
80. d x dy
x2+y2

= 1
(x2+y2)2

[(y2 − x2) dx − 2y dy] ∧ dy = y2−x2

(x2+y2)2
dx ∧ dy. Similarly, y dx

x2+y2
=

x2−y2
(x2+y2)2

dy ∧ dx = y2−x2

(x2+y2)2
dx ∧ dy, and hence dE = dx dy−y dx

x2+y2
= 0.

γ0 : [0, 1]→ R2 : t 7→ (cosπ(1− t), sinπ(1− t)) has∫
γ0

dE =
∫ 1

0

cosπ(1− t) · −π cosπ(1− t) dt− sinπ(1− t) · −π · − sinπ(1− t) dt
cos2 π(1− t) + sin2 π(1− t)

= −π
∫ 1

0

1
1
dt

Similarly, γ1(t) = (cos(−π(1− t)), sin(−π(1− t))), which amounts to replacing π by −π.

81. Given two paths γ0, γ1 from p to q in Rn, define, for each λ ∈ (0, 1), a path γλ by

γλ(t) := (1− λ)γ0(t) + λγ1(t)

82. If ω is exact, i.e. ω = dφ, then for any loop γ based at p we have
∫
γ ω = φ(p)−φ(p) = 0.

Conversely, suppose that ω is not exact. We have seen that if
∫
γ E =

∫
γ′ E for any path

from a point p ∈M to a point q ∈M , then the map

φ(q) :=
∫
γ
E γ an arbitrary path p to q

is well–defined, and has E = dφ. Hence if E is not exact, there must be p, q and
two paths γ, γ′ from p to q such that

∫
γ E 6=

∫
γ′ E. Glueing γ′ in reverse direction

to γ yields a loop Γ based at p. (To be precise, define Γ(t) := γ(t) for t ≤ T , and
Γ(t) := γ′(T ′ + T − t) for T ≤ t ≤ T + T ′) Then

∫
ΓE =

∫
γ E −

∫
γ′ E 6= 0.

83. Clearly if ω = dθ on the coordinate patch S1 − {1} = {(eiθ : 0 < θ < 2π}, it can be
extended uniquely to S1, and then

∫
S1 ω = 2π. Hence ω cannot be exact. Now consider

π∗0(ω), where π0 : S1 ×M → S1 is the projection onto S1.

84. For i ≤ n, let U±i = {(x1, . . . , xn) : ||x||2 ≤ 1,±xi > 0}, and define pi(x) = (x1, . . . , xi−1, . . . , xi+1, . . . xn).
Define ϕ:U±i → Hn : x 7→ (pi(x),

√
1− ||x||2). The point 0 needs a chart also.

85. I’m going to give a very rough argument, as many concepts are inadequately defined
in BM. If I recall, we didn’t even prove that the tangent spaces of an ordinary n–
dimensional manifold are n–dimensional. Assume this is known. Any chart containing
a boundary point also contains a non–boundary point. For non–boundary points, the
coordinate basis vectors ∂i are linearly independent. The basis vector ∂n is the only
one which might give trouble at a boundary point. However, if f : M → R is smooth,
then it can be extended to coordinates with xn > −ε, so tha ∂nf makes sense also at
boundary points.

86. Suppose that (Uα, ϕα) is a family of charts with associated partition of unity fα, and that
the same is true for U ′β, ϕβ) and f ′β. Note that gαdx1 ∧ · · · ∧ dxn = Det(∂′jx

i)gα dx′1 ∧

1



· · · ∧ dx′n, so that g′β = Det(∂′jx
i)gα on Uα ∩ U ′β. Hence

∑
α

∫
fαω =

∑
α

∑
β

∫
f βfαgα dx

1 ∧ · · · ∧ dxn

=
∑
β

∑
α

∫
fαf

′
βgαDet(∂′jx

i) dx′1 ∧ · · · ∧ dx′n

=
∑
β

∫
f ′βg
′
β dx

′1 ∧ · · · ∧ dx′n =
∑
β

∫
f ′βω

using the change of variables formula and the fact that the ϕα ◦ ϕ′β
−1 are orientation–

preserving.

87. Using the charts (U±i, ϕ±i) of exercise 84, we have V±i := U±i ∩ ∂Dn = {(x1, . . . , xn) :
x2

1 + · · ·+ x2
n = 1, xi = 0}. By definition, x ∈ ∂Dn iff ϕ±ix) has nth coordinate = 0 for

some ±i. Thus we must have
√

1− ||x||2 = 0 i.e. ||x||2 = 1.

This is not entirely satisfactory — one would also like to know that a point x in a
manifold M cannot simultaneously have a chart that is like Rn, and one that is like Hn.
If that were the case, there would be a diffeomorphism from an open set in U ⊆ Rn to
an open set in V ⊆ Hn, where V ∩ ∂Hn 6= ∅. This is impossible, by the inverse function
theorem.

88. Stokes:
∫

[0,1] df =
∫
∂[0,1] f . By definition,

∫
[0,1] df =

∫ 1
0 f
′(x) dx = f(1)− f(0), using the

Fundamental Theorem of Calculus. On the other hand, we do not yet seem to have a
definition for

∫
∂[0,1] f , the integral of a 0–form. ∂[0, 1] inherits an orientation from [0, 1]:

Pointing in the negative x–direction at x = 0, and in the positive x–direction at x = 1.
So we must define

∫
∂[0,1] = f(1)− f(0).

89. Obviously, ∂[0,∞) = {0}. With the induced orientation,
∫
∂[0,∞) f = −f(0). Now∫

0,∞ f
′(x) dx = lim

a→∞
f(a) − f(0), so for Stokes’ Theorem to hold, we must have

lim
a→∞

f(a) = 0.
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