47. Given that ¢* has already been defined on 0— and 1-forms, and that each p—form on M
is a linear combination (over C*°(M)) of p-fold wedge products of 1-forms, it is clear
we must define

Oz ox'»

T ... - dl'/jl...d]?/jp
Hx'it oxlir

O (fir.iydz™ A - -Adx™?) = ¢ (fiy.0, 8" (daV)A- - -AG* (da™?) = fiy.i,00

and extend by linearity. There is no choice about this, so ¢* is unique.

48. P*(wy(x) dot) = w,(—x) 22 da¥ = —w, (—x) dz'.
Similarly, P*(wp, (x)dz* dz¥) = wy, (—%) dat; dz”
49. d(w, dat = dw,, A dz* = Oyw), dz¥ A dat
50. Any 2—form on R x S is locally %wwdm“ Adz¥, where w.lo.g w is antisymmetric, 20 := ¢ is
the coordinate on R, and 2%(i > 0) the coordinates on S. For i > 0, define E; := wi0, and
for 7,7 > 0 define Bij = wij.

51. If w = wydz!, then dw = dowy da® Adx! + Ojwrda® Adx!, where in the last term summation
is over coordinates of S, i.e. over i > 0.

52. The bilinearity of g ensures the linearity of g(v,:) : V. — R, ie. if v € V, then Lv :=
g(v,-) € V*. Now non—degeneracy g of immediately implies that ker L = {0}, so that L is
injective. Since dimV = dimV™, L is also surjective.

Alternatively, suppose that v* € V*, and that e; is an orthonormal basis for V w.r.t g. De-
finev =3, . g(ei,e;)v*(e;)e; Note that the product (without summation) g(e;, e;)g(e;, ex)
is=1ifi = j =k, and is = 0 otherwise. Now observe that g(v, ex) = g(>_; ; g(e;, ej)v*(ei)ej, ex) =
Zi,j glei,ej)v*(e;)g(ej, ex) = v*(eg). Hence L1 : V* — V i 0* 5 v = Z” glei,ej)v*(ei)e;.

53. If v = vte,, and w = g(v,-), then we can write w = v, f” where the dual basis has
f(ey) = 0. Now

Uy = U'y]w(eu) = W(eu) = g(v, 611) = 'ng(e,ua 6,,) = guuvu

54. Because of the isomorphism in exercise 52, we need merely show that g(w”e,, ) = w, f",
where w” 1= g"w,. But g(w"e,,ey) = g wug(e, ey) = wug" gy = wy = wy ¥ (e5).

55. Obvious (unless I'm missing something).

56. gb = g"7g, = 0l.

57. By definition,

(e A Aetr et A Ae) = det(gh¥i) = Z (=1)7ghvom ... gHe o)
oSy

Since g = 0 if u # v, we see that (ef* A---Aet?, e” N--- Ae?) # 0 only when vq,...,1,
is a permutation of ju1,..., yp, in which case e A--- A e = £elt A--- A et?, where the
sign is 4+(—) if that permutation is even (odd).

Now clearly
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58.

59.

60.

61.

62.

We have (da!,dz?) = g = §¥ so that (E,E) = E;E;{da!,d2l) = E;E' = Y2 E?.
Similarly,

1 ifi=k,j=1
(dx' A da? , dx® A dat) = det <§jk gjl)zg“fgﬂg”gf’“z -1 ifi=lj=k
0 else

Hence (B, dyAdz, B, dyAdz) = B2, from which it follows easily that (B, B) = B2 +BZ +
B2

Note that (dx! A dt,dz? Adt) = —6Y for i,j > 0. Thus (E,: dz* Adt, By dat Adt) = —Egi,
from which it follows that (E A dt, E A dt) = —(E2 + E2 + E2). Clearly (B, E Adt) =0,
because )dx® A dz’, dz* A dt) = 0 for all 4,7,k > 0. Thus (F, F) = (B, B) + (E Adt, E A
dt) + (B, E Adt) + (E A dt, B) = (B2 + B2 + B?) — (EZ + EZ 4 E2), so that —3(F, F) =
Lagrangian.

Let T' be transformation which takes e; to e,(;), where o is a permutation of 1,2,...,n
(where n is the dimension of the space). Then Tj; = 1 if j = o(i), and T;; = 0 else. Thus
det(T) = > cs (=) T1+1) - Tnrm) = (—1)7, as only the term corresponding to 7 = o
is non—zero.

I'm not sure if I have interpreted this question correctly. Let V = dz'A- - -Adz™ be the stan-
dard volume form on R", and let w be a volume form on M. If for some chart (U, a, v, ) we
have that ¢} (V') belongs to the equivalence class of —w, then we can replace ¢, by a chart
that interchanges to of the coordinates. To be specific, define ¥, = (w2, 71,73, ..., Tp)0Pq.
Then ¢ (dx! A+ Ada™) = @i (dz? Adzt AdzP A -+ Ada™) = —pF (dzt A - - Adz™) belongs
to the equivalence class of w. Hence we can cover M with charts (Uy, ¢o) such that when
Ua NUg # 0, then ¢, (V), ¢5(V) have the same orientation, namely that of w.

We need to show that if there are ”orientation—preserving charts” (Uy, po) on M, i.e.
charts such that ¢, o gpgl are orientation—preserving, then M has a volume form.

Note that if f : (U,y%,...,y") — (Val,... 2"), then f*(dx' A--- Ada™) = f*(dz') A

<o A fH(da™) = (8%11 dyt )y A A (gy% dyin) = det(gg;)ij dy* A --- Ady™. Thus f is
aft

orientation—preserving iff det(g37)i; > 0.

To construct a volume form w on M, start with the volume form V = dz' A---Adz™ on R™,
and pull it back to M via the charts. This defines w locally by w|U, = ¢% (V). Ify!,... 4"
are the local coordinates of (Us, ¢4 ) (i.e. if y* = 2P0, ), then w = ¥ (dz!)A- - Ak (dz™) =
dy' A AN dy™.

The trouble that may arise is that when Uy, Ug overlap, the orientations of ¢}, (V), @E(V)
are opposite, for then the orientation of w is not well-defined. Now if (Ug, ¢g) has coor-
dinates 2!, ..., 2, then ¢} (V) and ¢5(V) have the same orientation iff dz' A~ ANd2" s a

positive function times dy' A--- Ady™. But dy' A---Ady™ = det(g?y;)ijdzl A---ANdz", and
det(%) > 0, since the transformation z — y(z) is none ¢, o <p51, which is orientation—
preserving by assumption.



63.

64.

65.

66.

67.

68.

At p we have ¢! = T]Z dx? for some invertible matrix 7. Hence e'A---Ae™ = det T dz' A---A
dz". However, g(ef,e?) = +£6%, and hence T/TY g(dz® dz') = +£6%, i.e. TigsT! = +£5%.
Taking determinants, we obtain (det T')(det g~1)(detT) = £1, i.e. detg = +(detT)%. But
det T' > 0, because it preserves orientation. Hence det T = /| det g|, and so e! A---Ae™ =

V] detg| dzt A -+ A da™ = vol.

We have, using exercises 57 and 63,
(€A~ ANePYAK(€TA---Ne'P) = (e A---Ae' e A AeP)vol = e(iy)-. .. e(ip)et A Ae”

It follows immediately that (et A--- Ae') = £eir+t A .- Aein. To determine which sign
(+ or —), just note that

€A At =sgn(iy,. .. in)et Ao A e (i, . .., ip)vol
and hence that the sign is sgn(iq,...,4,)€(i1) ... €(ip), as asserted.

If w:=w,; de+wy dy + w, dz, then dw = (O,w, — Opw;) dz A dx + (Opwy — Oywy) dx Ady +
(Oyw> — O,wy) dy A dz, so that

dr dy dz
*dw = (Oyw, — Ozwy) dx — (Opw; — Orwy) dy + (Opwy — Oywy) dz = |0, 0y 0, = “curl” w
Wg Wy W

Looking at just one term: xd x (w, dz) = *d(w; dy A dz) = x(Orwy dx N dy A dz) = Opw,.
Hence
*d *w = “div’ w

I'll do a few: xdt = sgn(0,1,2,3)e(0) de Ady Adz = — dx A dy A dz.
*dr =sgn(1,0,2,3)e(l) dt A dyNdz=—dt N dy A dz.

*(dt A dy) = sgn(0,2,1,3)e(0)e(2) dz ANdz = dz Ndz

*(dx N dz) =sgn(1,3,0,2)e(1)e(3) dt ANdy = dt A dy

*(dt Ndz N dz) =sgn(0,1,3,2)e(0)...€(1)e(3) = dy.

The second part of this exercise is generalized in the next.

Clearly %2 takes a p—form to a p— — form, and x*w = 4w for all w. To determine the sign,
note that

K2 (dx T A Ada'®) = sgn(in, .. 00)SEN(ip1s -y in, i1y ip)e(1) .. e(n)dz™ A - Ada®?

NOW . . . . .
sgn(it, ..., in) = (—1)Psgn(ip41, 1, .-, lp, Ipy2 . .- in)
= (_1)2psgn(i[)+17 Z.p-i-27 ... 7ipa ip+37 s 7'Ln)
= sgn(—l)p(”_p)sgn(ip+1, R A TR 5
which yields
sgn(it, ..., in)SEN(ipt1s .-y in, i1, ..., ip)e(1) ... e(n) = (=1)Pn—P)Fs



69.
70.

71.

] P ; ; . . . .. .
Note that 6;'11'.'.'.3'”_,, = ghtkr | .glpkpeklmkpjlmjn_p =€(t1)...€(ip)sgn(in...ipJ1 - Jn—p)-

*g dg x5 By dr = *g dg *s Ep dy N dz = x50, Ey dx Ndy N dz = 0, F,.
Similarly xg ds xs By dy A dz = *s dsB, do = x5(0,B; dz A dx — 0yB, dx N dy) =
0.B, dy — 0B, dz

*F=%(BgdyNdz+---+Egde ANdt+...)=(BydtNde+...) — (ExgdyNdz+...)



