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Abstract

We establish a model category structure on algebraic Kan complexes. In fact, we
introduce the notion of an algebraic fibrant object in a general model category (obeying
certain technichal conditions). Based on this construction we propose algebraic Kan
complexes as an algebraic model for ∞-groupoids and algebraic quasicategories as an
algebraic model for (∞, 1)-categories.
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1 Introduction

Simplicial sets have been introduced as a combinatorial model for topological spaces. It has
been known for a long time that topological spaces and certain simplicial sets, called Kan
complexes, are the same from the viewpoint of homotopy theory. To make this statement
precise Quillen [Qui67] introduced the concept of model categories and equivalence of model
categories as an abstract framework for homotopy theory. He endowed the category Top of
topological spaces and the category sSet of simplicial sets with model category structures
and showed that Top and sSet are equivalent in his sense. He could identify Kan complexes
as fibrant objects in the model structure on sSet.

Later higher category theory came up. A 2-category has not only objects and morphisms, like
an ordinary (1-)category, but also 2-morphisms, which are morphisms between morphisms.
A 3-category has also 3-morphisms between 2-morphisms and so on. Finally an ∞-category
has n-morphisms for all n ≥ 1. Unfortunately it is very hard to give a tractable definition
of ∞-categories. See [Lei02] for several definitions of higher categories.
An interesting subclass of all∞-categories are those∞-categories for which all n-morphisms
are invertible. They are called ∞-groupoids. A standard construction from algebraic topol-
ogy is the fundamental groupoid construction Π1(X) of a topological space X. Allowing
higher paths in X (i.e. homotopies) extends this construction to a fundamental∞-groupoid
Π∞(X). It is widely believed that every∞-groupoid is, up to equivalence, of this form. This
belief is called the homotopy hypothesis [Bae07].
There is another important subclass of ∞-categories, called (∞, 1)-categories. These are
∞-categories where all n-morphisms for n ≥ 2 are invertible. Thus the only difference to
∞-groupoids is that there may be non-invertible 1-morphisms. In particular the collection
of all ∞-groupoids forms a (∞, 1)-category. Another example of a (∞, 1)-category is the
category of topological spaces where the n-morphisms are given by n-homotopies. In the
language of (∞, 1)-categories a more refined version of the homotopy hypothesis is the asser-
tion that the fundamental∞-groupoid construction provides an equivalence of the respective
(∞, 1)-categories.

¿From the perspective of higher category theory Quillen model structures are really presen-
tations of (∞, 1)-categories, see e.g. [Lur09] appendix A.2 and A.3. Hence we think about
a model category structure as a generators and relations description of a (∞, 1)-category. A
Quillen equivalence then becomes an adjoint equivalence of the presented (∞, 1)-categories.
Thus the classical Quillen equivalence between topological spaces and simplicial sets really
encodes an equivalence of (∞, 1)-categories.
Keeping this statement in mind, it is reasonable to think of a simplicial set S as a model for
an ∞-groupoid. The n-morphisms are then the n simplices Sn. And in fact there has been
much progress in higher category theory using simplicial sets as a model for ∞-groupoids.
This model has certain disadvantages. First of all a simplicial set does not encode how to
compose n-morphisms. But such a composition is inevitable for higher categories. This
problem is usually adressed as follows:
The model structure axioms on sSet imply that in the corresponding (∞, 1) category each
simplicial set is equivalent to a fibrant object i.e. a Kan complex. It is possible to interpret
the lifting properties of a Kan complex S as the existence of compositions in the∞-groupoid,
see section 3.1. Although the lifting conditions ensure the existence of compositions for S,
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these compositions are only unique up to homotopy. This makes it sometimes hard to
work with Kan complexes as a model for ∞-groupoids. Another disadvantage is that the
subcategory of Kan complexes is not very well behaved, for example it does not have colimits.

The idea of this paper to solve these problems is to consider a more algebraic version of
Kan complexes as model for ∞-groupoids. More precisely we will consider Kan complexes
endowed with the additional structure of distinguished fillers. We call them algebraic Kan
complexes. We show that the category of algebraic Kan complexes has all colimits and
limits (theorem 3.2.3). Furthermore we endow it with a model structure and show that it is
Quillen equivalent to simplicial sets (theorem 3.2.4-.5) . The name algebraic will be justified
by identifing algebraic Kan complexes as algebras for a certain monad on simplicial sets
(theorem 3.2 .1-2). The fact that algebraic Kan complexes really model∞-groupoids will be
justified by a proof of the appropriate version of the homotopy hypothesis (corollary 3.6).
We will generalize this notion of algebraic Kan complex to algebraic fibrant objects in a
general model category C, which satisfies some technical conditions, stated at the begining
of section 2. In particular we show that C is Quillen equivalent to the model category AlgC
of algebraic fibrant objects in C (theorem 2.18). We show that AlgC is monadic over C
(proposition 2.2) and that all objects are fibrant. In addition we give a formula how to
compute (co)limits in AlgC from (co)limits in C (section 2.4).
Finally we apply the general construction to the Joyal model structure on sSet. This is a
simplicial model for (∞, 1)-categories [Joy08, Lur09]. The fibrant objects are called quasi-
categories. We propose the category AlgQuasi of algebraic quasicategories as our model for
(∞, 1)-categories (section 4.2). One of the major advantages is that the model structure on
algebraic quasicategories can be described very explicitly, in particular we will give sets of
generating cofibrations and trivial cofibrations (theorem 4.4). Such a generating set is not
known for the Joyal structure.

This paper is organized as follows. In Section 2 we give the definition of the category AlgC
for a general model category C. We prove that AlgC enjoys excellent categorial properties
and that it admits a model structure Quillen-equivalent to C. In Section 3 we investigate
algebraic Kan complexes as a model for ∞-groupoids. In particular we prove the homotopy
hypothesis. In section 4 we investigate algebraic quasicategories as a model for (∞, 1)-
categories. Furthermore we compare algebraic Kan complexes and algebraic quasicategories.

Acknowledgements. The author is supported by the Collaborative Research Centre 676
“Particles, Strings and the Early Universe - the Structure of Matter and Space-Time”. The
author thanks Urs Schreiber, Mike Shulman, Emily Riehl and Richard Garner for many
helpful disscusion. Further thanks to Till Barmeier and Christoph Schweigert for careful
proofreading.

2 Algebraic fibrant objects

Let C be a cofibrantly generated model category. For the terminology of model categories
we refer to [Hov07]. Furthermore we make the assumption:

All trivial cofibrations in C are monic.
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This is true in many model categories. For example in simplicial sets with either the Quillen
or the Joyal model structure.

Choose a set of trivial cofibrations

{Aj → Bj}j∈J

in C such that an object X ∈ C is fibrant iff for every morphism Aj → X with j ∈ J there
exists a filler, that means a morphism Bj → X rendering the diagram

Aj //

��

X

Bj

??��������

(1)

commutative. We could take J to be a set of generating trivial cofibrations but in general J
might be smaller. We assume that the domains Aj are small objects and that C is cocom-
plete, so that Quillen’s small object argument yields a fibrant replacement. For simplicity
we assume that the Aj’s are ω-small but everything is still valid if they are only κ-small for
an arbitrary (small) regular cardinal κ.

In order to have a more algebraic model for fibrant objects we want to fix fillers for all
diagrams.

Definition 2.1. An algebraic fibrant object (of C) is an object X ∈ C together with a
distinguished filler for each morphism h : Aj → X with j ∈ J . That means a morphism
F (h) : Bj → X rendering diagram (1) commutative. A map of algebraic fibrant objects is a
map that sends distinguished fillers to distinguished fillers. The category of algebraic fibrant
objects is denoted by AlgC.

In particular for each algebraic fibrant object the underlying object X ∈ C is fibrant because
all fillers exist. Now we have the canonical forgetful functor

U : AlgC → C

which sends an algebraic fibrant object to the underlying object of C. The task of this section
is to show that U induces an equivalence between model categories. More precisely, we want
to endow AlgC with a model category structure and show that U is the right adjoint of a
Quillen equivalence.

2.1 Free algebraic fibrant objects

As a first step we give an explicit description of the left adjoint

F : C → AlgC

called the free algebraic fibrant object functor.
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We want to use Richards Garners improved version of Quillens small object argument
[Gar09]. The idea is to start with an object X ∈ C and to successively add fillers in a
free way. So we define X1 to be the pushout (in C) of the diagram⊔

Aj //

��

X

��⊔
Bj

// X1

where the disjoint unions are taken over all j ∈ J and morphisms Aj → X. Note that the
inclusion X → X1 is monic due to our assumptions that trivial cofibrations are monic.

For those morphisms h : Aj → X1 which factor through X the structure morphisms Bj → X1

provide fillers. These are well defined because the factorization of h through X is unique
since X → X1 is monic. Unfortunately there might be morphisms h : Aj → X1 which do
not factor through X. Thus in order to add additional fillers for these let X2 be the pushout⊔

Aj //

��

X1

��⊔
Bj

// X2

where the disjoint union is taken over j ∈ J and those morphisms Aj → X1 which do not
factor through X. Note that this differs from the ordinary small object argument where this
colimit is taken over all morphisms Aj → X1. We again bookmark the fillers Bj → X2 and
proceed inductively. Eventually we obtain a sequence

X → X1 → X2 → X3 . . .

where all morphisms are by construction trivial cofibrations. Let

X∞ := lim−→(X → X1 → X2 → X3 . . .)

be the colimit over this diagram. Note that the inclusion X → X∞ is by construction a
trivial cofibration, in particular a weak equivalence.

Now let h : Aj → X∞ be a morphism. Because Aj is ω-small this factors through a finite step
and our construction implies that there is a unique smallest m such that h factors through
Xm. Then we have the filler

F (h) : Bj → Xm+1 → X∞.

This makes X∞ into an algebraic fibrant object.

Proposition 2.2. The assignment F : C → AlgC which sends X to X∞ is left adjoint to
U : AlgC → C. Furthermore the unit of this adjunction is the inclusion X → X∞, hence a
weak equivalence.
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Proof. Let Z be an algebraic fibrant object. We have to show that for a morphism ϕ : X →
U(Z) in C there is a unique morphism ϕ∞ : X∞ → Z in AlgC rendering

X
ϕ //

��

Z

X∞

∃!ϕ∞

==|
|

|
|

commutative. But this is trivial since all we did in going from X to X∞ was gluing new
distinguished fillers which have to be sent to the distinguished fillers in Z.

Corollary 2.3. Each of the maps i : FAj → FBj admits a canonical retract (left inverse).

Proof. A retract is a map r : FBj → FAj such that the composition

FAj
i→ FBj

r→ FAj

is the identity. Because F is left adjoint to U , this is the same thing as a map r′ : Bj → UFAj
such that the composition

Aj → Bj
r′→ UFAj

is the unit of the adjunction, i.e. the inclusion i′ : Aj → FAj. Hence r′ is just a filler
for the morphism i′, and such a filler exists canonically because FAj is an algebraic fibrant
object.

2.2 Monadicity

In this section we want to show that algebraic fibrant objects in C are algebras for a certain
monad. This is a rather direct justification to call them algebraic. Let T be the monad
which is induced by the adjunction

F : C // AlgC : Uoo

That means T = U ◦ F : C → C.

Proposition 2.4. The category CT of T -algebras in C is equivalent to the category AlgC.
More precisely the functor U induces an equivalence UT : AlgC → CT .

In abstract language the proposition states that the adjunction (F,U) is monadic. By Beck’s
monadicity theorem we have to show that

1. a morphism f in AlgC is an isomorphism iff U(f) is an isomorphism in C;

2. AlgC has coequalizers of U -split coequalizer pairs and U preserves those coequalizers.

Lets first turn towards property 1. Assume f : X → Y is a morphism in AlgC such that
U(f) is an isomorphism in C with inverse g : U(Y ) → U(X). It suffices to show that g is
a morphism in AlgC, i.e. it sends distinguished fillers to distinguished fillers. But this is
satisfied since f and g induce isomorphisms between sets homC(Aj, X) ∼= homC(Aj, Y ) and
homC(Aj, X) ∼= homC(Bj, Y ) and thus g preserves distinguished fillers since f does.
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The second property is seemingly more involved. A parallel pair of arrows f, g : X → Y in
AlgC is a U split coequalizer pair if the corresponding coequalizer diagram in C

U(X)
U(g) //

U(f)
// U(Y ) π // Q

allows sections s of π and t of U(f) such that U(g) ◦ t = s ◦ π. We will endow Q with the
structure of an algebraic fibrant object such that it is the coequalizer of the initial pair f, g
in AlgC. Therefore we have to fix a filler F (h) : Bj → Q for each morphism h : Aj → Q.
Since s is a section of π, the image of the morphism

s ◦ h : Aj → Y

under s is h. Thus we let F (h) be the image of the distinguished filler for s ◦ h. Then the
following lemma shows that property 2 and thus proposition 2.4 holds.

Lemma 2.5. The morphism π : Y → Q is a morphism in AlgC which is a coequalizer of the
pair f, g : X → Y .

Proof. First we check that π lies in AlgC. Take a morphism h : Aj → Y . By definition of
fillers in Q we have to show that the fillers F (h), F (h̃) : Bj → Y for h : Aj → Y and for
h̃ := s ◦ π ◦ h : Aj → Y are sent to the same filler in Q. But we have h = U(f) ◦ t ◦ h and
h̃ = U(g) ◦ t ◦ h and therefore this follows from the fact that Q is the coequalizer.
Now we want to verify the universal property. We have to check that for each morphism
ϕ : Y → Z in AlgC, such that ϕ ◦ f = ϕ ◦ g : X → Z there is a unique ϕQ : Q→ Z in AlgC
such that

X
g //

f
// Y

π //

ϕ

��

Q

∃!ϕQ���
�

�
�

Z

commutes. From the fact that Q is the coequalizer in C we obtain a unique morphism ϕQ
and it only remains to show that it lies in AlgC, i.e. preserves distinguished fillers. But this
is automatic since ϕ preserves distinguished fillers and fillers in Q are by definition images
of distinguished fillers in Y .

2.3 An auxiliary construction

In this section we want to prove propositions 2.6 and 2.10, which we will use to investigate
colimits in the next section. The impatient reader can skip this section and just take note
of these propositions.

Proposition 2.6. Let Y be an algebraic fibrant object, X be an object in C and

f : Y → X

be a morphism (that means a morphism f : U(Y ) → X in C). Then there is an algebraic
fibrant object Xf

∞ together with a morphism X → Xf
∞ such that the composite

Y → X → Xf
∞
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is a map of algebraic fibrant objects.
Furthermore Xf

∞ is initial with this property. That means it satisfies the following universal
property: For each morphism ϕ : X → Z in C where Z is an algebraic fibrant object, such
that the composite Y → X → Z is a morphism of algebraic fibrant objects there exists a
unique morphism ϕ∞ : Xf

∞ → Z rendering the diagram

Y

f
��

alg.

!!CCCCCCCC

X

��

ϕ // Z

Xf
∞

∃!ϕ∞

>>}
}

}
}

commutative.
If f is a monic in C, then X → Xf

∞ is a trivial cofibration.

Before we prove this proposition we first draw some conclusions.

Remark 2.7. • Let ∅ be the initial algebraic fibrant object (whose underlying object is
the initial object of C) and f : ∅ → X be the unique morphism. Then the universal
property of Xf

∞ reduces to the universal property of X∞ from proposition 2.2. We will
use this observation to give a very similar construction of Xf

∞ for arbitrary f .

• In contrast to the map X → X∞ in the case Y = ∅ the morphism X → Xf
∞ is in

general neither a cofibration nor a weak equivalence. Nevertheless if f : Y → X is a
monomorphism, the proposition says that it is still a trivial cofibration.

We will construct Xf
∞ in two steps. First consider the images under f of distinguished filler

diagrams of Y . These are diagrams

Aj //

��

Y // X

Bj

??��������

77ooooooooooooooo

If we want to turn f into a morphism of algebraic fibrant objects, these diagrams have to
be distinguished filler diagrams of X. But then it might occur that a morphism Aj → X
factors in different ways through Y and provides different fillers Bj → X. In order to avoid
this ambiguity we want to identify them. Note that this ambiguity does not occur if f is a
monomorphism, so in this case we can skip this next step.

Lets describe this more technically: Let H be the set of morphisms h : Aj → X which factor
through Y . For each h ∈ H let Fh be the set of fillers ϕ : Bj → X which are the images
of distinguished fillers. Fh has at least one element but it might of course be an infinite
set. Now fix an element h0 ∈ H. In order to identify the different fillers Fh0 we take the
coequalizer

Xh0 := CoEq
(
Bj

ϕ→ X|ϕ ∈ Fh0

)
which comes with a morphism ph0 : X → Xh0 . We now want to repeat this process in-
ductively in order to identify the fillers for all horns H. Therefore we endow H with a



2 ALGEBRAIC FIBRANT OBJECTS 9

well-ordering such that h0 is the least element. Assume that Xh′ is defined for all h′ < h.
Let

X<h := lim−→(Xh′ | h′ < h)

and define
Xh := CoEq

(
Bj

ϕ→ X → X<h|ϕ ∈ Fh
)

to be the object in C where the fillers in Fh are identified. In this coequalizer several
morphisms Bj

ϕ→ X → X<h might occur, which are equal but they only contribute once
(hence all copies could be left out). Finally let XH be the colimit

XH := lim−→(Xh | h ∈ H)

and p : X → XH be the inclusion.

Remark 2.8. We could also describe the whole process by a single colimit over a diagram
D. For D we take the diagram with an object (Bj)h for each morphism h ∈ H (the index h
is just for bookkeeping) and the object X. Morphisms in this diagram are all ϕ : (Bj)h → X
with ϕ ∈ Fh and no further morphisms. Then

XH = colimD

which is seen by verifying the universal property.

Now for each h : Aj → X which factors through Y the possible distinguished fillers are all
identified in XH . But unfortunately a morphism Aj → XH which factors through Y might
factor through X in different ways and thus lead to different morphisms Aj → X. Therefore
there are still relations which have to be factored out. We do this by inductively repeating
the construction X  XH and eventually obtain a sequence

X → XH → XH′ → XH′′ . . .

Now Let Xf
0 be the colimit

Xf
0 := lim−→(X → XH → XH′ → XH′′ . . .).

If f is a monomorphism then the morphism X → Xf
0 is an isomorphism because nothing

has been identified so far.

Lemma 2.9. For each Aj → Xf
0 which is the image of a morphisms Aj → Y (via the

morphism Y
f→ X → Xf

0 ) we have a distinguished filler Bj → Xf
0 such that f sends

distinguished fillers to distinguished fillers.
Furthermore let ϕ : X → Z be a morphism in C, where Z is an algebraic fibrant object.
If the composition Y → X → Z is a morphism of algebraic fibrant objects, then ϕ factors
uniquely through Xf

0 :

Y

f
��

alg.

!!BBBBBBBB

X

��

ϕ // Z

Xf
0

∃!ϕ0

??~
~

~
~
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Proof. The universal property holds by construction, because the images of distinguished
fillers in Z have to be equal due to the fact that Y → X → Z is a morphism of algebraic
fibrant objects.

The statement of lemma 2.9 looks very similar to proposition 2.6. The only difference is
that Xf

0 is not necessarily an algebraic fibrant objects because we only have fillers for those
morphisms Aj → Xf

0 which factor through Y . Hence we will attach fillers for the other

morphisms in a free way, like we did in the first section. Let Xf
1 be the pushout of the

diagram ⊔
Aj //

��

Xf
0

��⊔
Bj

// Xf
1

where the disjoint union is taken over all Aj → Xf
0 which do not factor through Y . Then

we proceed exactly as in the first section and obtain an algebraic fibrant object

Xf
∞ := lim−→(Xf

0 → Xf
1 → Xf

2 . . .).

The inclusion Xf
0 → Xf

∞ is a trivial cofibration. Thus in the case that f is a monomor-
phism the composition X → Xf

∞ is also a trivial cofibration. The universal property of Xf
∞

stated in proposition 2.6 holds by lemma 2.9 and construction of Xf
∞. Hence we have proven

proposition 2.6.

Following an observation of Mike Shulman, we have the slightly more general statement:

Proposition 2.10. The functor U : AlgC → C is solid (or semi-topological). That means,
for every family {

fi : U(Yi)→ X
}
i∈I

where Yi are algebraic fibrant objects and X ∈ C there exists a semi-final lift. That is an
object Xf

∞ together with a morphism X → U(Xf
∞) such that

1. all the morphisms U(Yi)→ U(Xf
∞) are in AlgC;

2. Xf
∞ is universal (initial) with this property.

Proof. Take the proof of proposition 2.6 and replace the phrase ’...which factors through
Y ...‘ by the new phrase ’...which factors through one of the Yi’s...‘.

2.4 Limits and Colimits in AlgC
In order to show that AlgC is a model category we will show that finite limits and small
colimits exist. Furthermore a precise understanding of pushouts is needed to construct the
model structure. Thus in this section we want to investigate limits and colimits in AlgC.

Lets start with limits because they are easy to understand. Consider a diagram

F : D → AlgC
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indexed by a small category C. It is easy to check that limF is computed as the limit of
the underlying diagram in C. In particular that limit exists if and only if the limit in C ex-
ists. Since C is a model category by definition finite limits exist and so they also exist in AlgC.

Unfortunately arbitrary colimits in AlgC are not so simple. Therefore we start with the
special case of filtered colimits. Consider the filtered diagram (Lα)α∈I where I is a well-
ordered set. Then let

L := lim−→
(
Lα | α ∈ I

)
be the colimit of the underlying objects of C. A morphism Aj → L factors through a finite
step Lα0 because Aj is small, thus we have a filler Bj → Lα0 → L. Note that α0 and the
morphism Aj → Lα0 are not uniquely determined by the morphism Aj → L, but the filler
Bj → A is. This turns L into an algebraic fibrant object which is the colimit over (Lα)α∈I .

So far we have shown:

Proposition 2.11. Limits and filtered colimits in AlgC exist and are computed as the limits
resp. filtered colimits of the underlying objects of C. That means that the functor U : AlgC →
C preserves limits and filtered colimits.

Finally a general colimit over a diagram F : D → AlgC can be described using the auxiliary
construction of the last section. Let

X := colimd∈DUF (d)

be the object of C which is the colimit of the underlying objects UF (d). There is a morphism

fd : UF (d)→ X

in C for each d ∈ D given by the colimit inclusions. Thus we can apply proposition 2.10 and
obtain an algebraic fibrant object Xf

∞ together with a morphisms

F (d)→ X → Xf
∞

of algebraic fibrant objects.

Proposition 2.12. The algebraic fibrant object Xf
∞ is the colimit over F .

Proof. We just check the universal property. Let {ϕd : F (d) → Z}d∈D be a family of
morphisms in AlgC such that for each morphism d→ d′ in D the diagram

F (d)
ϕd //

��

Z

F (d′)

ϕd′

=={{{{{{{{{

(2)

commutes. Commutativity of (2) implies that the ϕ’s factors uniquely through X =
colimd∈DUF (d) (where the factorization is by morphisms of the underlying objects of C).
Thus we can apply proposition 2.10 and obtain a unique morphism

ϕ∞ : Xf
∞ → Z

of algebraic fibrant objects.
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Corollary 2.13. AlgC is complete and cocomplete if C is.

In contrast to the case of filtered colimits the morphism X → Xf
∞ is in general not an

isomorphism or weak equivalence. This means that colimits in AlgC can not be computed
as colimits of the underlying simplicial sets, not even up to weak equivalence. Nevertheless
we can simplify the construction for pushouts along free objects.

In more detail: let i : A → B be a morphism in C, Y be an algebraic fibrant object and
consider a diagram

FA //

Fi
��

Y

FB

(3)

in AlgC. We will give a simple description of the pushout of this diagram. First such a
diagram is the same as a diagram

A //

i

��

U(Y )

B

in C by adjointness of F and U . Let

X := Y ∪A B ∈ C

be the pushout of the last diagram. This comes with a morphism f : U(Y )→ X. We apply
proposition 2.6 to this morphism and obtain an algebraic fibrant object

Xf
∞ = (Y ∪A B)f∞

together with a morphism X → Xf
∞.

Proposition 2.14. The algebraic fibrant object (Y ∪A B)f∞ is the pushout of diagram (3).
If i : A→ B is a trivial cofibration then

Y → (Y ∪A B)f∞

is also a trivial cofibration.

Proof. We first check that (Y ∪AB)f∞ satisfies the universal property of the pushout. There-
fore let Z be an algebraic fibrant object. A morphism (Y ∪AB)f∞ to Z is then by proposition
2.6 the same as a morphism g : Y ∪A B → Z in C, such that the composition

Y
f→ Y ∪A B → Z

preserves distinguished fillers, i.e. is a morphism of algebraic fibrant objects. But such
a morphism g is the same as a morphism of algebraic fibrant objects g1 : Y → Z and a
morphism g2 : B → U(Z) in C which agree on A. The adjunction (F,U) implies that g2 is
the same as a morphism FB → Z which completes the proof that (Y ∪AB)f∞ is the pushout
of diagram (3).
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It remains to show that Y → (Y ∪A B)f∞ is a trivial cofibration if i : A → B is one. This
morphism is the composition

Y
f→ Y ∪A B → (Y ∪A B)f∞.

The first morphism f is a trivial cofibration, because it is the pushout of the trivial cofibra-
tions i. Hence our general assumption implies that f is monic. Thus the last part of 2.6
show that also

Y ∪A B → (Y ∪A B)f∞

is a trivial cofibration. Hence also the composition of those two morphisms is a trivial
cofibration, which completes the proof.

2.5 Model structure on AlgC
In this section we want to endow AlgC with a model structure, such that the pair (F,U) of
functors is a Quillen equivalence.

Definition 2.15. A morphism f : X → Y of algebraic fibrant objects is a weak equivalence
(fibration) if the underlying morphism U(f) : U(X)→ (Y ) is a weak equivalence (fibration)
in C. A morphism is a cofibration of algebraic fibrant objects, if it has the LLP with respect
to trivial fibrations.

In order to show that this yields a model structure on AlgC we first recall that AlgC is finite
complete and small cocomplete. We want to use the general transfer principle for cofibrantly
generated model structures due to Crans [Cra95]. Therefore we have to show that

1. the functor F preserves small objects;

2. relative F (I)-cell complexes are weak equivalences in AlgC, where

I :=
{
Ci → Di}

is the original set of generating trivial cofibrations.

Condition 1 holds if the right adjoint U preserves filtered colimits which is true in our
case due to proposition 2.11. For the second condition recall that a F (I)-cell complex is a
transfinite composition of pushouts of the form

FCi //

��

Y

f

��

FDi
//
(
Y ∪Ci

Di

)f
∞

(4)

Proposition 2.14 implies that f is a trivial cofibration of the underlying objects of C. Trans-
finite composition of morphisms commutes with the forgetful functor U since U preserves
filtered colimits (see proposition 2.11). Thus the fact that a transfinite composition of trivial
cofibrations in C is again a trivial cofibration shows that condition 2 also holds. Moreover
we have shown:

Corollary 2.16. The functor U preserves trivial cofibrations.
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Lemma 2.17. Unit and counit of the adjunction (U, F ) are weak equivalences. Thus a
morphism ϕ : X → Y in C is a weak equivalence iff F (ϕ) : FX → FY is a weak equivalence.

Proof. The unit of the adjunction is the morphism X → X∞ which is by construction a
fibrant replacement in C, hence a weak equivalence. The counit is a morphism m : FA→ A
for an algebraic fibrant object which fits into the diagram

A //

id !!CCCCCCCC FA

m

��
A

Hence by 2-out-of-3 this is also weak equivalence.

Altogether we have proven the main theorem of this section:

Theorem 2.18. The category AlgC admits a closed Quillen model structure with fibrations,
weak equivalences and cofibrations as in definition 2.15. The generating (trivial) cofibrations
are the images of the generating (trivial) cofibrations under F . The pair of adjoint functors

F : C // AlgC : Uoo

is a Quillen equivalence.

3 Algebraic Kan complexes

In this section we want to apply the general construction of the last section to the case of
the standard (Quillen-) model structure on simplicial sets. That leads us to the notion of
algebraic Kan complex. We will explain how this should be considered as an algebraic notion
of an ∞-groupoid and give a direct comparison to topological spaces.

3.1 Kan complexes and ∞-groupoids

Let sSet denote the category of simplicial sets. This category carries the structure of a
cofibrantly generated model category where the generating trivial cofibrations are given by
the horn inclusions

{Λk(n)→ ∆(n) | n ≥ 2, 0 ≤ k ≤ n}

and the generating cofibrations are given by the boundary inclusions

{∂∆(n)→ ∆(n) | n ≥ 1}.

For these statements and terminology see [Hov07] chapter 3. The fibrant objects, i.e. the
simplicial sets X having fillers for all horns Λk(n) → X are called Kan complexes. It is
well known that Kan complexes could be seen as a model for ∞-groupoids (i.e. weak ∞-
categories where all morphisms are invertible). As an illustration we will investigate the
lifting conditions for the horns of the 2-simplex ∆(2). There are three horns Λ0(2),Λ1(2)
and Λ2(2). First consider the inner horn Λ1(2). A morphism

h : Λ1(2)→ X
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is the same as choosing two matching one-cells f, g ∈ X1, depicted as

b
g

��>>>>>>>>

a

f
@@��������

c

Now a filler F (h) : ∆(2)→ X is a 2-simplex that fills this horn:

b
g

��>>>>>>>>

��a

f
@@��������

t
// c

The target t of this 2-cell should now be seen as a composition of f and g. Of course the filler
F (h) is not unique and thus the composition of 1-cells is also not unique. Nevertheless, using
the higher dimensional fillers one can show that composition defined in this way is unique
up two 2-cells (that means between two composites there is always a 2-cell connecting them,
which is also unique up to 3-cells...). But the lack of a fixed compositions is sometimes
counterintuitive or might lead to problems working with ∞-groupoids. Thus the idea is to
fix a filler for each pair of morphisms (f, g) and refer to this as ”the composition” of f and
g. We give a definition of Kan complexes with fixed fillers, called algebraic Kan complexes,
in the next section.

But lets first return to the investigation of lifting properties. We saw that the lifting against
the inner horn Λ1(2) endows X with compositions of 1-cells. Analogously one can see that
lifting against higher inner horns Λk(n) provides compositions of higher cells, which is a
good exercise to do for n = 3. But we want to look at the outer horns Λ0(2) and Λ2(2). A
morphism Λ0(2)→ X provides two morphisms f, g ∈ X1 that fit together like this:

b

a

f
@@��������
g

// c

A filler for such a diagram translates into a diagram

b
t

��>>>>>>>>

��a

f
@@��������
g

// c

.

This means that g could be seen as a composition t◦f or equivalently t = g◦f−1. In that way
a Kan complex provides inverses an thus models ∞-groupoids rather than ∞-categories. In
our approach to ∞-groupoids we will also fix those fillers and thus have a choice of inverses.
Later in section 4 we will consider quasi-categories where fillers are only required for inner
horns and thus there are no inverses for 1-cells.

3.2 Algebraic Kan complexes as ∞-groupoids

In this section we will give the notion of algebraic Kan complex and use the general methods
developed in section 2 to obtain a model structure and to deduce properties for algebraic
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Kan complexes. As motivated in the last section, an algebraic Kan complex should have
fixed fillers for all horns, and thus fixed compositions and inverses of cells.

Definition 3.1. 1. An algebraic Kan complex is a simplicial set X together with a dis-
tinguished filler for each horn in X. A map of algebraic Kan complexes is a map
that sends distinguished fillers to distinguished fillers. The category of algebraic Kan
complexes is denoted by AlgKan

2. A morphism f : X → Y of algebraic Kan complexes is a weak equivalence (fibration)
if the underlying morphism UA(f) : UA(X)→ UA(Y ) is a weak equivalence (fibration)
of simplicial sets. A morphism is a cofibration of algebraic Kan complexes, if it has
the LLP with respect to trivial fibrations.

The model category sSet is cofibrantly generated and the cofibrations are exactly the monomor-
phisms. Thus from section 2 we immediately have:

Theorem 3.2. 1. The canonical forgetful functor UA : AlgKan→ sSet has a left adjoint
FA : sSet → AlgKan which is constructed by freely attaching n-cells as fillers for all
horns.

2. Algebraic Kan complexes are precisely algebras for the monad T := U ◦F generated by
this adjunction.

3. AlgKan is small complete and cocomplete. Limits and filtered colimits are computed as
limits resp. colimits of the underlying simplicial sets.

4. AlgKan is a cofibrantly generated model category with generating trivial cofibrations

FAΛk(n)→ FA∆(n)

and generating cofibrations
FA∂∆(n)→ FA∆(n)

5. The pair (F,U) is a Quillen equivalence. Furthermore the functor UA preserves trivial
cofibrations.

Proof. 1: prop. 2.2; 2: prop. 2.4; 3: prop 2.11 and corollary 2.13; 4: theorem 2.18; 5:
theorem 2.18 and corollary 2.16.

Note that in contrast to sSet in this model structure on AlgKan each object is fibrant but
not necessarily cofibrant. For example the point in AlgKan is not cofibrant. The cofibrant
objects are exactly retracts of FA∂∆(n)→ FA∆(n)-cell complexes. We will say some words
about such cell complexes in order to give a better understanding of the cofibrations. Let
X be an algebraic Kan complex. We want to glue a n-cell to X along its boundary ∂∆(n).
Formally speaking we want to compute the pushout of a diagram

FA∂∆(n) //

��

X

FA∆(n)
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where the upper morphism comes from a morphism ∂∆(n)→ X of simplicial sets, which is
just a combinatorial n-sphere in X. From prop 2.14 we know that the pushout can now be
computed in two steps: first glue the n-cell along its boundary to X, i.e. form the pushout
X ∪∂∆(n) ∆(n) in sSet. Intuitively speaking we simply add a new n-cell to our ∞-groupoid.
But now some compositions are missing, namely those of the new n-cell with cells of the old
∞-groupoid X. Thus we throw in freely all those compositions, i.e. form Xf

∞ (see section
2.3). What we finally obtain is the pushout in the category AlgKan.

Note first that gluing a n-cell not along its boundary, but along its horn works totally similar.
Now general cell complexes are just an iteration of this gluing process. The fact that filtered
colimits are computed as colimits of the underlying simplicial sets means, that we can do this
iteration naively and finally obtain the right algebraic Kan complex. Hence we have a very
clear understanding of cofibrations and trivial cofibrations in AlgKan. This discussion also
shows that the category AlgKan provides the right colimits, whereas colimits of (ordinary)
Kan complexes might no longer be Kan complexes and thus are not the correct colimit of
∞-groupoids.

3.3 The homotopy hypothesis

The homotopy hypothesis is informally speaking the idea that ∞-groupoids are the ”same”
as topological spaces. Here we propose algebraic Kan complexes as a model for∞-groupoids.
Therefore we should show that they are equivalent to topological spaces. More precisely we
want to prove that the model categories are Quillen equivalent. As model categories are a
way to encode the (∞, 1)-category of ∞-groupoids, this could be regarded as proving the
homotopy hypothesis for our model of ∞-groupoids.

First of all, it is a classical result of Quillen, that the (standard) model categories of topolog-
ical spaces and simplicial sets are equivalent. The adjoint functors which form the Quillen
pair are

|...| : sSet // Top : Singoo

where the left adjoint |...| is the geometric realization functor and the right adjoint Sing
is the singular complex functor. We could now argue, using this result, that the category
of algebraic Kan complexes is Quillen equivalent to simplicial sets and thus is equivalent
to topological spaces. This is perfectly fine on the level of (∞, 1)-categories. But in this
way we will not obtain a direct Quillen equivalence between algebraic Kan complexes and
topological spaces, because the Quillen equivalences can not be composed. Instead we will
give a direct Quillen equivalence

|...|r : AlgKan // Top : Π∞oo

where the left adjoint |...|r is called reduced geometric realization and the right adjoint Π∞
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is called fundamental ∞-groupoid. This will render the diagram

AlgKan

|...|r

��:::::::::::::::

UA

�����������������

sSet
|...|

//

FA

AA���������������
Top

Singoo

Π∞

]]:::::::::::::::

(5)

commutative (more precisely: the inner and the outer triangle).

Lets start by describing the fundamental ∞-functor Π∞ : Top→ AlgKan. For a topological
space M the ordinary singular complex is by definition the simplicial set Sing(M) with

Sing(M)n = homTop

(
|∆(n)|,M

)
where |∆(n)| denotes the topological n-simplex

|∆(n)| =
{

(x0, . . . , xn) ∈ Rn+1
≥0 |

∑
xi = 1

}
.

In order to make the diagram (5) commutative, the underlying simplicial set of Π∞(M) has
to be the simplicial set Sing(M). Now to endow Sing(M) with the structure of an algebraic
Kan complex, we have to give distinguished fillers for all horns

Λk(n)→ Sing(M).

But due to the fact that Sing is right adjoint to |...| such a horn is the same as a morphism

h : |Λk(n)| →M

of topological spaces. It is easy to see that |Λk(n)| is (homeomorphic to) the naive horn

|Λk(n)| =
⋃
i 6=k

{
(x0, . . . , xn) ∈ |∆(n)| | xi = 0

}
which is the union of all but one faces of the simplex |∆(n)|. ¿From the geometric point of
view, it is clear that there are (linear) retractions

R(n, k) : |∆(n)| → |Λk(n)|.

We will not give an explicit formula for the R(n, k) because that will not give more insights,
but in principle that can be easily done. We use these retractions to obtain morphisms

|∆(n)| R(n,k)−→ |Λk(n)| h→M

which by adjointness are fillers ∆(n) → Sing(M) for horns in Sing(M). We denote the
resulting algebraic Kan complex by Π∞(M). Furthermore this assignment is obviously func-
torial in M such that we finally have defined the functor

Π∞ : Top→ AlgKan
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Remark 3.3. The construction of the functor Π∞ depends on the choice of retracts R(n, k)
we have made. Every other choice would lead to a different (but of course weakly equivalent)
algebraic Kan complex Π∞(M). This choice parameterizes the composition of paths or higher
cells in the path ∞-groupoid.

Now lets turn towards the reduced geometric realization functor

| |r : AlgKan→ Top.

So let X be an algebraic Kan complex. First of all, consider the geometric realization |UA(X)|
of the underlying simplicial set. The distinguished fillers ∆(n) → X provide n-simplices in
|UA(X)| which are fillers for the horns |Λk(n)| → |UA(X)|. But the composite

|∆(n)| R(n,k)−→ |Λk(n)| → |UA(X)|

provides another filler. Therefore we define the reduced geometric realization |X|r as the
space where those two different fillers for the same horn have been identified. Formally we
have

|X|r := CoEq
(⊔

|∆(n)|⇒ |UA(X)|
)

where the disjoint union is taken over all horns Λk(n)→ X. With this definition we have:

Proposition 3.4. The functor | |r : AlgKan→ Top is left adjoint to Π∞.

Proof. Let X be an algebraic Kan complex, M a topological space and f : |X|r → M be a
continuous map. By construction of |X|r as a coequalizer this is the same as a continuous
map f̃ : |UA(X)| → M such that for each horn h : Λk(n)→ X with filler F (h) : ∆(n)→ X
the two maps

|∆(n)| R(n,k)−→ |Λk(n)| |h|−→ |UA(X)| f̃→M

and

|∆(n)| |F (h)|−→ |UA(X)| f̃→M

agree. Using the adjunction (|...|, Sing) we see that this is the same as a morphism

˜̃f : UA(X)→ Sing(M)

such that the images of distinguished filler diagrams in X are sent to the fillers in Sing(M)

obtained by using the retractions R(n, k). That means ˜̃f is a morphism of algebraic Kan
complexes between X and Π∞(M).

Corollary 3.5. Diagram (5) commutes (up to natural isomorphism).

Proof. The inner triangle commutes by construction of Π∞. For commutativity of the outer
we have to show that |...|r ◦ FA ∼= |...|. From the fact that |...|r is left adjoint to Π∞ and FA
is left adjoint to UA we deduce that |...|r ◦ FA is left adjoint to UA ◦Π∞. By commutativity
of the inner triangle the latter is equal to Sing. That means that |...|r ◦ FA and |...| are left
adjoint to Sing and thus are naturally isomorphic.

Corollary 3.6. The pair
(
| |r,Π∞

)
is a Quillen equivalence.

Proof. We already know that (|...|, Sing) and (FA, UA) are Quillen equivalences. By the 2-out-
of-3 property for Quillen equivalences it follows that (|...|r,Π∞) is also a Quillen equivalence.
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4 Algebraic quasicategories

In this section we want to apply the general principle to the Joyal model structure on
simplicial sets. Thereby we are lead to introduce the concept of algebraic quasicategory as
an algebraic model for (∞, 1)-categories. Finally we will relate algebraic quasicategories to
algebraic Kan complexes.

4.1 Quasicategories as (∞,1)-categories

The category sSet carries another model structure besides the Quillen model structure (see
[Joy08], [Lur09]). This second model structure is called the Joyal model structure. Unfortu-
nately it is more complicated than the Quillen structure, but it is also cofibrantly generated.
The cofibrations are the same as in the Quillen structure and thus the boundary inclusions

∂∆(n)→ ∆(n).

are a set of generating cofibrations. But there is no known description of a set of generating
trivial cofibrations, although it is known that such a set exists. The weak equivalences in
this model structure are called categorial equivalences or quasi-equivalences.

The fibrant objects in this model structure are called quasi-categories. These are the sim-
plicial sets X which have the left lifting property against all inner horns

Λk(n)→ ∆(n)

for n ≥ 2 and 0 < k < n. We described in section 3.1 how these lifting conditions could be
seen as providing compositions of cells. The fact that we only have lifting conditions against
inner horns thus means that we do not have inverses to 1-cells. A more precise treatment of
these lifting properties shows that we still have inverses for n-cells with n ≥ 2. That means
that quasicategories are a model for (∞, 1)-categories, that means ∞-categories where all
n-morphisms for n ≥ 2 are invertible. And in fact there has been much work providing
evidence that this is an appropriate model for (∞, 1)-categories. See [Ber09] for a good
introduction.

But as in the case of Kan complexes it is desirable to have a more algebraic model where
especially compositions of morphisms are not only guaranteed to exist but are specified. We
will do this by applying our general construction from section 2 to quasicategories, as we did
for Kan complexes.

4.2 Algebraic quasicategories

Let J be the set of inner horn inclusions

Λk(n)→ ∆(n)

which are trivial cofibrations in the Joyal model structure. Using this set of morphisms we
follow the general pattern from section 2:
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Definition 4.1. An algebraic quasicategory is a simplicial set X together with a distin-
guished filler for each inner horn in X. A map of quasicategories is a map that sends distin-
guished fillers to distinguished fillers. We denote the category of algebraic quasicategories
by AlgQuasi.

Theorem 4.2. 1. The canonical forgetful functor UQ : AlgQuasi → sSet obtains a left
adjoint FQ : sSet→ AlgQuasi which is constructed by freely attaching n-cells as fillers
for all inner horns.

2. Algebraic quasicomplexes are algebras for the monad TQ := UQ ◦ FQ generated by this
adjunction.

3. AlgKan is small complete and cocomplete. Limits and filtered colimits are computed as
limits resp. colimits of the underlying simplicial sets.

Proof. 1: theorem 2.2; 2: theorem 2.4; 3: theorem 2.11 and corollary 2.13.

Additionally we have the model structure on AlgQuasi:

Definition 4.3. A morphism f : X → Y of algebraic quasicategories is a weak equivalence
(fibration) if the underlying morphism UQ(f) : U(X) → (Y ) is a categorial equivalence
(fibration) in the Joyal model structure. A morphism is a cofibration of algebraic quasicat-
egories, if it has the LLP with respect to trivial fibrations.

Now according to theorem 2.18 this defines a cofibrantly generated model structure on
AlgQuasi. One of the major advantages of this new model structure is that we can ex-
plicitly write down a set of generating trivial cofibrations. This follows from the fact that
in the Joyal model structure a morphism between fibrant objects, i.e. quasicategories, is a
fibration iff it has the LLP with respect to inner horn inclusions

Λk(n)→ ∆(n)

and the inclusion
pt→ I

of an object in the intervallgroupoid I. Formally I is the nerve of the groupoid with two
objects and an isomorphism between them (see [Joy08], Prop. 4.3.2). Thus we have:

Theorem 4.4.

AlgQuasi is a cofibrantly generated model category with generating trivial cofibrations

FQΛk(n)→ FQ∆(n) for 1 < k < n FQpt→ FQI

and generating cofibrations
FQ∂∆(n)→ FQ∆(n)

The pair (FQ, UQ) is a Quillen equivalence. Furthermore the functor UQ preserves trivial
cofibrations.
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Proof. Theorem 2.18 shows that AlgQuasi is a cofibrantly generated model structure with
the given generating cofibrations and that the pair (FQ, UQ) is a Quillen equivalence. From
corollary 2.16 we know that UQ preserves (trivial) cofibrations. It only remains to show that
the given set of morphisms is a set of generating trivial cofibrations.

We show that f : X → Y is a fibration in AlgQuasi if it has the RLP with respect to the
given morphisms. By definition f is a fibration iff UQ(f) is a fibration in the Joyal model
structure. Since UQ(X) and UQ(Y ) are quasicategories, this is the case if UQ(f) has the RLP
with respect to inner horn inclusions and pt → I. Using the fact that FQ is left adjoint to
UQ we see that f is a fibration in AlgQuasi iff it has the RLP with respect to the given set
of morphisms.

4.3 Groupoidification

In this section we want to investigate how the (model) categories AlgKan and AlgQuasi are
related to each other. Remember that objects in both of them are simplicial sets with extra
structure. In the case of AlgKan we have fixed fillers for all horn inclusions and in the case
of AlgQuasi we only have fixed fillers for inner horn inclusion. This shows that we have a
canonical forgetful functor

V : AlgKan→ AlgQuasi

which forgets the fillers for the outer horns. We will construct a left adjoint

G : AlgQuasi→ AlgKan

called groupoidification and show that the pair (G, V ) forms a Quillen adjunction (not a
Quillen equivalence!) This is the algebraic analogue of the fact that the Quillen model
structure on sSet is a left Bousfield localization of the Joyal model structure. More precisely
we have a commuting square

AlgKan
V //

UA

��

AlgQuasi
G

oo

UQ

��
sSetQ

Id
//

FA

OO

sSetJ
Idoo

FQ

OO (6)

of Quillen adjunctions, where sSetJ denotes the category of simplicial sets with the Joyal
model structure and sSetQ with the Quillen model structure. More precisely the inner and
the outer squares commute (up to natural isomorphism).

Now let X be an algebraic quasicategory. We already have fixed fillers for inner horns in X,
i.e. morphisms Λk(n)→ X with 0 < k < n. In order to build an algebraic Kan complex out
of X we will freely add fillers for outer horns in X, i.e. morphisms Λk(n) → X with k = 0
or k = n. The construction is much the same as the construction from section 2.1 and we
only sketch it. Let X1 be the pushout⊔

Λk(n) //

��

X

��⊔
∆(n) // X1
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where the colimit is taken over all outer horns in X. The next step X2 is obtained by gluing
n-cells ∆(n) along outer horns Λk(n)→ X1 that do not factor through X. We proceed like
this and finally put

G(X) := lim−→(X → X1 → X2 → . . .).

Proposition 4.5. The functor G : AlgQuasi → AlgKan is left adjoint to V and the square
(6) commutes.

Proof. By definition of G it is clear that it is left adjoint to V . In diagram (6) the commuta-
tivity of the outer square is just a trivial statement about the forgetful functors UQ, UA and
V . Commutativity of the inner square means that we have to show that G ◦ FQ and FA are
naturally isomorphic. This follows from the fact that G ◦FQ and FA are both left adjoint to
UQ ◦ V = UA.

Proposition 4.6. The pair (G, V ) is a Quillen adjunction.

Proof. It is enough to show that V preserves fibrations and trivial fibrations. Let f : X → Y
be a (trivial) fibration in AlgKan. We want to show that V (f) : V (X)→ V (Y ) is a (trivial)
fibration in AlgQuasi. By definition 4.3 this is the case iff UQ(V (f)) is a Joyal (trivial)
fibration in sSetJ . By definition 3.1 we already know that UA(f) = UQ(V (f)) is a Quillen
(trivial) fibration. Thus the claim follows from the fact that a Quillen (trivial) fibration
is a Joyal (trivial) fibration. This is equivalent to the statement that Id : sSetQ → sSetJ
is a right Quillen functor or to the statement that sSetQ is a left Bousfield localization of
sSetJ .
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