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1 Regular fibrations

A regular fibration is a bifibration with fibred finite products, or equivalently
a pseudofunctor R: B°? — Cat, out of a category with finite products, that
takes values in categories with finite products and where each f* = Rf has a
left adjoint 35 and (hence) preserves finite products. The latter condition is
vacuous because the f* are right adjoints, but we may also want to deal with
those nearly-regular bifibrations where the base category has finite products but
the fibres are merely monoidal, and in this case it is important to require that
the f* are strong monoidal (of course, they are automatically lax monoidal by
virtue of being right adjoints).

A morphism of regular fibrations is the obvious thing: a product-preserving
morphism of fibrations.

Our regular fibrations are those of [Pav96]. A very similar definition is given
in [Jac99], the only difference being that the latter sort of regular fibration is
required to have all fibres preordered.

The connection with regular categories is that a category C is regular if and
only if the projection cod: Mon C — C that sends S — X to X is a regular
fibration. For our purposes, a regular category is one that has finite limits and
pullback-stable images.

If C is a regular category, then the adjunctions 35 4 f* come from pullbacks
and images in C [Joh02, lemma 1.3.1] as does the Frobenius property [op. cit.,
lemma 1.3.3]. The terminal object of Sub(X) = Mon(C)x is the identity 1x on
X, and binary products in the fibres Sub(X) are given by pullback. The prod-
ucts are preserved by reindexing functors f* because (the f* are right adjoints
but also because) a cone over the diagram for f*(S AS’) can be rearranged into
a cone over that for f*SA f*S’, giving the two the same universal property. The
projection cod clearly preserves these products. The Beck—Chevalley condition
follows from pullback-stability of images in C.

Conversely, suppose Mon C — C is a regular fibration. We need to show
that C has equalizers (to get finite limits) and pullback-stable images. But the
equalizer of f,g: A = B is (f,g)*A. For images, let im f = 341 as in [Joh02,
lemma 1.3.1]. Pullback-stability follows from the Beck—Chevalley condition.

*Draft notes — please do not cite.



2 Regular logic

Regular logic is the fragment of first-order predicate logic that uses only the
connectives T for truth, A for conjunction and 3 for existential quantification.
We will mostly follow [See83].

2.1 Language

A (regular) signature is a collection XY ... of sorts, together with a collection
of typed predicate and function symbols. A type is a finite sequence X1, Xo, ...
of sorts, and types will also be denoted X,Y,.... If P is a predicate of type X
we may write P: X, and similarly f: X — Y indicates the type of f. Every
signature contains at least the equality predicate =x: X, X.

We assume given an inexhaustible supply of free variables x,z’,y,% ... and
bound variables £, &', v, ... of each sort, with the notation extended to types
so that a variable of type X,Y is the same as a pair x, y of variables of sorts X
and Y. A context is a finite list z: X,y: Y, ... of sorted variables, or equivalently
a single variable z: X,Y,....

A term is either a variable, a tuple of terms or a function symbol f applied
to a term, all with the obvious well-typedness constraints. Every term lives
in a context, which is assumed to contain every variable in the term, perhaps
together with ‘dummy’ variables that don’t. We write ¢[x] to indicate that x is
the context of ¢, and ¢[s] to denote the obvious substitution.

A formula is either the constant T, a predicate symbol P(t) applied to a
term, the conjunction ¢ A 9 of two formulas, a quantified formula 3€.¢ or the
substitution ¢[t] of the term ¢ into the formula ¢, defined in the usual way.
Every formula lives in a context, which we assume contains (perhaps strictly)
all of its free variables, and we write ¢[x] for this.

2.2 Logic
We will use the usual natural-deduction rules. Conjunction is governed by
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The notion of context is easily extended to derivations. Observe that the rules
for 3 are the only rules that do not preserve the contexts of formulas.
Derivations using these rules may be composed:

¢
¢ P :
D =
(0 X :
X

as long as both derivations have the same context, and this composition is clearly
associative, with units the identity derivations ¢. We may write p: ¢ == v to
indicate that p is a derivation of ¢ from the assumption ¢ with context z, and
thus arrive at the rules
pio=1v% ¢y =x
gop: ¢ == x

The substitution p[t] of a term ¢: ¥ — X into a derivation p[z] with = free
is defined in the obvious way, and an induction over the structure of deriva-
tions shows that the ‘substitute ¢’ mapping t* is a functor from the category of
derivations in the context x to derivations in the context y that commutes with
the finite-product structure given by the following.

If p;: ¢ == o; for i = 1,2, then we may use the A-introduction rule to form
a derivation (p1,p2): ¢ == 91 A 1)g, and conversely given a derivation p of the
latter type the elimination rules give m; o p: ¢ == ;. Imposing the (S- and
7-)equalities

ly: = ¢

7Ti<p11102> =Di <71P77T2P>:P

then gives a ‘bijective’ rule

pi: g == pat ¢ == o

(p1,p2): & == U1 Aty
where to move from bottom to top we compose with 7;, and this gives binary
products in each category of derivations. As for T, we will say that any deriva-
tion p: ¢ == T is equal to the canonical g1 @ == T, making T the terminal
object in each category of derivations.
Similarly, there is a 8 rule for equality:

o olt]
and an 7 rule:
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and these set up a bijection
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between derivations of the indicated types [Jac99]. There is also a ‘coherence’
rule

t:t =

t=1

_‘

t=t

which makes sure that T x = x = x, so that © = z is the terminal object in the
category of derivations over X.

A (regular) theory over a signature is given by a collection of axioms (deriva-
tion constants) together with a collection of equations between derivations built
from those axioms and the above rules. The terms of a signature, together with
the equational axioms ¢ = ' of a theory over that signature, give rise to a cate-
gory Bp with finite products — the ‘multisorted Lawvere theory’ associated to
the theory. In this category an object is a type X1, Xo, ..., X,,, and a morphism
from X1, Xs,..., X, toY1,Ys,...,Y,, is given by an m-tuple (¢t1,t2,...,tm) of
terms, where each t;: X1, Xo,..., X, — Y;. Thus a theory T gives rise to a
pseudofunctor T': By°®? — Cat, which takes a type to the finite-product cat-
egory of formulas and terms whose context is of that type, and takes a term
t: X — Y to the substitution functor t*: Ty — Tx.

We want to show that a regular theory T gives rise to a bifibration Er — Br,
that is, that for each term t: X — Y, the functor ¢* has a left adjoint 3;. Define
the latter on formulas as

Fd = 3K.(t[E] = y A ¢lE])

Let t: X — Y be any term; it suffices to show that for any ¢[x] of type X
there is a universal n),: ¢ == ¢*3,¢; that is, for any equivalence class of proofs

p: ¢ == t*1), there is a unique p: J;¢ = 1 such that t*p o 77§5 is equal to p.
The derivation 7]; is obtained by forming the derivation

x=ua t[z] = t[z] x=ua ¢|z]
ta'] = t[z] ¢lz']
ta'] = tla] A pla’]
3. (t¢] = tla] A BLE])

of type ¢[z], z = 2’ =5 t*3,¢ and using the bijection () above to get rid of the
hypothesis z = &/. Given p: ¢ == t*1), let p be



3.(tlE] =y A BLE)) Yly]
Yly]
The 5 and 7 equalities given above show that the composite t*p o n; is equal

to p, and uniqueness of p follows from the normal form theorem for natural
deduction [Pra06]. So we have another bijection

3o == 9
¢ == t*1

In particular, we have the usual rewriting rules, as given in [See83]:
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For E; — Br to be a regular fibration, it must satisfy the Frobenius and
Beck—Chevalley conditions. The former means that for any term ¢ the canonical
map J;(p At* ) £ (3:6) A is an isomorphism. This canonical map is given
[Joh02, definition D1.3.1(i)] by

o == o

DALY = ¢ ¢ == t*3¢
PALY = t*9) ALY = 3,6
Fi(p At* ) =5 1p (P At*Y) = 349

(P At*) = (319) AV

So we must insist that in By the above proof, call it f, have a formal inverse
71 (3id) A == Fi(¢ A t*1), adding to the equations above f~'f = 1 and
fft=1

The Beck—Chevalley condition asks that for any pullback tu = sv in By, the

~

mate of the isomorphism u*t* & v*s* in Cat is again invertible. Now B need



not have all pullbacks, but there are some that it must have by virtue of having
finite products:

(X,t) X
X—=XXxY X—X
_ _
tl (A) itxY Xl (B) iA
Y*A>Y><Y XHA'XXX

and
X't
X' x .j(—>X’ xY
t'xXl (C) lt’xY
Y'XxX —=Y'xY
Y’ ' xt

Also, if tu = sv is a pullback, then so is its product with any object:

Pxz7% xxz

_
vXZl (D) ltxz

X/XZW-YXZ

By [See83, Theorem, §8], if a hyperdoctrine satisfies Beck—Chevalley for these
types of pullback, then it satisfies the condition for any pullback tu = sv if and
only if it proves

tlm] = s[m/] = 3¢.(u[¢] = m Av[¢] = m)

and
ulp] = ulp’],vlp] = v[p'] = p=p'

that is, if the hyperdoctrine ‘knows’ that the diagram is a pullback. Seely’s
proof goes through unchanged for a bifibration with fibred finite products, like
our 7'

The Beck—Chevalley condition for (B) asks that n” be invertible. An inverse
is given by

(@,2') = (@, 2) No[2] (2, 2") = (z,2) A g[a]
(ac’,x’) = (z,) ¢[$l]
3EA[E] = Alz] A ¢[¢] lz]
]

That this derivation is a left inverse for 77(? is easy to show, using the (-
reductions given above, and conversely that it is a right inverse follows from
the n-reductions for A, 9 and =.

As for the other types of pullback, the Beck—Chevalley condition for these is
shown as in [See83, §4]. So in order to prove that the syntactic model T': By°? —
Cat satisfies the full condition, it suffices to show that T recognizes pullbacks
in the sense above. But this is practically trivial: for a pullback tu = sv in B,




the mediating morphism automatically exists for any commuting square over ¢
and s, while the second sequent follows from its uniqueness.

We can now perform the usual rites of categorical logic: a model of a regular
theory T in a regular fibration £ — B is a morphism of regular fibrations
from EFr — Br to E — B, and it is easy to see that this is equivalent to the
traditional notion. Soundness is automatic, as is completeness, because if a
sequent is true in every model then it is true in the syntactic model and thence
provable.
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