80.
$$d\frac{x}{x^2+y^2} = \frac{1}{(x^2+y^2)^2} [(y^2-x^2) \ dx - 2y \ dy] \wedge dy = \frac{y^2-x^2}{(x^2+y^2)^2} dx \wedge dy.$$
Similarly, $\frac{y}{x^2+y^2} = \frac{x^2-y^2}{(x^2+y^2)^2} dy \wedge dx = \frac{y^2-x^2}{(x^2+y^2)^2} dx \wedge dy,$ and hence $dE = d\frac{x}{dy-y} \frac{dy}{dx} = 0.$
 $\gamma_0: [0,1] \to \mathbb{R}^2: t \mapsto (\cos \pi (1-t), \sin \pi (1-t))$ has

$$\int_{\gamma_0} dE = \int_0^1 \frac{\cos \pi (1-t) \cdot -\pi \cos \pi (1-t) \ dt - \sin \pi (1-t) \cdot -\pi \cdot -\sin \pi (1-t) \ dt}{\cos^2 \pi (1-t) + \sin^2 \pi (1-t)} = -\pi \int_0^1 \frac{1}{1} \ dt$$

Similarly, $\gamma_1(t) = (\cos(-\pi(1-t)), \sin(-\pi(1-t)))$, which amounts to replacing π by $-\pi$.

81. Given two paths γ_0, γ_1 from p to q in \mathbb{R}^n , define, for each $\lambda \in (0, 1)$, a path γ_λ by

$$\gamma_{\lambda}(t) := (1 - \lambda)\gamma_0(t) + \lambda\gamma_1(t)$$

82. If ω is exact, i.e. $\omega = d\phi$, then for any loop γ based at p we have $\int_{\gamma} \omega = \phi(p) - \phi(p) = 0$.

Conversely, suppose that ω is not exact. We have seen that if $\int_{\gamma} E = \int_{\gamma'} E$ for any path from a point $p \in M$ to a point $q \in M$, then the map

$$\phi(q) := \int_{\gamma} E \qquad \gamma \text{ an arbitrary path } p \text{ to } q$$

is well-defined, and has $E = d\phi$. Hence if E is not exact, there must be p, q and two paths γ, γ' from p to q such that $\int_{\gamma} E \neq \int_{\gamma'} E$. Glueing γ' in reverse direction to γ yields a loop Γ based at p. (To be precise, define $\Gamma(t) := \gamma(t)$ for $t \leq T$, and $\Gamma(t) := \gamma'(T' + T - t)$ for $T \leq t \leq T + T'$) Then $\int_{\Gamma} E = \int_{\gamma} E - \int_{\gamma'} E \neq 0$.

- 83. Clearly if $\omega = d\theta$ on the coordinate patch $S^1 \{1\} = \{(e^{i\theta} : 0 < \theta < 2\pi\}, \text{ it can be extended uniquely to } S^1, \text{ and then } \int_{S^1} \omega = 2\pi. \text{ Hence } \omega \text{ cannot be exact. Now consider } \pi_0^*(\omega), \text{ where } \pi_0 : S^1 \times M \to S^1 \text{ is the projection onto } S^1.$
- 84. For $i \leq n$, let $U_{\pm i} = \{(x_1, \dots, x_n) : ||\mathbf{x}||^2 \leq 1, \pm x_i > 0\}$, and define $p_i(\mathbf{x}) = (x_1, \dots, x_{i-1}, \dots, x_{i+1}, \dots, x_n)$. Define $\varphi_: U_{\pm i} \to \mathbb{H}^n : \mathbf{x} \mapsto (p_i(\mathbf{x}), \sqrt{1 - ||\mathbf{x}||^2})$. The point **0** needs a chart also.
- 85. I'm going to give a very rough argument, as many concepts are inadequately defined in BM. If I recall, we didn't even prove that the tangent spaces of an ordinary ndimensional manifold are n-dimensional. Assume this is known. Any chart containing a boundary point also contains a non-boundary point. For non-boundary points, the coordinate basis vectors ∂_i are linearly independent. The basis vector ∂_n is the only one which might give trouble at a boundary point. However, if $f: M \to \mathbb{R}$ is smooth, then it can be extended to coordinates with $x_n > -\varepsilon$, so tha $\partial_n f$ makes sense also at boundary points.
- 86. Suppose that $(U_{\alpha}, \varphi_{\alpha})$ is a family of charts with associated partition of unity f_{α} , and that the same is true for $U'\beta, \varphi_{\beta}$ and f'_{β} . Note that $g_{\alpha}dx^1 \wedge \cdots \wedge dx^n = \text{Det}(\partial'_j x^i)g_{\alpha} dx'^1 \wedge$

 $\cdots \wedge dx^{\prime n}$, so that $g'_{\beta} = \operatorname{Det}(\partial'_{i}x^{i})g_{\alpha}$ on $U_{\alpha} \cap U'_{\beta}$. Hence

$$\sum_{\alpha} \int f_{\alpha} \omega = \sum_{\alpha} \sum_{\beta} \int f_{-\beta} f_{\alpha} g_{\alpha} \, dx^{1} \wedge \dots \wedge dx^{n}$$
$$= \sum_{\beta} \sum_{\alpha} \int f_{\alpha} f'_{\beta} g_{\alpha} \operatorname{Det}(\partial'_{j} x^{i}) \, dx'^{1} \wedge \dots \wedge dx'^{n}$$
$$= \sum_{\beta} \int f'_{\beta} g'_{\beta} \, dx'^{1} \wedge \dots \wedge dx'^{n} = \sum_{\beta} \int f'_{\beta} \omega$$

using the change of variables formula and the fact that the $\varphi_{\alpha} \circ {\varphi'_{\beta}}^{-1}$ are orientation–preserving.

87. Using the charts $(U_{\pm i}, \varphi_{\pm i})$ of exercise 84, we have $V_{\pm i} := U_{\pm i} \cap \partial D^n = \{(x_1, \dots, x_n) : x_1^2 + \dots + x_n^2 = 1, x_i = 0\}$. By definition, $\mathbf{x} \in \partial D^n$ iff $\varphi_{\pm i} \mathbf{x}$) has n^{th} coordinate = 0 for some $\pm i$. Thus we must have $\sqrt{1 - ||\mathbf{x}||^2} = 0$ i.e. $||\mathbf{x}||^2 = 1$.

This is not entirely satisfactory — one would also like to know that a point x in a manifold M cannot simultaneously have a chart that is like \mathbb{R}^n , and one that is like \mathbb{H}^n . If that were the case, there would be a diffeomorphism from an open set in $U \subseteq \mathbb{R}^n$ to an open set in $V \subseteq \mathbb{H}^n$, where $V \cap \partial \mathbb{H}^n \neq \emptyset$. This is impossible, by the inverse function theorem.

- 88. Stokes: $\int_{[0,1]} df = \int_{\partial [0,1]} f$. By definition, $\int_{[0,1]} df = \int_0^1 f'(x) dx = f(1) f(0)$, using the Fundamental Theorem of Calculus. On the other hand, we do not yet seem to have a definition for $\int_{\partial [0,1]} f$, the integral of a 0-form. $\partial [0,1]$ inherits an orientation from [0,1]: Pointing in the negative x-direction at x = 0, and in the positive x-direction at x = 1. So we must define $\int_{\partial [0,1]} = f(1) f(0)$.
- 89. Obviously, $\partial[0,\infty) = \{0\}$. With the induced orientation, $\int_{\partial[0,\infty)} f = -f(0)$. Now $\int_{0,\infty} f'(x) dx = \lim_{a \to \infty} f(a) f(0)$, so for Stokes' Theorem to hold, we must have $\lim_{a \to \infty} f(a) = 0$.