
Exerise 1Let T be the given transformation. Then applying it to
ν = (ν0, ν1, ν2, ν3)gives

Tν = (ν0 cosh φ − ν1 sinhφ,−ν0 sinhφ + ν1 coshφ, ν2, ν3)and
η(Tν, Tω) = −(ν0 coshφ − ν1 sinhφ)(ω0 coshφ − ω1 sinhφ)

+(−ν0 sinhφ + ν1 coshφ)(−ω0 sinhφ + ω1 coshφ)

+ν2ω2 + ν3ω3

= −ν0ω0 + ν1ω1 + ν2ω2 + ν3ω3

= η(ν, ω)where the identity
cosh2 φ − sinh2 φ = 1is used twie. Using the same identity shows that the determinant of T is 1.Hene T ∈ SO(3, 1). The same follows for using y or z instead of x for reasonsof symmetry.Exerise 2Proeeding as in the previous exerise, we an show that both P and T lie in

O(3, 1).
Pν = (ν0,−ν1,−ν2,−ν3)

Tν = (−ν0, ν1, ν2, ν3)

η(Pν, Pω) = −ν0ω0 + (−ν1)(−ω1) + (−ν2)(−ω2) + (−ν3)(−ω3)

= η(ν, ω)

η(Tν, Tω) = −(−ν0)(−ω0) + ν1ω1 + ν2ω2 + ν3ω3

= η(ν, ω)But
det(P ) = det(T ) = −1whih shows that neither is in SO(3, 1), but that their produt must be, sineit has det 1. 1



Exerise 3The identity is in the speial linear groups sine its determinant is 1, and in theorthogonal and unitary groups sine applying it to any vetor gives the samevetor again.The speial linear groups are losed under multipliation and taking inverses,beause taking the determinant ommutes with both these operations.The othogonal and unitary groups are losed under multipliation:
〈(AB)ν, (AB)ω〉 = 〈A(Bν), A(Bω)〉

= 〈Bν, Bω〉

= 〈ν, ω〉so essentially beause applying matries to vetors has the property (AB)ν =
A(Bν).They are losed under taking inverses: let ν and ω be in Rn or Cn, and let
A be in the group being onsidered. Then it an be shown that detA 6= 0. So
A−1 is a matrix, and although we do not yet know if it is in the group, it anbe used to de�ne

ν′ = A−1(ν)

ω′ = A−1(ω)Then sine A is in the group, we know that
〈Aν′, Aω′〉 = 〈ν′, ω′〉whih beomes
〈ν, ω〉 = 〈Aν, Aω〉using that AA−1 = In, and showing that A−1 is in the group.Exerise 4Showing that the produts and inverses are smooth is the same for all the groupsand follows as desribed in the text. If A = (aij) and B = (bij) are two matries,then the ij'th entry of the produt is ∑

k aikbkj whih is smooth as a funtionfrom Rn×Rn to R. The inverse is shown to be smooth using the expliit formulawith the adjugate matrix.The general linear group is a submanifold sine it is an open subset, thepre-image of R \ {0} under the determinant mapping.For the speial linear group we use a theorem whih goes something like this:if φ is a smooth map from M to N with the dimension of M not less than thatof N then the pre-image of any regular value is a smooth manifold. A regularvalue is a point in N suh that all the pre-images are regular points in M . Aregular point is a point for whih the indued tangent map is surjetive (whihis why M should have dimension at least equal to that of N). (From 'Topologyfrom the di�erentiable viewpoint' by Milnor.)2



So if 1 is a regular value of 'det' then the speial linear group is a submanifoldof the general linear group. To see this, let A be in the speial linear group. Let
Aǫ be the produt of A with a matrix whih is the same as the identity, exeptthat the �rst entry in the diagonal is 1 + ǫ instead of 1. Then the vetor at Apointing in the diretion of Aǫ will not map to 0 (in the tangent spae at 1),sine det(Aǫ) is 1 + ǫ 6= 1, hene A is a regular point of the determinant map.The same argument shows that if the orthogonal (unitary) group is a Liegroup, then the speial orthogonal (unitary) group must also be a Lie group.The orthogonal group is haraterized as matries for whih AAT = I, where
I is the identity if the signature of the metri is (n, 0), otherwise, if it is (p, q),then the diagonal has p 1's and q 0's. In this ase the map from A ∈ R2nto AAT ∈ R2n ould not be regular sine the dimensions would not work out.Perhaps if we restrit the image to the lower triangular entries or something likethat, it might work. I don't know how to do this part. The unitary group anbe haraterized in a similar way, so whatever works for the orthogonal groupwould probably work there as well.Exerise 5We need to show that G0 is losed under multipliation and taking inverses.Firstly, it an be shown that manifolds are loally-path onneted, and thatfor loally-path onneted spaes, being onneted is the same as being path-onneted. So we rather work with this latter onept.Let x, y ∈ G0. Then there exists a ontinuous funtion (path)

γ : [0, 1] → Gsuh that γ(0) = 1G, and γ(1) = x. Let i : G → G be the inverse funtion,whih is ontinuous sine G is a Lie group. Consider the path i ◦ γ. This is apath in G from 1G to x−1 ∈ G, whih implies that x−1 ∈ G0.Next, let my : G → G be the ontinous funtion mapping z ∈ G to z ·y ∈ G.Then the omposition my ◦ γ is a path from y ∈ G0 to x · y ∈ G, whih impliesthat x · y ∈ G0.Thus G0 is a subgroup of G. Furthermore, the above shows that whenrestriting the inverse and produt funtions to G0 and G0 × G0 respetively,their images lie in the same sets. Hene G0 is a Lie group.Exerise 6Let g ∈ O(3). If g is the identity, then it an be onsidered as a rotation of
0 radians about any axis, not followed by a re�etion, and sine it is in theidentity omponent of O(3), it does not ontradit what we have to show.We an also onsider O(3) as ating on vetors based at 0 ∈ R3. It followsfrom the de�nition of O(3) that elements of O(3) must preserve the length ofvetors, and that if two vetors are orthogonal, their images are also orthogonal(atually the angle between two vetors must stay the same, but this is probablynot needed). 3



Now suppose g is not the identity. Then there must be some x ∈ R3 whihis not �xed by g. Consider the plane P through the three points 0, x and g(x),equivalently, spanned by the vetors x and g(x). There are two vetors of unitlength orthogonal to P . Choose one and all it y, then the other must be −y.Sine y is orthogonal to x, g(y) must be orthogonal to g(x). By applying theinverse g−1, it follows that sine y is orthogonal to g(x), g(y) must be orthogonalto g−1(g(x)) = x. In other words g(y) is orthogonal to the same plane P , so itmust equal either y or −y.Now we atually need that g preserves the angle between vetors. Suppose
g(y) = y. Then we laim that g is a rotation about the axis spanned by y. Firstonsider a vetor z in the plane spanned by x and y. Sine the angles mustbe preserved, g(z) must lie in the plane spanned by g(x) and y, at the sameposition that rotation about y would leave it. Then onsider a vetor z in theplane spanned by x and g(x). Again using preservation of angles shows that
g(z) lies where it should. And then ombining these two fats would prove thelaim.If g(y) = −y, then we an ompose with a re�etion through the plane P ,and it then follows from the above that the omposition is a rotation. Thisompletes the proof that g is a rotation possibly ombined with a re�etion.If g is just a rotation, say through an angle θ, then we an onstrut a path
γ in G, suh that γ(t) is a rotation through tθ radians about the same axis.This shows that g is in the identity omponent.To show that rotations with re�etions are not in the identity omponent,we ould use the fat that the determinant funtion is ontinuous and has image
{1,−1}, to divide G into two disjointed open sets. Using the fat that re�etionthrough a plane has determinant −1, and that if h ∈ G is a rotation, then g ∈ Gand gh are in the same onneted omponent of G, it follows that the elementswith determinant 1 are preisely the ones whih are only rotations, and notre�etions.Exerise 7I an do the �rst part (showing that there is no path from the identity to theelement PT ):Consider the vetor ut ∈ R4, where

ut = (1, 0, 0, 0)Let A = (aij) ∈ SO(3, 1). Then Aut = (a11, a21, a31, a41), the �rst olumn ofthe matrix A. Sine
〈Aut, Aut〉 = 〈ut, ut〉 = −1it follows that
−a2

11 + a2
21 + a2

31 + a2
41 = −1It follows that a2

11 ≥ 1. But for A = PT , a11 = −1, whereas for the identity,
a11 = 1. Thus if we have a path from the identity to PT , then the funtion from4



[0, 1] to a11 should be ontinous, but this is impossible given the restrition on
a11. So SO(3, 1) has at least two onneted omponents.For the seond part, it seems from wikipedia that the onneted omponentof the identity is generated by elements suh as in exerise 1, together withtransformations from SO(3) whih leave the time omponent unhanged. Idon't understand the details though.Exerise 8Suppose 1H is in the image of ρ. Then there exists g ∈ G suh that ρ(g) = 1H .Then

ρ(1G) = 1Hρ(1G)

= ρ(g)ρ(1G)

= ρ(g1G)

= ρ(g)

= 1HI don't see how to show this in general.For the seond part
ρ(g−1) = ρ(g−1) · 1H

= ρ(g−1)ρ(g)ρ(g)−1

= ρ(g−1g)ρ(g)−1

= ρ(g)−1Exerise 9Let α ∈ U(1). Then for all x, y ∈ C,
〈x, y〉 = 〈αx, αy〉so

xy = αxαyso αα = 1, i.e. |α| = 1. So as a set U(1) is as given. Also, eıθ1eıθ2x = eı(θ1+θ2)x,so as a group, U(1) is as given.The hint gives the proof of the seond part. Applying the given matrix to
R2 gives an anti-lokwise rotation about the origin. All elements of SO(2) isof this form. Identifying C with R2 shows that multiplying by eıθ has exatlythe same e�et.
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Exerise 10This is immediate by just writing out the de�nitions. For instane
1(g, h) = (1, 1)(g, h)

= (1g, 1h)

= (g, h)So (1, 1) is the identity on the left. Et.

6


