Introducing type theory

Simon Thompson
School of Computing, Kent

June 2016

Foundations of maths ... back a century

Foundational system with objects in "types": Russell and Whitehead

Set theory: Zermelo and Fraenkel

Foundations of logic: Hilbert's axioms and Prawitz natural deduction

Church's foundations: λ -calculus, a theory of functions

Constructive mathematics ... propositions as types: Martin-Löf.

Foundations of maths ... to now

Foundational system with objects in "types": Russell and Whitehead

Set theory: Zermelo and Fraenkel

Foundations of logic: Hilbert's axioms and Prawitz natural deduction

Church's foundations: λ -calculus, a theory of functions

Constructive mathematics ... propositions as types: Martin-Löf.

Category theory: a language for type theoretic foundations.

Homotopy theory: topological mechanism for characterising shape.

Judgements

Judgements

Rules

$$\Gamma \vdash x : A \qquad \Gamma \vdash y : B$$

$$\Gamma \vdash (x,y) : A \land B$$

Rules

$$\Gamma \vdash x : A \land B$$

$$\Gamma \vdash fst(x) : A$$

$$\Gamma \vdash y : B \land A$$
 $\Gamma \vdash y : B \land A$

where
$$\Gamma = y : B \land A$$

$$\Gamma \vdash y : B \land A$$
 $\Gamma \vdash y : B \land A$ $\Gamma \vdash snd(y) : A$ $\Gamma \vdash fst(y) : B$

where
$$\Gamma = y : B \land A$$

$$\Gamma \vdash y : B \land A$$
 $\Gamma \vdash y : B \land A$ $\Gamma \vdash snd(y) : A$ $\Gamma \vdash fst(y) : B$ $\Gamma \vdash (snd(y), fst(y)) : A \land B$

where
$$\Gamma = y : B \land A$$

$$\Gamma \vdash :A \land B$$

$$\Gamma \vdash ???? : A \qquad \Gamma \vdash ???? : B$$

$$\Gamma \vdash ???? \qquad : A \land B$$

```
\Gamma \vdash y : B \land A \Gamma \vdash y : B \land A \Gamma \vdash ???? : A \Gamma \vdash ???? : B \Gamma \vdash ???? : A \land B
```

$$\Gamma \vdash y : B \land A \qquad \qquad \Gamma \vdash y : B \land A \\
\hline
\Gamma \vdash snd(y) : A \qquad \qquad \Gamma \vdash fst(y) : B \\
\hline
\Gamma \vdash ???? \qquad : A \land B$$

$$\Gamma \vdash y : B \land A$$
 $\Gamma \vdash y : B \land A$ $\Gamma \vdash snd(y) : A$ $\Gamma \vdash fst(y) : B$

 $\Gamma \vdash (snd(y),fst(y)) : A \land B$

where
$$\Gamma = y : B \land A$$

Rules

Rules

 $A \wedge B$

A

Proof in natural deduction

Typically in logic we're interested in whether there is a proof of a particular proposition, e.g. $A \wedge B \dots$

... rather than what the proof is.

Introduction rules

$$\Gamma \vdash x : A \qquad \Gamma \vdash y : B$$

$$\Gamma \vdash (x,y) : A \land B$$

Elimination rules

$$\Gamma \vdash x : A \land B$$

$$\Gamma \vdash fst(x) : A$$

Evidence in natural deduction

Suppose we turn to whether these is evidence of whether a particular proposition, e.g. $A \wedge B$ holds ...

... then we might be interested in how the evidence simplifies.

Simplification?

$$\Gamma \vdash x : A \qquad \Gamma \vdash y : B$$

$$\Gamma \vdash (x,y) : A \land B$$

$$\Gamma \vdash fst((x,y)) : A$$

Computation rules

$$fst((x,y)) \rightarrow x$$

Computation rules

$$fst((x,y)) \rightarrow x$$

$$snd((x,y)) \rightarrow y$$

What about contexts?

Transforming evidence

$$\Gamma, x : A \vdash e : B$$

$$\Gamma \vdash \lambda x.e : A \rightarrow B$$

Modus ponens: apply the transformation

 $\Gamma \vdash f : A \qquad \Gamma \vdash e : A \rightarrow B$

ef: B

Computation rules

$$(\lambda x.e)a \rightarrow e[a/x]$$

Programs in a programming language

$$\Gamma, x : A \vdash e : B$$

$$\Gamma \vdash \lambda x.e : A \rightarrow B$$

$$\Gamma \vdash f : A \qquad \Gamma \vdash e : A \rightarrow B$$

ef: B

$$(\lambda x.e)a \rightarrow e[a/x]$$

Proofs in a logic

$$\Gamma, x : A \vdash e : B$$

$$\Gamma \vdash \lambda x.e : A \rightarrow B$$

$$\Gamma \vdash f : A$$
 $\Gamma \vdash e : A \rightarrow B$

ef: B

$$(\lambda x.e)a \rightarrow e[a/x]$$

The Curry-Howard isomorphism

Implication → Function type

Disjunction V Disjoint union type

Trivial Tone element type

Absurd [⊥] Empty type

Universally quantified \forall Dependent function space

Existentially quantified 3 Dependent product

Natural numbers / induction Natural numbers / recursion

Inductive predicates Inductively defined types

Identity predicates 3 Identity types

N introduction rules

$$\frac{\Gamma \vdash e : \mathbb{N}}{\Gamma \vdash 0 : \mathbb{N}}$$

N elimination rule (recursion)

$$\Gamma \vdash n:\mathbb{N}$$
 $\Gamma \vdash c:C$ $\Gamma \vdash f: \mathbb{N} \to \mathbb{C} \to \mathbb{C}$

 $\Gamma \vdash \text{prim n c f : } C$

N elimination rule (induction)

```
\Gamma \vdash n: \mathbb{N} \quad \Gamma \vdash c: C(0) \quad \Gamma \vdash f: (\forall n: \mathbb{N})(C(n) \rightarrow C(s(n)))
```

 $\Gamma \vdash \text{prim n c f : C(n)}$

N elimination rule (induction)

$$\frac{\Gamma \vdash n: \mathbb{N} \quad \Gamma \vdash c : C(0) \quad \Gamma \vdash f : (\forall n: \mathbb{N})(C(n) \rightarrow C(s(n)))}{\Gamma \vdash \text{prim } n \text{ c } f : C(n)}$$

 $\Gamma \vdash \lambda x.prim x c f : (\forall x:N)(C(x))$

N computation rules

prim $0 c f \rightarrow c$

prim s(n) c f \rightarrow f n (prim n c f)

What does this have to say for logic?

Initial insight ... the logic is constructive

- Choice of which disjunct holds
- Witness for existential
- Axiom of choice

What does this have to say for logic?

Initial insight ... the logic is constructive

- Choice of which disjunct holds
- Witness for existential
- Axiom of choice

But that's too simplistic

- sub-structural logics
- computational interpretation of classical logic

What about equality, identity, ...?

We say 2 terms are *convertible* if the (reflexive, symmetric, transitive, congruence) closure of → identifies them.

What about equality, identity, ...?

We say 2 terms are *convertible* if the (reflexive, symmetric, transitive, congruence) closure of \rightarrow identifies them.

That's not a *logical* identity: we can't work with it hypothetically. Add identity predicates/types.

What about equality, identity, ...?

We say 2 terms are *convertible* if the (reflexive, symmetric, transitive, congruence) closure of \rightarrow identifies them.

That's not a *logical* identity: we can't work with it hypothetically. Add identity predicates/types.

What do we need to

- be able to program?
- be able to reason?
- be able to do both: reason about programs?
- do mathematics in a natural way?

What does this have to say for programming?

Enriched programming experience: types can embody properties.

```
mult : (\forall n,m,p:\mathbb{N})(Mat(n,m) \rightarrow Mat(m,p) \rightarrow Mat(n,p))
```

What does this have to say for programming?

Enriched programming experience: types can embody properties.

```
mult : (\forall n,m,p:\mathbb{N})(Mat(n,m) \rightarrow Mat(m,p) \rightarrow Mat(n,p))
sort : (\forall xs:List(\mathbb{N}))(\exists ys:List(\mathbb{N}))(Ordered(ys) \land Perm(xs,ys))
```

What does this have to say for programming?

Enriched programming experience: types can embody properties.

```
mult: (\forall n,m,p:\mathbb{N})(Mat(n,m) \rightarrow Mat(m,p) \rightarrow Mat(n,p))
 sort: (\forall xs: List(\mathbb{N}))(\exists ys: List(\mathbb{N}))(Ordered(ys) \land Perm(xs, ys))
where we can define the property Perm inductively like this:
 refl : (\forall xs:List(\mathbb{N}))Perm(xs,xs)
 cons : (\forall xs,ys:List(\mathbb{N}))(\forall z:\mathbb{N})(Perm(xs,ys) \rightarrow Perm(z::xs,z::ys))
 pair : (\forall xs:List(\mathbb{N}))(\forall y,z:\mathbb{N})(Perm(xs,ys) \rightarrow Perm(y::z::xs,z::y::xs))
 trans : (\forall xs,ys,zs:List(\mathbb{N}))(Perm(xs,ys) \rightarrow Perm(ys,zs) \rightarrow Perm(xs,zs))
```

Type theories are being used

Proof assistants:

- current: Coq, Agda, Isabelle, ...,
- and indeed historical: Lego, Nuprl, Alf, ...

Type theories are being used in practice

Proof assistants:

- current: Coq, Agda, Isabelle, ...,
- and indeed historical: Lego, Nuprl, Alf, ...

Programming languages:

- true type-theories: Idris, Agda, ...
- influencing: Haskell, Scala, ...

A personal coda

The lambda calculus (λ -calculus)

A theory of functions.

Variables x, y, z.

Application (ef): e.g. ((xy)y).

Abstraction $\lambda x.e$: e.g. $\lambda x.\lambda y.\lambda z.(xz)(yz)$

The lambda calculus (λ -calculus)

A theory of functions.

Variables x, y, z.

Application (ef): e.g. ((xy)y).

Abstraction $\lambda x.e$: e.g. $\lambda x.\lambda y.\lambda z.(xz)(yz)$

β-reduction: (λx.e)f $\rightarrow e[f/x]$

e[f/x] substitute f for x in e; rename variables so no variable capture.

The lambda calculus (λ -calculus)

A theory of functions.

Variables x, y, z.

Application (ef): e.g. ((xy)y).

Abstraction $\lambda x.e$: e.g. $\lambda x.\lambda y.\lambda z.(xz)(yz)$

β-reduction: (λx.e)f $\rightarrow e[f/x]$

e[f/x] substitute f for x in e; rename variables so no variable capture.

Assume: application left associative and binds more tightly than λ .

Bracket abstraction

All terms of the λ -calculus can be represented using the combinators S, K (and I).

$$S \equiv \lambda x. \lambda y. \lambda z. (xz)(yz)$$
 $K \equiv \lambda x. \lambda y. x$ $I \equiv \lambda x. x \equiv SKK$

Bracket abstraction

All terms of the λ -calculus can be represented using the combinators S, K (and I).

$$S \equiv \lambda x. \lambda y. \lambda z. (xz)(yz)$$
 $K \equiv \lambda x. \lambda y. x$ $I \equiv \lambda x. x \equiv SKK$

Proof is by induction over the formation of λ -terms:

$$[x]x \equiv I$$
 $[x]y \equiv Ky$ $[x]ef \equiv S([x]e)([x]f)$

 $S([x]e)([x]f)z \rightarrow (([x]e)z)(([x]f)z) \equiv (\lambda x.ef)z$ by induction.

Implicational logic

Propositional logic with → ...

Two axiom schemes

$$A \rightarrow (B \rightarrow A)$$

 $A \rightarrow (B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$

and one rule, modus ponens:

$$\begin{array}{ccc} A \to B & A \\ \hline B & \end{array}$$

The deduction theorem

$$A \rightarrow (B \rightarrow A)$$

 $A \rightarrow (B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$

If
$$\Gamma, A \vdash B$$
 then $\Gamma \vdash A \rightarrow B$

Proof of the theorem is by induction on the (size of the) proof of B.

First base case, $A \equiv B$. Use 2 instances of 1st axiom, one of 2nd.

The deduction theorem

$$A \rightarrow (B \rightarrow A)$$

 $A \rightarrow (B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$

2nd base case, $B \in \Gamma$. Use one instance of 1st axiom: $B \to (A \to B)$

assum axiom
$$\begin{array}{ccc}
B & B \rightarrow (A \rightarrow B) \\
\hline
& & (A \rightarrow B)
\end{array}$$

The deduction theorem

$$A \rightarrow (B \rightarrow A)$$

 $A \rightarrow (B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$

2nd base case, $B \in \Gamma$. Use one instance of 1st axiom: $B \to (A \to B)$

Induction. Last step in proof is MP: inferring \subset from $B \rightarrow \subset$ and B

axiom by induction
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \qquad (A \rightarrow (B \rightarrow C)) \qquad MP \qquad \text{by induction}$$

$$(A \rightarrow B) \rightarrow (A \rightarrow C) \qquad (A \rightarrow B) \qquad MF$$

Putting the two together

Types for the values in the λ -calculus: only form well-typed terms

$$f:A$$
 $e:(A \rightarrow B)$ $(ef):B$

Contexts / assumptions ... if x : A then e : B

Types and terms

$$S \equiv \lambda x. \lambda y. \lambda z. (xz)(yz) : A \rightarrow (B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$K \equiv \lambda x. \lambda y. x \qquad : A \rightarrow (B \rightarrow A)$$

$$I \equiv \lambda x. x \equiv SKK \qquad : A \rightarrow A$$

Deduction theorem shows that all proofs using an assumption (that is all λ -terms) can be built using S, K (and I).

```
Proofs ≡ Values

Propositions ≡ Types
```

Looking forward ...

Homotopy theory: topological mechanism for characterising shape.

TT+HT: novel characterisation of (formerly problematic) equality.

New foundations for (informal) maths: the univalence axiom.

Category theory: a language for type theoretic foundations.

Induction / co-induction: complex definitional principles.