
Chapter 2

Internal categories and anafunctors

In this chapter we consider anafunctors [18, 4] as generalised maps between internal
categories [8], and show they formally invert fully faithful, essentially surjective functors
(this localisation was developed in [20] without anafunctors). To do so we need our
ambient category S to be a site, to furnish us with a class of arrows that replaces the
class of surjections in the case S = Set. The site comes with collections called covers,
and give meaning to the phrase “essentially surjective” when working internal to S.
A useful analogy to consider is when S = Top, and the covers are open covers in the
usual way. In that setting, ‘surjective’ is replaced by ‘admits local sections’, and the
same is true for an arbitrary site - surjections are replaced by maps admitting local
sections with respect to the given class of covers. The class of such maps does not
determine the covers with which one started, and we use this to our advantage. A
superextensive site1 is a one where out of each cover {Ui → A|i ∈ I} we can form a
single map

∐
I Ui → A, and use these as our covers. A maps admits local sections over

the original covers if and only if it admits sections over the new covers, and it is with
these we can define anafunctors. Finally we show that different collections of covers
will give equivalent results if they give rise to the same collection of maps admitting
local sections.

Most of the definitions in this chapter are standard, the exceptions being the ma-
terial on anafunctors and localising bicategories, though some of the notation may be
idiosyncratic of the author.

2.1 Internal categories and groupoids

Internal categories were introduced by Ehresmann [8], starting with differentiable and
topological categories (i.e. internal to Diff and Top respectively). We collect here
the necessary definitions and terminology without burdening the reader with pages of
diagrams. For a thorough recent account, see [2] or [4]. Familiarity with basic category
theory [16] is assumed.

Let S be a category with binary products and pullbacks. It will be referred to as
the ambient category.

Definition 2.1.1. An internal category X in a category S is a diagram

X1 ×X0 X1
m−→ X1

s,t

⇒ X0
e−→ X1

1This notion is due to Toby Bartels and Mike Shulman
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in S such that the multiplication m is associative, the unit map e is a two-sided unit
for m and s and t are the usual source and target.

The pullback in the diagram is

X1 ×X0 X1
!!

""

X1

s
""

X1 t
!! X0 .

This, and pullbacks like this (where source is pulled back along target), will occur often.
If confusion can arise, the maps in question will be noted down, as in X1×s,X0,tX1. Also,
since multiplication is associative, there is a well-defined map X1×X0 X1×X0 X1 → X1,
which will also be denoted by m.

It follows from the definition2 that there is a subobject X iso
1 ↪→ X1 through which

e factors and an involution
(−)−1 : X iso

1 → X iso
1

sending arrows to their inverses such that the restriction of the structure maps to X iso
1

make X iso
1 ⇒ X0 an internal category, and that (−)−1 ◦ e = e.

Often an internal category will be denoted X1 ⇒ X0, the arrows m, s, t, e will be
referred to as structure maps and X1 and X0 called the objects of arrows and objects
respectively.

Remark 2.1.2. A very often used class of internal categories is that of Lie groupoids
(e.g. [15]). Since Diff doesn’t have all pullbacks, modifications need to be made to the
above definition. Since submersions admit pullbacks and are stable, s and t are assumed
to be surjective submersions. Various other constructions involving pullbacks later on in
this chapter also need care, and there is an established literature on the subject. More
generally, one can consider internal category theory for ambient categories without
pullbacks, given a class of maps analogous to submersion, but we will not do this in
the present work.

Example 2.1.3. If M is a monoid object in S and a : M ×X → X is an action, there
is a category M ! X ⇒ X, called the action category, where the source and target are
projection and the action respectively. The subobject of invertible arrows is M∗ ! X.
In particular, consider the case when X is the terminal object (assumed to exist so as
to define the unit of the monoid). Then such a category is precisely a monoid.

Example 2.1.4. If X → Y is an arrow in S admitting iterated kernel pairs, there is a
category Č(X) with Č(X)0 = X, Č(X)1 = X ×Y X, source and target are projection
on first and second factor, and the multiplication is projecting out the middle factor
in X ×Y X ×Y X. The subobject of invertible arrows is all of Č(X)1.

A lot of interest in internal categories is for defining stacks over the ambient category
(once it has the structure of a site, for which see below), and specifically, stacks of
groupoids. These lead to considering internal groupoids as local models for the stack
over the site (e.g. [5] in the case of a regular, finitely complete category).

Definition 2.1.5. If an internal category X has X iso
1 & X1, then it is called an internal

groupoid.

2[5], but see [9] for some more details.
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A lot of the terminology and machinery will be described here for internal categories,
even though most of the examples of interest are internal groupoids.

Example 2.1.6. Let S be a category. For each object A ∈ S there is an internal groupoid
disc(A) which has disc(A)1 = disc(A)0 = A and all structure maps equal to idA. Such
a category is called discrete.
If S has binary products, there is an internal groupoid codisc(A) with codisc(A)0 =
A, codisc(A)1 = A × A and where source and target are projections on the first and
second factor respectively. The unit map is the diagonal and composition is projecting
out the middle factor in codisc(A)1×codisc(A)0

codisc(A)1 = A×A×A. Such a groupoid
is called codiscrete.

Example 2.1.7. The codiscrete groupoid is obviously a special case of example 2.1.4,
which is called the Čech groupoid of the map X → Y . The origin of the name is that
in Top, for maps of the form

∐
I Ui → Y , the Čech groupoid Č(

∐
I Ui) appears in the

definition of Čech cohomology.

Example 2.1.8. If G is a group object in a category S with finite products, the groupoid
BG has BG0 = ∗, BG1 = G.

Example 2.1.9. If C is a category with a set of objects enriched in Top, then let
Cint

0 = Obj(C) and Cint
1 =

∐
Obj(C)2 C(a, b). Then Cint is a category internal to Top.

This example can be generalised to monoidal categories other than Top in which
sufficient coroducts of the unit exist.

Example 2.1.10. If X is a topological space which has a universal covering space (i.e.
is path-connected, locally path-connected and semilocally simply connected), then the
fundamental groupoid Π1(X) can be made into a groupoid internal to Top.

Definition 2.1.11. Given internal categories X and Y in S, and internal functor
f : X → Y is a pair of maps

f0 : X0 → Y0 f1 : X1 → Y1

called the object and arrow component respectively. The map f1 restricts to a map
f1 : X iso

1 → Y iso
1 and both components commute with all the structure maps.

Example 2.1.12. Given a homomorphism φ between monoids or groups, there is a
functor between the categories/groupoids in example 2.1.3. More generally, given an
equivariant map between objects with an M -action, it gives rise to a functor between
the associated action categories.

Example 2.1.13. If A → B is a map in S, there are functors disc(A) → disc(B) and
codisc(A) → codisc(B).

Example 2.1.14. If A → C and B → C are maps admitting iterated kernel pairs, and
A→ B is a map over C, there is a functor Č(A) → Č(B).

Example 2.1.15. A map X → Y in Top induces a functor Π1(X) → Π1(Y ) (when
these exist).

Definition 2.1.16. Given internal categories X, Y and internal functors f, g : X → Y ,
an internal natural transformation (or simply transformation)

a : f ⇒ g
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is a map a : X0 → Y1 such that s ◦ a = f0, t ◦ a = g0 and the following diagram
commutes

X1
(g1,a◦s)

!!

(a◦t,f1)
""

Y1 ×Y0 Y1

m

""
Y1 ×Y0 Y1

m !! Y1

expressing the naturality of a. If a factors through Y iso
1 , then it is called a natural

isomorphism. Clearly there is no distinction between natural transformations and
natural isomorphisms when Y is an internal groupoid.

We can reformulate the naturality diagram above in the case that a is a natural
isomorphism. Denote by −a the composite arrow

X0
a−→ Y iso

1

(−)−1

−−−→ Y iso
1 ↪→ Y1.

Then the above diagram commuting is equivalent to this diagram commuting

X0 ×X0 X1 ×X0 X0
−a×f×a !!

%
""

Y1 ×Y0 Y1 ×Y0 Y1

m
""

X1 g
!! Y1

(2.1)

which we will use repeatedly.

Example 2.1.17. Let Vρ, Vρ′ be the action groupoids associated to representations ρ, ρ′

of G on V . They are given by functors from G to GL(V ) as described in example
2.1.12. A natural transformation between these functors is precisely an intertwiner.

Example 2.1.18. If X is a groupoid in S, A is an object of S and f, g : X → codisc(A)
are functors, there is a natural isomorphism f

∼⇒ g.

Internal categories (resp. groupoids), functors and transformations form a 2-category
Cat(S) (resp. Gpd(S)) [8]. There is clearly a 2-functor Gpd(S) → Cat(S). Also,
disc and codisc, described in examples 2.1.6, 2.1.13 are 2-functors S → Gpd(S), whose
underlying functors are left and right adjoint to the functor

(−)0 : Gpd1(S) → S, (X1 ⇒ X0) )→ X0.

Here Gpd1(S) is the category underlying the 2-category Gpd(S). Hence for an internal
category X in S, there are functors disc(X0) → X and X → codisc(X0), the latter
sending an arrow to the pair (source,target).

An internal equivalence of internal categories is an equivalence in this 2-category:
an internal functor f : X → Y such that there is a functor f ′ : Y → X and natural
isomorphisms f ◦ f ′ ⇒ idY , f ′ ◦ f ⇒ idX .

In all that follows, ‘category’ will mean ‘internal category in S’ and similarly for
‘functor’ and ‘natural transformation/isomorphism’. We will not be considering here
the effect a functor S → S ′ between ambient categories has on internal category theory.
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2.2 Sites and covers

All the material in this section is standard. Even though we are assuming our ambient
category has pullbacks, a lot of the definitions are made for more general categories.

Definition 2.2.1. A Grothendieck pretopology (or simply pretopology) on a category
S is a collection J of families

{(Ui → A)i∈I}

for each object A ∈ S satisfying the following properties

1. (id : A→ A) is in J for every object A.

2. Given a map B → A, for every (Ui → A)i∈I in J the pullbacks B×A Ai exist and
(B ×A Ai → B)i∈I is in J .

3. For every (Ui → A)i∈I in J and for a collection (V i
k → Ui)k∈Ki from J for each

i ∈ I, the composites
(V i

k → A)k∈Ki,i∈I

are in J .

Families in J are called covering families. A category S equipped with a pretopology
is called a site, denoted (S, J).

Example 2.2.2. The basic example is the lattice of open sets of a topological space,
seen as a category in the usual way, where a covering family of an open U ⊂ X is an
open cover of U by opens in X. This is to be contrasted with the pretopology on Top,
where the covering families of a space are just open covers of the whole space.

Example 2.2.3. On Grp the class of surjective homomorphisms form a pretopology.

Example 2.2.4. On Top the class of numerable open covers (i.e. those that admit a
subordinate partition of unity [7]) form a pretopology.

Definition 2.2.5. Let (S, J) be a site. The pretopology J is called a singleton pre-
topology if every covering family consists of a single arrow (U → A). In this case a
covering family is called a cover.

Example 2.2.6. In Top, the classes of covering maps, local section admitting maps,
surjective étale maps and open surjections are all examples of singleton pretopologies

Definition 2.2.7. A covering family (Ui → A)i∈I is called effective if A is the colimit
of the following diagram: the objects are the Ui and the pullbacks Ui ×A Uj, and the
arrows are the projections

Ui ← Ui ×A Uj → Uj.

If the covering family consists of a single arrow (U → A), this is the same as saying
U → A is a regular epimorphism.

Definition 2.2.8. A site is called subcanonical if every covering family is effective.

Example 2.2.9. The usual pretopology of opens, as well as the pretopology of numerable
covers, on Top are subcanonical.
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Example 2.2.10. In a regular category, the regular epimorphisms form a subcanonical
singleton pretopology.

In fact, the (pullback stable) regular epimorphisms in any category form the largest
subcanonical topology, so it has its own name3

Definition 2.2.11. The canonical singleton pretopology R is the class of all regular
epimorphisms which are pullback stable. It contains all the subcanonical singleton
pretopologies.

Remark 2.2.12. If U → A is an effective cover, a functor Č(U) → disc(B) gives a
unique arrow A→ B. This follows immediately from the fact A is the colimit of Č(U).

Definition 2.2.13. A finitary (resp. infinitary) extensive category is a category with
finite (resp. small) coproducts such that the following condition holds: let I be a a
finite set (resp. any set), then, given a collection of commuting diagrams

xi !!

""

z

""
ai !!

∐
i∈I ai ,

one for each i ∈ I, the squares are all pullbacks if and only if the collection {xi → z}I

forms a coproduct diagram.

In such a category there is a strict initial object (i.e. given a map A→ 0, A & 0).

Example 2.2.14. Top is infinitary extensive.

Example 2.2.15. Ringop is finitary extensive.

Definition 2.2.16. (Bartels-Shulman) A superextensive site is an extensive category
S equipped with a pretopology J containing the families

(Ui →
∐

I

Ui)i∈I

and such that all covering families are bounded. This means that for a finitely extensive
site, the families are finite, and for an infinitary site, the families are small.

Example 2.2.17. Given an extensive category S, the extensive pretopology has as cov-
ering families the bounded collections (Ui →

∐
I Ui)i∈I . The pretopology on any su-

perextensive site contains the extensive pretopology.

Example 2.2.18. The category Top with its usual pretopology of open covers is a
superextensive site.

Given a superextensive site, one can form the class ,J of arrows
∐

I Ui → A.

Proposition 2.2.19. The class ,J is a singleton pretopology, and is subcanonical if
and only if J is.

3of course, the nomenclature was decided the other way around - ‘subcanonical’ meaning ‘contained
in the canonical pretopology.’

10



Proof. Since identity arrows are covers for J they are covers for ,J . The pullback
of a ,J-cover

∐
I Ui → A along B → A is a ,J-cover as coproducts and pullbacks

commute by definition of an extensive category. Now for the third condition. we use
the fact that in an extensive category a map

f : B →
∐

I

Ai

implies that B &
∐

I Bi and f =
∐

i fi. Given ,J-covers
∐

I Ui → A and
∐

J Vj →
(
∐

I Ui), we see that
∐

J Vj &
∐

I Wi. By the previous point, the pullback
∐

I

Uk ×‘
I Ui′ Wi

is a ,J-cover of Ui, and hence (Uk ×‘
I Ui′ Wi → Uk)i∈I is a J-covering family for each

k ∈ I. Thus
(Uk ×‘

I Ui′ Wi → A)i,k∈I

is a J-covering family, and so

∐

J

Vj &
∐

k∈I

(
∐

I

Uk ×‘
I Ui′ Wi

)
→ A

is a ,J-cover.
The map

∐
I Ui → A is the coequaliser of

∐
I×I Ui ×A Uj ⇒ ∐

I Ui if and only if A is
the colimit of the diagram in definition 2.2.7. Hence (

∐
I Ui → A) is effective if and

only if (Ui → A)i∈I is effective "

Notice that the original pretopology J is generated by the union of ,J and the
extensive pretopology.

Definition 2.2.20. Let (S, J) be a site. An arrow P → A in S is a J-epimorphism
(or simply J-epi) if there is a covering family (Ui → A)i∈I and a lift

P

""
Ui

##!
!

!
!

!! A

for every i ∈ I. The class of J-epimorphisms will be denoted (J-epi).

This definition is equivalent to the definition in III.7.5 in [17]. The dotted maps
in the above definition are called local sections, after the case of the usual open cover
pretopology on Top. If the pretopology is left unnamed, we will refer to local epimor-
phisms.

One reason we are interested in superextensive sites is the following

Lemma 2.2.21. If (S, J) is a superextensive site, the class of J-epimorphisms is pre-
cisely the class of ,J-epimorphisms.

If S has all pullbacks then the class of J-epimorphisms form a pretopology. In fact
they form a pretopology with an additional condition - it is saturated. The following
is adapted from [3]:4

4Note that in [3] what we are calling a Grothendieck pretopology, is called a Grothendieck topology.
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Definition 2.2.22. A singleton pretopology K is saturated if whenever the composite
V → U → A is in K, then U → A is in K.

In fact only a slightly weaker condition on S is necessary for (J-epi) to be a pre-
topology.

Example 2.2.23. Let (S, J) be a site. If pullbacks of J-epimorphisms exist then the
collection (J-epi) of J-epimorphisms is a saturated pretopology.

There is a definition of ‘saturated’ for arbitrary pretopologies, but we will use only
this one. Another way to pass from an arbitrary pretopology to a singleton one in a
canonical way is this:

Definition 2.2.24. The singleton saturation of a pretopology on an arbitrary category
S is the largest class Jsat ⊂ (J-epi) of those J-epimorphisms which are pullback stable.

If J is a singleton pretopology, it is clear that J ⊂ Jsat. In fact Jsat contains all the
covering families of J with only one element when J is any pretopology.

From lemma 2.2.21 we have

Corollary 2.2.25. In a superextensive site (S, J), the saturations of J and ,J coin-
cide.

One class of extensive categories which are of particular interest is those that also
have finite/small limits. These are called lextensive. For example, Top is infinitary
lextensive, as is a Grothendieck topos. In contrast, a general topos is finitary lextensive.
In a lextensive category

Jsat = (,J)sat = (J-epi).

Sometimes a pretopology J contains a smaller pretopology that still has enough
covers to compute the same J-epis.

Definition 2.2.26. If J and K are two singleton pretopologies with J ⊂ K, such that
K ⊂ Jsat, then J is said to be cofinal in K, denoted J ≤ K.

Clearly J ≤ Jsat.

Lemma 2.2.27. If J ≤ K, then Jsat = Ksat.

2.3 Weak equivalences

For categories internal to Set, equivalences are precisely those fully faithful, essentially
surjective functors. For internal categories, however, this is not the case.In addition, we
need to make use of a pretopology to make the ‘surjective’ part of essentially surjective
meaningful.

Definition 2.3.1. [9] An internal functor f : X → Y in a site (S, J) is called

1. fully faithful if

X1
f1 !!

(s,t)
""

Y1

(s,t)
""

X0 ×X0 f0×f0

!! Y0 × Y0

is a pullback diagram
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2. essentially J-surjective if the arrow labelled # is in (J-epi)

X0 ×Y0 Y iso
1

$$""""""""""

!

%%

""

X0

f0

""

Y iso
1

s
$$"""""""""""

t
&&###########

Y0 Y0

3. a J-equivalence if it is fully faithful and essentially J-surjective.

The class of J-equivalences will be denoted WJ , and if mention of J is suppressed,
they will be called weak equivalences.

Example 2.3.2. If X → Y is an internal equivalence, then it is a J-equivalence for all
pretopologies J [9]. In fact, if T denotes the trivial pretopology (only isomorphisms
are covers) the T -equivalences are precisely the internal equivalences.

Example 2.3.3. If J is a singleton pretopology, and U → A is a J-cover (or more
generally, is in Jsat), Č(U) → disc(A) is a J-equivalence.

Example 2.3.4. If f : X → Y is a functor such that f0 is in (J-epi), then f is essentially
J-surjective.

A very important example of a J-equivalence requires a little set up. The strict
pullback of internal categories

X ×Y Z !!

""

Z

""
X !! Y

is the category with objects X0×Y0 Z0, arrows X1×Y1 Z1, and all structure maps given
componentwise by those of X and Z.

Definition 2.3.5. Let S be a category with binary products, X a category internal to
S and p : M → X0 an arrow in S. Define the induced category X[M ] to be the strict
pullback

X[M ] !!

""

X

""
codisc(M) !! codisc(X0)

(2.2)

with objects M and arrows M2 ×X2
0

X1. The canonical functor in the top row has as
object component p and is fully faithful.

It follows immediately from the definition that given maps M → X0, N → M ,
there are canonical isomorphisms

X[M ][N ] & X[N ], X[X0] & X, (2.3)

where X0 → X0 is taken to be the identity arrow.
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Example 2.3.6. If Č(B) is the Čech groupoid associated to a map j : B → A in S,
then disc(A)[B] & Č(B). Of special interest is the case when j is a cover for some
pretopology on S.

Lemma 2.3.7. If (S, J) is a site, X a category in S and (U → X0) is a covering
family, the functor X[U ] → X is a J-equivalence.

Proof. The object component of the canonical functor X[U ] → X is U → X0 and
since it is in J it is in Jsat. Hence X[U ] → X is a J-equivalence. "

Lemma 2.3.8. Let X be an internal category in S, and M → X0, N → X0 arrows in
S. Then the following square is a strict pullback

X[M ×X0 N ] !!

""

X[N ]

""
X[M ] !! X

Proof. Consider the following cube

X[M ×X0 N ] !!

''$$$$$$$$$$$$$$

""

X[N ]

""

((%%%%%%%%%%%%%

X[M ]

""

!! X

""

codisc(M ×X0 N)

''$$$$$$$$$$$$$
!! codisc(N)

((%%%%%%%%%%%

codisc(M) !! codisc(X0)

The bottom and sides are pullbacks, either by definition, or using 2.3, and so the top
is a pullback. "

Fully faithful functors are stable under pullback, much like monomorphisms are.

Lemma 2.3.9. If f : X → Y is fully faithful, and g : Z → Y is any functor, f̂ in

Z ×Y X !!

f̂
""

X

f
""

Z g
!! Y

is fully faithful.

Proof. The following chain of isomorphisms establishes the claim

(Z0 ×Y0 X0)
2 ×Z2

0
Z1 & X2

0 ×Y 2
0

Z1

& X2
0 ×Y 2

0
Y1 ×Y1 Z1

& X1 ×Y1 Z1,

the last following from the fact f is fully faithful. "
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2.4 Anafunctors

Definition 2.4.1. [18, 4] Let (S, J) be a site. An anafunctor in (S, J) from a category
X to a category Y consists of a cover (U → X0) and an internal functor

f : X[U ] → Y.

The anafunctor is a span in Cat(S), and will be denoted

(U, f) : X−)→ Y.

Example 2.4.2. For an internal functor f : X → Y in the site (S, J), define the ana-
functor (X0, f) : X−)→ Y as the following span

X ← X[X0] & X
f−→ Y.

We will blur the distinction between these two descriptions. If f = id : X → X, then
(X0, id) will be denoted simply by idX .

Example 2.4.3. If U → A is a cover in (S, J) and G is a group object in S, an anafunctor
(U, g) : disc(A)−)→ BG is a Čech cocycle.

Definition 2.4.4. [18, 4] Let (S, J) be a site, (U, f), (V, g) : X−)→ Y anafunctors in S.
A transformation

α : (U, f) → (V, g)

from (U, f) to (V, g) is an internal natural transformation

X[U ×X0 V ]

))&&&&&&&&&&

**''''''''''

X[U ]

f
**((((((((((((
α⇒ X[V ]

g
))))))))))))))

Y

If α : U ×X0 V → Y1 factors through Y iso
1 , then α is called an isotransformation. In

that case we say (U, f) is isomorphic to (V, g). Clearly all transformations between
anafunctors between internal groupoids are isotransformations.

Example 2.4.5. Given functors f, g : X → Y between categories in S, and a natural
transformation a : f ⇒ g, there is a transformation a : (X0, f) ⇒ (X0, g) of anafunctors,
given by X0 ×X0 X0 & X0

a−→ Y1.

Example 2.4.6. If (U, g), (V, h) : disc(A)−)→ BG are two Čech cocycles, a transformation
between them is a coboundary on the cover U ×A V → A.

Example 2.4.7. Let (U, f) : X−)→ Y be an anafunctor in S. There is an isotransfor-
mation 1(U,f) : (U, f) ⇒ (U, f) called the identity transformation, given by the natural
transformation with component

U ×X0 U & U × U ×X2
0
X0

id2
U×e

−−−→ X[U ]1
f1−→ Y1 (2.4)
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Example 2.4.8. [18] Given anafunctors (U, f) : X → Y and (V, f ◦ k) : X → Y where
k : V & U is an isomorphism over X0, a renaming transformation (U, f) ⇒ (V, f ◦ k)
is an isotransformation with component

1(U,f) ◦ (k × id) : V ×X0 U → U ×X0 U → Y1

k will be referred to as a renaming isomorphism.
More generally, we could let k : V → U be any refinement, and this prescription also
gives an isotransformation (U, f) ⇒ (V, f ◦ k).

Example 2.4.9. As a concrete and relevant example of a renaming transformation we
can consider the triple composition of anafunctors

(U, f) : X−)→ Y,

(V, g) : Y−)→ Z,

(W,h) : Z−)→ A.

The two possibilities of composing these are

(
(U ×Y0 V )×Z0 W,h ◦ (gfV )W

)
,

(
U ×Y0 (V ×Z0 W ), h ◦ gW ◦ fV×Z0W

)

The unique isomorphism (U ×Y0 V ) ×Z0 W & U ×Y0 (V ×Z0 W ) commuting with the
various projections is then the required renaming isomorphism. The isotransformation
arising from this renaming transformation is the associator.

We define the composition of anafunctors as follows. Let (U, f) : X−)→ Y , (V, g) : Y−)→
Z be anafunctors in the site (S, J). Their composite (V, g) ◦ (U, f) is the composite
span defined in the usual way.

X[U ×Y0 V ]

))&&&&&&&&&&
fV

**''''''''''

X[U ]

++**
**

**
**

f
**((((((((((((

Y [V ]

))&&&&&&&&&&&&
g

,,++
++

++
++

X Y Z

The pullback exists for any pair of anafunctors because V → Y0, and hence U ×Y0 V →
X0, is a cover, and the result is again an anafunctor by (2.3) and lemma 2.3.8. We will
sometimes denote the composite by (U ×Y0 V, g ◦ fV ).

Consider the special case when V = Y0, and hence (Y0, g) is just an ordinary functor.
Then there is a renaming transformation (Y0, g)◦(U, f) ⇒ (U, g◦f), using the canonical
isomorphism U ×Y0 Y0 & U . If we let g = idY , then we see that (Y0, idY ) is a weak unit
on the left for anafunctor composition. Similarly, considering (V, g) ◦ (Y0, id), we see
that (Y0, idY ) is a two-sided weak unit for anafunctor composition. In fact, we have
also proved

Lemma 2.4.10. Given two functors f : X → Y , g : Y → Z in S, their composition
as anafunctors is isomorphic by a renaming transformation to their composition as
functors:

φfg : (Y0, g) ◦ (X0, f)
∼⇒ (X0, g ◦ f).
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A simple but useful criterion for describing isotransformations where either of the
anafunctors is a functor is as follows.

Lemma 2.4.11. An anafunctor (V, g) : X−)→ Y is isomorphic to a functor f : X → Y
if and only if there is a natural isomorphism

X[V ]

--,,
,,

,,
,, g

,,--
--

--
--

X

f

..
∼⇒ Y

In a site (S, J) where the axiom of choice holds (that is, every epimorphism has a
section), one can prove that every J-equivalence between internal categories is in fact
an internal equivalence of categories. It is precisely the lack of splittings that prevents
this theorem from holding in general sites. The best one can do in a general site is
described in the the following two lemmas.

Lemma 2.4.12. Let f : X → Y be a J-equivalence in (S, J), and choose a cover
U → Y0 and a local section s : U → X0 ×Y0 Y iso

1 . Then there is a functor Y [U ] → X
with object component s′ := pr1 ◦ s : U → X0.

Proof. The object component is given, we just need the arrow component. Denote
the local section by (s′, ι) : U → X0 ×Y0 Y iso

1 . Consider the composite

Y [U ]1 & U ×Y0 Y1 ×Y0 U
(s′,ι)×id×(−ι,s′)−−−−−−−−−→ (X0 ×Y0 Y iso

1 )×Y0 Y1 ×Y0 (Y iso
1 ×Y0 X0) ↪→

X0 ×Y0 Y3 ×Y0 X0
id×m×id−−−−−→ X0 ×Y0 Y1 ×Y0 X0 & X1

It is clear that this commutes with source and target, because these are projection on
the first and last factor at each step. To see that it respects identities and composition,
just use the fact that the ι component will cancel with the −ι component. "

Hence there is an anafunctor Y−)→ X, and the next proposition tells us this is a
pseudoinverse to f (in a sense to be made precise in proposition 2.4.18 below).

Lemma 2.4.13. Let f : X → Y be a J-equivalence in S. There is an anafunctor

(U, f̄) : Y−)→ X

and isotransformations

ι : (U, f̄) ◦ (X0, f) ⇒ idX

ε : (X0, f) ◦ (U, f̄) ⇒ idY

Proof. We have the anafunctor (U, f̄) from the previous lemma. Since the ana-
functors idX , idY are actually functors, we can use lemma 2.4.11. Using the special
case of anafunctor composition when the second is a functor, this tells us that ι will
be given by a natural isomorphism

X
f

//.
..

..
..

.

00Y [U ] !!

f̄
11,,,,,,,,

Y
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This has component ι : U → Y iso
1 , using the notation from the proof of the previous

lemma. Notice that the composite f1 ◦ f̄1 is just

Y [U ]1 & U ×Y0 Y1 ×Y0 U
ι×id×−ι−−−−−→ Y iso

1 ×Y0 Y1 ×Y0 Y iso
1 ↪→ Y3

m−→ Y1.

Since the arrow component of Y [U ] → Y is U×Y0 Y1×Y0 U
pr2−−→ Y1, ι is indeed a natural

isomorphism using the diagram (2.1).
The other isotransformation is between (X0 ×Y0 U, f̄ ◦ pr2) and (X0, idX), and is

given by the arrow

ε : X0 ×X0 X0 ×Y0 U & X0 ×Y0 U
id×(s′,a)−−−−−→ X0 ×Y0 (X0 ×Y0 Y1) & X2

0 ×Y 2
0

Y1 & X1

This has the correct source and target, as the object component of f̄ is s′, and the
source is given by projection on the first factor of X0 ×Y0 U . This diagram

(X0 ×Y 2
0

U)2 ×X2
0
X1

%
""

pr2 !! X1

%

""

U ×Y0 X1 ×Y0 U

−ι×f×ι
""

(X0 ×Y0 Y iso
1 )×Y0 Y1 ×Y0 (Y iso

1 ×Y0 X0) id×m×id
!! X0 ×Y0 Y1 ×Y0 X0

commutes, and using (2.1) we see that ε is natural. "

Just as there is composition of natural transformations between internal functors,
there is a composition of transformations between internal anafunctors [4]. This is
where the effectiveness of our covers will be used in order to construct a map locally
over some cover. Consider the following diagram

X[U ×X0 V ×X0 W ]

22//////////////

3300000000000000

X[U ×X0 V ]

))&&&&&&&&&&

330000000000000000
X[V ×X0 W ]

22////////////////

**'''''''''''

X[U ]

f
441111111111111111111111111111111111

a⇒ X[V ]

g

""

b⇒ X[W ]

h
552222222222222222222222222222222222

Y

from which we can form a natural transformation between the leftmost and the right-
most composites as functors in S. This will have as its component the arrow

b̃a : U ×X0 V ×X0 W
id×∆×id−−−−−→ U ×X0 V ×X0 V ×X0 W

a×b−−→ Y1 ×Y0 Y1
m−→ Y1

in S. Notice that the Čech groupoid of the cover

U ×X0 V ×X0 W → U ×X0 W

18



is
U ×X0 V ×X0 V ×X0 W ⇒ U ×X0 V ×X0 W,

using the two projections V ×X0 V → V . Denote this by s, t : UV 2W ⇒ UV W for
brevity. In [4] we find this commuting diagram

UV 2W
t !!

s

""

UV W

eba
""

UV W eba
!! Y1

and so we have a functor Č(U×X0 V ×X0 W ) → Y1. Our pretopology J is assumed to be
subcanonical, and using remark 2.2.12 this gives us a unique arrow ba : U×X0 W → Y1,
the composite of a and b.

Remark 2.4.14. In the special case that U×X0 V ×X0 W → U×X0 W is an isomorphism
(or is even just split), the composite transformation has

U ×X0 W → U ×X0 V ×X0 W
eba−→ Y1

as its component arrow. In particular, this is the case if one of a or b is a renaming
transformation.

Example 2.4.15. Let (U, f) : X−)→ Y be an anafunctor and U ′′ j′−→ U ′ j−→ U succes-
sive refinements of U → X0 (e.g isomorphisms). Let (U ′, fU ′), (U ′′, fU ′′) denote the
composites of f with X[U ′] → X[U ] and X[U ′′] → X[U ] respectively. The arrow

U ×X0 U ′′ j◦j′−−→ U ×X0 U → Y1

is the component for the composition of the isotransformations (U, f) ⇒ (U ′, fU ′),⇒
(U ′′, fU ′′) described in example 2.4.8. Thus we can see that the composite of renaming
transformations associated to isomorphisms φ1, φ2 is simply the renaming transforma-
tion associated to their composite φ1 ◦ φ2.

Example 2.4.16. If a : f ⇒ g, b : g ⇒ h are natural transformations between functors
f, g, h : X → Y in S, their composite as transformations between anafunctors

(X0, f), (X0, g), (X0, h) : X−)→ Y.

is just their composite as natural transformations. This uses the isomorphism X0 ×X0

X0 ×X0 X0 & X0 ×X0 X0.

Theorem 2.4.17. [4] For a site (S, J) where J is a subcanonical singleton pretopol-
ogy, internal categories (resp. groupoids), anafunctors and transformations form a
bicategory AnaCat(S, J) (resp. Ana(S, J)).

There is a strict homomorphism Ana(S, J) → AnaCat(S, J) which is the identity
on 0-cells and induces isomorphisms on hom-categories. The following is the main result
of this section, and allows us to relate anafunctors to the localisations considered in
the next section.
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Proposition 2.4.18. There are homomorphisms

αJ : Cat(S) → AnaCat(S, J),

βJ = αJ

∣∣
Gpd(S)

: Gpd(S) → Ana(S, J)

sending J-equivalences to equivalences such that

Gpd(S) ! " !!

βJ

""

Cat(S)

αJ

""
Ana(S, J) ! " !! AnaCat(S, J)

commutes.

Proof. We define αJ and βJ to be the identity on objects, and as described in
examples 2.4.2, 2.4.5 on 1-cells and 2-cells (i.e. functors and transformations). We
need first to show that this gives a functor Cat(S)(X, Y ) → AnaCat(S, J)(X, Y ).
This is precisely the content of example 2.4.16. Since the identity 1-cell on a category
X in Ana(S, J) is the image of the identity functor on S in Cat(S), αJ and βJ respect
identity 1-cells. Also, lemma 2.4.10 tells us that αJ and βJ respect composition up to
an invertible 2-cell φfg (given by a renaming transformation).

To show the coherence of the homomorphism αJ we recall that all the relevant
2-cells in AnaCat(S, J) are given by renaming transformations, and so to check that
the diagram A.1 commutes, it is only necessary to check that the diagram involving the
renaming isomorphisms commute. In the following, a is the associator, from example
2.4.9, and the isomorphisms φ′ are the renaming isomorphisms from lemma 2.4.10.

X0 ×Y0 (Y0 ×Z0 Z0)

a %
""

id×φ′ % !! X0 ×Y0 Y0
φ′ % !! X0

(X0 ×Y0 Y0)×Z0 Z0
φ′×id %

!! X0 ×Z0 Z0
φ′ %

!! X0

The square clearly commutes, and so αJ is coherent with respect to composition. "

2.5 Localising bicategories at a class of 1-cells

Ultimately we are interesting in inverting all weak equivalences in Gpd(S), and so
need to discuss what it means to add the formal pseudoinverses to a class of 1-cells
in 2-category - a process known as localisation. This was done in [20] for the more
general case of a class of 1-cells in a bicategory, where the resulting bicategory is
constructed and its universal properties (analogous to those of a quotient) examined.
The application in loc. cit. is to showing the equivalence of various bicategories of
stacks to localisations of 2-categories of groupoids. The results of this chapter can be
seen as one-half of a generalisation of these results to an arbitrary site with pullbacks.

Definition 2.5.1. Let E be a class of arrows in the ambient category S. E is called a
class of admissible maps for J if it is a singleton pretopology in which a given singleton
pretopology J is cofinal, and satisfying the following condition:
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(S) E contains the split epimorphisms, and if e : A→ B is a split epimorphism, and
A

e−→ B
p−→ C is in M , then p ∈M .

Example 2.5.2. If E is a saturated singleton pretopology, it is a class of admissible maps
for itself, and (J-epi) is a class of admissible maps for J (they satisfy condition (S)
because they are saturated). A singleton pretopology satisfying condition (S) is a class
of admissible maps for itself, and will just be referred to as a class of admissible maps.
In particular, E could be the class of J-epimorphisms for a non-singleton pretopology
J .

Definition 2.5.3. [9] Let E be some class of admissible maps in a category S. A
functor X → Y in S is called an E-equivalence if it is fully faithful, and

X0 ×Y0 Y iso
1

t◦pr2−−−→ Y0

is in E. If this last condition holds we will say the functors if essentially E-surjective.

If E = (J-epi) for some pretopology J , we will still refer to J-equivalences. The
class of E-equivalences will be denoted WE.

Definition 2.5.4. [20] Let B be a bicategory and W ⊂ B1 a class of 1-cells. A
localisation of B with respect to W is a bicategory B[W−1] and a homomorphism

U : B → B[W−1]

such that: U sends elements of W to equivalences, and is universal with this property
i.e. composition with U gives an equivalence of bicategories

U∗ : Hom(B[W−1], D) → HomW (B, D),

where HomW denotes the sub-bicategory of homomorphisms that send elements of W
to equivalences (call these W -inverting, abusing notation slightly).

The universal property means that W -inverting homomorphisms F : B → D factor,
up to a transformation, through B[W−1], inducing an essentially unique homomor-
phism F̃ : B[W−1] → D.

Definition 2.5.5. [20] Let B be a bicategory B with a class W of 1-cells. W is said
to admit a right calculus of fractions if it satisfies the following conditions

2CF1. W contains all equivalences

2CF2. a) W is closed under composition
b) If a ∈ W and a iso-2-cell a

∼⇒ b then b ∈ W

2CF3. For all w : A′ → A, f : C → A with w ∈ W there exists a 2-commutative square

P

v

""

g !! A′

w

""
C

f !! A

%
66 33

33
33

33
33

33

with v ∈ W .
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2CF4. If α : w ◦ f ⇒ w ◦ g is a 2-cell and w ∈ W there is a 1-cell v ∈ W and a 2-cell
β : f ◦ v ⇒ g ◦ v such that α ◦ v = w ◦ β. Moreover: when α is an iso-2-cell,
we require β to be an isomorphism too; when v′ and β′ form another such pair,
there exist 1-cells u, u′ such that v ◦ u and v′ ◦ u′ are in W , and an iso-2-cell
ε : v ◦ u⇒ v′ ◦ u′ such that the following diagram commutes:

f ◦ v ◦ u
β◦u 47

f◦ε %

00

g ◦ v ◦ u

g◦ε%

00
f ◦ v′ ◦ u′

β′◦u′
47 g ◦ v′ ◦ u′

(2.5)

Remark 2.5.6. In particularly nice cases (as in the next section), the first half of 2CF4
holds due to left-cancellability of elements of W , giving us the canonical choice v = I.

Theorem 2.5.7. [20] A bicategory B with a class W that admits a calculus of right
fractions has a localisation with respect to W .

From now on we shall refer to a calculus of right fractions as simply a calculus of
fractions, and the resulting localisation as a bicategory of fractions. Since B[W−1] is
defined only up to equivalence, it is of great interest to know when a bicategory D
in which elements of W are converted to equivalences is itself equivalent to B[W−1].
In particular, one would be interested in finding such an equivalent bicategory with a
simpler description than that which appears in [20].

Proposition 2.5.8. [20] A homomorphism F : B → D which sends elements of W to
equivalences induces an equivalence of bicategories

F̃ : B[W−1]
∼−→ D

if and only if the following conditions hold

EF1. F is essentially surjective,

EF2. For every 1-cell f ∈ D1 there is a w ∈ W and a g ∈ B1 such that Fg
∼⇒ f ◦ Fw,

EF3. F is locally fully faithful.

The following is useful in showing a homomorphism sends weak equivalences to
equivalences, because this condition only needs to be checked on a class that is in some
sense cofinal in the weak equivalences.

Theorem 2.5.9. Let the bicategory B admit a calculus of fractions for W , and let
V ⊂ W be a class of 1-cells such that for all w ∈ W , there exists v ∈ V and s ∈ W
such that there is an invertible 2-cell

a

w

""
b v

!!

s

##!!!!!!!!!!!!!!!!
c .

78 4
4
4
4

4
4
4
4
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Then a homomorphism F : B → D that sends elements of V to equivalences also sends
elements of W to equivalences.

Proof. In the following the coherence cells will be implicit. First we show that
Fw has a pseudosection in C for any w ∈ W . Let v, s be as above. Let F̃ v be a
pseudoinverse of Fv, and let j = Fs ◦ F̃ v. Then there is the following invertible 2-cell

Fw ◦ j ⇒ F (w ◦ s) ◦ F̃ v ⇒ Fv ◦ F̃ v ⇒ I.

We now show that j is in fact a pseudoinverse for Fw. Since s ∈ W , there is a
v′ ∈ V and s′ ∈ W and a 2-cell giving the following diagram

d

s′

""

v′ !! a

w

""
b v

!!

s

##55555555555555555
c .

78 4
44
44

44
44
4

78 4
44
4

44
44

Apply the functor F , and denote pseudoinverses of Fv, Fv′ by F̃ v, F̃ v′. Using the 2-cell
I ⇒ Fv′ ◦ F̃ v′ we get the following 2-cell

Fd

Fs

""

Fa
gFv′89

Fw

""
Fb

Fv
!! Fc

95 6666666666

Then there is this composite invertible 2-cell

j ◦ Fw ⇒ (Fs ◦ F̃ v) ◦ (Fv ◦ (Fs ◦ F̃ v′)) ⇒ (Fs ◦ Fs′) ◦ F̃ v′ ⇒ Fv′ ◦ F̃ v′ ⇒ I,

making Fw is an equivalence. Hence F sends all elements of W to equivalences. "

2.6 Anafunctors are a localisation

In this section we see that Cat(S) and Gpd(S) admit calculi of fractions for the weak
equivalences, and the bicategory of anafunctors is an equivalent localisation.

Definition 2.6.1. (see, e.g. [9]) The isomorphism category of an internal category X
is the internal category denoted XI, with

XI
0 = X iso

1 , XI
1 = (X1 ×s,X0,t X iso

1 )×X1 (X iso
1 ×s,X0,t X1).

where the second fibred product is the kernel pair of (the restriction of) multiplication.
Composition is the same as commutative squares in the case of ordinary categories.
There are two functors s, t : XI → X which have the usual source and target maps of
X as their respective object components.
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This construction is internal version of the functor category Cat(I, C), since the
groupoid I = (◦ %−→ •) doesn’t always exist internal to S.

Remark 2.6.2. There is an isomorphism XI
1 & X iso

1 ×t,X0,t X1 ×s,X0,t X iso
1 given by

projecting out the last factor in

(X1 ×s,X0,t X iso
1 )×X1 (X iso

1 ×s,X0,t X1).

The astute reader will recognise the following as an internalisation of the usual
notion of weak pullback

Definition 2.6.3. The weak pullback X×̃Y Z of a diagram of internal categories

Z

""
X !! Y

is given by the pullback X ×Y,s Y I ×t,Y Z. There is a 2-commutative square

X×̃Y Z

""

!! Z

""

%

:: !!
!!

!!
!!

!!
!!

!!
!!

X !! Y

The following terminology is borrowed from [9] - strictly speaking this map is only
a fibration when model structure from loc. cit. exists.

Definition 2.6.4. An internal functor f : X → Y is called a trivial E-fibration if it is
fully faithful and f0 ∈ E.

Lemma 2.6.5. If a functor f : X → Y is an E-equivalence,

X ×Y Y I t◦pr2−−−→ Y

is a trivial E-fibration.

Proof. The object component of t ◦ pr2 is t ◦ pr2, which is in E by definition if f
is essentially E-surjective. Consider now the pullback

(X0 ×Y0 Y iso
1 )2 ×Y 2

0
Y1 !!

""

Y1

""
(X0 ×Y0 Y iso

1 )2 !! Y0 × Y0

Remark 2.6.2 tells is that the pullback is isomorphic to X2
0 ×Y 2

0
Y I

1 in the pullback

X2
0 ×Y 2

0
Y I

1
pr2 !!

""

Y I
1

pr1
""

Y1

""
X2

0
!! Y0 × Y0
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but if f is fully faithful,

X2
0 ×Y 2

0
Y I

1 & X2
0 ×Y 2

0
Y1 ×Y1 Y I

1

& X1 ×Y1 Y I
1 ,

hence t ◦ pr2 is fully faithful. "

The internal category X ×Y Y I is called the mapping path space construction in
[9]. If the model structure in loc. cit. exists, the above follows from cofibration-acyclic
fibration factorisation.

Theorem 2.6.6. Let S be a category with a class E of admissible maps. The 2-category
Gpd(S) admits a right calculus of fractions for the class WE.

Before we prove the theorem, we introduce a lemma

Lemma 2.6.7. Let f, g : X → Y be functors and a : f ⇒ g a natural isomorphism.
There is an isomorphism

X2
0 ×f2,Y 2

0
Y1 & X2

0 ×g2,Y 2
0

Y1

commuting with the projection to X2
0 .

Proof. Supressing the canonical isomorphisms X2
0 ×Y 2

0
Y1 & X0×Y0 Y1×Y0 X0, the

required isomorphism is

X0×f,Y0Y1×Y0,fX0
(id,−a)×id×(a,id)−−−−−−−−−−→ X0×g,Y0Y1×Y0Y1×Y0Y1×Y0,gX0

id×m×id−−−−−→ X0×g,Y0Y1×Y0,gX0.

which is the identity map when restricted to the X0 factors, from which the claim
follows. "
Now the proof of theorem 2.6.6.

Proof. We show the conditions of definition 2.5.5 hold.
2CF1. Since E contains all the split epis, an internal equivalence is essentially E-

surjective. Let f : X → Y be an internal equivalence, and g : Y → X a pseudoinverse.
By definition there are natural isomorphisms a : g ◦ f ⇒ idX and b : f ◦ g ⇒ idY . To
show that f is fully faithful, we first show that the map

q : X1 → X2
0 ×Y 2

0
Y1

is a split monomorphism over X2
0 . This diagram commutes

X1
!! X2

0 ×Y 2
0

Y1

""

X1 X2
0 ×gf,X2

0
X1 ,%89

by the naturality of a, the marked isomorphism coming from lemma 2.6.7. The splitting
commutes with projection to X2

0 because the isomorphism does. Call the splitting s.
The same argument implies that

Y1 → Y 2
0 ×X2

0
X1
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is a split monomorphism over Y 2
0 , and this implies the arrow

l : X2
0 ×Y 2

0
Y1 → X2

0 ×Y 2
0

Y 2
0 ×X2

0
X1 & X2

0 ×gf,X2
0
X1

is a split monomorphism. This diagram commutes

X2
0 ×Y 2

0
Y1

l !!

s

""

X2
0 ×gf,X2

0
X1

% !! X1

X1 q
!! X2

0 ×Y 2
0

Y1
l

!! X2
0 ×gf,X2

0
X1

% !! X1

using naturality again, and so q ◦ s = id. Thus q is an isomorphism, and f is fully
faithful.

2CF2 a). That the composition of fully faithful functors is again fully faithful is
trivial. To show that the composition of essentially E-surjective functors f : X → Y ,
g : Y → Z is again so, consider the following diagram

Y0 ×Z0 Z1
!!

""

((
Z1

t !!

s

""

Z0

X0 ×Y0 Y1
!!

""

''
Y1

t !!

s
""

Y0 g0
!! Z0

X0 f0

!! Y0

where the curved arrows are in E by assumption. The lower such arrow pulls back to
an arrow X0 ×Y0 Y1 ×Z0 Z1 → Y0 ×Z0 Z1 (again in E). Hence the composite

X0 ×Y0 Y1 ×Z0 Z1 → Y0 ×Z0 Z1
t◦pr2−−−→ Z0

is in E, and is equal to the composite

X0 ×Y0 Y1 ×Z0 Z1
id×g×id−−−−→ X0 ×Z0 Z1 ×Z0 Z1

id×m−−−→ X0 ×Z0 Z1
t◦pr2−−−→ Z0.

The map

X0 ×Z0 Z1 & X0 ×Y0 Y0 ×Z0 Z1
(id×e×id−−−−−→ X0 ×Y0 Y1 ×Z0 Z1

is a section of

X0 ×Y0 Y1 ×Z0 Z1
id×g×id−−−−→ X0 ×Z0 Z1 ×Z0 Z1

id×m−−−→ X0 ×Z0 Z1.

Now condition (S) tells us that X0 ×Z0 Z1
t◦pr2−−−→ Z0 is in E, and g ◦ f is essentially

E-surjective.
2CF2 b). We will show this in two parts: fully faithful functors are closed under

isomorphism, and essentially E-surjective functors are closed under isomorphism. Let
w, f : X → Y be functors and a : w ⇒ f be a natural isomorphism. First, let w be
essentially E-surjective. That is,

X0 ×w,Y0,s Y1
t◦pr2−−−→ Y0 (2.6)
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is in E. Now note that the map

X0 ×f,Y0,s Y1
(id,−a)×id−−−−−−→ X0 ××w,Y0,sY1 ×t,Y0,s Y1

id×m−−−→ X0 ×w,Y0,s Y1 (2.7)

is an isomorphism, and so the composite of 2.7 and 2.6 is in E. Thus f is essentially
E-surjective.

Now let w be fully faithful. Thus

X1
w !!

""

Y1

""
X0 ×X0

!! Y0 × Y0

is a pullback square. Using lemma 2.6.7 there is an isomorphism

X1 & X0 ×w,Y0 Y1 ×Y0,w X0 & X0 ×f,Y0 Y1 ×Y0,f X0.

The composite of this with projection on X2
0 is (s, t) : X1 → X2

0 , and the composite
with

pr2 : X0 ×f,Y0 Y1 ×Y0,f X0 → Y1

is just f1 by the diagram 2.1, and so this diagram commutes

X1

%

&&7777777777

,,

''
X2

0 ×f2,Y 2
0

Y1 !!

""

Y1

""

X2
0 f2

0

!! Y 2
0

i.e. f is fully faithful.
2CF3. The existence of a 2-commuting square is easy: take the weak pullback

(definition 2.6.3). Since the weak pullback of an E-equivalence is the strict pullback of
a trivial E-fibration (using lemma 2.6.5), we only need to show that the strict pullback
of a trivial E-fibration is an E-equivalence. By lemma 2.3.9, the pullback of a trivial
E-fibration is fully faithful. Since the object component of pulled back map is the
pullback of the object component, which is in E, the pullback of the trivial E-fibration
is again a trivial E-fibration.

2CF4. It is proved in [20] that given a natural transformation

Y
w

;;8
88

88
88

8

X

f
<<33333333

g
,,8

88
88

88
8 ⇓ a Z

Y

w

==33333333
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where w is fully faithful (e.g. in WE), there is a unique a′ : f ⇒ g such that

Y
w

;;8
88

88
88

8

X

f
<<33333333

g
,,8

88
88

88
8 ⇓ a Z

Y

w

==33333333

= X

f

>>

g

??⇓a′ Y
w !! Z .

This is the first half of 2CF4, where v = idX . If v′ : W → X ∈ WE such that there is
a transformation

X
f

;;9
99

99
99

9

W

v′
<<33333333

v′ ,,8
88

88
88

8 ⇓ b Y

X

g

==::::::::

satisfying

X
f

;;9
99

99
99

9

W

v′
<<33333333

v′ ,,8
88

88
88

8 ⇓ b Y
w !! Z

X

g

==::::::::

=

Y
w

;;8
88

88
88

8

W
v′ !! X

f
<<33333333

g
,,8

88
88

88
8 ⇓ a Z

Y

w

==33333333

= W
v′ !! X

f

>>

g

??⇓a′ Y
w !! Z ,

we can choose a J-cover U → X0, a functor u′ : X[U ] → W and a natural isomorphism

X[U ]
u′

++**
**

**
** u

@@;;
;;

;;
;;

W

v′

..⇐ ε X

where, since J ⊂ E, u ∈ WE, and since v′ ◦ u′
%⇒ u, v′ ◦ u′ ∈ WE by 2CF2 a) above.

We can apply the first step again, using uniquess to get

X
f

;;9
99

99
99

9

W

v′
<<33333333

v′ ,,8
88

88
88

8 ⇓ b Y

X

g

==::::::::

= W
v′ !! X

f

>>

g

??⇓a′ Y ,
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We paste this with ε,

X[U ]

u

&&

u′ @@;;
;;

;;
;;

;
ε ⇓ X

f

//<
<<

<<
<<

<

W

v′
==333333333

v′ ,,--
--

--
--

⇓ b Y

X

g

==::::::::

=

X[U ]

"" AA
W

v′ !! X

f

>>

g

??⇓a′ Y

ε 00
==
=
==
=

,

which is precisely the diagram 2.5. Hence 2CF4 holds. "

If E is a class of admissible maps for J , E-equivalences are J-equivalences and so
WE ⊂ WJ . This means that the homomorphisms αJ , βJ in proposition 2.4.18 send
E-equivalences to equivalences. We us this fact and proposition 2.5.8 to show the
following.

Theorem 2.6.8. Let (S, J) be a site with a subcanonical singleton pretopology J and
let E be a class of admissible maps for J . Then there are equivalences of bicategories

AnaCat(S, J) & Cat(S)[W−1
E ]

Ana(S, J) & Gpd(S)[W−1
E ]

Proof. Let us show the conditions in proposition 2.5.8 hold. We will only supply
the details for αJ , the same arguments clearly apply to βJ .

EF1. αJ (and βJ) are the identity on 0-cells, and hence surjective.
EF2. This is equivalent to showing that for any anafunctor (U, f) : X−)→ Y there

are functors w, g such that w is in WE and

(U, f)
∼⇒ αJ(g) ◦ αJ(w)−1

where αJ(w)−1 is some pseudoinverse for αJ(w).
Let w be the functor X[U ] → X – this has object component in J ⊂ E, hence an

E-equivalence – and let g = f : X[U ] → Y . First, note that

X[U ]

-->>
>>

>>
>> =

BB??
??

??
??

?

X X[U ]

is a pseudoinverse for

αJ(w) =

X[U ][U ]
%

$$@@@@@@@@@

BB??
??

??
??

??

X[U ] X

.

Then the composition αJ(f) ◦ αJ(w)−1 is

X[U ×U U ×U U ]

CCAAAAAAAAAAAA

((%%%%%%%%%%%%

X Y
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which is isomorphic to (U, f) by the renaming transformation arising from the isomor-
phism U ×U U ×U U & U .

EF3. If a : (X0, f) ⇒ (X0, g) is a transformation for f, g : X → Y functors, it is
given by a natural transformation with component

X0 ×X0 X0 → Y1.

Simply precompose with the isomorphism X0 & X0 ×X0 X0 to get a unique natural
transformation a : f ⇒ g such that a is the image of a′ under αJ . "

We now finish on a series of results following from this theorem, using basic prop-
erties of pretopologies from section 2.2.

Corollary 2.6.9. When J and K are two subcanonical singleton pretopologies on S
such that Jsat = Ksat, there is an equivalence of bicategories

Ana(S, J) & Ana(S,K)

Using corollary 2.6.9 we see that using a cofinal pretopology gives an equivalent
bicategory of anafunctors.

If E is any class of admissible maps for subcanonical J , the bicategory of fractions
inverting WE is equivalent to that of J-anafunctors. Hence

Corollary 2.6.10. Let E be a class of admissible maps for the subcanonical pretopology
J . There is an equivalence of bicategories

Cat(S)[W−1
E ] & Cat(S)[W−1

J ]

where of course WJ = WJsat. The same result holds with Cat replaced by Gpd.

This means that the class WE is saturated in the sense of [11] (that is, functors
are sent to equivalences if and only if they are in WE) if and only if E is a saturated
pretopology.

Finally, if (S, J) is a superextensive site (like Top with its usual pretopology of
open covers), we have the following result which is useful when J is not a singleton
pretopology.

Proposition 2.6.11. Let (S, J) be a superextensive site where J is a subcanonical
pretopology. Then

Gpd(S)[W−1
Jsat

] & Ana(S,,J)

Proof. This essentially follows from the corollary to lemma 2.2.21. "

Obviously this can be combined with previous results, for example if K ≤ ,J ,
for J a non-singleton pretopology, K-anafunctors localise Gpd(S) at the class of J-
equivalences.
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Appendix A

Bicategories and monoidal
categories

We collect here the necessary definitions used in the text

Definition A.0.3. A bicategory is . . .

Definition A.0.4. A bigroupoid is . . .

Definition A.0.5. A homomorphism is . . .

(Fh ◦ Fg) ◦ Ff
φ#1 !!

a′

""

F (h ◦ g) ◦ Ff
φ !! F ((h ◦ g) ◦ f)

Fa
""

Fh ◦ (Fg ◦ Ff)
1#φ

!! Fh ◦ F (g ◦ h)
φ

!! F (h ◦ (g ◦ f))

(A.1)

Definition A.0.6. A monoidal groupoid is . . .
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[5] Marta Bunge and Robert Paré. Stacks and equivalence of indexed categories.
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