2. Say that f is topologically continuous if pullbacks of open sets are open, and ε, δ-continuous if it satisfies the usual ε, δ-condition. For $x \in \mathbb{R}^{d}$ and $r>0$, let $B(x, r):=\left\{y \in \mathbb{R}^{d}\right.$: $\|y-x\|<r\}$ denote the open ball of radius r centered at x. The ε, δ-definition of continuity of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ can be phrased as

$$
\begin{equation*}
\forall x \in \mathbb{R}^{n} \forall \varepsilon>0 \exists \delta>0\left[B(x, \delta) \subseteq f^{-1} B(f(x), \varepsilon)\right] \tag{*}
\end{equation*}
$$

Suppose first that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is ε, δ-continuous, and that $U \subseteq \mathbb{R}^{m}$ is open, and that $x \in f^{-1} U$. Since U is open and $f(x) \in U$, there is $\varepsilon>0$ such that $B(f(x), \varepsilon) \subseteq U$, and thus by ($*$) a $\delta>0$ such that

$$
x \in B(x, \delta) \subseteq f^{-1} B(f(x), \varepsilon) \subseteq f^{-1} U
$$

from which it is clear that $f^{-1}[U]$ is open.
Next, suppose that f is topologically continuous, that $x \in \mathbb{R}^{n}$, and that $\varepsilon>0$. Since $f^{-1} B(f(x), \varepsilon)$ is open and $x \in f^{-1} B(f(x), \varepsilon)$, there is $\delta>0$ such that $B(x, \delta) \subseteq f^{-1} B(f(x), \varepsilon)$, from which it follows that f is ε, δ-continuous (via (*)).
3. For $i=1, \ldots, n+1$, let $V_{i}^{ \pm}:=\left\{\mathbf{x} \in \mathbb{R}^{n+1}: \pm x_{i}>0\right\}$, and let $U_{i} \pm:=V_{i}^{ \pm} \cap S^{n}$, so that each $U_{i}^{ \pm}$is open in S^{n} w.r.t. the induced topology. It is clear that the hemispheres $U_{i}^{ \pm}$ cover S^{n}. Define maps

$$
\phi_{i}^{ \pm}: U_{i}^{ \pm} \rightarrow \mathbb{R}^{n}: \mathbf{x} \mapsto \underbrace{\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1}\right)}_{x_{i} \text { omitted }}
$$

so that each $\phi_{i}^{ \pm}$is essentially a projection onto the n-dimensional open unit disc D^{n} := $\left\{\mathbf{u} \in \mathbb{R}^{n}:\|\mathbf{u}\|<1\right\}$ in the coordinate plane $x_{i}=0$.
Now, e.g., for $i<j$ we have $\phi_{i}^{+} \circ\left(\phi_{j}^{ \pm}\right)^{-1}: D^{n} \rightarrow D^{n}$ by

$$
\phi_{i}^{+} \circ\left(\phi_{j}^{ \pm}\right)^{-1}\left(u_{1}, \ldots, u_{n}\right)=\underbrace{\left(u_{1}, \ldots, u_{i-1}, u_{i+1}, u_{j-1}, \pm\left(1-\sum_{j=1}^{n} u_{j}^{2}\right)^{\frac{1}{2}}, u_{j}, u_{j+1}, \ldots, u_{n}\right)}_{u_{i} \text { omitted, } \pm\left(1-\sum_{j=1}^{n} u_{j}^{2}\right)^{\frac{1}{2}} \text { inserted }}
$$

(or something like that) which is clearly C^{∞}. We do not have to consider the case were $i=j$ as $U_{i}^{+} \cap U_{i}^{-}=\emptyset$.
(One can do this with just two charts, though obviously not fewer, as S^{n} is compact, but no open subset of \mathbb{R}^{n+1} is compact.)
4. If $\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ are charts for a manifold M, and $U \subseteq M$ is open, then the restrictions $\varphi_{i} \mid U \cap U_{i}$ are charts for U.
5. Given an n-dimensional manifold M, as witnessed by charts $\phi_{i}: U_{i} \rightarrow V_{i} \subseteq \mathbb{R}^{n}, i \in I$, and an n^{\prime}-dimensional manifold M^{\prime}, as witnessed by charts $\phi_{i^{\prime}}^{\prime}: U_{i^{\prime}}^{\prime} \rightarrow V_{i^{\prime}}^{\prime} \subseteq \mathbb{R}^{n^{\prime}}, i^{\prime} \in I^{\prime}$, the product mappings

$$
\phi_{i} \times \phi_{i^{\prime}}^{\prime}: U_{i} \times U_{i^{\prime}}^{\prime} \rightarrow V_{i} \times V_{i^{\prime}}^{\prime} \subseteq \mathbb{R}^{n+n^{\prime}} \quad\left(i, i^{\prime}\right) \in I \times I^{\prime}
$$

show that $M \times M^{\prime}$ is an $\left(n+n^{\prime}\right)$-dimensional manifold. Indeed,

$$
\left(\phi_{i} \times \phi_{i^{\prime}}^{\prime}\right) \circ\left(\phi_{j} \times \phi_{j^{\prime}}^{\prime}\right)^{-1}=\left(\phi_{i} \circ \phi_{j}^{-1}\right) \times\left(\phi_{i^{\prime}}^{\prime} \circ \phi_{j^{\prime}}^{\prime-1}\right): \phi_{j}\left[U_{i} \cap U_{j}\right] \times \phi_{j^{\prime}}^{\prime}\left[U_{i^{\prime}}^{\prime} \times U_{j^{\prime}}^{\prime}\right] \rightarrow \mathbb{R}^{n+n^{\prime}}
$$

is a product of differentiable maps, and hence differentiable.
6. If Φ, Φ^{\prime} are atlases for two disjoint $n-$-dimensional manifolds M, M^{\prime}, the union $\Phi \cup \Phi^{\prime}$ is clearly an atlas for the union $M \cup M^{\prime}$.
7. By definition vector field on a manifold M is a linear map $C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfying the Leibniz rule. It is obvious that if $v, w \in \operatorname{Vect}(M)$ and $h \in C^{\infty}(M)$, then $v+w, h v$ are linear. To verify the Leibniz rule, just observe that

$$
\begin{aligned}
(v+w)(f \cdot g) & =v(f \cdot g)+w(f \cdot g)=v(f) \cdot g+f \cdot v(g)+w(f) \cdot g+f \cdot w(g) \\
& =[v(f)+w(f)] \cdot g+f \cdot[v(g)+w(g)]=(v+w)(f) \cdot g+f \cdot(v+w)(g)
\end{aligned}
$$

and that

$$
(h v)(f \cdot g)=h[v(f \cdot g)]=h[v(f) \cdot g+f \cdot v(g)]=(h v)(f) \cdot g+f \cdot(h v)(g)
$$

8. Also easy.
9. Clearly for each $i \leq n$, the projection $\pi^{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}:\left(x^{1}, \ldots, x^{n}\right) \mapsto x^{i}$ has $\pi^{i} \in C^{\infty}\left(\mathbb{R}^{n}\right)$, and $\partial_{j} \pi^{i}=\delta_{j}^{i}$. So if $v^{j} \partial_{j}=0$, then $v^{i}=v^{j} \partial_{j} \pi^{i}=0$ for each $\leq n$. Thus $\left\{\partial_{i}: i \leq n\right\}$ is a set of linearly independent elements of $\operatorname{Vect}\left(\mathbb{R}^{n}\right)$.
[To see that this set is also a basis, and not just linearly independent, note that, for fixed x_{0}, a first-order Taylor expansion yields

$$
f(x)=f\left(x_{0}\right)+\partial_{i} f\left(x_{0}\right) \cdot\left(x^{i}-x_{0}^{i}\right)+\varepsilon_{x_{0}}(x) \cdot\left\|x-x_{0}\right\| \quad \text { where } \varepsilon_{x_{0}}(x) \rightarrow 0 \text { as } x \rightarrow x_{0}
$$

Now as $v(c)=0$ when c is constant (because $v(c)=c v(1)=c v(1 \cdot 1)=2 c v(1)=2 v(c)$), we obtain

$$
\begin{aligned}
v(f)\left(x_{0}\right) & =v\left(\pi^{i}\right)\left(x_{0}\right) \partial_{f}\left(x_{0}\right)+v\left(\varepsilon_{x_{0}}\right)\left(x_{0}\right) \cdot\left\|x_{0}-x_{0}\right\|+\varepsilon_{x_{0}}\left(x_{0}\right) \cdot v\left(\left\|\mathrm{id}-x_{0}\right\|\right)\left(x_{0}\right) \\
& =v\left(\pi^{i}\right)\left(x_{0}\right) \partial_{i} f\left(x_{0}\right)
\end{aligned}
$$

Hence

$$
v=v\left(\pi^{i}\right) \partial_{i}
$$

expresses v as a linear combination of the basis vectors ∂_{i}.]

