
2. Say that f is topologically continuous if pullbacks of open sets are open, and ε, δ–continuous
if it satisfies the usual ε, δ–condition. For x ∈ Rd and r > 0, let B(x, r) := {y ∈ Rd :
||y − x|| < r} denote the open ball of radius r centered at x. The ε, δ –definition of
continuity of f : Rn → Rm can be phrased as

∀x ∈ Rn ∀ε > 0 ∃δ > 0
[
B(x, δ) ⊆ f−1B(f(x), ε)

]
(∗)

Suppose first that f : Rn → Rm is ε, δ–continuous, and that U ⊆ Rm is open, and that
x ∈ f−1U . Since U is open and f(x) ∈ U , there is ε > 0 such that B(f(x), ε) ⊆ U , and
thus by (∗) a δ > 0 such that

x ∈ B(x, δ) ⊆ f−1B(f(x), ε) ⊆ f−1U

from which it is clear that f−1[U ] is open.

Next, suppose that f is topologically continuous, that x ∈ Rn, and that ε > 0. Since
f−1B(f(x), ε) is open and x ∈ f−1B(f(x), ε), there is δ > 0 such thatB(x, δ) ⊆ f−1B(f(x), ε),
from which it follows that f is ε, δ–continuous (via (∗)).

3. For i = 1, . . . , n + 1, let V ±i := {x ∈ Rn+1 : ±xi > 0}, and let Ui± := V ±i ∩ Sn, so that
each U±i is open in Sn w.r.t. the induced topology. It is clear that the hemispheres U±i
cover Sn. Define maps

φ±i : U±i → Rn : x 7→ (x1, . . . , xi−1, xi+1, . . . , xn+1)︸ ︷︷ ︸
xi omitted

so that each φ±i is essentially a projection onto the n–dimensional open unit disc Dn :=
{u ∈ Rn : ||u|| < 1} in the coordinate plane xi = 0.

Now, e.g., for i < j we have φ+
i ◦ (φ±j )−1 : Dn → Dn by

φ+
i ◦ (φ±j )−1(u1, . . . , un) = (u1, . . . , ui−1, ui+1, uj−1,±(1−

n∑
j=1

u2
j )

1
2 , uj , uj+1, . . . , un)︸ ︷︷ ︸

ui omitted, ±(1−
Pn

j=1 u2
j )

1
2 inserted

(or something like that) which is clearly C∞. We do not have to consider the case were
i = j as U+

i ∩ U
−
i = ∅.

(One can do this with just two charts, though obviously not fewer, as Sn is compact, but
no open subset of Rn+1 is compact.)

4. If ϕi : Ui → Rn are charts for a manifold M , and U ⊆ M is open, then the restrictions
ϕi|U ∩ Ui are charts for U .

5. Given an n–dimensional manifold M , as witnessed by charts φi : Ui → Vi ⊆ Rn, i ∈ I, and
an n′–dimensional manifold M ′, as witnessed by charts φ′i′ : U ′i′ → V ′i′ ⊆ Rn′

, i′ ∈ I ′, the
product mappings

φi × φ′i′ : Ui × U ′i′ → Vi × V ′i′ ⊆ Rn+n′
(i, i′) ∈ I × I ′
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show that M ×M ′ is an (n+ n′)–dimensional manifold. Indeed,

(φi × φ′i′) ◦ (φj × φ′j′)−1 = (φi ◦ φ−1
j )× (φ′i′ ◦ φ′−1

j′ ) : φj [Ui ∩ Uj ]× φ′j′ [U ′i′ × U ′j′ ]→ Rn+n′

is a product of differentiable maps, and hence differentiable.

6. If Φ,Φ′ are atlases for two disjoint n − −dimensional manifolds M,M ′, the union Φ ∪ Φ′

is clearly an atlas for the union M ∪M ′.

7. By definition vector field on a manifold M is a linear map C∞(M) → C∞(M) satisfying
the Leibniz rule. It is obvious that if v, w ∈ Vect(M) and h ∈ C∞(M), then v +w, hv are
linear. To verify the Leibniz rule, just observe that

(v + w)(f · g) = v(f · g) + w(f · g) = v(f) · g + f · v(g) + w(f) · g + f · w(g)
= [v(f) + w(f)] · g + f · [v(g) + w(g)] = (v + w)(f) · g + f · (v + w)(g)

and that

(hv)(f · g) = h[v(f · g)] = h[v(f) · g + f · v(g)] = (hv)(f) · g + f · (hv)(g)

8. Also easy.

9. Clearly for each i ≤ n, the projection πi : Rn → R : (x1, . . . , xn) 7→ xi has πi ∈ C∞(Rn),
and ∂jπ

i = δi
j . So if vj∂j = 0, then vi = vj∂jπ

i = 0 for each ≤ n. Thus {∂i : i ≤ n} is a
set of linearly independent elements of Vect(Rn).

[To see that this set is also a basis, and not just linearly independent, note that, for fixed
x0, a first–order Taylor expansion yields

f(x) = f(x0) + ∂if(x0) · (xi − xi
0) + εx0(x) · ||x− x0|| where εx0(x)→ 0 as x→ x0

Now as v(c) = 0 when c is constant (because v(c) = cv(1) = cv(1 · 1) = 2cv(1) = 2v(c)),
we obtain

v(f)(x0) = v(πi)(x0)∂f (x0) + v(εx0)(x0) · ||x0 − x0||+ εx0(x0) · v(||id− x0||)(x0)

= v(πi)(x0)∂if(x0)

Hence
v = v(πi)∂i

expresses v as a linear combination of the basis vectors ∂i.]
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