x):g(a) 2 E

(i;x)

(f(x)) g:

It is easy to verify that E

0

i

is modest. The adjoint transposes are de�ned

essentially as for the ase of the family of sets �bration; one just has to verify

that one has the required realizers, but that is simple using the internal typed

lambda alulus of ALat. Now for the Bek-Chevalley ondition, we are to

show that for a pullbak

(

`

i2X

I

X

u(i)

; A

I

�B;E)

fu;idg

//

�

X

��

(

`

j2X

J

X

j

; A

J

� B;E

0

)

�

Y

��
I

u

//
J

in Mod(ALat), we have that the anonial natural transformation

u

�

Q

Y

!

Q

X

fu; idg

�

is an identity (not only iso, beause we laim to have split produts). This is

straightforward to verify.

For the omprehension ategory to have strong split oproduts (modeling

dependent sums) we need, with notation as in the previous paragraph, �rst to

have left adjoints

`

X

to �

�

X

, for projetions �

X

, satisfying a Bek-Chevalley

ondition. De�ne

`

X

�

(

`

i2X

I

X

i

; A

I

� A;E); C; (Z

k

; E

k

)

k2

`

i2X

I

X

i

�

17



to be

�

I; A� C; (f (x; z) j x 2 X

i

; z 2 Z

(i;x)

g

i

; E

0

i

)

i2X

I

�

;

with E

0

i

(x; z) = E

i

(x) � E

(i;x)

(z), easily seen to be modest. On a morphism

(id ; (f

(i;x)

)

(i;x)2

`

i2X

I

X

i

) we de�ne

`

X

to give (id ; ((x; z) 7! (x; f

(i;x)

(z)))

i2X

I

),

whih is learly realizable. Again it is straightforward to verify that the Bek-

Chevalley ondition holds, i.e., referring to the pullbak in the previous para-

graph, that

`

X

fu; idg

�

! u

�

`

Y

is an identity. This shows then that we have

split oproduts. To have strong split oproduts, we have to show that the

anonial map � in the following diagram is an iso:

P

� //

�

��

Q

�

��
R

�

X

//
I

where

P =

�

a

(i;x)2

`

i2X

I

X

i

X

i

; (A

I

� A)� C;E

�

;

Q =

�

a

i2X

I

f (x; z) j x 2 X

i

; z 2 Z

(i;x)

g; A

I

� (A� C); E

0

�

;

R = (

a

i2X

I

X

i

; A

I

� A;E

00

) :

But � is just the map ((i; x); z) 7! (i; (x; z)), whih is learly realizable by the

orresponding map on algebrai latties, and obviously has an inverse. Hene

we have strong oproduts.

We have thus shown the following theorem, with notation as in Theorem 4.11

and its proof.

Theorem 4.12 P : UFam(Mod(ALat)) ! Mod(ALat)

!

is a split losed

omprehension ategory. Hene, we have a model of dependent type theory.

We an use the regular subobjets to provide a logi with whih one an reason

about the types of the type theory. By Theorem 4.7, the regular subobjets of

an objet I = (X

I

; A

I

; E

I

) is isomorphi to PX

I

. Hene the ategory of regular

subobjets ofMod(ALat), denotedRegSub(Mod(ALat)), an be identi�ed

with the ategory with objets (I;K), where I = (X

I

; A

I

; E

I

) 2Mod(ALat)

and K � X

I

and with morphisms from (I;K) to (J; L) maps u : I ! J in

Mod(ALat) satisfying that u(K) � L. In the regular subobjet �bration

RegSub(Mod(ALat))

��
Mod(ALat)

reindexing of (J; L) along a map u : I ! J , i.e., u

�

(J; L) is given by taking

the inverse image of L along u.
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One an use this regular subobjet �bration to get a (lassial) logi, essen-

tially as for sets and for regular subobjets of the modest sets over a PCA.

Moreover, with regard to this logi, the omprehension ategory P admits full

(dependent) subset types and full (dependent) quotient types. However, for

reasons of spae, we do not spell that out here. Instead, let us mention that

the above models of type theory an be also be de�ned, in the exat same way,

for the ategory Assm(ALat) of assemblies over algebrai latties. For this

ase, the logi of regular subobjets will be higher-order: the regular subobjet

�bration has a generi objet, a regular subobjet lassi�er, namely the objet

r2 2 Assm(ALat). Note that this is an objet in Assm(ALat) whih is not

inMod(ALat) sine it is not modest. Again, this is analogous to the situation

of modest sets and assemblies over a partial ombinatory algebra [19,33,26℄.

Disussion. We should mention that the analogy with ategories de�ned

over a PCA an be made mathematially preise in the sense that there is

a notion of a \weak tripos" | a tripos as in [20℄ exept for the requirement

of a generi objet. For suh a �bered preorder, one an de�ne a ategory of

assemblies and modest sets and show that they model dependent type theory.

The tripos for a PCA will then provide an example, as will the weak tripos

onstruted over the ategory of algebrai latties. The details will appear

elsewhere.

We an also disuss just how far one an onsider the analogy with ategories

de�ned over a PCA in an informal way and aimed at the reader already familiar

with the situation for the ategories de�ned over a PCA. We mainly highlight

a ouple of interesting questions.

One of the nie features of the modest sets and assemblies over a PCA is

that they an be used to give a model of the alulus onstrution (see, e.g.,

[22,29,35℄). In fat, instead of the ategory of modest sets one uses the equiv-

alent ategory of partial equivalene relations to get a small ategory. The

ruial point is that this small ategory an be seen as an internal ategory in

the ategory of assemblies and that the externalization of this internal ate-

gory is a �bration equivalent to the �bration of uniform modest sets over the

assemblies, whih thus has a generi objet allowing us to get an imprediative

small universe of types as in the alulus of onstrutions.

An obvious next question is whether we an get something similar in our ase

with modest sets and assemblies over algebrai latties. It turns out that,

in our ase working over algebrai latties (or indeed any artesian losed

ategory), the �bration of uniform modest sets over assemblies is omplete,

but we annot show that it is essentially small. This is not surprising sine the

ategory of algebrai latties is not small. However, even if we only onsider a

small artesian losed ategory as our ategory of realizers, the orresponding

�bration is not small (is not equivalent to the externalization of an internal

ategory).
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The obvious solution to try, by analogy with the situation over a PCA, is

to onsider the small ategory of partial equivalene relations as an internal

ategory in the ategory of assemblies (simply by embedding it via r as is

done for the ase of PCAs), but then the externalization does not onsist

of uniform families: eah set in the family will have a di�erent underlying

objet of realizers. In fat, we have not been able to show that the �bration

of partial equivalene relations is small and, indeed, we believe that it is not,

unless further assumptions are made about the underlying ategory of realizers

(besides it being a small artesian losed ategory).

Another obvious question to ask, following the analogy with ategories over a

PCA, is whether PER(ALat) 'Mod(ALat) and Assm(ALat) embed fully

and faithfully into a big \realizability topos over algebrai latties" (suh as

the exat ompletion of the regular ategory Assm(ALat)). The answer is

no beause PER(ALat) is not well-powered. For note that it embeds fully,

faithfully by a �nite limit preserving funtor into the exat ompletion of

Assm(ALat), and so the latter is also non-well-powered and, hene, not a

topos. Again, even if we take a small artesian losed ategory as the universe

of realizers, it does not appear to be enough. To overome this problem we

tried to mimi the proof of Robinson and Rosolini [36℄, but it annot be

easily generalized. In other words, it appears that something more needs to

be assumed about the universe of realizers, and we have to leave that as an

open question.

5 Equilogial Spaes and Domains with Totality

Kleene-Kreisel ountable funtionals of �nite type [27℄ our in various models

of omputation. Ershov [15℄ plaed them in a domain-theoreti setting, and

Berger [5℄ worked out a general notion of totality for domain theory whih

subsumes Ershov's hierarhy of �nite types. He also extended this approah to

dependent types in his Habilitationsshrift [6℄. We show that Berger's odense

and dense objets in domain theory embed fully and faithfully in PEqu,

from whih it follows diretly by the previous work of Ershov and Berger

that the Kleene-Kreisel funtionals are onstruted in PEqu by repeated use

of exponentiation starting from the natural numbers objet. We begin this

setion with a quik overview of totality as de�ned by Berger [5℄. Please refer

to the original paper for details.

Domains with Totality. For our purposes, a domain D = hjDj;�

D

i is an

algebrai onsistently-omplete direted-omplete partially ordered set with

a least element. We may view domains as topologial spaes with their �-

topologies, just as we did with omplete latties. Let Dom be the ategory of

domains and ontinuous funtions. Domains an also be onsidered as topo-

logially losed non-empty subsets of algebrai latties. Thus ALat is a full
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subategory of Dom. Additionally Dom is a artesian losed ategory (see,

e.g., [39℄ or [1℄), and ALat is a full artesian losed subategory of Dom. A

domain beomes an algebrai lattie if a \top" element is added to the poset.

This onstrution produes a funtor whih, however, is not a reetion and

it does not preserve the -struture.

The following de�nitions are taken from Berger [5℄. We follow the terminology

of Berger [6℄ in whih the term total has been replaed by the term odense.

A subset M � jDj of a domain D is dense if it is dense in the topologial

sense, i.e., the losure of M is jDj. We write x " y when elements x; y 2 jDj

are bounded, and x 6" y when they are unbounded.

A �nite subset fx

0

; : : : ; x

k

g � jDj is separable if there exist open subsets

U

0

; : : : ; U

k

� jDj suh that x

0

2 U

0

; : : : ; x

k

2 U

k

and U

0

\ � � � \ U

k

= ;.

We say that U

0

; : : : ; U

k

separate x

0

; : : : ; x

k

. It is easily seen that a �nite set is

separable if, and only if, it is unbounded. A family of open sets U is separating

if it separates every separable �nite set, i.e., for every separable fx

0

; : : : ; x

k

g �

jDj there exist members of U that separate it.

The boolean domain B

?

is the at domain for the boolean values tt and � .

A partial ontinuous prediate (pp) on a domain D is a ontinuous funtion

p : jDj ! B

?

. The funtion-spae domain [D ! B

?

℄ is denoted by pp(D).

With eah pp p we assoiate two disjoint open sets by inverse images:

p

+

= p

�1

(fttg) and p

�

= p

�1

(f� g):

A subset P � jpp(D)j is separating if the orresponding family

n

p

+

�

�

� p 2 P

o

is separating.

Given a set M � jDj let

E(M) =

n

p 2 jpp(D)j

�

�

� 8x 2M: p(x) 6= ?

o

:

A set M is odense in D if the family E(M) is separating. An element x 2 jDj

is odense if the singleton fxg is odense in D. Every element of a odense set

is odense, but not every set of odense elements is odense. If M � jDj is a

odense set then the onsisteny relation " is an equivalene relation on M .

Thus, a odense set M � jDj an be viewed as a domain D together with a

partial equivalene relation �

M

, whih is just the relation " restrited to M .

A totality on a domain, in the sense of Berger [5℄, is a dense and odense

subset of a domain. Note that in the original paper by Berger [5℄ odense sets

are alled total. Here we are using the newer terminology of Berger [6℄.

Given domains with totality M � jDj and N � jEj, it is easily seen that the

set M �N � jDj � jEj is again a totality on the domain D � E . Similarly, by

the Density Theorem in Berger [5℄ the set

hM;Ni =

n

f 2 [D ! E ℄

�

�

� f(M) � N

o
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is a totality on the funtion-spae domain [D ! E ℄. This idea of totality

generalizes the simple-minded onnetion between total and partial funtions

using at domains. If A is any set, let A

?

be the at domain obtained by

adding a bottom element. Then A itself is a totality on A

?

, and the total

funtions of A! B in Set orrespond to (equivalene lasses) of funtions in

hA;Bi onsidered as elements of [A

?

! B

?

℄.

Partial Equivalene Relations. Let PER(Dom) be the ategory formed

just like PEqu exept that domains are used instead of algebrai latties, i.e.,

an objet ofPER(Dom) is a struture D = hjDj;�

D

;�

D

i where hjDj;�

D

i is a

domain and �

D

is a partial equivalene relation on jDj. Category PER(Dom)

is artesian losed, and for D; E 2 PER(Dom) we hoose the anonial prod-

ut and exponential D � E and D ! E whose underlying domains are the

standard produt and exponential in Dom, and the partial equivalene rela-

tions are de�ned by

(x

1

; y

1

) �

D�E

(x

2

; y

2

) () x

1

�

D

x

2

^ y

1

�

E

y

2

f �

D!E

g () 8x; y 2 jDj:

�

x �

D

y =) f(x) �

E

g(y)

�

:

We say that a partial equivalene relation �

D

on a domain D is dense when

its domain

dom(�

D

) =

n

x 2 jDj

�

�

� x �

D

x

o

is a dense subset of D.

Beause every algebrai lattie is a domain, PEqu is a full subategory of

PER(Dom). The top-adding funtor T : PER(Dom) ! PEqu maps an

objet D 2 PER(Dom) to the objet

T (D) = hjDj [ f>g ;


T (D)

;�

D

i

where hjDj [ f>g ;


T (D)

i is the algebrai lattie obtained from the underlying

domain ofD by attahing a ompat top element. Funtor T maps a morphism

[f ℄ : D ! E to the morphism T ([f ℄) represented by the map

T (f)(x) =

8

<

:

f(x) x 6= >

> x = >:

The top-adding funtor is a produt-preserving reetion, hene PEqu is an

exponential ideal and a sub- of PER(Dom).

In ategory Dom it is not the ase that every ontinuous map f : D

0

! jEj

de�ned on an arbitrary non-empty subset D

0

� jDj has a ontinuous exten-

sion to the whole domain jDj. Beause of this fat the ategory PER(Dom)

has ertain undesirable properties. However, it is true that every ontinuous

map de�ned on a dense subset has a ontinuous extension; this is an easy

onsequene of the Extension Theorem and the fat that a domain beomes
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an algebrai lattie when a top element is added to it. These observations

suggest that we should onsider only the dense partial equivalene relations

on domains.

Let DPER(Dom) be the full subategory of PER(Dom) whose partial

equivalene relations are either dense or empty. We are inluding the empty

equivalene relation here beause the only map from an empty subset always

has a ontinuous extension. The objets whose partial equivalene relations are

empty are exatly the initial objets of DPER(Dom). We have the following

theorem.

Theorem 5.1 DPER(Dom) and PEqu are equivalent.

Proof. In one diretion, the equivalene is established by the top-adding fun-

tor T : DPER(Dom)! PEqu. In the other diretion, the equivalene fun-

tor K : PEqu! DPER(Dom) is de�ned as follows. When A = (jAj;


A

; ;)

is an initial objet, de�ne K(A) = A. Otherwise K maps an objet A 2 PEqu

to an objet K(A) whose underlying domain is the set jK(A)j = dom(�

A

),

whih is the topologial losure of dom(�

A

) in jAj, equipped with the sub-

spae topology. The partial equivalene relation for K(A) is just �

A

restrited

to jK(A)j. The funtor K maps a morphism [f ℄ : A! B to the morphism rep-

resented by the restrition f �

jK(A)j

. Here we assume that the morphism from

an initial objet A = (jAj; ;) is represented by the onstant map f : x 7! ?.

If A is initial, K([f ℄) is obviously well de�ned. When A is not initial, K([f ℄)

is well de�ned beause ontinuity of f implies that

f(jK(A)j) = f(dom(�

A

)) � f(dom(�

A

)) � dom(�

B

) = jK(B)j:

It is easily heked that K and T establish an equivalene between PEqu and

DPER(Dom).

We would like to represent domains with totality as equilogial spaes. If

M � jDj is odense and dense in D, let hD;�

M

i be the objet of PER(Dom)

whose underlying domain is D and the partial equivalene relation �

M

is

the relation " on M . This identi�es domains with totality as objets of the

ategory DPER(Dom). The following result shows that the morphisms of

DPER(Dom) are the right ones, beause the  struture of DPER(Dom)

agrees with the formation of produts and funtion-spae objets with totality.

Theorem 5.2 Let M � jDj, N � jEj be odense and dense subsets in do-

mains D and E, respetively. Then in DPER(Dom)

hD;�

M

i � hE ;�

N

i = hD � E ;�

M�N

i; and

hD;�

M

i ! hE ;�

N

i = h[D ! E ℄;�

hM;Ni

i:

Proof. Here it is understood that the produt hD;�

M

i � hE ;�

N

i and the

exponential hD;�

M

i ! hE ;�

N

i are the anonial ones for PER(Dom). They

are objets in DPER(Dom) by the Density Theorem in Berger [5℄. The �rst
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equality follows from the observation that (x

1

; y

1

) " (x

2

; y

2

) if, and only if,

x

1

" x

2

and y

1

" y

2

. Let X = hD;�

M

i ! hE ;�

N

i and Y = h[D ! E ℄;�

hM;Ni

i.

Objets X and Y have the same underlying domains, so we only have to show

that the two partial equivalene relations oinide. The partial equivalene

relation on X is

f �

X

g () f; g 2 hM;Ni and 8x; y 2M:

�

x " y =) f(x) " g(y)

�

:

Suppose f �

X

g. Then f; g 2 hM;Ni and it remains to be shown that f " g.

For every x 2 M , sine x " x and f �

X

g, f(x) " g(x), thus by Lemma 7 in

Berger [5℄ f and g are inseparable, whih is equivalent to them being bounded.

Conversely, suppose f; g 2 hM;Ni and f " g. For every x; y 2 M suh that

x " y, it follows that f(x) " g(y) beause f(x) � (f _ g)(x _ y) and g(y) �

(f _ g)(x _ y). This means that f �

X

g.

Higher Types. The ategory PEqu is a full sub- of PER(Dom).

Sine DPER(Dom) is a full subategory of PER(Dom) and is equivalent

to PEqu, it is a full sub- of PER(Dom) as well. Theorem 5.2 states

that for odense and dense subsets M � jDj and N � jEj, the exponential

hD;�

M

i ! hE ;�

N

i oinides with the objet h[D ! E ℄;�

hM;Ni

i. We may use

this to show that in PEqu the ountable funtionals of �nite types arise as

iterated funtion spaes of the natural numbers objet. For simpliity we only

onentrate on pure �nite types �, �! �, (�! �)! �, . . . and skip the details

of how to extend this to the full hierarhy of �nite types generated by �, o, �,

and !.

The natural numbers objet in DPER(Dom) is the objet

DN

0

= hN

?

;�

N

?

; �

DN

0

i

whose underlying domain is the at domain of natural numbers N

?

= N [ f?g

and the partial equivalene relation �

DN

0

is the restrition of identity to N .

De�ne the hierarhy DN

1

;DN

2

; : : : indutively by

DN

j+1

= DN

j

! DN

0

where the arrow is formed inDPER(Dom). By Theorem 5.2, this hierarhy is

ontained in DPER(Dom) and orresponds exatly to Ershov's and Berger's

onstrution of ountable funtionals of pure �nite types. It is well known that

the equivalene lasses of DN

j

orrespond naturally to the original Kleene-

Kreisel ountable funtionals of pure type j, see Berger [5℄ or Ershov [15℄.

In PEqu the natural numbers objet is

N

0

= hN

?;>

;�

N

?;>

;�

N

0

i;

where N

?;>

= N [ f?;>g is the algebrai lattie of at natural numbers

with bottom and top, and �

N

0

is the restrition of identity to N . The iterated
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funtion spaes N

1

;N

2

; : : : are de�ned indutively by

N

j

= N

j�1

!N

0

:

The hierarhies DN

0

;DN

1

; : : : and N

0

;N

1

; : : : orrespond to eah other in

view of the equivalene between DPER(Dom) and PEqu, beause they are

both built from the natural numbers objet by iterated use of exponentiation,

hene the equivalene lasses of N

j

orrespond naturally to the Kleene-Kreisel

ountable funtionals of pure type j.
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