80. $d \frac{x d y}{x^{2}+y^{2}}=\frac{1}{\left(x^{2}+y^{2}\right)^{2}}\left[\left(y^{2}-x^{2}\right) d x-2 y d y\right] \wedge d y=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} d x \wedge d y$. Similarly, $\frac{y d x}{x^{2}+y^{2}}=$ $\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d y \wedge d x=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} d x \wedge d y$, and hence $d E=d \frac{x d y-y d x}{x^{2}+y^{2}}=0$.
$\gamma_{0}:[0,1] \rightarrow \mathbb{R}^{2}: t \mapsto(\cos \pi(1-t), \sin \pi(1-t))$ has

$$
\int_{\gamma_{0}} d E=\int_{0}^{1} \frac{\cos \pi(1-t) \cdot-\pi \cos \pi(1-t) d t-\sin \pi(1-t) \cdot-\pi \cdot-\sin \pi(1-t) d t}{\cos ^{2} \pi(1-t)+\sin ^{2} \pi(1-t)}=-\pi \int_{0}^{1} \frac{1}{1} d t
$$

Similarly, $\gamma_{1}(t)=(\cos (-\pi(1-t)), \sin (-\pi(1-t)))$, which amounts to replacing π by $-\pi$.
81. Given two paths γ_{0}, γ_{1} from p to q in \mathbb{R}^{n}, define, for each $\lambda \in(0,1)$, a path γ_{λ} by

$$
\gamma_{\lambda}(t):=(1-\lambda) \gamma_{0}(t)+\lambda \gamma_{1}(t)
$$

82. If ω is exact, i.e. $\omega=d \phi$, then for any loop γ based at p we have $\int_{\gamma} \omega=\phi(p)-\phi(p)=0$.

Conversely, suppose that ω is not exact. We have seen that if $\int_{\gamma} E=\int_{\gamma^{\prime}} E$ for any path from a point $p \in M$ to a point $q \in M$, then the map

$$
\phi(q):=\int_{\gamma} E \quad \gamma \text { an arbitrary path } p \text { to } q
$$

is well-defined, and has $E=d \phi$. Hence if E is not exact, there must be p, q and two paths γ, γ^{\prime} from p to q such that $\int_{\gamma} E \neq \int_{\gamma^{\prime}} E$. Glueing γ^{\prime} in reverse direction to γ yields a loop Γ based at p. (To be precise, define $\Gamma(t):=\gamma(t)$ for $t \leq T$, and $\Gamma(t):=\gamma^{\prime}\left(T^{\prime}+T-t\right)$ for $\left.T \leq t \leq T+T^{\prime}\right)$ Then $\int_{\Gamma} E=\int_{\gamma} E-\int_{\gamma^{\prime}} E \neq 0$.
83. Clearly if $\omega=d \theta$ on the coordinate patch $S^{1}-\{1\}=\left\{\left(e^{i \theta}: 0<\theta<2 \pi\right\}\right.$, it can be extended uniquely to S^{1}, and then $\int_{S^{1}} \omega=2 \pi$. Hence ω cannot be exact. Now consider $\pi_{0}^{*}(\omega)$, where $\pi_{0}: S^{1} \times M \rightarrow S^{1}$ is the projection onto S^{1}.
84. For $i \leq n$, let $U_{ \pm i}=\left\{\left(x_{1}, \ldots, x_{n}\right):\|\mathbf{x}\|^{2} \leq 1, \pm x_{i}>0\right\}$, and define $p_{i}(\mathbf{x})=\left(x_{1}, \ldots, x_{i-1}, \ldots, x_{i+1}, \ldots x_{n}\right)$. Define $\varphi_{:} U_{ \pm i} \rightarrow \mathbb{H}^{n}: \mathbf{x} \mapsto\left(p_{i}(\mathbf{x}), \sqrt{1-\|\mathbf{x}\|^{2}}\right)$. The point $\mathbf{0}$ needs a chart also.
85. I'm going to give a very rough argument, as many concepts are inadequately defined in BM. If I recall, we didn't even prove that the tangent spaces of an ordinary $n-$ dimensional manifold are n-dimensional. Assume this is known. Any chart containing a boundary point also contains a non-boundary point. For non-boundary points, the coordinate basis vectors ∂_{i} are linearly independent. The basis vector ∂_{n} is the only one which might give trouble at a boundary point. However, if $f: M \rightarrow \mathbb{R}$ is smooth, then it can be extended to coordinates with $x_{n}>-\varepsilon$, so tha $\partial_{n} f$ makes sense also at boundary points.
86. Suppose that $\left(U_{\alpha}, \varphi_{\alpha}\right)$ is a family of charts with associated partition of unity f_{α}, and that the same is true for $\left.U^{\prime} \beta, \varphi_{\beta}\right)$ and f_{β}^{\prime}. Note that $g_{\alpha} d x^{1} \wedge \cdots \wedge d x^{n}=\operatorname{Det}\left(\partial_{j}^{\prime} x^{i}\right) g_{\alpha} d x^{\prime 1} \wedge$
$\cdots \wedge d x^{\prime n}$, so that $g_{\beta}^{\prime}=\operatorname{Det}\left(\partial_{j}^{\prime} x^{i}\right) g_{\alpha}$ on $U_{\alpha} \cap U_{\beta}^{\prime}$. Hence

$$
\begin{aligned}
\sum_{\alpha} \int f_{\alpha} \omega & =\sum_{\alpha} \sum_{\beta} \int f_{-} \beta f_{\alpha} g_{\alpha} d x^{1} \wedge \cdots \wedge d x^{n} \\
& =\sum_{\beta} \sum_{\alpha} \int f_{\alpha} f_{\beta}^{\prime} g_{\alpha} \operatorname{Det}\left(\partial_{j}^{\prime} x^{i}\right) d x^{\prime 1} \wedge \cdots \wedge d x^{\prime n} \\
& =\sum_{\beta} \int f_{\beta}^{\prime} g_{\beta}^{\prime} d x^{\prime 1} \wedge \cdots \wedge d x^{\prime n}=\sum_{\beta} \int f_{\beta}^{\prime} \omega
\end{aligned}
$$

using the change of variables formula and the fact that the $\varphi_{\alpha} \circ \varphi_{\beta}^{\prime-1}$ are orientationpreserving.
87. Using the charts $\left(U_{ \pm i}, \varphi_{ \pm i}\right)$ of exercise 84 , we have $V_{ \pm i}:=U_{ \pm i} \cap \partial D^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right)\right.$: $\left.x_{1}^{2}+\cdots+x_{n}^{2}=1, x_{i}=0\right\}$. By definition, $\mathbf{x} \in \partial D^{n}$ iff $\left.\varphi_{ \pm i} \mathbf{x}\right)$ has $n^{\text {th }}$ coordinate $=0$ for some $\pm i$. Thus we must have $\sqrt{1-\|\mathbf{x}\|^{2}}=0$ i.e. $\|\mathbf{x}\|^{2}=1$.
This is not entirely satisfactory - one would also like to know that a point x in a manifold M cannot simultaneously have a chart that is like \mathbb{R}^{n}, and one that is like \mathbb{H}^{n}. If that were the case, there would be a diffeomorphism from an open set in $U \subseteq \mathbb{R}^{n}$ to an open set in $V \subseteq \mathbb{H}^{n}$, where $V \cap \partial \mathbb{H}^{n} \neq \emptyset$. This is impossible, by the inverse function theorem.
88. Stokes: $\int_{[0,1]} d f=\int_{\partial[0,1]} f$. By definition, $\int_{[0,1]} d f=\int_{0}^{1} f^{\prime}(x) d x=f(1)-f(0)$, using the Fundamental Theorem of Calculus. On the other hand, we do not yet seem to have a definition for $\int_{\left.\partial_{[} 0,1\right]} f$, the integral of a 0 -form. $\partial[0,1]$ inherits an orientation from $[0,1]$: Pointing in the negative x-direction at $x=0$, and in the positive x-direction at $x=1$. So we must define $\int_{\partial[0,1]}=f(1)-f(0)$.
89. Obviously, $\partial[0, \infty)=\{0\}$. With the induced orientation, $\int_{\partial[0, \infty)} f=-f(0)$. Now $\int_{0, \infty} f^{\prime}(x) d x=\lim _{a \rightarrow \infty} f(a)-f(0)$, so for Stokes' Theorem to hold, we must have $\lim _{a \rightarrow \infty} f(a)=0$.

