Introducing type theory

Simon Thompson
School of Computing, Kent

June 2016

Foundations of maths ... back a century

Foundational system with objects in “types”: Russell and Whitehead
Set theory: Zermelo and Fraenkel

Foundations of logic: Hilbert’s axioms and Prawitz natural deduction
Church’s foundations: A-calculus, a theory of functions

Constructive mathematics ... propositions as types: Martin-Lof.

Foundations of maths ... to now

Foundational system with objects in “types”: Russell and Whitehead
Set theory: Zermelo and Fraenkel

Foundations of logic: Hilbert’s axioms and Prawitz natural deduction
Church’s foundations: A-calculus, a theory of functions

Constructive mathematics ... propositions as types: Martin-Lof.
Category theory: a language for type theoretic foundations.

Homotopy theory: topological mechanism for characterising shape.

Judgements

[- e: A

Judgements

[- e: A

/

context

belongs to

Rules

[= x: A [~ y:B

[- (xy): AAB

Rules

| - x: AAB

[- fst(x): A

Derivations

[~ y:BAA I y:BAA

where [= y: B AA

Derivations

[~ y:BAA = y:BAA

[~ snd(y): A [~ fst(y) :B

where | = y: B AA

Derivations

[~ y:BAA = y:BAA

[~ snd(y): A [~ fst(y) :B

[(snd(y),fst(y)) : AAB

where | = y: B AA

Derivations

[20? :AANB

where [= y: B AA

Derivations

[— 27 A

[

20?

B

[20!

where [= y: B AA

:AANB

Derivations

[~ y:BAA = y:BAA

[~ 7 A [- 7 :B

[20! :AANB

where | = y: B AA

Derivations

[~ y:BAA = y:BAA

[~ snd(y): A [~ fst(y) :B

[20! :AANB

where | = y: B AA

Derivations

[~ y:BAA = y:BAA

[~ snd(y): A [~ fst(y) :B

[(snd(y),fst(y)) : AAB

where | = y: B AA

Rules

AAB

Rules

AAB

Derivations

B AA BAA

AAB

Proof in natural deduction

Typically in logic we'’re interested in whether there is a proof of a
particular proposition,e.g. A A B ...

... rather than what the proof is.

Introduction rules

[- x: A [- y:B

[- (xy): AAB

Elimination rules

| - x: AAB

[- fst(x) : A

Evidence in natural deduction

Suppose we turn to whether these is evidence of whether a
particular proposition,e.g. A A B holds ...

... then we might be interested in how the evidence simplifies.

Simplification!?

[= x: A [~ y:B

[- (xy): AAB

[- fst((xy)) : A

Computation rules

fst((xy)) ~ x

Computation rules

fst((xy)) ~ x

snd((x,y)) ~ ¥

What about contexts?

Transforming evidence

[x: A — e:B

[- Axe: A—B

Modus ponens: apply the transformation

[= f : A [e :A—>B

ef : B

Computation rules

(Ax.e)a ~ e[a/x]

Programs in a programming language

[. x: A ~ e:B

[- Axe: A—B

[=f : A [e :A—B
ef : B

(Ax.e)a ~ e[a/X]

Proofs in a logic

[. x: A ~ e:B

[- Axe: A—B

[—f : A [e :A—>B

ef : B

(Ax.e)a ~ e[a/X]

The Curry-Howard isomorphism

Conjunction
Implication
Disjunction
Trivia
Absurc

Universally quantifiec

Existentially quantified
Natural numbers / induction
Inductive predicates

Co-inductive predicates

|dentity predicates

< - - <

N & N Z

Product type

Function type

Disjoint union type

One element type

Empty type

Dependent function space
Dependent product

Natural numbers / recursion
Inductively defined types
Co-inductively defined types

|dentity types

N introduction rules

[~ e:N

[0:N [s(e) : N

N elimination rule (recursion)

[- n:N [- c:C [- f: N—= C - C

[= primncf:C

N elimination rule (induction)

nN ['=c:C0) I ~f:(vn:N)(C(n) = C(s(n)))

[= primncf:C(n)

N elimination rule (induction)

nN ['=c:C0) I ~f:(vn:N)(C(n) = C(s(n)))

[= primncf:C(n)

[— Ax.prim x c f: (vx:N)(C(x))

N computation rules

prim0Ocf -~ ¢

prims(n) cf -~ fn (primn cf)

What does this have to say for logic!?

Initial insight ... the logic is constructive
- Choice of which disjunct holds
- Witness for existential

- Axiom of choice

What does this have to say for logic!?

Initial insight ... the logic is constructive
- Choice of which disjunct holds
- Witness for existential

- Axiom of choice

But that’s too simplistic
- sub-structural logics

- computational interpretation of classical logic

What about equality, identity, ... !

We say 2 terms are convertible if the (reflexive, symmetric,
transitive, congruence) closure of ~ identifies them.

What about equality, identity, ... !

We say 2 terms are convertible if the (reflexive, symmetric,
transitive, congruence) closure of ~ identifies them.

That’s not a logical identity: we can’t work with it
hypothetically. Add identity predicates/types.

What about equality, identity, ... !

We say 2 terms are convertible if the (reflexive, symmetric,
transitive, congruence) closure of ~ identifies them.

That’s not a logical identity: we can’t work with it
hypothetically. Add identity predicates/types.

What do we need to

- be able to program!?

- be able to reason?

- be able to do both: reason about programs?

- do mathematics in a natural way!?

What does this have to say for programming!?

Enriched programming experience: types can embody properties.

mult : (Vn,m,p:IN)(Mat(n,m) — Mat(m,p) — Mat(n,p))

What does this have to say for programming!?

Enriched programming experience: types can embody properties.
mult : (Vn,m,p:IN)(Mat(n,m) = Mat(m,p) — Mat(n,p))

sort : (Vxs:List(IN))(3ys:List(IN))(Ordered(ys) APerm(xs,ys))

What does this have to say for programming!?

Enriched programming experience: types can embody properties.
mult : (Vn,m,p:IN)(Mat(n,m) = Mat(m,p) — Mat(n,p))

sort : (Vxs:List(IN))(3ys:List(IN))(Ordered(ys) APerm(xs,ys))
where we can define the property Perm inductively like this:

refl : (Wxs:List(I\N))Perm(xs,xs)

cons : (Vxs,ys:List(IN))(vz:IN)(Perm(xs,ys) = Perm(z::xs,z::ys))
pair : (Vxs:List(N))(Vy,z:N)(Perm(xs,ys) = Perm(y::z::xs,z::y::xs))

trans : (Vxs,ys,zs:List(IN))(Perm(xs,ys) = Perm(ys,zs)— Perm(xs,zs))

Type theories are being used

Proof assistants:
- current: Coq,Agda, Isabelle, ...,

- and indeed historical: Lego, Nuprl, Alf, ...

Type theories are being used in practice

Proof assistants:
- current: Coq,Agda, Isabelle, ...,

- and indeed historical: Lego, Nuprl, Alf, ...

Programming languages:
- true type-theories: ldris,Agda, ...

- influencing; Haskell, Scala, ...

A personal coda

The lambda calculus (A-calculus)

A theory of functions.
Variables x, y, z.

Application (ef): e.g. ((xy)y).
Abstraction Ax.e: e.g. AX.Ay.Az.(xz)(yz)

The lambda calculus (A-calculus)

A theory of functions.

Variables x, y, z.

Application (ef): e.g. ((xy)y).
Abstraction Ax.e: e.g. AX.Ay.Az.(xz)(yz)

B-reduction: (Ax.e)f = e[f/x]

e[f/x] substitute f for x in e; rename variables so no variable capture.

The lambda calculus (A-calculus)

A theory of functions.

Variables x, y, z.

Application (ef): e.g. ((xy)y).
Abstraction Ax.e: e.g. AX.Ay.Az.(xz)(yz)

B-reduction: (Ax.e)f — e[f/x]

e[f/x] substitute f for x in e; rename variables so no variable capture.

Assume: application left associative and binds more tightly than A.

Bracket abstraction

All terms of the A-calculus can be represented using the
combinators S, K (and I).

S = AxAYAz.(xz)(yz) K= AxAyx |=Axx = SKK

Bracket abstraction

All terms of the A-calculus can be represented using the
combinators S, K (and |).

S = AxAYAz.(xz)(yz) K= AxAyx |=Axx = SKK

Proof is by induction over the formation of A-terms:
[x]x = | [x]y = Ky
[x]ef = S([x]e)([x]f)

S([x]e)([x]Az = (([x]e)z)(([x]f)z) = (Ax.ef)z by induction.

Implicational logic

Propositional logic with — ...
Two axiom schemes

A—-B—-A

A= B=2>C) = ((A=B)=>(A—=Q)
and one rule, modus ponens:

A—B A

MP

A — (B —A)

The deduction theorem

A=2B—=C) = (A—B) (A=)

f LA+~ Bthenl—A—B

Proof of the theorem is by induction on the (size of the) proof of B.

First base case, A=B. Use 2 instances of |st axiom, one of 2nd.
A= (A= A)
A (A—A) = A)
A= (APA)PA (AP AA) P (APA)

axiom axiom

A= (ARA) PA)) P (AP AA))2(APA) A2 ((ARA) A

MP axiom
A= A2A) > AA) (A= (A—A)

MP
(A—=A)

A— (B —A)

The deduction theorem

A-B=C) = (A—B) > (A—Q)

2nd base case, B € I'. Use one instance of Ist axiom:B — (A — B)

assum axiom

B B-— (A—B)
MP

(A = B)

A — (B —A)

The deduction theorem

A=2B—=C) = (A—B) (A=)

2nd base case, B € [.Use one instance of |st axiom:B — (A — B)

assum axiom

B B—(A— B)
MP

(A = B)

Induction. Last step in proof is MP: inferring C from B—C and B

axiom by induction
(A = (B=C)) = (A=B) = (A= ©)) (A = (B=CQ))
MP by induction
(A—B) - (A— Q) (A—B)

MP
(A= C)

Putting the two together

Types for the values in the A-calculus: only form well-typed terms

f:A e:(A—B)

(ef) : B

Contexts / assumptions ... if x: A thene:B

x:A + e:B

Axe: A —B

Types and terms

S = A AYAZ(x2)(y2) : A = (B = C) = (A = B) = (A = C))
K = Ax.Ay.x :A—> (B—A)

| = Ax.x = SKK A=A

Deduction theorem shows that all proofs using an assumption (that
is all A-terms) can be built using S, K (and |).

Proofs = Values

Propositions = Types

Looking forward ...

Homotopy theory: topological mechanism for characterising shape.
TT+HT: novel characterisation of (formerly problematic) equality.
New foundations for (informal) maths: the univalence axiom.
Category theory: a language for type theoretic foundations.

Induction / co-induction: complex definitional principles.

