2. Say that f is topologically continuous if pullbacks of open sets are open, and ¢, §—continuous
if it satisfies the usual e, -condition. For € R? and r > 0, let B(x,r) := {y € R :
lly — z|| < r} denote the open ball of radius r centered at x. The e, —definition of
continuity of f : R®™ — R™ can be phrased as

Vo € R Ve > 036 >0 |B(x,6) C [ B(f(x).)] (%)

Suppose first that f : R® — R™ is ¢, d—continuous, and that U C R™ is open, and that
x € f~U. Since U is open and f(x) € U, there is ¢ > 0 such that B(f(x),e) C U, and
thus by (*) a 0 > 0 such that

x € B(x,0) C f'B(f(x),e) C f'U

from which it is clear that f~1[U] is open.

Next, suppose that f is topologically continuous, that z € R", and that € > 0. Since
f~iB(f(x),e)isopenand z € f~1B(f(x),¢), thereis § > 0 such that B(z,8) C f1B(f(z),¢),
from which it follows that f is e, 0—continuous (via (x)).

3.Fori=1,....n+1, let V;i = {x € R*""! : £, > 0}, and let U;+ := V;i N S™, so that
each Uii is open in S™ w.r.t. the induced topology. It is clear that the hemispheres UZ-jE
cover S™. Define maps

SR .
o7 U = R" :xX = (21,..., i1, %iq1, .-+, Tnt1)

TV
x; omitted

so that each gb;t is essentially a projection onto the n—dimensional open unit disc D" :=
{u € R" : ||u|| < 1} in the coordinate plane x; = 0.

Now, e.g., for i < j we have ¢; o (qui)_1 : D" — D™ by

n

_ 1
(;5;'_ o (d);l:) 1(u1, e >Un) = (ul, e ,ui_l,ui+1,uj_1,:|:(1 — Zu?)z,uj,uﬂ_l, e ,un)
7=1

u; omitted, £(1-377_, u?)% inserted
(or something like that) which is clearly C*°. We do not have to consider the case were
i=jas U NU =0.
(One can do this with just two charts, though obviously not fewer, as S™ is compact, but
no open subset of R"! is compact.)

4. If ; : U; — R™ are charts for a manifold M, and U C M is open, then the restrictions
;U N U; are charts for U.

5. Given an n—dimensional manifold M, as witnessed by charts ¢; : U; — V; CR", ¢ € I, and
an n/-dimensional manifold M’, as witnessed by charts ¢, : U, — V}, C R™,i' € I', the
product mappings

Gi X @y Uy x Uy = Vix Vi TR (i) eI x T



show that M x M’ is an (n + n’)-dimensional manifold. Indeed,
(i X ¢ip) 0 (¢ x &) ™" = (di0d; ") x (@ o ¢y ") : s [Us N U] x ¢u[Uf x Up] — R™™
is a product of differentiable maps, and hence differentiable.

. If ®, @ are atlases for two disjoint n — —dimensional manifolds M, M’, the union ® U ¢’
is clearly an atlas for the union M U M’.

. By definition vector field on a manifold M is a linear map C*°(M) — C°°(M) satisfying
the Leibniz rule. It is obvious that if v,w € Vect(M) and h € C*°(M), then v + w, hv are
linear. To verify the Leibniz rule, just observe that

(+w)(f-g)=v(f-g9)+w(f -g9)=v(f) g+ f vig)+w(f) g+ f w(g)
=[(f) +w()] g+ f-[v(g) +wlg)] = (v+w)(f) g+ f (v+w)(g)

and that
(ho)(f - g) = hlo(f - g)] = hlv(f) - g+ f-v(g)] = (hv)(f) - g+ f - (hv)(9)

. Also easy.

. Clearly for each i < n, the projection 7* : R® — R : (z!,...,2") — 2% has ©* € C°(R"),
and 9;m" = 5; So if v79; = 0, then v' = v/9;7* = 0 for each < n. Thus {9; : i < n}is a
set of linearly independent elements of Vect(R™).

[To see that this set is also a basis, and not just linearly independent, note that, for fixed
xp, a first—order Taylor expansion yields

f(x) = f(xo) + 0if (z0) - (2 — 1'6) + g0 () - ||z — z0|] where e,,(x) — 0 as x — x9

Now as v(c) = 0 when ¢ is constant (because v(c) = cv(1) = cv(1-1) = 2cv(1) = 2v(c)),
we obtain

v(f) (o) = v(m")(20)0 (x0) + v(ezo)(20) - |20 — ol + €xo(z0) - v([[id — 2ol[) (o)

= v(7")(20)0; f (x0)

Hence

v =v(r")0;

expresses v as a linear combination of the basis vectors 0;.]



