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1 Regular fibrations

A regular fibration is a bifibration with fibred finite products, or equivalently
a pseudofunctor R : Bop → Cat, out of a category with finite products, that
takes values in categories with finite products and where each f∗ = Rf has a
left adjoint ∃f and (hence) preserves finite products. The latter condition is
vacuous because the f∗ are right adjoints, but we may also want to deal with
those nearly-regular bifibrations where the base category has finite products but
the fibres are merely monoidal, and in this case it is important to require that
the f∗ are strong monoidal (of course, they are automatically lax monoidal by
virtue of being right adjoints).

A morphism of regular fibrations is the obvious thing: a product-preserving
morphism of fibrations.

Our regular fibrations are those of [Pav96]. A very similar definition is given
in [Jac99], the only difference being that the latter sort of regular fibration is
required to have all fibres preordered.

The connection with regular categories is that a category C is regular if and
only if the projection cod: MonC → C that sends S ↪→ X to X is a regular
fibration. For our purposes, a regular category is one that has finite limits and
pullback-stable images.

If C is a regular category, then the adjunctions ∃f a f∗ come from pullbacks
and images in C [Joh02, lemma 1.3.1] as does the Frobenius property [op. cit.,
lemma 1.3.3]. The terminal object of Sub(X) = Mon(C)X is the identity 1X on
X, and binary products in the fibres Sub(X) are given by pullback. The prod-
ucts are preserved by reindexing functors f∗ because (the f∗ are right adjoints
but also because) a cone over the diagram for f∗(S ∧S′) can be rearranged into
a cone over that for f∗S∧f∗S′, giving the two the same universal property. The
projection cod clearly preserves these products. The Beck–Chevalley condition
follows from pullback-stability of images in C.

Conversely, suppose MonC → C is a regular fibration. We need to show
that C has equalizers (to get finite limits) and pullback-stable images. But the
equalizer of f, g : A ⇒ B is (f, g)∗∆. For images, let im f = ∃f1 as in [Joh02,
lemma 1.3.1]. Pullback-stability follows from the Beck–Chevalley condition.
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2 Regular logic

Regular logic is the fragment of first-order predicate logic that uses only the
connectives > for truth, ∧ for conjunction and ∃ for existential quantification.
We will mostly follow [See83].

2.1 Language

A (regular) signature is a collection X,Y, . . . of sorts, together with a collection
of typed predicate and function symbols. A type is a finite sequence X1, X2, . . .
of sorts, and types will also be denoted X,Y, . . .. If P is a predicate of type X
we may write P : X, and similarly f : X → Y indicates the type of f . Every
signature contains at least the equality predicate =X : X,X.

We assume given an inexhaustible supply of free variables x, x′, y, y′ . . . and
bound variables ξ, ξ′, υ, υ′ . . . of each sort, with the notation extended to types
so that a variable of type X,Y is the same as a pair x, y of variables of sorts X
and Y . A context is a finite list x : X, y : Y, . . . of sorted variables, or equivalently
a single variable z : X,Y, . . ..

A term is either a variable, a tuple of terms or a function symbol f applied
to a term, all with the obvious well-typedness constraints. Every term lives
in a context, which is assumed to contain every variable in the term, perhaps
together with ‘dummy’ variables that don’t. We write t[x] to indicate that x is
the context of t, and t[s] to denote the obvious substitution.

A formula is either the constant >, a predicate symbol P (t) applied to a
term, the conjunction φ ∧ ψ of two formulas, a quantified formula ∃ξ.φ or the
substitution φ[t] of the term t into the formula φ, defined in the usual way.
Every formula lives in a context, which we assume contains (perhaps strictly)
all of its free variables, and we write φ[x] for this.

2.2 Logic

We will use the usual natural-deduction rules. Conjunction is governed by

φ ψ

φ ∧ ψ
φ ∧ ψ
φ

φ ∧ ψ
ψ

truth by

φ

>
existentials by

φ[t]

∃ξ.φ[ξ] ∃ξ.φ[ξ]

φ[x]

...
ψ

ψ

where on the right x is not free in ψ, and equality by

t = t
t = s φ[t]

φ[s]
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The notion of context is easily extended to derivations. Observe that the rules
for ∃ are the only rules that do not preserve the contexts of formulas.

Derivations using these rules may be composed:

φ

...
ψ

,

ψ

...
χ

7→

φ

...
ψ

...
χ

as long as both derivations have the same context, and this composition is clearly
associative, with units the identity derivations φ. We may write p : φ

x
=⇒ ψ to

indicate that p is a derivation of ψ from the assumption φ with context x, and
thus arrive at the rules

1φ : φ
x

=⇒ φ
p : φ

x
=⇒ ψ q : ψ

x
=⇒ χ

q ◦ p : φ
x

=⇒ χ

The substitution p[t] of a term t : Y → X into a derivation p[x] with x free
is defined in the obvious way, and an induction over the structure of deriva-
tions shows that the ‘substitute t’ mapping t∗ is a functor from the category of
derivations in the context x to derivations in the context y that commutes with
the finite-product structure given by the following.

If pi : φ
x

=⇒ ψi for i = 1, 2, then we may use the ∧-introduction rule to form
a derivation 〈p1, p2〉 : φ

x
=⇒ ψ1 ∧ ψ2, and conversely given a derivation p of the

latter type the elimination rules give πi ◦ p : φ
x

=⇒ ψi. Imposing the (β- and
η-)equalities

πi〈p1, p2〉 = pi 〈π1p, π2p〉 = p

then gives a ‘bijective’ rule

p1 : φ
x

=⇒ ψ1 p2 : φ
x

=⇒ ψ2

〈p1, p2〉 : φ
x

=⇒ ψ1 ∧ ψ2

where to move from bottom to top we compose with πi, and this gives binary
products in each category of derivations. As for >, we will say that any deriva-
tion p : φ

x
=⇒ > is equal to the canonical !φ : φ

x
=⇒ >, making > the terminal

object in each category of derivations.
Similarly, there is a β rule for equality:

t = t

...

φ[t]

φ[t]

=
...

φ[t]

and an η rule:

p
...

t = t′

q[t, t′]
...

φ[t, t′]

= p
...

t = t′

t = t

q[t, t]
...

φ[t, t]

φ[t, t′]
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and these set up a bijection

φ, x = x′
x,x′

=⇒ ψ[x, x′]
(∗)

φ
x

=⇒ ψ[x, x]

between derivations of the indicated types [Jac99]. There is also a ‘coherence’
rule

...
t = t
>
t = t

=
...

t = t

which makes sure that >X ≡ x = x, so that x = x is the terminal object in the
category of derivations over X.

A (regular) theory over a signature is given by a collection of axioms (deriva-
tion constants) together with a collection of equations between derivations built
from those axioms and the above rules. The terms of a signature, together with
the equational axioms t = t′ of a theory over that signature, give rise to a cate-
gory BT with finite products — the ‘multisorted Lawvere theory’ associated to
the theory. In this category an object is a type X1, X2, . . . , Xn, and a morphism
from X1, X2, . . . , Xn to Y1, Y2, . . . , Ym is given by an m-tuple 〈t1, t2, . . . , tm〉 of
terms, where each ti : X1, X2, . . . , Xn → Yi. Thus a theory T gives rise to a
pseudofunctor T : BT

op → Cat, which takes a type to the finite-product cat-
egory of formulas and terms whose context is of that type, and takes a term
t : X → Y to the substitution functor t∗ : TY → TX .

We want to show that a regular theory T gives rise to a bifibration ET → BT ,
that is, that for each term t : X → Y , the functor t∗ has a left adjoint ∃t. Define
the latter on formulas as

∃tφ = ∃ξ.(t[ξ] = y ∧ φ[ξ])

Let t : X → Y be any term; it suffices to show that for any φ[x] of type X

there is a universal ηtφ : φ
x

=⇒ t∗∃tφ; that is, for any equivalence class of proofs

p : φ
x

=⇒ t∗ψ, there is a unique p̂ : ∃tφ
y

=⇒ ψ such that t∗p̂ ◦ ηtφ is equal to p.

The derivation ηtφ is obtained by forming the derivation

x = x′ t[x] = t[x]

t[x′] = t[x]

x = x′ φ[x]

φ[x′]

t[x′] = t[x] ∧ φ[x′]

∃ξ.(t[ξ] = t[x] ∧ φ[ξ])

of type φ[x], x = x′
x,x′

=⇒ t∗∃tφ and using the bijection (∗) above to get rid of the

hypothesis x = x′. Given p : φ
x

=⇒ t∗ψ, let p̂ be
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∃ξ.(t[ξ] = y ∧ φ[ξ])

t[x] = y ∧ φ[x]

t[x] = y

t[x] = y ∧ φ[x]

φ[x]

...

ψ[t[x]]

ψ[y]

ψ[y]

The β and η equalities given above show that the composite t∗p̂ ◦ ηtφ is equal
to p, and uniqueness of p̂ follows from the normal form theorem for natural
deduction [Pra06]. So we have another bijection

∃tφ
y

=⇒ ψ

φ
x

=⇒ t∗ψ

In particular, we have the usual rewriting rules, as given in [See83]:

p
...

φ[t]

∃ξ.φ[ξ]

φ[x]

... q[x]

ψ

ψ

=

p
...

φ[t]

q[t]
...

ψ

and

p
...

∃ξ.φ[ξ]

q
...

ψ

=
p

...

∃ξ.φ[ξ]

φ[x]

∃ξ.φ[ξ]

q
...

ψ

ψ

For ET → BT to be a regular fibration, it must satisfy the Frobenius and
Beck–Chevalley conditions. The former means that for any term t the canonical

map ∃t(φ ∧ t∗ψ)
y

=⇒ (∃tφ) ∧ ψ is an isomorphism. This canonical map is given
[Joh02, definition D1.3.1(i)] by

φ ∧ t∗ψ x
=⇒ t∗ψ

∃t(φ ∧ t∗ψ)
y

=⇒ ψ

φ ∧ t∗ψ x
=⇒ φ

∃tφ
y

=⇒ ∃tφ
φ

x
=⇒ t∗∃tφ

φ ∧ t∗ψ x
=⇒ t∗∃tφ

∃t(φ ∧ t∗ψ)
x

=⇒ ∃tφ
∃t(φ ∧ t∗ψ)

x
=⇒ (∃tφ) ∧ ψ

So we must insist that in BT the above proof, call it f , have a formal inverse
f−1 : (∃tφ) ∧ ψ x

=⇒ ∃t(φ ∧ t∗ψ), adding to the equations above f−1f = 1 and
ff−1 = 1.

The Beck–Chevalley condition asks that for any pullback tu = sv in BT , the
mate of the isomorphism u∗t∗ ∼= v∗s∗ in Cat is again invertible. Now BT need
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not have all pullbacks, but there are some that it must have by virtue of having
finite products:

X
_�
〈X,t〉//

t

��
(A)

X × Y

t×Y
��

Y
∆

// Y × Y

X
_�

X //

X

��
(B)

X

∆

��
X

∆
// X ×X

and

X ′ ×X
_�

X′×t //

t′×X
��

(C)

X ′ × Y

t′×Y
��

Y ′ ×X
Y ′×t

// Y ′ × Y

Also, if tu = sv is a pullback, then so is its product with any object:

P × Z
_�

u×Z //

v×Z
��

(D)

X × Z

t×Z
��

X ′ × Z
s×Z

// Y × Z

By [See83, Theorem, §8], if a hyperdoctrine satisfies Beck–Chevalley for these
types of pullback, then it satisfies the condition for any pullback tu = sv if and
only if it proves

t[m] = s[m′] =⇒ ∃ξ.(u[ξ] = m ∧ v[ξ] = m′)

and
u[p] = u[p′], v[p] = v[p′] =⇒ p = p′

that is, if the hyperdoctrine ‘knows’ that the diagram is a pullback. Seely’s
proof goes through unchanged for a bifibration with fibred finite products, like
our T .

The Beck–Chevalley condition for (B) asks that η∆ be invertible. An inverse
is given by

∃ξ.∆[ξ] = ∆[x] ∧ φ[ξ]

(x′, x′) = (x, x) ∧ φ[x′]

(x′, x′) = (x, x)

(x′, x′) = (x, x) ∧ φ[x′]

φ[x′]

φ[x]

φ[x]

That this derivation is a left inverse for η∆
φ is easy to show, using the β-

reductions given above, and conversely that it is a right inverse follows from
the η-reductions for ∧, ∃ and =.

As for the other types of pullback, the Beck–Chevalley condition for these is
shown as in [See83, §4]. So in order to prove that the syntactic model T : BT

op →
Cat satisfies the full condition, it suffices to show that T recognizes pullbacks
in the sense above. But this is practically trivial: for a pullback tu = sv in BT ,
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the mediating morphism automatically exists for any commuting square over t
and s, while the second sequent follows from its uniqueness.

We can now perform the usual rites of categorical logic: a model of a regular
theory T in a regular fibration E → B is a morphism of regular fibrations
from ET → BT to E → B, and it is easy to see that this is equivalent to the
traditional notion. Soundness is automatic, as is completeness, because if a
sequent is true in every model then it is true in the syntactic model and thence
provable.
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